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Abstract: Alzheimer’s disease (AD), one of the main causes of aged dementia, is a progressive and
degenerative neurological disorder characterized by loss of cognition and memory. Although the
symptomatic treatment of AD, particularly acetylcholinesterase inhibitors (AChEIs) based on the
‘cholinergic hypothesis’, has been successful in clinic, at present there is no cure for this disease. In this
study, we designed compounds carrying benzimidazole and triazole rings on the same chemical
skeleton so as to investigate their potential acetylcholinesterase and butyrylcholinesterase activity.
Furthermore, molecular modeling study was performed to determine the binding mode of the
best inhibitor to the AChE. Among them, compounds 3d and 3h, which featured 3,4-dihydroxy
substitution at the phenyl ring and 5(6)-chloro substitution at the benzimidazole ring were found
to be potent inhibitors of AChE. The inhibition kinetics of the two most active derivatives 3d and
3h were further studied. The kinetic displayed increasing slope and increasing intercept, which is
consistent with a mixed inhibition. The IC50 and Ki values of 3d are 31.9 ± 0.1 nM and 26.2 nM,
respectively. Compound 3h exhibited IC50 of 29.5 ± 1.2 nM and Ki of 24.8 nM. The above data
compared favorably with data for donepezil (21.8 ± 0.9 nM) the reference compound in our study.

Keywords: benzimidazole; triazole; acetylcholinesterase; butyrylcholinesterase; docking study

1. Introduction

Neurodegeneration is defined as a progressive and often untreatable sequence that causes loss
of specific neuron types, disregulation of neurons, distribution and central nervous system (CNS)
dysfunction. Alzheimer’s disease (AD), which is one of the most important central nervous system
disorders among various neurodegenerative diseases, is the fourth leading cause of death among
the elderly. According to the World Alzheimer’s Report 2016, 46.8 million people worldwide were
predicted by dementia in 2015 and the number of patients was predicted to triple by 2050. AD clinically
includes the progressive degeneration of brain tissue that is influenced by the absence in acetylcholine
(ACh) and has multifactorial pathology [1–5]. Accumulation of extracellular amyloid-beta (Aβ) in
senile plaques, loss of cholinergic activity in certain parts of brain and intracellular neurofibrillary
tangles including the hyperphosphorylated tau protein as well as neuroinflammation, responsible for
neurodegenerative processes observed in AD [6–8].

The cholinergic hypothesis is one of the oldest, most robust and clinically confirmed among
cases of mild severe dementia and Alzheimer’s hypotheses that suggest a relationship between the
onset and progression of the disease. One of the major ways to increase the level of acetylcholine
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(ACh), which plays an important role in attention, learning, memory and motivation, is the inhibition
of cholinesterase enzymes (ChEs). Cholinesterases belonging to the class of hydrolase enzyme are
a widely distributed enzyme classified as acetylcholinesterase (AChE) and butyrylcholinesterase
(BChE). In patients with AD, an imbalance occurs between AChE and BChE. AChE inhibitors
are preferred in the treatment of AD to protect the AChE norms because AChE exhibits more
hydrolytic activity than BChE. Crystal structural studies with both AChE enzyme have revealed
that they have different binding sites, containing the aromatic patch (AP), oxyanionic hole, peripheral
anionic site (PAS), catalyist active site (CAS), acyl site and anionic site (AS). To improve effective
acetylcholinesterase inhibitors (AChEI), acetylcholinesterase activity must be inhibited in the oxidation
hole region (AS) and in the peripheral anionic region (PAS), because it causes accumulation of bound
AChE amyloid peptide plaques in PAS [9–17]. Although there are many ongoing studies for the
treatment of AD, only some drugs have been accepted by the FDA, such as donepezil, rivastigmin and
tacrine [18].

Bioisosterism is a special molecular modification process that is applied over a lead compound
(LC) and is a medicinal chemistry strategy for the rational design of new drugs. The capability of
a group of bioisosteres to prompt similar biological activity has been recognized in compounds
with common physicochemical properties such as benzazoles. They provide a single point for
chemical variation, with a heteroatom (N, O, S) at the 1-position and with a nitrogen at the
3-position. This property facilitated a systematic investigation [19–21]. When the literature studies are
evaluated, it can be learned that benzazole derivatives have inhibitory activity on acetylcholinesterase
enzyme [17,22–30]. In addition, some benzimidazole derivatives have been shown to be useful as
amyloid imaging probes because of their high binding affinity to Aβ aggregates and high uptake
into the brain [31]. Also, benzimidazole scaffold is the ring isoster of indanone pharmacophore of
donepezil which is one of the most important AChEI [32]. Benzimidazoles with different biological
activities were thought to be an appropriate starting point for AD.

Considering that there is a limited choice of medicines available for the treatment of AD,
we focused on using benzimidazole as a lead compound to develop new drug candidates to combat
AD. In this study, 16 new benzimidazole derivatives were synthesized and cholinesterase inhibition
activity was evaluated.

2. Results and Discussion

2.1. Chemistry

The syntheses of the target compounds 3a–p were realized as summarized in Scheme 1. Known
triazoles 1a–d were synthesized according to our already published method [33,34]. The S-alkylation
of the triazole ring of compounds 1a–d with an appropriate 2-bromoacetophenone moiety 2a–d using
potassium carbonate as base generated the target derivatives 3a–p.
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1a –Cl –CH3 - - 81
1b –Cl –C2H5 - - 78
1d –F –CH3 - - 77
1c –F –C2H5 - - 75
3a –Cl –CH3 –H –CN 84
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Scheme 1. Synthesis way of the compounds 1a–d, 3a–p.

2.2. Anticholinesterase Activity Assay

New benzimidazole-triazole derivatives were designed, synthesized, and evaluated for their
potential to inhibit AChE and BChE. First, all the synthesized compounds were tested at 10−3 M
and 10−4 M concentrations. Table 1 presents the acetylcholinesterase and butyrylcholinesterase
inhibition of synthesized compounds and donepezil and tacrine at initial concentrations. According
to activity results, the series generally displayed better inhibitor activity against AChE than BChE
activity. At the 10−4 M concentration, compounds 3d, 3h, 3l and 3p indicated more than 50% activity.
Then, the IC50 values of the active compounds were determined using 10−3–10−9 M concentrations
against AChE along with the reference drug donepezil (Table 2). The IC50 value was calculated as
21.8 ± 0.9 nM for donepezil. The IC50 values of the compounds (5(6)chlorobenzimidazole) (3d and 3h)
and (5(6)fluorobenzimidazole) (3l and 3p) were calculated as 31.9 ± 0.1 nM, 29.5 ± 1.2 nM and
169.4 ± 7.2 nM, 139.9 ± 5.1 nM, respectively for AChE. The compounds 3d, 3h, 3l and 3p among
the series were those having the 3,4-dihydroxy substituent on the phenyl attached to benzimidazole.
The strongest inhibitions against AChE were observed with 3d and 3h having a chloro substituent
on the benzimidazole ring. The results show that replacing the methyl group attached to the triazole
with an ethyl group does not create a significant activity change. The results demonstrated that
the compounds 3d and 3h showed IC50 values similar activities compared to the reference drug
against AChE.
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Table 1. % Inhibition of all compounds 5a–p against AChE and BChE enzymes.

Compounds

% Inhibition

AChE BChE

10−3 M 10−4 M 10−3 M 10−4 M

3a 68.18 ± 1.05 47.26 ± 0.62 40.28 ± 0.98 25.13 ± 0.56
3b 44.20 ± 0.87 26.18 ± 0.63 28.15 ± 0.97 18.42 ± 0.88
3c 39.18 ± 0.71 17.89 ± 0.54 26.11 ± 0.74 20.21 ± 0.61
3d 98.55 ± 1.17 93.99 ± 1.10 51.19 ± 0.99 38.12 ± 0.41
3e 77.29 ± 1.06 41.22 ± 0.84 38.22 ± 0.63 22.41 ± 0.47
3f 47.22 ± 0.67 24.08 ± 0.48 29.15 ± 0.59 17.88 ± 0.40
3g 37.20 ± 0.68 18.33 ± 0.38 31.89 ± 0.99 24.75 ± 0.95
3h 98.25 ± 1.12 94.55 ± 1.08 61.26 ± 0.90 35.20 ± 0.42
3i 61.22 ± 1.02 38.28 ± 0.67 43.51 ± 0.78 18.49 ± 0.50
3j 48.51 ± 0.88 18.39 ± 0.60 29.64 ± 0.87 21.44 ± 0.70
3k 42.29 ± 0.71 27.88 ± 0.67 36.17 ± 0.93 21.16 ± 0.97
3l 94.58 ± 1.74 83.20 ± 1.13 55.43 ± 0.47 29.88 ± 0.38

3m 59.03 ± 0.88 39.26 ± 0.46 48.11 ± 0.38 20.66 ± 0.45
3n 49.27 ± 0.55 30.21 ± 0.49 27.10 ± 0.53 18.77 ± 0.42
3o 28.06 ± 0.33 19.22 ± 0.30 25.99 ± 0.38 20.08 ± 0.46
3p 87.26 ± 1.17 81.25 ± 1.88 53.19 ± 0.46 31.44 ± 0.38

Donepezil 99.42 ± 1.85 97.26 ± 1.24 - -
Tacrine - - 98.52 ± 1.66 95.50 ± 1.74

Table 2. IC50 values of selected compounds (3d, 3h, 3l and 3p) and donepezil, as a reference drug,
on AChE enzyme.

Compounds
% Inhibition of AChE

AChE IC50 (nM)
10−5 M 10−6 M 10−7 M 10−8 M 10−9 M

3d 87.26 ± 1.28 78.85 ± 1.19 67.18 ± 0.92 45.32 ± 0.82 15.75 ± 0.48 31.9 ± 0.1
3h 90.23 ± 1.03 81.25 ± 1.08 65.32 ± 0.97 44.28 ± 0.71 17.20 ± 0.58 29.5 ± 1.2
3l 73.18 ± 1.17 68.20 ± 0.97 48.11 ± 0.61 32.29 ± 0.58 18.77 ± 0.37 169.4 ± 7.2
3p 77.48 ± 1.98 71.62 ± 1.08 47.83 ± 0.97 39.33 ± 0.67 15.47 ± 0.64 139.9 ± 5.1

Donepezil 94.11 ± 1.71 90.17 ± 1.02 75.65 ± 1.15 35.74 ± 0.58 17.89 ± 0.42 21.8 ± 0.9

2.3. Enzyme Kinetic Studies

Enzyme kinetic studies were carried out in order to determine the mechanism of AChE inhibition.
The type of inhibition was forecast using linear Lineweaver-Burk plots. The substrate rate curves
in the absence and presence of the most potent compounds 3d and 3h were recorded in the enzyme
kinetics analysis. These compounds were prepared at concentrations of 2 × IC50, IC50 and IC50/2.
The initial velocity measurements were recorded by using different substrate concentrations ranging
from 600 µM to 18.75 µM for AChE enzyme. The secondary plots of the Km/Vmax (slope) versus
varying concentrations were used to calculate Ki (intercept on the x-axis) values of compounds [35].
The graphical analyses of the steady-state inhibition data for AChE enzyme are shown in Figures 1
and 2, respectively.

Reversible inhibition consists of the following subtypes: mixed-type, competitive, uncompetitive,
or noncompetitive. These types of inhibition can be determined with the help of Lineweaver-Burk
plots. As known from Lineweaver-Burk graphics, mixed-type inhibition can be refereed if the lines
do not cross x- or y-axis at the same point. The Lineweaver-Burk plots of compounds 3d and 3h
are presented in Figures 1 and 2. As can be understand from these figures, compounds 3d and 3h
display mixed type inhibition for AChE enzyme. Namely, both compounds can bind to the free
enzyme or the enzyme-substrate complex. Also, this means that tested compounds 3d and 3h are
reversible inhibitors, so these compounds could bind to the enzyme by noncovalent interactions such
as hydrophobic interactions, ionic bonds, and hydrogen bonds without forming any chemical bonds or
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reacting with the enzyme. It is known that these interactions occur quickly and can be easily reversed.
Therefore, the enzyme and inhibitor complex is rapidly degraded immediately prior to irreversible
inhibition. This feature of tested compounds allows that such these reversible inhibitors display
a lower risk of side effects than irreversible inhibitors. As a result, enzyme kinetics studies have shown
the biological importance of compounds 3d and 3h due to their mixed type forces, unlike irreversible
enzyme inhibitors.
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2.4. Molecular Docking Studies

Docking studies were performed in order to gain more insight into the binding mode of
compounds 3d, 3h, 3l and 3p to AChE enzyme. Studies were carried out by using the X-ray crystal
structure of Homo sapiens AChE (hAChE PDB ID:4EY7) [36] obtained from Protein Data Bank server
(www.pdb.org).

The docking poses of the compounds 3d and 3h are presented in Figures 3–7, whereas the poses
of donepezil, compounds 3l and 3p are presented in Supporting Information Figures S1–S5. As seen
from Figure S1 it is known that donepezil could bind strongly to the enzyme active region owing
to its dual binding sites. The 5,6-dimethoxyindanone moiety binds to the peripheral anionic site
(PAS) of the enzyme active region by interacting with the Trp286 and Phe295 amino acid residues.
The rest of the structure, the benzylpiperidine group, binds to the catalytic anionic site (CAS) by
interacting with Trp86. Especially as known that the interaction with Trp286 is essential for binding to
PAS, whereas interaction with Trp86 is a key point of locating into CAS. When analyzing the docking
results of compounds 3d, 3h, 3l and 3p (Supporting Information Figures S2–S5, Figures 3–7), it can
be seen that these compounds settle into the CAS and PAS regions of enzyme active site in a similar
position as donepezil. Lipophilic parts of the compounds consist of fluoro/chloro-benzimidazole ring,
while 1-(3,4-dihydroxyphenyl)-2-((4-methyl/ethyl-5-substitued-4H-1,2,4-triazol-3-yl)thio)ethan-1-ones

www.pdb.org
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are constituted by a polar basic center. The docking poses indicate that the PAS region of AChE
interacts with lipophilic groups in the structure by interacting with Trp286, whereas the polar and
basic groups bind to the CAS region of the enzyme by interacting with the Trp86 amino acid residue.

Two and three-dimensional binding modes of compounds 3d and 3h are given in Figures 4–7.
According to the docking poses, these compounds have six common interactions. The 5(6)-chloro-
benzimidazole ring interacts with the phenyl of the Trp286 indole by a π–π interaction. The nitrogen
atom of triazole forms a hydrogen bond with the hydroxy of Tyr124. The 3,4-dihydroxyphenyl ring
creates a π–π interaction with the indole phenyl of Trp86. This dihydroxy substituent is also essential
for polar interactions. The hydroxy group at the 4 position of the phenyl ring forms two hydrogen
bonds with the carbonyl of Gly120 by acting as a hydrogen donor and the hydroxy of Tyr133 by acting
as a hydrogen acceptor. The other hydroxy moiety, at the 3 position of the phenyl, creates another
hydrogen bond with the carbonyl of Glu202.

The main difference between compounds 3d and 3h that they carry methyl and ethyl moieties,
respectively, at the 4 position of the triazole ring. This suggests that the additional interaction of these
compounds is caused by small differences in the conformational direction. Compound 3d has a π-π
interaction between the triazole ring and the phenyl of Phe338. On the other hand, the hydroxy group
at the 3 position of the phenyl ring forms an additional hydrogen bond with the carbonyl of Gly120 for
compound 3h. Also, it is seen that the change of methyl at the 4 position of the triazole ring to an ethyl
group does not cause a significant difference in the enzyme inhibition profile of these compounds.
Furthermore, the substituents on the phenyl ring at the end of the structure are responsible for binding
to the enzyme active site strongly and thus producing differences in terms of enzyme inhibition
potency. It can be suggested that the presence of groups capable of hydrogen bonding at the 3 and
4 positions of the phenyl ring allow the compounds to be placed in stronger and more convenient
positions. For compounds 3d and 3h, the hydroxy moiety at the 3 and 4 positions provide hydrogen
bonds and therefore this situation enables them to show a more compatible binding potential than
other compounds in the series. All these interactions show that compounds 3d and 3h could bind to
AChE enzyme active region in a similar and proper conformation by similar interactions. Besides,
it can be explained with the help of docking studies that these compounds display similar inhibition
profiles on AChE enzyme with IC50 values of 31.9 ± 1.0 nM and 29.5 ± 1.2 nM, respectively.

The structurally fundamental difference of compounds 3l and 3p from compounds 3d and 3h is
that the chlorine substituent on the benzimidazole ring is replaced by a fluorine atom. Thus, it may
be expected that compounds 3l and 3p exhibit similar binding properties such as compounds 3d and
3h and demonstrate similar activity on AChE enzyme. However, according to the enzyme inhibition
results, compounds 3l and 3p are the most potent derivatives after compounds 3d and 3h in the
series. Compound 3l shows an AChE enzyme inhibition profile with an IC50 value of 169.4 ± 7.2 nM,
however, compound 3p has an IC50 value of 139.9 ± 5.1 nM on AChE enzyme. The docking results help
explain this difference. The poses of compounds 3l and 3p are presented in Supporting Information
Figures S2–S5.

By comparing Figures 4 and 5 and Supporting Information Figures S2 and S3, it can be seen that
compound 3l shows the same five interactions as compound 3d, but compound 3l does not have the
interaction between the triazole ring and the phenyl of Phe338. Also, the hydrogen bond between the
hydroxy moiety at the 4 position of the phenyl ring anthe d hydroxy of Tyr133 could not be seen in the
compound 3l.

The interaction differences observed between compounds 3d and 3l are also observed between
compounds 3h and 3p (Figures 6 and 7 and Supporting Information Figures S4 and S5). For compound
3p, the nitrogen atom of the triazole ring cannot form a hydrogen bond with the Tyr124 amino acid
residue. Moreover, the hydroxy group at the 4 position of the phenyl ring does not form a hydrogen
bond with hydroxy of Tyr133. All these losses of interactions mentioned above may explain why
compounds 3l and 3p exhibit a lower inhibition profile than compounds 3d and 3f. Besides, it can
be suggested that the presence of a fluorine atom instead of a chlorine on the benzimidazole ring
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cause distinctness in terms of conformational directions because the chlorine atom has a larger atomic
volume in comparison with a fluorine atom. These conformational differences caused the interaction
losses observed in compounds 3l and 3p.

It can be understood by looking a the enzyme inhibition assay that none of the synthesized
compounds display significant activity against BChE enzyme. In order to illuminate this situation
in silico, docking studies were performed for compound 3h by using the X-ray crystal structure of
Homo sapiens BChE (hBChE PDB ID:4BDS) obtained from the Protein Data Bank server (www.pdb.org).
The docking pose of compound 3h on BChE enzyme is presented in Supporting Information Figure S6.
As can be seen from this figure, compound 3h could not bind to the BChE enzyme active region
properly. This compound shows two interactions related only to the phenyl ring at the end of the
structure. Namely, it is unable to display a general interaction profile with its whole chemical structure.
The phenyl ring interacts with the imidazole of Hid438. Also, a hydrogen bond is observed between
the hydroxy group at the 4 position of the phenyl ring and the carbonyl of Glu197. Consequently, it can
be seen that compound 3h, selected as the example for the docking study on BChE enzyme, could not
settle in the BChE enzyme active site in a strong and proper position as in AChE enzyme. The reason
for the low BChe activity of the synthesized compounds can be explained as the inability of the general
chemical skeleton to locate into the active site.
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3. Materials and Methods

3.1. Chemistry

All chemicals used in the study were purchased either from Sigma-Aldrich (St. Louis, MO, USA)
or Merck KGaA (Darmstadt, Germany), and used without further chemical or biological purification.
Microwave syntheses were realized by using a Monowave 300 high-performance microwave reactor
(Anton-Paar, Graz, Austria). Melting points of synthesized compounds were determined by using an
automatic melting point determination system (MP90 series, Mettler-Toledo, Ohio, OH, USA) and were
uncorrected. 1H-NMR and 13C-NMR spectra were recorded in DMSO-d6 by a Bruker digital FT-NMR
spectrometer (Bruker Bioscience, MA, USA) at 300 MHz and 75 MHz, respectively. High resolution
mass spectrometric studies were performed using an LCMS-IT-TOF system (Shimadzu, Kyoto, Japan).
Chemical purities of the compounds were checked by classical TLC applications performed on silica
gel 60 F254 (Merck KGaA); LCMS-IT-TOF chromatograms were also used for the same purpose.

3.1.1. 5(6)-Chloro/fluoro-2-((4-methylcarboxylate)phenyl)-1H-benzimidazole

In a microwave synthesis reactor vial (Anton-Paar, Graz, Austria, 30 mL), equipped with
a magnetic stirrer, methyl-4-formyl benzoate (2.4 g, 0.015 mol) in DMF (10 mL) and sodium bisulfite
(2.85 g, 0.015 mol) were heated under conditions of 240 ◦C and 10 bar for 5 min. The mixture was
cooled, 5-chloro/fluoro-1,2-phenylenediamine (0.015 mol) was added into the vial and then reaction
mixture was kept under same reaction conditions in the microwave reactor for 5 min. The mixture
was cooled and poured into iced-water. The obtained solid was filtered, washed with water, dried and
recrystallized from ethanol [33,34].

3.1.2. 4-(5(6)-Chloro/fluoro-1H-benzimidazol-2-yl)benzohydrazide

5(6)-Chloro/fluoro-2-((4-methylcarboxy)phenyl)-1H-benzimidazole (0.01 mol) and excess of
hydrazine hydrate (5 mL) in ethanol (15 mL) was heated under the conditions of 150 ◦C and 10 bar for
10 min in the microwave synthesis reactor (Anton-Paar, Graz, Austria). The mixture was cooled and
poured into iced-water. The obtained solid was filtered, washed with water, dried and recrystallized
from ethanol [33,34].

3.1.3. N-methyl/ethyl-2-[4-(5(6)-chloro/fluoro-1H-benzimidazol-2-yl)benzoyl]hydrazine-
1-carbothioamide

4-(5(6)-Chloro/fluoro-1H-benzimidazol-2-yl)benzohydrazide (0.01 mol) and methyl isothiocyanate
or ethyl isothiocyanate (0.012 mol) in ethanol were refluxed for 2 h. The precipitated product was
filtered, washed with ethanol and dried [34].

3.1.4. 4-Methyl/Ethyl-5[4-5(6)-chloro/fluoro-1H-benzimidazol-2-yl)phenyl)-4H-1,2,4-triazole-
3-thiol (1a–d)

N-methyl/ethyl-2[4-(5(6)-chloro/fluoro-1H-benzimidazol-2-yl)benzoyl]hydrazine-1-carbothio-
amide (0.001 mol) in ethanol was refluxed under stirring for 2 h in the presence of NaOH (0.012 mol).
After completion of reaction, the solution was acidified with HCl 37%, the precipitate was filtered,
washed with water, dried and then recrystallized from ethanol [34].

3.1.5. 2-(4-(4-Methyl/ethyl-5-(2-(substitutedphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-
5(6)-chloro/fluoro-1H-benzimidazoles 3a–p

A solution of 1a or 1b (0.001 mol) in acetone (10 mL), an appropriate substituted
2-bromoacetophenone derivative (0.001 mol) and potassium carbonate (0.138 g, 0.001 mol) were
refluxed at 40 ◦C for 12 h. The solvent was evaporated, residue was washed with water, dried and
recrystallized from ethanol. The mass spectra of the compounds (3a–p) are available in the
Supplementary Materials.
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2-(4-(4-Methyl-5-(2-(4-cyanophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-benz-
imidazole (3a). Yield: 84%. M.p. 269.5–271.8 ◦C. 1H-NMR: δ = 3.72 (3H, s, –CH3), 4.98 (2H, s, –CH2–),
7.25 (1H, t, J = 8.5 Hz, benzimidazole C–H), 7.57 (1H, d, J = 8.5 Hz, benzimidazole C-H), 7.72 (1H,
br.s., benzimidazole C–H), 7.91 (2H, d, J = 8.5 Hz, 4-cyanophenyl C–H), 8.05 (2H, d, J = 8.4 Hz,
1,4-disubstituted benzene C–H), 8.18 (2H, d, J = 8.5 Hz, 4-cyanophenyl C–H), 8.33 (2H, d, J = 8.4 Hz,
1,4-disubstituted benzene C–H), 13.29 (1H, s, benzimidazole –NH). 13C-NMR: δ (ppm): 32.50, 41.19,
111.67, 113.30, 116.02, 118.55, 118.90, 120.78, 122.78, 123.45, 127.41, 128.77, 129.25, 129.53, 131.33, 133.29,
139.01, 145.19, 150.88, 155.29, 193.45. [M + H]+ calcd for C25H17ClN6OS: 485.0930; found: 485.0946.

2-(4-(4-Methyl-5-(2-(4-bromophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-benz-
imidazole (3b). Yield: 82%. M.p. 279.1–281.4 ◦C. 1H-NMR: δ = 3.72 (3H, s, –CH3), 4.93 (2H, s, –CH2–),
7.25 (1H, d, J = 8.1 Hz, benzimidazole C–H), 7.61–7.75 (2H, m, benzimidazole C–H), 7.77 (2H, d,
J = 8.5 Hz, 4-bromophenyl C–H), 7.91 (2H, d, J = 8.5 Hz, 1,4-disubstituted benzene C–H), 7.97 (2H, d,
J = 8.6 Hz, 4-bromophenyl C–H), 8.33 (2H, d, J = 8.5 Hz, 1,4-disubstituted benzene C–H), 13.27 (1H, s,
benzimidazole –NH). 13C-NMR: δ = 32.51, 41.11, 111.64, 113.30, 118.90, 120.80, 122.92, 123.14, 126.81,
127.41, 128.39, 128.78, 129, 130.91, 131.33, 132.35, 134.76, 151.01, 155.25, 193.20. [M + H]+ calcd for
C24H17BrClN5OS: 538.0060; found: 538.0098.

2-(4-(4-Methyl-5-(2-(4-methylphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-benz-
imidazole (3c). Yield: 79%. M.p. 254.9–256.3 ◦C. 1H-NMR: δ = 2.38 (3H, s, CH3), 3.71 (3H, s, –CH3), 4.91
(2H, s, –CH2–), 7.25 (1H, dd, J = 8.6–2.0 Hz, benzimidazole C–H), 7.34-7.37 (2H, m, Ar–C–H), 7.62-7.70
(2H, m, Ar–C–H), 7.89–7.94 (4H, m, Ar–C–H), 8.33 (2H, d, J = 8.4 Hz, 1,4-disubstituted benzene C–H),
13.32 (1H, s, benzimidazole –NH). 13C-NMR: δ = 21.67, 32.48, 41.27, 106.76, 117.24, 123.14, 127.41,
127.81, 128.81, 129.03, 129.25, 129.82, 130.80, 131.30, 133.21, 133.70 144.77, 151.16, 152.23, 155.21, 193.35.
[M + H]+ calcd for C25H20ClN5OS: 474.1148; found: 474.1150.

2-(4-(4-Methyl-5-(2-(3,4-dihydroxyphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-
benzimidazole (3d). Yield: 76%. M.p. 261.2–262.8 ◦C. 1H-NMR: δ = 3.71 (3H, s, –CH3), 4.80 (2H, s, –CH2),
6.81 (1H, d, J = 8.0 Hz, dihydroxyphenyl C–H), 7.25 (1H, dd, J = 8.6–2.0 Hz, benzimidazole C–H),
7.38-7.45 (2H, m, Ar–C–H), 7.6–7.73 (2H, m, Ar–CH), 7.91 (2H, d, J = 8.4 Hz, 1,4-disubstituted benzene
C–H), 8.33 (2H, d, J = 8.4 Hz, 1,4-disubstituted benzene C–H), 13.26 (1H, s, benzimidazole -NH).
13C–NMR: δ = 32.47, 41.09, 114.67, 115.26, 115.62, 122.70, 123.13, 127.16, 127.41, 128.47, 128.85, 129.26,
130.77, 131.30, 138.96, 146.15, 151.41, 152.2, 152.79, 155.18, 191.65. [M + H]+ calcd for C24H18ClN5O3S:
492.0877; found: 492.0892.

2-(4-(4-Ethyl-5-(2-(4-cyanophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-benz-
imidazole (3e). Yield: 81%. M.p. 258.7–259.9 ◦C. 1H-NMR: δ = 1.28 (3H, t, J = 7.2, –CH3), 4.12 (2H, q,
J = 7.2 Hz, –CH2), 5.03 (2H, s, –CH2), 7.24 (1H, dd, J = 8.6–1.9 Hz, benzimidazole C–H),7.62-7.68
(2H, m, benzimidazole C–H), 7.85 (2H, d, J = 8.4 Hz, 4-cyanophenyl C–H), 8.04 (2H, d, J = 8.3 Hz,
1,4-disubstituted benzene C–H), 8.19 (2H, d, J = 8.4 Hz, 4-cyanophenyl C–H), 8.33 (2H, d, J = 8.3 Hz,
1,4-disubstituted benzene C–H), 13.27 (1H, s, benzimidazole –NH). 13C-NMR: δ = 15.51, 36.23, 41.15,
116.04, 118.55, 119.28, 123.15, 127.55, 128.90, 129.29, 129.51, 129.83, 131.46, 132.93, 133.29, 139.03, 144.94,
150.39, 152.19, 154.78, 193.31. [M + H]+ calcd for C26H19ClN6OS: 499.1092; found: 499.1102.

2-(4-(4-Ethyl-5-(2-(4-bromophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-benz-
imidazole (3f). Yield: 80%. M.p. 249.3–251.4 ◦C. 1H-NMR: δ = 1.28 (3H, t, J = 7.20, –CH3), 4.12
(2H, q, J = 7.2 Hz, –CH2), 4.99 (2H, s, –CH2–), 7.26 (1H, dd, J = 8.6–2.0 Hz, benzimidazole C-H),
7.63–7.69 (2H, m, benzimidazole C–H), 7.79 (2H, d, J = 8.6 Hz, 4-bromophenyl), 7.85 (2H, d, J = 8.5 Hz,
1,4-disubstituted benzene C–H), 7.98 (2H, d, J = 8.6 Hz, 4-bromophenyl), 8.33 (2H, d, J = 8.5 Hz,
1,4-disubstituted benzene C–H). 13C-NMR: δ = 15.52, 34.01, 41.06, 116.52, 120.40, 123.20, 127.23, 127.56,
128.39, 128.98, 129.33, 130.92, 131.40, 131.89, 132.38, 134.82, 139.48, 150.50, 152.19, 154.73, 193.10.
[M + H]+ calcd for C25H19BrClN5OS: 552.0249; found: 552.0255.
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2-(4-(4-Ethyl-5-(2-(4-methylphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-benz-
imidazole (3g). Yield: 74%. M.p. 247.9–249.6 ◦C. 1H-NMR: δ = 1.28 (3H, t, J = 7.2, –CH3), 2.43 (3H, s,
–CH3), 4.11 (2H, q, J = 7.2 Hz, –CH2), 4.98 (2H, s, –CH2–), 7.26 (1H, d, J = 8.4 Hz, benzimidazole
C–H), 7.37 (2H, d, J = 8.2, 4-methylphenyl C–H), 7.60–7.75 (2H, m, benzimidazole C–H), 7.85 (2H, d,
J = 8.4 Hz, 1,4-disubstituted benzene C–H), 7.95 (2H, d, J = 8.2 Hz, 4-methylphenyl C–H), 8.33 (2H, d,
J = 8.4 Hz, 1,4-disubstituted benzene C–H), 13.28 (1H, s, benzimidazole –NH). 13C-NMR: δ = 15.53,
21.68, 33.58, 41.22, 111.68, 113.31, 118.98, 123.48, 127.54, 128.43, 129.03, 129.32, 129.85, 130.59, 131.43,
132.59, 133.27, 144.79, 150.42, 150.66, 154.69, 193.21. [M + H]+ calcd for C26H22ClN5OS: 488.1300;
found: 488.1306.

2-(4-(4-Ethyl-5-(2-(3,4-dihydroxyphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-chloro-1H-
benzimidazole (3h). Yield: 83%. M.p. 262.3–264.1 ◦C. 1H-NMR: δ = 1.27 (3H, t, J = 7.2 Hz, –CH3), 4.11
(2H, q, J = 7.2 Hz, –CH2), 4.88 (2H, s, –CH2–), 6.86 (1H, d, J = 8.3 Hz, dihydroxyphenyl C–H), 7.25 (1H,
dd, J = 8.5–1.9 Hz, benzimidazole C–H), 7.40–7.47 (2H, m, dihydroxyphenyl C–H), 7.63–7.69 (2H, m,
benzimidazole C–H), 7.85 (2H, d, J = 8.3 Hz, 1,4-disubstituted benzene C–H), 8.34 (2H, d, J = 8.3 Hz,
1,4-disubstituted benzene C–H). 13C-NMR: δ = 15.53, 36.24, 41.08, 111.36, 115.66, 118.96, 120.97, 122.48,
123.17, 125.42, 127.55, 128.29, 129.03, 129.31, 131.43, 133.31, 133.57, 145.86, 150.85, 151.93, 152.23, 154.66,
191.71. [M + H]+ calcd for C25H20ClN5O3S: 506.1038; found: 506.1048.

2-(4-(4-Methyl-5-(2-(4-cyanophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-benz-
imidazole (3i). Yield: 76%. M.p. 260.9–262.7 ◦C. 1H-NMR: δ = 3.72 (3H, s, –CH3), 4.98 (2H, s,
–CH2), 7.08–7.11 (1H, m, benzimidazole C–H), 7.34–7.73 (2H, m, benzimidazole C–H), 7.90 (2H, d,
J = 8.5 Hz, 4-cyanophenyl C–H), 8.05 (2H, d, J = 8.5 Hz, 1,4-disubstituted benzene C–H), 8.19 (2H, d,
J = 8.5 Hz, 4-cyanophenyl C–H), 8.32 (2H, d, J = 8.5 Hz, 1,4-disubstituted benzene C–H), 13.21 (1H, s,
benzimidazole –NH). 13C-NMR: δ = 32.51, 41.17, 98.31 (d, J = 27.3 Hz), 104.95 (d, J = 23.3 Hz), 112.66
(d, J = 10.9 Hz), 120.44, 127.25 (d, J = 8.1 Hz), 128.51, 129.04, 129.25, 131.49, 132.25, 133.31, 135.74,
140.97, 144.75, 150.85, 152.82 (d, J = 2.8 Hz), 155.31, 157.95 (d, J = 233.5 Hz), 193.47. HRMS (m/z):
[M + H]+ calcd for C25H17FN6OS: 469.1227; found: 469.1241.

2-(4-(4-Methyl-5-(2-(4-bromophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-benz-
imidazole (3j). Yield: 73%. M.p. 295.8–298.1 ◦C. 1H-NMR: δ = 3.71 (3H, s, –CH3), 4.93 (2H, s,
–CH2–), 7.10 (1H, s, benzimidazole C–H), 7.37–7.56 (2H, m, benzimidazole C–H), 7.79 (2H, d,
J = 8.2 Hz, 4-bromo-phenyl C–H), 7.90 (2H, d, J = 8.0 Hz, 1,4-disubstituted benzene C–H), 7.97 (2H, d,
J = 8.2 Hz, 4-bromophenyl C–H), 8.32 (2H, d, J = 8.0 Hz, 1,4-disubstituted benzene C–H), 13.21 (1H, s,
benzimidazole –NH). 13C-NMR: δ = 32.51, 41.09, 98.45 (d, J = 26.8 Hz), 104.82 (d, J = 24.3 Hz), 113.42
(d, J = 11.4 Hz), 121.52, 127.23 (d, J = 8.9 Hz), 128.93, 129.27, 130.94, 132.37, 134.5, 137.4, 140.39, 150.25,
152.73 (d, J = 2.6 Hz), 153.21, 155.70, 161.03 (d, J = 228.6 Hz), 193.56. HRMS (m/z): [M + H]+ calcd for
C24H17BrFN5OS: 522.0374; found: 522.0394.

2-(4-(4-Methyl-5-(2-(4-methylphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-benz-
imidazole (3k). Yield: 71%. M.p. 284.3–286.9 ◦C. 1H-NMR: δ = 2.39 (3H, s, CH3), 3.71 (3H, s, –CH3),
4.92 (2H, s, –CH2–), 7.07–7.14 (1H, m, benzimidazole C–H), 7.36 (2H, d, J = 8.1 Hz, 4-methylphenyl
C–H), 7.42-7.46 (1H, m, Ar–C–H), 7.62–7.66 (1H, m, Ar–CH C–H), 7.89–7.95 (4H, Ar–C–H), 8.33 (2H, d,
J = 8.4 Hz, 1,4-disubstituted benzene C–H). 13C-NMR: δ = 21.67, 32.48, 41.25, 99.46 (d, J = 25.3 Hz),
101.78, 104.85 (d, J = 21.3 Hz), 111.29 (d, J= 10.2 Hz), 116.37, 120.44, 127.52 (d, J = 9.6 Hz), 128.78, 129.05,
129.28, 129.83, 131.23, 133.22, 144.78, 151.18 (d, J = 2.9 Hz), 155.20, 159.37 (d, J = 236.8 Hz), 193.36.
HRMS (m/z): [M + H]+ calcd for C25H20FN5OS: 458.1437; found: 458.1445.

2-(4-(4-Methyl-5-(2-(3,4-dihydroxyphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-
benzimidazole (3l). Yield: 77%. M.p. 277.8–279.2 ◦C. 1H-NMR: δ = 3.71 (3H, s, –CH3), 4.82 (2H, s, –CH2–),
6.85 (1H, d, J = 8.2 Hz, dihydroxyphenyl C–H), 7.09 (1H, br.s., Ar–C–H), 7.39–7.56 (4H, m, Ar–C–H),
7.90 (2H, d, J = 8.2 Hz, 1,4-disubstituted benzene C–H), 8.32 (2H, d, J = 8.2 Hz, 1,4-disubstituted
benzene C–H), 13.22 (1H, s, denzimidazole –NH). 13C-NMR: δ = 32.46, 41.07, 98.33 (d, J = 28.9 Hz),
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104.99 (d, J = 30.7 Hz), 110.81, 111.49 (d, J = 11.4 Hz), 112.75, 115.64, 120.41, 122.51, 127.38 (d, J = 9.4 Hz),
128.72, 129.26, 131.48, 132.21, 145.83, 150.75, 151.59 (d, J = 2.6 Hz), 153.62, 155.21, 162.78 (d, J = 236.8
Hz), 191.88. HRMS (m/z): [M + H]+ calcd for C24H18FN5O3S: 476.1176; found: 476.1187.

2-(4-(4-Ethyl-5-(2-(4-cyanophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-benz-
imidazole (3m). Yield: 70%. M.p. 225.4–227.1 ◦C. 1H-NMR: δ = 1.27 (3H, t, J = 7.2 Hz,–CH3), 4.11 (2H, q,
J = 7.2 Hz, –CH2), 5.03 (2H, s, –CH2–), 7.10 (1H, t, J = 8.5 Hz, benzimidazole C–H), 7.43 (1H, br. s,
benzimidazole C–H), 7.62 (1H, br.s., benzimidazole C–H), 7.83 (2H, d, J = 8.4 Hz, 4-cyanophenyl C–H),
8.05 (2H, d, J = 8.4, 1,4-disubstituted benzene C–H), 8.19 (2H, d, J = 8.4, 4-cyanophenyl C–H), 8.31 (2H,
d, J = 8.4 Hz, 1,4-disubstituted benzene C–H), 13.24 (1H, s, benzimidazole –NH). 13C-NMR: δ = 15.49,
40.30, 41.08, 98.19 (d, J = 25.2 Hz), 104.57 (d, J = 31.1 Hz), 111.55 (d, J = 11.3 Hz), 116.02, 118.56, 127.40,
128.71, 129.42 (d, J = 14.9 Hz), 131.60, 133.31, 134.81, 139.03, 142.18, 150.39, 152.18, 152.75 (d, J= 2.8 Hz),
154.81, 162.24 (d, J = 228.4 Hz), 193.33. HRMS (m/z): [M + H]+ calcd for C26H19N5FN6OS: 483.1386;
found: 483.1398.

2-(4-(4-Ethyl-5-(2-(4-bromophenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-benz-
imidazole (3n). Yield: 73%. M.p. 265.8–267.9 ◦C. 1H-NMR: δ = 1.28 (3H, t, J = 7.2 Hz, –CH3), 4.11 (2H, q,
J = 7.2 Hz, –CH2), 4.99 (2H, s, –CH2–), 7.06–7.13 (1H, m, benzimidazole C–H), 7.43 (1H, d, J = 8.5 Hz,
benzimidazole C–H), 7.61-7.66 (1H, m, benzimidazole C–H), 7.79 (2H, d, J = 8.5 Hz, 4-bromophenyl
C–H), 7.84 (2H, d, J = 8.3 Hz, 1,4-disubstituted benzene C–H), 7.98 (2H, d, J = 8.5 Hz, 4-bromophenyl
C–H), 8.32 (2H, d, J = 8.3 Hz, 1,4-disubstituted benzene C–H), 13.20 (1H, s, benzimidazole –NH).
13C-NMR: δ = 15.53, 40.80, 48.13, 99.45 (d, J = 24.8 Hz), 105.64 (d, J = 22.4 Hz), 111.25 (d, J = 11.2 Hz),
124.32, 127.40 (d, J = 9.2 Hz), 128.39, 128.80, 129.31, 130.92, 132.38, 134.81, 139.13, 150.47, 151.60
(d, J = 2.4 Hz), 152.15, 154.76, 159.28 (d, J = 234.1 Hz), 193.09. HRMS (m/z): [M + H]+ calcd for
C25H19BrFN5OS: 536.0537; found: 536.0550.

2-(4-(4-Ethyl-5-(2-(4-methylphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-benz-
imidazole (3o). Yield: 82%. M.p. 260.6–262.2 ◦C. 1H-NMR: δ = 1.28 (3H, t, J = 7.1 Hz,–CH3), 2.39 (3H,
s, CH3), 4.10 (2H, q, J = 7.1 Hz,–CH2), 4.98 (2H, s, –CH2–), 7.10 (1H, t, J = 8.5 Hz, benzimidazole
C–H), 7.37 (2H, d, J = 7.7 Hz, 4-methylphenyl C–H), 7.42 (1H, br.s, benzimidazole C–H), 7.63
(1H, br.s, benzimidazole C–H), 7.84 (2H, d, J = 8.1 Hz, 1,4-disubstituted benzene C–H), 7.95 (2H, d,
J = 7.8 Hz, 4-methylphenyl C–H), 8.32 (2H, d, J = 8.1 Hz, 1,4-disubstituted benzene C–H), 13.23
(1H, s, benzimidazole –NH). 13C-NMR: δ = 15.53, 21.68, 36.28, 41.21, 99.63 (d, J = 27.6 Hz), 104.32
(d, J = 24.8 Hz), 111.52 (d, J = 11.6 Hz), 123.46, 127.39 (d, J = 10.2 Hz), 128.82, 129.03, 129.30, 129.84,
131.62, 133.26, 144.79, 150.64 (d, J = 2.4 Hz), 152.72, 154.72, 159.24 (d, J = 234.7 Hz), 193.21. HRMS
(m/z): [M + H]+ calcd for C26H22FN5OS: 472.1602; found: 472.1604.

2-(4-(4-Ethyl-5-(2-(3,4-dihydroxyphenyl)-2-oxo-ethylthio)-4H-1,2,4-triazol-3yl)-phenyl)-5(6)-fluoro-1H-
benzimidazole (3p). Yield: 81%. M.p. 243.9–245.4 ◦C. 1H-NMR: δ = 1.26 (3H, t, J = 7.2 Hz,–CH3),
4.10 (2H, q, J = 7.2 Hz,–CH2), 4.77 (2H, s, –CH2), 6.48 (1H, d, J = 8.4 Hz, dihydroxyphenyl C–H),
7.04–7.11 (1H, m., benzimidazole C–H), 7.20 (1H, d, J = 2.3 Hz, dihydroxyphenyl C–H), 7.34 (1H, dd,
J = 8.4–2.3 Hz, dihydroxyphenyl C–H), 7.42 (1H, dd, J = 9.5–2.4 Hz, benzimidazole C–H), 7.60–7.64
(1H, m, Ar–C–H), 7.83 (2H, d, J = 8.4 Hz, 1,4-disubstituted benzene C–H), 8.35 (2H, d, J = 8.4 Hz,
1,4-disubstituted benzene C–H). 13C-NMR: δ = 15.56, 36.04, 41.16, 101.79 (d, J = 30.8 Hz), 110.90
(d, J = 24.8 Hz), 111.84, 116.50 (d, J = 12.3 Hz), 121.39, 122.55, 124.21, 128.86, 129.35 (d, J = 8.9 Hz),
130.61, 131.75, 134.81, 139.16, 147.72, 151.16 (d, J = 3.9 Hz), 152.40, 154.65, 159.21 (d, J = 241.6 Hz),
160.87, 189.78. HRMS (m/z): [M + H]+ calcd for C25H20FN5O3S: 490.1328; found: 490.1344.
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3.2. Anticholinesterase Activity Assay

The inhibitory activities of the compounds against AChE and BChE were determined in 96-well
plates by modified Ellman’s method as defined in our previous studies [17,37–39]. Donepezil and
tacrine were used as reference drugs. A robotic system, Biotek Precision XS (Winooski, VT, USA),
was used for all pipetting processes in the enzyme inhibition assay. Measurements of the percentage
inhibition were carried out at 412 nm by using a BioTek-Synergy H1 microplate reader (Winooski,
VT, USA). Inhibition potencies of synthesized compounds and IC50 of selected derivatives were
calculated as reported previously [17,37–39].

3.3. Kinetic Studies of Enzyme Inhibition

Enzyme kinetic studies were performed for compounds 3d and 3h in order to determine the
inhibition type on AChE. Enzyme kinetic assay was carried out using Ellman’s method according to
the previous studies reported by our research group [17,37–39].

3.4. Molecular Docking Studies

In order to determine the binding modes of compounds 3d and 3h on AChE enzyme active site,
docking studies were performed by using in silico procedure. X-ray crystal structure of AChE (PDB ID:
4EY7) [34] was retrieved from the Protein Data Bank server (www.pdb.org). The docking procedure
was applied as described in our previous works [17,37–39].

4. Conclusions

AChE and BuChE are enzymes which play an important role in memory and cognition.
They catalyse the hydrolysis of acetylcholine causing a loss of communication between nerve cells.
This leads to a loss of brain function and causes AD. Pharmaceutical research has thus been focusing
on cholinesterase inhibitors as treatments for cognitive disorders. This study aimed to design and
synthesized benzimidazole-triazole derivatives and tested their activity against AChE and BuChE.
Compounds 3d and 3h showed good AChE inhibition, but poor selectivity for BChE. In order to
clarify the type of inhibition and their in silico properties, enzyme kinetics and binding studies were
carried out for these compounds. These compounds were assessed as reversible and mixed-type AChE
enzyme inhibitors. Also, it was shown that compounds 3d and 3h could bind to the AChE enzyme
active site in a similar manner and proper positions. Consequently, this study presents important
results for developing new agents for neurodegenerative diseases such as Alzheimer’s diseases.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/5/861/
s1.
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17. Özkay, Ü.D.; Can, Ö.D.; Sağlık, B.N.; Cevik, U.A.; Levent, S.; Özkay, Y.; Ilgın, S.; Atlı, Ö. Design, synthesis,
and AChE inhibitory activity of new benzothiazole–piperazines. Bioorg. Med. Chem. Lett. 2016, 26, 5387–5394.
[CrossRef] [PubMed]

18. Gul, H.; Demirtas, A.; Ucar, G.; Taslimi, P.; Gulcin, I. Synthesis of Mannich bases by two different methods
and evaluation of their acetylcholine esterase and carbonic anhydrase inhibitory activities. Lett. Drug
Des. Discov. 2017, 14, 573–580. [CrossRef]

19. Lima, L.M.; Barreiro, E.J. Bioisosterism: A useful strategy for molecular modification and drug design.
Curr. Med. Chem. 2005, 12, 23–49. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.brs.2018.08.015
http://www.ncbi.nlm.nih.gov/pubmed/30181106
http://dx.doi.org/10.1016/j.bioorg.2018.12.035
http://www.ncbi.nlm.nih.gov/pubmed/30622011
http://www.ncbi.nlm.nih.gov/pubmed/30539809
http://dx.doi.org/10.1016/j.ejphar.2017.11.012
http://www.ncbi.nlm.nih.gov/pubmed/29133125
http://dx.doi.org/10.1002/cmdc.201300090
http://www.ncbi.nlm.nih.gov/pubmed/23592568
http://dx.doi.org/10.1007/s10072-013-1444-3
http://www.ncbi.nlm.nih.gov/pubmed/23681104
http://dx.doi.org/10.1016/j.ejmech.2018.02.078
http://www.ncbi.nlm.nih.gov/pubmed/29524731
http://dx.doi.org/10.1016/j.bioorg.2015.09.009
http://www.ncbi.nlm.nih.gov/pubmed/26440714
http://dx.doi.org/10.1016/j.bioorg.2018.10.056
http://www.ncbi.nlm.nih.gov/pubmed/30396115
http://dx.doi.org/10.1074/jbc.M210241200
http://www.ncbi.nlm.nih.gov/pubmed/12869558
http://dx.doi.org/10.1021/bi000210o
http://www.ncbi.nlm.nih.gov/pubmed/10869180
http://dx.doi.org/10.3390/cryst7070211
http://dx.doi.org/10.1007/s00044-017-2122-4
http://dx.doi.org/10.1016/j.bmcl.2018.10.006
http://www.ncbi.nlm.nih.gov/pubmed/30301674
http://dx.doi.org/10.1016/j.bmcl.2016.10.041
http://www.ncbi.nlm.nih.gov/pubmed/27789142
http://dx.doi.org/10.2174/1570180814666161128120612
http://dx.doi.org/10.2174/0929867053363540
http://www.ncbi.nlm.nih.gov/pubmed/15638729


Molecules 2019, 24, 861 16 of 17

20. Patani, G.A.; LaVoie, E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996, 96, 3147–3176.
[CrossRef] [PubMed]

21. Havrylyuk, D.; Heidary, D.K.; Nease, L.; Parkin, S.; Glazer, E.C. Photochemical Properties and
Structure-Activity Relationships of RuII Complexes with Pyridylbenzazole Ligands as Promising Anticancer
Agents. Eur. J. Inorg. Chem. 2017, 12, 1687–1694. [CrossRef] [PubMed]

22. Hiremathad, A.; Keri, R.S.; Esteves, A.R.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel Tacrine-
Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease.
Eur. J. Med. Chem. 2018, 148, 255–267. [CrossRef] [PubMed]

23. Salehi, N.; Mirjalili, B.B.F.; Nadri, H.; Abdolahi, Z.; Forootanfar, H.; Samzadeh-Kermani, A.;
Küçükkılınç, T.T.; Ayazgok, B.; Emami, S.; Haririan, I.; et al. Synthesis and biological evaluation of new
N-benzylpyridinium-based benzoheterocycles as potential anti-Alzheimer’s agents. Bioorg. Chem. 2019,
83, 559–568. [CrossRef] [PubMed]

24. Santana, M.V.; Castro, H.C.; Abreu, P.A. Molecular Modeling of Benzimidazole Derivatives: A Promising
Series of GluN2B Selective NMDA Receptor Antagonists. Curr. Drug Therapy 2018, 13, 152–161. [CrossRef]

25. Murtaza, S.; Tatheer, A. 4-Acetamidobenzaldehyde derivatives as biological active candidates; synthesis,
anti-oxidant, Anti-Alzheimer and DNA binding studies. Lett. Drug Des. Discov. 2018, 15, 957–968. [CrossRef]

26. Turan-Zitouni, G.; Hussein, W.; Saglik, B.N.; Baysal, M.; Kaplancikli, Z.A. Fighting Against Alzheimer’s
Disease: Synthesis of New Pyrazoline and Benzothiazole Derivatives as New Acetylcholinesterase and MAO
Inhibitors. Lett. Drug Des. Discov. 2018, 15, 414–427. [CrossRef]

27. Chaves, S.; Hiremathad, A.; Tomás, D.; Keri, R.S.; Piemontese, L.; Santos, M.A. Exploring the chelating
capacity of 2-hydroxyphenyl-benzimidazole based hybrids with multi-target ability as anti-Alzheimer’s
agents. New J. Chem. 2018, 42, 16503–16515. [CrossRef]

28. Pouramiri, B.; Moghimi, S.; Mahdavi, M.; Nadri, H.; Moradi, A.; Tavakolinejad-Kermani, E.; Firoozpour, L.;
Asadipour, A.; Foroumadi, A. Synthesis and anticholinesterase activity of new substituted benzo [d]
oxazole-based derivatives. Chem. Biol. Drug Des. 2017, 89, 783–789. [CrossRef] [PubMed]

29. Sarıkaya, G.; Çoban, G.; Parlar, S.; Tarikogullari, A.H.; Armagan, G.; Erdoğan, M.A.; Alptüzün, V.; Alpan, A.S.
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