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The characterization of total ordering cones of R
n was given with some properties and

optimality conditions in Küçük et al. (2011) [1]. In addition, total ordering cones were
used to derive a vector valued function from a special class of set valued mappings in
Küçük et al. (2012) [2]. In this study, we give a method for construction of a total ordering
cone in a separable Hilbert space by using an orthogonal base. Moreover, we show that
every total order can be represented by such a cone. The relationship between the notion
of total ordering cone and the notion of vectorization of some set valued mappings are
given and some results are obtained.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The main purpose of vector optimization is to find the optimal elements of a set or optimal values of a vector valued
function in a partially ordered space. In the same way, in the case of finding optimal sets in a family of sets or optimal
values of a set valued mapping in a partially ordered space we get set valued optimization problem (one can see [3–7]
for more studies on set-valued analysis and optimization). The choice of partial order in a vector optimization problem or
set valued optimization problem is important. As the partial order determines which vector or set is better or optimal.
Generally pointed, convex cones are used to define a partial order [8]. As known in this order some elements may not be
comparable.

In [1], the question that under which condition a pointed convex cone defines a total order on a vector space was
answered. Also a characterization of total orders was given with some properties and total orders were matched with
orthogonal bases of R

n . Moreover, optimality conditions of vector and set valued problems with respect to a total order
were presented. By using these conditions Successive Weighted Sum Scalarization Method which was used not only for
the problems with respect to a total ordering cone but also for the problems with respect to a cone with a compact base
was obtained. (One can see [2] an example and the comparison of Successive Weighted Sum Method and Weighted Sum
Method.) It was shown that, by using vectorization derived from set valued map, set-valued optimization problems can be
represented as vector valued problems [9].

In this study, we extend the total ordering cones of R
n to separable real Hilbert spaces. We construct a total ordering

cone for a real separable Hilbert space by using any orthogonal base of it.
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2. Mathematical preliminaries

In this section, we give some important properties and definitions which will be used in this article.

Proposition 2.1. (See [1].) Let X be a vector space, C be a partial ordering cone in X and “�C ” be a partial order on X defined by

a �C b ⇔ b − a ∈ C .

Then

“ �C ” is a total order on X if and only if C ∪ (−C) = X .

3. Total ordering cones of separable real Hilbert spaces

Let {ri: i ∈ N
+} be an orthogonal base of Separable Hilbert space X . Consider the sets K1 = {x ∈ X: 〈r1, x〉 > 0}, K2 =

{x ∈ X: 〈r1, x〉 = 0, 〈r2, x〉 > 0} and for any arbitrary i ∈N
+ Ki = {x ∈ X: ∀ j < i, 〈r j, x〉 = 0, 〈ri, x〉 > 0}. Define the set

K =
( ⋃

i∈N+
Ki

)
∪ {0}. (1)

The following theorem shows that K is a total ordering cone in X derived from the base {ri: i ∈ N
+} with respect to

given order.

Theorem 3.1. The set K ⊂ X defined in (1) is a pointed convex cone with K ∪ (−K ) = X, i.e. K is a total ordering cone in X such that

a �K b ⇔ ∃i ∈ N
+ such that ∀ j < i, 〈r j,a〉 = 〈r j,b〉 and 〈ri,a〉 < 〈ri,b〉.

Proof.

i) First, we show that K is a cone. Let k ∈ K and λ � 0.
If k = 0X or λ = 0 then λk = 0X ∈ K . So, let k �= 0X and λ > 0. Then, there exists i ∈ N

+ such that for each j < i
〈r j,k〉 = 0 and 〈ri,k〉 > 0. So, for each j < i 〈r j, λk〉 = 0 and 〈ri, λk〉 > 0. Therefore, k ∈ K . Hence, K is a cone.

ii) To show the pointedness of K , assume that there exists a nonzero vector k ∈ K ∩ (−K ). Since, k ∈ K there exists i1 ∈ N
+

such that for all j < i1 〈r j,k〉 = 0 and 〈ri1 ,k〉 > 0. In the same way, since k ∈ (−K ), then there exists i2 ∈ N
+ such that

for all j < i2 〈r j,k〉 = 0 and 〈ri2 ,k〉 < 0, there are two cases for i1 and i2: i1 = i2 or i1 �= i2.
a) If i1 = i2 then 〈ri1 ,k〉 > 0 and 〈ri1 ,k〉 < 0, which is a contradiction.
b) Let i1 < i2. Then for all j < i2 〈r j,k〉 = 0, which contradicts to 〈ri1 ,k〉 > 0.
For the case i2 < i1, we get the same contradiction with b). Hence, K ∩ (−K ) = {0X }. In other words, K is pointed.

iii) Now, we show the convexity of K . As, K is a cone it is enough to show that K + K = K .
Since 0X ∈ K ,

K = 0X + K ⊂ K + K . (2)

To show the inverse inclusion, let k ∈ K + K . Then there are k1,k2 ∈ K such that k = k1 + k2. If k1 or k2 is zero then
k ∈ K is obvious. So, we can assume that both k1 and k2 are nonzero. Then, there exists i1 ∈ N

+ such that for all j < i
〈r j,k1〉 = 0 and 〈ri1 ,k1〉 > 0 and there exists i2 ∈ N

+ such that for all j < i2 〈r j,k2〉 = 0 and 〈ri2 ,k2〉 > 0. Let i1 � i2
Then

〈r j,k1 + k2〉 = 〈r j,k1〉 + 〈r j,k2〉 = 0 + 0 = 0

for all j < i1. Since, 〈ri1 ,k1〉 > 0 and 〈ri1 ,k2〉 � 0, we get

〈ri1 ,k1 + k2〉 = 〈ri1 ,k1〉 + 〈ri1 ,k2〉 > 0.

Then, we have k1 + k2 = k ∈ K . So, we obtain the desired inclusion

K + K ⊂ K . (3)

By the inclusions (2) and (3), we have K = K + K . Hence, K is convex.
iv) Now, we can show that K is a total ordering cone. Since, we already showed that K is a partial ordering cone. By

Proposition 2 in [1], it is enough to show that K ∪ (−K ) = X . The following inclusion is obvious

K ∪ (−K ) ⊂ X . (4)
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Let us show the converse inclusion. To do this let r ∈ X . If r = 0X , then r ∈ K ∪ (−K ). If r �= 0X , since {ri: i ∈ N
+} is a

base of X , then there exists i ∈ N
+ such that 〈r j, r〉 = 0, for all j < i and 〈ri, r〉 �= 0. Because 〈ri, r〉 �= 0, either 〈ri, r〉 > 0

or 〈ri, r〉 < 0.
If 〈ri, r〉 > 0 then r ∈ K .
If 〈ri, r〉 < 0 then r ∈ −K .

As a result, we obtain r ∈ K ∪ (−K ). This implies

X ⊂ K ∪ (−K ). (5)

By the inclusions (4) and (5), we get X = K ∪ (−K ).

Moreover K defines a total order on X in the following way:

a �K b ⇔ b − a ∈ K

⇔ ∃i ∈N
+ such that 〈r j,b − a〉 = 0, ∀ j < i and 〈ri,b − a〉 > 0

⇔ ∃i ∈N
+ such that 〈r j,b〉 = 〈r j,a〉, ∀ j < i and 〈ri,b〉 > 〈ri,a〉. �

Now, we can give some properties of total ordering cones in real separable Hilbert spaces.

Lemma 3.2. Let K be a total ordering cone in a real separable Hilbert space X, then

−K = (X \ K ) ∪ {0X }.

Proof. Let k ∈ −K . If k = 0X then k ∈ (X \ K ) ∪ {0X }. If k �= 0X and k ∈ K then we have k ∈ K ∩ (−K ). But this contradicts
with the pointedness of K . So, k ∈ X \ K and

−K ⊂ (X \ K ) ∪ {0X }. (6)

To show the inverse inclusion, let k ∈ (X \ K ) ∪ {0X }. If k = 0X , then k ∈ −K . If k ∈ X \ K , since X = K ∪ (−K ), then,
k ∈ −K . So, we obtain

(X \ K ) ∪ {0X } ⊂ −K . (7)

By the inclusions (6) and (7), we have

−K = (X \ K ) ∪ {0X }. �
In Lemma 3.3, we show that if we reduce a total ordering cone to a subspace then we get a total ordering cone in that

subspace.

Lemma 3.3. In a real separable Hilbert space X, the intersection of a total ordering cone K and a subspace A of X is a total ordering
cone in A.

Proof. Let K A = K ∩ A. Since A and K are cones, K A is a cone. Since A and K are convex, K A is also convex. K is a pointed
cone. Then, we have

K A ∩ (−K A) = (A ∩ K ) ∩ (
A ∩ (−K )

) = A ∩ (
K ∩ (−K )

) = A ∩ {0} = {0A},
i.e. K A is pointed. Hence, K A is a pointed, convex cone.

Now, let us show K A is a total ordering cone, i.e. K A ∪ (−K A) = A.

A = A ∩ X = A ∩ (
K ∪ (−K )

) = (A ∩ K ) ∪ (
A ∩ (−K )

) = K A ∪ (−K A).

Hence, K A is a pointed, convex cone with K A ∪ (−K A) = A. Namely, K A defines a total order on A. �
The following lemma is a result of the separation of convex sets. (See Theorem 3.14 in [10].)

Lemma 3.4. Let K be a total ordering cone in a real separable Hilbert space X. Then, there exists a vector r ∈ X such that{
a ∈ X: 〈r,a〉 > 0

} ⊂ K .
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Proof. Since K and (−K ) are total ordering cones in X , they are convex. Besides, int(K ) �= ∅, K is pointed and int(K ) ∩
(−K ) = ∅. By the separation of the convex sets there exist an � ∈ X \ {0X } and an α ∈R such that

〈�,k1〉 � α � 〈�,k2〉 (8)

for all k1 ∈ K and for all k2 ∈ −K . Moreover,

〈�,k1〉 < α (9)

for all k1 ∈ int(K ).
Since K and (−K ) are cones, then α = 0. If we choose � = −r ∈ X , then the inequality (8) turns into 〈r,k1〉 > 0 for all

k1 ∈ int(K ).
Now we show that {a ∈ X: 〈r,a〉 > 0} ⊂ K . Assume the contrary that 〈r,a〉 > 0 for a vector a ∈ X and a /∈ K . By

Lemma 3.2, a ∈ −K . But this contradicts with the inequality (8). Hence, {a ∈ X: 〈r,a〉 > 0} ⊂ K . �
Theorem 3.5. Let K be a total ordering cone in a real separable Hilbert space X. Then there exists a set {ri: i ∈N

+} such that ri �= 0X ,
∀i ∈ N

+ , 〈r j, ri〉 = 0, ∀ j < i and

K =
( ⋃

i∈N+

{
k ∈ X: ∀ j < i, 〈k, r j〉 = 0, 〈k, ri〉 > 0

}) ∪ {0X }. (10)

Proof. By Lemma 3.4, there exists a vector r1 ∈ X such that{
k ∈ X: 〈r1,k〉 > 0

} ⊂ K .

If we define the subspace A1 = {a ∈ X: 〈r1,a〉 = 0} then by Lemma 3.3 K A1 = K ∩ A1 is a total ordering cone in A1. By
Lemma 3.4, there exists r2 ∈ A1 such that{

k ∈ X: 〈r1,k〉 = 0, 〈r2,k〉 > 0
} ⊂ K A1 ⊂ K .

Then we obtain the subspace A2 = {a ∈ X: 〈r1,a〉 = 0, 〈r2,a〉 = 0}. K A2 = K ∩ A2 is also a total ordering cone in A2 and
K A2 contains an open half space{

k ∈ X: 〈r1,k〉 = 0, 〈r2,k〉 = 0, 〈r3,k〉 > 0
} ⊂ K A2 ⊂ K

and a subspace A3 = {a ∈ X: 〈r j,a〉 = 0, for all j � 3} which we get by using a nonzero vector r3 ∈ A2.
Continuing through this process, let {r1, r2, . . . , rn} orthogonal set exists such that{

k ∈ X: 〈r j,k〉 = 0, for all j < n, and 〈rn,k〉 > 0
} ⊂ K .

Then An = {a ∈ X: 〈r j,a〉 = 0, for all j � n} is a subspace of X , An ⊂ An−1 = {a ∈ X: 〈r j,a〉 = 0, for all j � n − 1}, by
Lemma 3.3 K An = K ∩ An is a total ordering cone in An and by Lemma 3.4 there exists a nonzero vector rn+1 such that{

k ∈ X: 〈r j,k〉 = 0, for all j < n + 1, and 〈rn+1,k〉 > 0
} ⊂ K An ⊂ K .

So, we obtain the orthogonal set {r1, r2, . . . , rn+1} such that An+1 = {a ∈ X: 〈r j,a〉 = 0, for all j � n + 1} is a subspace of X ,
An+1 ⊂ An = {a ∈ X: 〈r j,a〉 = 0, for all j � n}, by Lemma 3.3 K An+1 = K ∩ An+1 is a total ordering cone in An+1 and by
Lemma 3.4 there exists a nonzero vector rn+2 such that{

k ∈ X: 〈r j,k〉 = 0, for all j < n + 2, and 〈rn+2,k〉 > 0
} ⊂ K An+1 ⊂ K .

These implies:( ⋃
i∈N+

{
k ∈ X: ∀ j < i, 〈k, r j〉 = 0, 〈k, ri〉 > 0

}) ∪ {0X } ⊂ K . (11)

It is obvious that A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · for the subspaces we constructed above. Then we have a reducing sequence of
closed subspaces. So from Cantor’s Theorem, the intersection of these subspaces consists of only one vector. As all subspaces
contain 0X , the intersection of this sequence is {0X }. Namely,⋂

i∈N+
Ai = {0X }.

{ri: i ∈ N
+} is an orthogonal set and the orthogonal compliment of this set is {0X }. So, {ri: i ∈ N

+} is a countable base
of the space. By Theorem 3.1, the union in the left hand side of (11) is a total ordering cone. To complete the proof it is
enough to show that K is a subset of this union. Assume that a nonzero vector k ∈ K is not an element of the union. Since
the union is a total ordering cone then k belongs to negative of the union contained by (−K ). So, k ∈ K ∩ (−K ) which
contradicts with the pointedness of K . �



1348 M. Küçük et al. / J. Math. Anal. Appl. 389 (2012) 1344–1351
Definition 3.6. (See [10].) A nonempty convex subset B of a convex cone C �= {0X } is called a base of C , if each x ∈ C \ {0X }
has a unique representation of the form

x = λb for some λ > 0 and some b ∈ B.

In addition, if B is compact then C is said to have a compact base.

Theorem 3.7. Let C be a cone in real separable Hilbert space X. If C has a compact base then there exists a total ordering cone K such
that

C \ {0X } ⊂ int(K ).

Proof. Let the cone C have a compact base B . By Proposition 1.10 in [11] there exists an r ∈ X such that B = {c ∈ C :
〈r, c〉 = 1}. Then, we have C \ {0X } ⊂ {a ∈ X: 〈r,a〉 > 0}. If we choose r1 = r and construct the set {ri: i ∈ N

+ \ {1}} as in the
subspaces in the proof of Theorem 3.5, then the set {ri: i ∈N

+} is an orthogonal base of X and we obtain

C \ {0X } ⊂ {
a ∈ X: 〈r,a〉 > 0

}
⊂ int

((⋃
i∈I

{
a ∈ X: ∀ j < i, 〈r j,a〉 = 0, 〈ri,a〉 > 0

}) ∪ {0X }
)

= int(K ). �
Definition 3.8. Let C be a pointed, convex ordering cone in a real separable Hilbert space X , A be a nonempty subset of X
for an element x̄ ∈ A which satisfies ({x̄} − C) ∩ A = {x̄}. x̄ is called a minimal element of A with respect to the cone C . The
set of all minimal elements A with respect to the cone C is denoted by min(A, C).

If A ⊂ {x̄} + C then x̄ is called the strongly minimal of A with respect to the cone C .

Definition 3.9. Let C be a cone in a real separable Hilbert space X and A be a nonempty subset of X .
If A + C is closed, then A is called C-closed set. If there exists x ∈ X such that A ⊂ {x} + C then A is called C-bounded

set.

Theorem 3.10. Let X be a real separable Hilbert space, C ⊂ X be a cone with a compact base, int(C) �= ∅ and S ⊂ X be a C-closed and
C-bounded set. Then there exists an s ∈ S such that {s} = min(S, K ).

Proof. Since C has a compact base, there exist an orthogonal set {ri: i ∈N
+} and a total ordering cone K such that

K =
(⋃

i∈I

{
a ∈ X: ∀ j < i, 〈r j,a〉 = 0, 〈ri,a〉 > 0

}) ∪ {0X }. (12)

By Theorem 3.7,

C ⊂ {
r ∈ X: 〈r1, r〉 > 0

} ∪ {0X }
and B := {c ∈ C : 〈r1, r〉 = 1} is a compact base of C . Because, S is C-bounded then there exists x ∈ X such that

S ⊂ {x} + C .

Hence, x �C x̃ for all x̃ ∈ S . Since r1 ∈ C� , 〈r1, ·〉 is strictly increasing with respect to the cone C [10] then, we have
〈r1, x〉 � 〈r1, x̃〉 for all x̃ ∈ S . So, the set {〈r1, x̃〉: x̃ ∈ S} is bounded from below.

As the minimal elements of S are also the minimal elements of S + C , the set {〈r1, x̃〉: x̃ ∈ S + C} is also bounded from
below. Because S is C-closed, S + C is closed. This implies

a := min
{〈r1, x̃〉: x̃ ∈ S

}
.

Let b := 〈r1, x〉. It is obvious that b � a.
The set of minimal elements of the scalar problem

(SP1)

{
min〈r1, x̃〉,
s.t. x̃ ∈ S

(13)

is denoted by (Fig. 1)

S ∩ (
(a − b)B + {x}).
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Fig. 1. The set of the minimal elements of the problem (SP1).

Since, the minimal elements of S and S + C are the same, we have the equation

(S + C) ∩ (
(a − b)B + {x}) = S ∩ (

(a − b)B + {x}).
As S + C is closed, ((a − b)B + {x}) is compact and the intersection of a closed and compact sets are compact, the set

A1 := S ∩ (
(a − b)B + {x})

is compact.
The set of the minimal elements of the scalar problem

(SP2)

{
min〈r2, x̃〉,
s.t. x̃ ∈ A1

(14)

is in the form of

A2 := A1 ∩ {
r ∈ X: 〈r2, r〉 = c2

}
for a c2 ∈R. Since, A1 is compact and the hyperplane {r ∈ X: 〈r2, r〉 = c} is closed A2 is a nonempty compact set.

Let the scalar problem n − 1

(SPn−1)

{
min〈rn−1, ỹ〉,
s.t. ỹ ∈ An−2

(15)

exists with a nonempty compact set An−2. Then the solution set of this problem is in the form of

An−1 := An−2 ∩ {
r ∈ X: 〈rn−1, r〉 = cn−1

}
for a cn−1 ∈ R. It is obvious that An−1 is also a nonempty compact set. Hence we can define the scalar problem

(SPn)

{
min〈rn, ỹ〉,
s.t. ỹ ∈ An−1

(16)

with a nonempty compact set An−1. We can get scalar problems (SPi) for every i ∈ N
+ \{1,2}. The sets of minimal elements

of these problems are nonempty compact sets. Then we have a sequence An of nonempty compact sets. By Cantor’s Theorem
the intersection of these sets is a point. If we choose this point as s, then we have

{s} = min(S, K ). �
Lemma 3.11. Let X be a real separable Hilbert space, C ⊂ X be a cone with a compact base such that int(C) �= ∅ and S1, S2 ⊂ X be
nonempty C-closed and C-bounded sets. Then

i) λS1 is C-closed and C-bounded for all λ > 0.
ii) S1 + S2 is C-bounded.
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Proof.

i) By the definition, S1 is C-closed equivalent to S1 + C is closed. Then,

λ(S1 + C) = λS1 + λC = λS1 + C

is closed for any λ > 0. Hence λS1 is C-closed. Because, S1 is C-bounded there exists a vector x ∈ X such that S1 ⊂
{x} + C . Then, we have

λS1 ⊂ λ
({x} + C

) = {λx} + C .

So λS1 is C-bounded.
ii) Since S1 is C-bounded, there exists a vector x1 ∈ X such that S1 ⊂ {x1} + C . In the same way, there exists x2 ∈ X such

that S2 ⊂ {x2} + C . Then, we get

S1 + S2 ⊂ ({x1} + C
) + ({x2} + C

) = {x1 + x2} + C + C = {x1 + x2} + C .

This means, S1 + S2 is C-bounded. �
Theorem 3.12. Let X be a real separable Hilbert space, C ⊂ X be a cone with a compact base such that int(C) �= ∅, S1, S2 ⊂ X be
nonempty C-closed and C-bounded sets and {s1} = min(S1, K ), {s2} = min(S2, K ) for a total ordering cone K such that C \ {0X } ⊂
int(K ). Then

i) {λs1} = min(λS1, K ) for all λ > 0.
ii) Additionally, if S1 + S2 is C-closed then {s1 + s2} = min(S1 + S2, K ).

Proof.

i) If s1 is a minimal element of S1 with respect to the cone K then by definition we have ({s1} − K ) ∩ S1 = {s1}. So, we
get λ({s1} − K ) ∩ λS1 = λ{s1} by multiplying both sides by a positive λ. Hence, we obtain ({λs1} − K ) ∩ λS1 = {λs1}, i.e.
{λs1} = min(λS1, K ).

ii) By the definition of minimality, we have ({s1} − K ) ∩ S1 = {s1} and ({s2} − K ) ∩ S2 = {s2}. Then, it is obvious that
s1 + s2 ∈ S1 + S2 and also s1 + s2 ∈ {s1 + s2} − K . So, we get s1 + s2 ∈ ({s1 + s2} − K ) ∩ (S1 + S2). Let this intersection
have another element s̃ = s̃1 + s̃2 such that

s̃1 ∈ S1, s̃2 ∈ S2 (17)

and

s̃1 + s̃2 ∈ {s1 + s2} − K . (18)

Moreover, we have s̃1 ∈ s1 + K and s̃2 ∈ s2 + K , because of (17), the minimality of s1, s2 and minimality is equivalent
to strong minimality with respect to a total ordering cone. So, we obtain s̃1 + s̃2 ∈ {s1 + s2} + K by addition of these
results. This implies with (18) that s̃1 + s̃2 − s1 − s2 ∈ K ∩ (−K ) = {0X }. Hence, we get s̃1 + s̃2 = s1 + s2. Since, we
assumed that s̃ = s̃1 + s̃2 as a different vector we have a contradiction and ({s1 + s2} − K ) ∩ (S1 + S2) = {s1 + s2}.
Namely, {s1 + s2} = min(S1 + S2, K ). �

We can get vectorization of a set-valued mapping as a result of Theorem 3.10.

Corollary 3.13. Let X be a real separable Hilbert space, C ⊂ X be an ordering cone with a compact base such that int(C) �= ∅, Y be
an arbitrary nonempty set and F : Y ⇒ X be a C-closed, C-bounded set-valued mapping. Then there exist a vector valued function
V F : Y → X and a total ordering cone K such that {V F (y)} = min(F (y), K ) for all y ∈ Y .

Proof. For any y ∈ Y , F (y) is C-closed and C-bounded. From Theorem 3.5, there exists x ∈ F (y) such that {x} =
min(F (y), K ). If we choose V F (y) = x then we complete the proof. �

In terms of a total ordering cone, the concepts of minimality and strong minimality are equivalent [1]. So, we directly
get Corollary 3.14.

Corollary 3.14. Let X be a real separable Hilbert space, C ⊂ X be an ordering cone with a compact base such that int(C) �= ∅, Y be an
arbitrary nonempty set and F : Y ⇒ X be a C-closed, C-bounded set-valued mapping, V F : Y → X be vector-valued function and K
be the total ordering cone we get in Corollary 3.13. Then, we have{

V F (y)
} + K = F (y) + K for all y ∈ Y .
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In [12], the ordering sets with cones was presented. Now, we can say that ordering set-valued mappings and ordering
their vector-valued functions we get by vectorization are equivalent.

Corollary 3.15. Let X be a real separable Hilbert space, C ⊂ X be an ordering cone with a compact base such that int(C) �= ∅, Y be an
arbitrary nonempty set and F : Y ⇒ X be a C-closed, C-bounded set-valued mapping, V F : Y → X be vector-valued function and K
be the total ordering cone we get in Corollary 3.13. Then, we have

V F (y1) �K V F (y2) ⇔ F (y1)�K F (y2) for all y1, y2 ∈ Y .

The equivalence in Corollary 3.15 provide us solving a vector-valued optimization problem instead of solving a set-valued
optimization problem.

Corollary 3.16. Let X be a real separable Hilbert space, C ⊂ X be an ordering cone with a compact base such that int(C) �= ∅, Y be an
arbitrary nonempty set and F : Y ⇒ X be a C-closed, C-bounded set-valued mapping, V F : Y → X is vector-valued function and K is
the total ordering cone we get in Corollary 3.13. Then, the solution of the vector-valued optimization problem

(VP)

{
min V F (y),

s.t. y ∈ Y

in terms of the total ordering cone K is also the solution of the set-valued optimization problem

(SVP)

{
min F (y),

s.t. y ∈ Y

in terms of the total ordering cone K .

4. Conclusion

In this article, we extended the characterization of total ordering cones of R
n which was given in [1] to real separable

Hilbert spaces. By using this characterization, we presented vectorization of set-valued mappings in infinite dimensional
spaces. The vectorization enables us to transfer the properties of vectors and vector valued functions to suitable sets and set-
valued mappings in terms of ordering cones. So, we can obtain some optimality conditions for sets directly from optimality
conditions for vectors.

Vectorization is given under the assumptions of cone-bounded and cone-closed sets or set-valued mappings. These as-
sumptions are not rarely faced with when one studies set-valued optimization. Some properties of these class of sets are
given for multiplication with a scalar and addition of two sets. Vectorization results under addition and scalar multiplication
of sets are also studied.

Total ordering cones and vectorization of sets by using total ordering cones are novel methods in set-valued optimization.
Future research or applications using them may contribute to new theorems and results on set-valued optimization in
infinite dimensional spaces.
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