

Synthesis and Anticancer Activities of Some Thiazole Derivatives

Ismail Kayagil and Seref Demirayak Anadolu University, Faculty of Pharmacy, Department of

Pharmaceutical Chemistry, Eskisehir, Turkey

In this study, 2-substituted 4-[3/4-(4-arylthiazole-2-yl)aminophenyl]thiazole derivatives and 2-[4-[2-substituted 4-methylthiazole-5-yl]thiazole-2-yl]amino-5arylidenethiazoline-4-one derivatives have been synthesized. The cytotoxic and/or growth inhibitory effects of the 16 selected compounds were evaluated in vitro against approximately 66 human tumor cell lines derived from nine neoplastic diseases. Some of the compounds were found to act as anticancer agents.

Keywords Anticancer activity; poly-thiazole; thiazolone

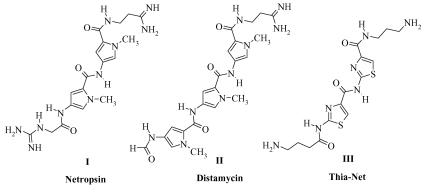
INTRODUCTION

Since the initial isolation of the polypyrrole netropsin, **I**, in 1951 and distamycin, **II**, in 1964, the interest in this class of compounds has been increased.¹ These natural antibiotics showed anticancer and antiviral activities by DNA binding.² Bleomycins, a group of anticancer antibiotics, also have a bithiazole moiety along with the imidazole and pyrimidine ring systems.³

The above observations created the interest for the synthesis of some analogues of netropsin and distamycin, in which the pyrrole rings were replaced by benzene, pyridine, thiophene, thiazole, imidazole, pyrazole, or triazole, to study their anticancer and antiviral activities.^{4–13} The studies on the anticancer activity of thia-net, **III**, which is a thiazole containing analogue of netropsin have been popular recently.²

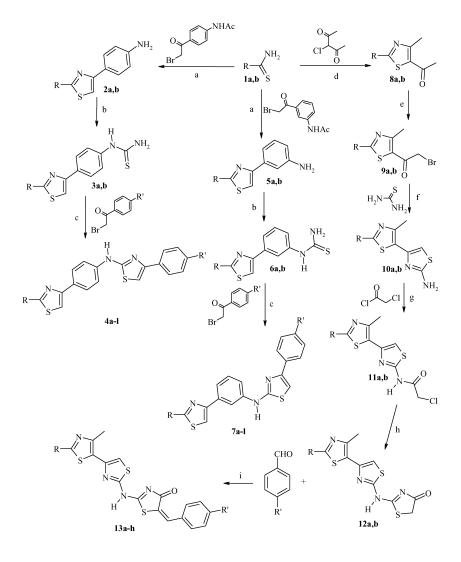
Received 12 June 2008; accepted 1 September 2008.

Authors are grateful to V. L. Narayanan and J. P. Bader of the National Institutes of Health, Bethesda, Maryland, USA, for anticancer screening.


Address correspondence to Seref Demirayak, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey. E-mail: sdemiray@anadolu.edu.tr

We are now reporting on the syntheses of some new compounds that possess two or three thiazole ring residues along with their anticancer activities.

RESULTS AND DISCUSSION


Chemistry

The synthesis of the title thiazole derivatives was accomplished with the sequence of reactions depicted in Scheme 1. To prepare the novel compounds, we have applied the known synthetic routes with minor modifications.^{14,15} The first two groups of the compounds are 2-substituted 4[3/4-(4-arylthiazole-2-yl)aminophenyl]thiazole derivatives **4a–l** and **7a–l**, which are isomers of each other. Reaction of 2bromo-3'/4'-acetylaminoacetophenone with the suitable thioamides in benzene afforded 2-substituted 3/4-acetylaminophenylthiazoles. These crude derivatives were hydrolyzed with an aqueous hydrochloric acid solution to afford the corresponding amine derivatives **2a–b**. Then, the amino compounds were treated with ammonium thiocyanate in hydrochloric acid solution, followed by reaction with the suitable 4'substituted 2-bromoacetophenones to afford the target compounds **4a–l** or **7a–l** (see Table I).

SCHEME 1

The third group includes 2-[4-[2-substituted 4-methylthiazole-5-yl]thiazole-2-yl]amino-5-arylidenethiazoline-4-one derivatives **13a-h** (Table I). These compounds were obtained by following the common reaction conditions, which have been described in the literature.^{14,15} Reaction of 3-chloropentan-2,4-dione with the suitable thioamides

a: i, C_6H_6 , reflux, ii, HCl/H₂O; b: NH₄SCN, HCl, H₂O; c: EtOH, d: C_6H_6 , reflux, e: Br₂, AcOH, f: EtOH, g: THF, Et₃N; h: NH₄SCN, EtOH; i: AcONa, AcOH. **SCHEME 2**

has afforded 2-substituted 4-methyl-5-acetylthiazoles **8a–b**. During the reactions between 3-chloropentan-2,4-dione and thioamides, it is obvious that both of the carbonyl groups can take place in the cyclization reactions. However, this regioselectivity does not cause the

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					37.11	M. I 1	Analyses Calc./Found (%)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Comp.	R	\mathbf{R}'				С	Н	N	s
	4a	CH_3	Н	188	72	$\mathrm{C_{19}H_{15}N_{3}S_{2}}$	65.30	4.33	12.02	18.35
							64.96	4.67	11.86	18.06
4c CH3 OCH3 122 82 C20H17N3OS2 63.30 4.52 11.07 16.90 4d CH3 Cl 224 85 C19H14ClN3S2 59.44 3.68 10.94 16.70 4d CH3 NO2 218 80 C19H14N4OS2 57.85 3.58 14.20 16.61 4e CH3 NO2 218 80 C19H14N4OS2 57.85 3.58 14.47 16.10 4f CH3 NHCOCH3 209 77 C21H18N4OS2 60.85 4.16 10.21 15.85 4g C6H5 H 159 65 C24H17N3OS2 70.64 4.16 10.21 15.86 4i C6H5 CH3 123 88 C25H19N3OS2 70.66 4.06 4.07 4.14 4.93 4i C6H5 OCH3 193 80 C24H16ClN3S2 64.63 3.62 9.42 14.38 4i C6H5 NO2 224 63 C24H16ClN3S2 64.64 3.02 14.20 13.78	4b	CH_3	CH_3	178	75	$C_{20}H_{17}N_3S_2$	66.08	4.71	11.56	17.64
							66.75	5.02	11.91	17.74
4d CH3 Cl 224 85 C19H14CIN3S2 59.44 3.68 10.94 16.70 59.55 3.66 11.12 16.85 3.66 11.12 16.85 4e CH3 NO2 218 80 C19H14N4O22 57.85 3.56 14.01 16.11 4f CH3 NHCOCH3 209 77 C21H18N4OS2 62.05 4.46 13.78 15.77 64 C6H5 H 159 65 C24H17N3S2 70.66 4.50 9.87 15.62 4m C6H5 CH3 225 71 C25H19N3S2 70.56 4.50 9.87 15.77 64 C6H5 OCH3 193 80 C25H19N3OS2 64.03 3.22 14.22 14.52 4j C6H5 ND2 224 63 C24H16CIN3S2 64.63 3.62 9.42 14.35 4l C6H5 ND2 224 63 C24H16CIN3S2 64.63 3.63 11.9 14.22 14.55 4l C6H5 NHCOCH3	4c	CH_3	OCH_3	122	82	$\mathrm{C}_{20}\mathrm{H}_{17}\mathrm{N}_{3}\mathrm{OS}_{2}$	63.30	4.52	11.07	16.90
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							63.56	4.92	10.87	17.20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4d	CH_3	Cl	224	85	$\mathrm{C_{19}H_{14}ClN_3S_2}$	59.44	3.68	10.94	16.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							59.55	3.46	11.12	$16\ 85$
4f CH ₃ NHCOCH ₃ 209 77 C ₂₁ H ₁₈ N ₄ OS ₂ 62.05 4.46 13.78 15.77 4g C ₆ H ₅ H 159 65 C ₂₄ H ₁₇ N ₃ S ₂ 70.04 4.16 10.25 15.62 4h C ₆ H ₅ CH ₃ 225 71 C ₂₅ H ₁₉ N ₃ S ₂ 70.56 4.50 9.87 15.07 4i C ₆ H ₅ OCH ₃ 193 80 C ₂₅ H ₁₉ N ₃ S ₂ 68.00 4.34 9.52 14.64 4j C ₆ H ₅ OCH ₃ 193 80 C ₂₄ H ₁₆ ClN ₃ S ₂ 68.00 4.34 9.32 14.22 4k C ₆ H ₅ ND 214 67 C ₂₆ H ₂₀ N ₄ OS ₂ 63.14 3.53 12.27 14.05 62.84 3.82 12.67 14.15 12.20 13.74 4l C ₆ H ₅ NHCOCH ₃ 241 67 C ₂₆ H ₂₀ N ₄ OS ₂ 66.34 4.33 12.27 14.05 77 C ₆ H ₅ NHCOCH ₃ 241 67 C ₂₆ H ₂₀ N ₄ OS ₂ 63.03 4.33 12.02 13.74 <	4e	CH_3	NO_2	218	80	$\mathrm{C_{19}H_{14}N_4O_2S_2}$	57.85	3.58	14.20	16.26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							58.05	4.11	14.47	16.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4f	CH_3	$NHCOCH_3$	209	77	$\mathrm{C}_{21}\mathrm{H}_{18}\mathrm{N}_4\mathrm{OS}_2$	62.05	4.46	13.78	15.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							61.85	4.35	14.04	16.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4g	C_6H_5	Н	159	65	$C_{24}H_{17}N_3S_2$	70.04	4.16	10.21	15.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							69.85	4.16	10.25	15.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4h	C_6H_5	CH_3	225	71	$C_{25}H_{19}N_3S_2$	70.56	4.50	9.87	15.07
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							70.45	4.67	9.44	14.93
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4i	C_6H_5	OCH_3	193	80	$C_{25}H_{19}N_3OS_2$	68.00	4.34	9.52	14.52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							67.75	4.02	9.55	14.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4j	C_6H_5	Cl	231	88	$C_{24}H_{16}ClN_3S_2$		3.62	9.42	14.38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ū	0 0				21 10 0 2		4.34	9.32	14.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4k	C_6H_5	NO_2	224	63	$C_{24}H_{16}N_4O_2S_2$				
41 C ₆ H ₅ NHCOCH ₃ 241 67 C ₂₆ H ₂₀ N ₄ OS ₂ 66.64 4.30 11.96 13.68 7a CH ₃ H 172 70 C ₁₉ H ₁₅ N ₃ S ₂ 65.30 4.33 12.02 18.35 7b CH ₃ CH ₃ 147 72 C ₂₀ H ₁₇ N ₃ S ₂ 66.08 4.71 11.56 17.64 7b CH ₃ OCH ₃ 129 78 C ₂₀ H ₁₇ N ₃ OS ₂ 63.03 4.52 11.07 16.90 62.90 4.55 11.12 17.12 70 59.45 3.75 11.21 17.12 7d CH ₃ Cl 164 83 C ₁₉ H ₁₄ N ₄ O _{2S2} 57.85 3.58 14.20 16.70 7e CH ₃ NO ₂ 194 76 C ₁₉ H ₁₄ N ₄ O _{2S2} 57.85 3.58 14.20 16.26 7f CH ₃ NHCOCH ₃ 111 79 C ₂₁ H ₁₈ N ₄ OS ₂ 62.05 4.46 13.78 15.77 6f CH ₃ NHCOCH ₃ 111 79 C ₂₁ H ₁₈ N ₄ OS ₂ 62.05 4.46		0 0	2			21 10 1 2 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	C ₆ H ₅	NHCOCH ₃	241	67	C26H20N4OS2				
7a CH ₃ H 172 70 C ₁₉ H ₁₅ N ₃ S ₂ 65.30 4.33 12.02 18.35 7b CH ₃ CH ₃ 147 72 C ₂₀ H ₁₇ N ₃ S ₂ 66.08 4.71 11.56 17.64 7b CH ₃ OCH ₃ 129 78 C ₂₀ H ₁₇ N ₃ OS ₂ 63.03 4.52 11.07 16.90 7c CH ₃ OCH ₃ 129 78 C ₂₀ H ₁₇ N ₃ OS ₂ 63.03 4.52 11.07 16.90 7d CH ₃ Cl 164 83 C ₁₉ H ₁₄ ClN ₃ S ₂ 59.44 3.68 10.94 16.70 7e CH ₃ NO ₂ 194 76 C ₁₉ H ₁₄ N ₄ O ₂ S ₂ 57.85 3.58 14.20 16.26 7f CH ₃ NHCOCH ₃ 111 79 C ₂₁ H ₁₈ N ₄ OS ₂ 62.05 4.46 13.78 15.77 7g C ₆ H ₅ H 202 68 C ₂₄ H ₁₇ N ₃ S ₂ 70.04 4.16 10.21 15.86 7h C ₆ H ₅ CH ₃ 227 71 C ₂₅ H ₁₉ N ₃ S ₂ 70.56		- 00				-2020- 4 - 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 a	CH_{2}	н	172	70	C10H15N2S2				
7b CH3 CH3 147 72 C20H17N3S2 66.08 4.71 11.56 17.64 7c CH3 OCH3 129 78 C20H17N3OS2 63.03 4.52 11.07 16.90 7c CH3 OCH3 129 78 C20H17N3OS2 63.03 4.52 11.07 16.90 7d CH3 Cl 164 83 C19H14ClN3S2 59.44 3.68 10.94 16.70 7d CH3 NO2 194 76 C19H14N4O2S2 57.85 3.58 14.20 16.26 7e CH3 NO2 194 76 C19H14N4O2S2 57.85 3.58 14.20 16.26 7f CH3 NHCOCH3 111 79 C21H18N4OS2 62.05 4.46 13.78 15.77 61.96 4.50 13.80 15.80 13.80 15.80 15.80 15.80 7g C6H5 H 202 68 C24H17N3S2 70.04 4.16 10.21 15.80 7h C6H5 CH3	· u	0113				0191191192				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7b	CH_{2}	CH_{2}	147	72	C20H17N2S2				
7c CH ₃ OCH ₃ 129 78 C ₂₀ H ₁₇ N ₃ OS ₂ 63.03 4.52 11.07 16.90 7d CH ₃ Cl 164 83 C ₁₉ H ₁₄ ClN ₃ S ₂ 59.44 3.68 10.94 16.70 7d CH ₃ Cl 164 83 C ₁₉ H ₁₄ ClN ₃ S ₂ 59.44 3.68 10.94 16.70 7e CH ₃ NO ₂ 194 76 C ₁₉ H ₁₄ N ₄ O ₂ S ₂ 57.85 3.58 14.20 16.26 7f CH ₃ NHCOCH ₃ 111 79 C ₂₁ H ₁₈ N ₄ OS ₂ 62.05 4.46 13.78 15.77 61.96 4.50 13.80 15.80 13.80 15.80 15.80 7g C ₆ H ₅ H 202 68 C ₂₄ H ₁₇ N ₃ S ₂ 70.04 4.16 10.21 15.58 7h C ₆ H ₅ CH ₃ 227 71 C ₂₅ H ₁₉ N ₃ S ₂ 70.56 4.50 9.87 15.07 7i C ₆ H ₅ OCH ₃ 197 75 C ₂₅ H ₁₉ N ₃ OS ₂ 68.00 4.34 9.52 14.52	•••	0113	0110		•-	02011111302				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7c	CH_{2}	OCH_2	129	78	CooH17N2OS2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••	0113	00113	120	.0	02011/11/3002				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7d	CH_{o}	Cl	164	83	CtoHtt ClNsSs				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>i</i> u	0113	01	101	00	019114011302				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7e	CH_{o}	NOa	194	76	CtoHttNLOoSo				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••	0113	1102	101	10	0191141140202				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7f	CH_{o}	NHCOCH	111	79	CatH10N(OSa				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	••	0113	111000113		10	02111814002				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7o	C _c H _r	н	202	68	Co4H17NoSo				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	06115	11	202	00	02411711302				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7h	C _e H-	CH_{2}	997	71	CorHanNaSa				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111	06115	0113	441	11	022111310305				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7;	C.H	OCH.	107	75	CH-N-OS				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$\cup_6\Pi_5$	00113	191	19	0251119103002				
64.68 3.70 9.45 14.44	7:	СЧ	CI	190	80	CHCING				
	4)	$\cup_6 \Pi_5$	UI	198	0 0	$0.24 \pi_{16} 0 m_3 S_2$				

TABLE I Some Characteristics of the Compounds

(Continued on next page)

				Yield	Molecular	Analyses Calc./Found (9		nd (%)	
Comp.	R	\mathbf{R}'	mp (°C)	(%)	formula	С	Η	Ν	S
7k	C_6H_5	NO_2	187	65	$\mathrm{C}_{24}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}_2\mathrm{S}_2$	63.14	3.53	12.27	14.05
						63.22	3.45	12.33	14.20
71	C_6H_5	$NHCOCH_3$	226	67	$C_{26}H_{20}N_4OS_2$	66.64	4.30	11.96	13.68
						66.88	4.28	12.04	13.72
13a	CH_3	Н	271	78	$C_{18}H_{14}N_4OS_3$	54.25	3.54	14.06	24.14
						54.35	3.60	14.20	24.20
13b	CH_3	CH_3	257	77	$C_{19}H_{16}N_4OS_3$	55.32	3.91	13.58	23.32
						55.82	3.85	13.66	23.40
13c	CH_3	OCH_3	266	81	$C_{19}H_{16}N_4O_2S_3$	53.25	3.76	13.07	22.45
						53.50	3.90	13.22	22.85
13d	CH_3	Cl	287	86	$C_{18}H_{13}ClN_4OS_3$	49.93	3.03	12.94	22.22
						50.14	3.12	13.12	21.98
13e	C_6H_5	Н	259	63	$C_{22}H_{16}N_4OS_3$	59.98	3.50	12.16	20.88
						60.10	3.60	12.18	21.00
13f	C_6H_5	CH_3	243	61	$C_{23}H_{18}N_4OS_3$	60.74	3.82	11.80	20.27
						60.55	3.92	12.00	20.30
13g	C_6H_5	OCH_3	218	74	$C_{23}H_{18}N_4O_2S_3$	58.75	3.70	11.42	19.61
		-				58.95	3.81	11.60	19.65
13h	C_6H_5	Cl	276	79	$C_{22}H_{15}ClN_4OS_3$	55.80	3.05	11.32	19.43
	2 0				0	55.92	2.95	11.53	19.50

TABLE I Some Characteristics of the Compounds Continued

different products because of the symmetry of 3-chloropentan-2,4-dione. The compounds **8a-b** were reacted with bromine to afford the corresponding bromoacetyl derivatives. They were then treated with thiourea to give 2-substituted 4-methyl-5-(2aminothiazole-4-yl)thiazoles **10a-b**. The aminothiazoles were reacted with chloroacetylchloride in tetrahydrofuran in the presence of triethylamine, followed by reaction with ammonium thiocyanate in ethanol to afford 2-[4-(2-substituted 4-methylthiazole-5-yl)thiazole-2yl]aminothiazoline-4-ones **12a-b** as starting materials. Finally, the 2-aminothiazoline-4-one derivatives were heated with a suitable aromatic aldehyde in acetic acid in the presence of sodium acetate to give the target compounds **13a-h**.

Pharmacology

The compounds selected by the National Cancer Institute (NCI) and their preliminary anticancer test results as growth percent values obtained against BC, NSCLC, and CNSC cells are given in Table II. It was

		The growth percentage						
Compounds	Conc. (Molar)	BC MCF7	NSCLC NCI-H460	CNS SF-268				
4c	$5 imes 10^{-5}$	43	42	80				
4d	$5 imes 10^{-5}$	101	99	96				
4f	$5 imes 10^{-5}$	123	110	106				
4i	$5 imes 10^{-5}$	121	120	108				
4j	$5 imes 10^{-5}$	95	85	105				
41	$5 imes 10^{-5}$	49	70	100				
7c	$5 imes 10^{-5}$	39	20	82				
7d	$5 imes 10^{-5}$	25	5	26				
7f	$5 imes 10^{-5}$	2	0	24				
7i	$5 imes 10^{-5}$	49	70	100				
7j	$5 imes 10^{-5}$	38	7	51				
71	$5 imes 10^{-5}$	53	12	81				
13c	$5 imes 10^{-5}$	138	122	98				
13d	$5 imes 10^{-5}$	124	120	97				
13g	$5 imes 10^{-5}$	81	61	71				
13h	$5 imes 10^{-5}$	91	83	85				

TABLE II The Preliminary Test Results

reported that the compounds **4c**, **4l**, **7c**, **7d**, **7f**, **7j**, and **7l** have the remarkable inhibition values for BC and NSCLC, and that **7d**, **7f**, and **7j** have remarkable inhibition values for CNS. These compounds, except **4c**, were accepted for the further screening tests. In this step, the selected six compounds were evaluated in vitro against 66 human tumor cell lines derived from nine neoplastic diseases (see the Experimental section), and the detailed test results are given in Table III.

TABLE III	Log ₁₀ (GI ₅₀ V	alues
-----------	---------------------	--------------------	-------

Comp.	L	NSCLC	$\mathbf{C}\mathbf{C}$	CNSC	М	OC	RC	PC	BC	MG_MID
41	-4.66	-4.38	-4.45	-4.77	-4,74	-4.83	-4.80	-4.57	-4.79	-4.75
7c	-6.54	-6.13	-6.21	-5.85	-6.01	-6.12	-5.70	-5.76	-5.92	-6.02
7d	-4.81	-5.10	-4.99	-4.98	-5.06	-4.93	-4.99	-5.03	-4.98	-4.99
7f	-5.35	-5.47	-6.64	-5.70	-6.12	-5.76	-5.68	-5.35	-5.96	-5.81
7j	-4.90	-4.95	-5.00	-4.97	-5.10	-4.81	-4.92	-5.14	-4.93	-4.96
71	-4.55	-4.58	-4.70	-4.69	-4.93	-4.55	-4.79	-4.74	-4.66	-4.69
Α	-5.48	-5.17	-5.11	-5.12	-5.08	-5.18	-4.99	-4.49	-4.79	-5.09
В	-6.39	-6.20	-6.14	-6.18	-6.08	-6.45	-6.17	-6.41	-6.05	-6.20

A: Melphalan, B: Cis-Diaminodichloroplatinum.

According to the test method, it is stated that the compounds having \log_{10} GI₅₀ (GI₅₀: growth inhibition of 50%) values greater than -4 are considered as inactive. It can be seen that all of our compounds' \log_{10} GI₅₀ values are smaller than -4. Therefore, we may conclude that all of our compounds provide a notable activity level. Melphalan and *cis*-diaminodichloroplatinum, which are the commonly used clinical chemotherapeutic agents, were used as standard compounds for the test. When the mean graph midpoint (MG-MID) values of the compounds melphalan and *cis*-diaminodichloroplatinum, i.e., -5.09 and -6.20 respectively, are considered, it is observed that our compounds provide high activity levels. The MG-MID value of the compound 7c is almost equal that of the control compound cisdiaminodichloroplatinum. In a similar manner, the activity values of the compounds 7c and 7f are higher than that of the other control compound melphalan. When these data are examined according to their activity against various cancer types, it is observed that both the standard and the tested compounds are effective against leukemia for 7c and colon cancer for 7c and 7f in lower concentrations. The most noteworthy compound is 7f, which is even more active than *cis*diaminodichloroplatinum against colon cancer. It is noticeable that all of the compounds, except 4l, under detailed investigation are 1,3isomers between compounds 4 and 7. Another noticeable point is that the compounds 13 have the lowest activity values.

EXPERIMENTAL

Chemistry

Melting points were determined by using an Electrothermal 9100 digital melting point apparatus and were uncorrected. Spectroscopic data were recorded on the following instruments: FTIR: Schimadzu 8400S Spectrophotometer; ¹H NMR: Bruker DPX 400 NMR spectrometer. The starting compounds 5-(3/4-aminophenyl)thiazoles **2a,b** and **5a,b**.^{16–18} 1-[4-(2-substituted thiazole-5-yl)phenyl]thioureas **3a,b**,¹⁶ 2-substituted 4-methyl-5-acetylthiazoles **8a–b**,¹⁹ 2-substituted 4-methyl-5-(2-bromoacetyl)thiazoles **9a–b**,²⁰ and 4-(2-substituted 4-methyl-index) in the literature. The starting compounds **6a,b,11a,b**, and**12a,b** were prepared and used according to the steps in this section without any structural identifications. Some characteristics were shown in Table I. The spectral analyses data for

prototypes of final compounds **4a-l**, **7a-l**, and **13a-h** are given below.

General Method for the Preparation of 2-Substituted 4[3/4-(4-arylthiazole-2-yl)aminophenyl]thiazole Derivatives 4(a–l) and 7(a–l)

A mixture of 1-[3-(2-substituted thiazole-4-yl)phenyl]thiourea or 1-[4-(2-substituted thiazole-5-yl)phenyl]thiourea derivatives (5 mmol) and a suitable 2-bromoacetophenone (5.5 mmol) in ethanol (50 mL) was refluxed for 4 h. The cooled mixture was filtered and recrystallized from ethanol.

4a: IR (KBr) ν_{max} (cm⁻¹): 3347 (N–H), 1614–1443 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.71 (3H, s, CH₃), 7.31–7.35 (1H, m, Ar-H), 7.38 (1H, s, thiazole C₄-H), 7.43–7.47 (2H, m, Ar-H), 7.78 (1H, s, thiazole C₄-H), 7.80 (2H, d, J = 8.73 Hz, Ar-H), 7.94 (2H, d, J = 8.49 Hz, Ar-H), 7.96 (2H, d, J = 7.12 Hz, Ar-H), 10.43 (1H, s, NH).

4b: IR (KBr) ν_{max} (cm⁻¹): 3354 (N–H), 1614–1442 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.32 (3H, s, CH₃), 2.70 (3H, s, CH₃), 7.24 (2H, d, J = 8.74 Hz, Ar-H), 7.28 (1H, s, Thiazole C₄-H), 7.75 (1H, s, Thiazole C₄-H), 7.78 (2H, d, J = 8.61 Hz, Ar-H), 7.82 (2H, d, J = 8.68 Hz, Ar-H), 7.91 (2H, d, J = 8.55 Hz, Ar-H), 10.39 (1H, s, NH).

4d: IR (KBr) ν_{max} (cm⁻¹): 3346 (N–H), 1616–1462 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.71 (3H, s, CH₃), 7.44 (1H, s, thiazole C₄-H), 7.50 (2H, d, J = 8.79 Hz, Ar-H), 7.78 (1H, s, thiazole C₄-H), 7.80 (2H, d, J = 8.60 Hz, Ar-H), 7.94 (2H, d, J = 8.65 Hz, Ar-H), 7.97 (2H, d, J = 8.50 Hz, Ar-H), 10.45 (1H, s, NH).

4f: IR (KBr) ν_{max} (cm⁻¹): 3362 (N–H), 1672 (C=O), 1610–1472 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.08 (3H, s, COCH₃), 2.71 (3H, s, CH₃), 7.23 (1H, s, thiazole C₄-H), 7.67 (2H, d, J = 8.61 Hz, Ar-H), 7.75 (1H, s, thiazole C₄-H), 7.80 (2H, d, J = 8.74 Hz, Ar-H), 7.88 (2H, d, J = 8.58 Hz, Ar-H), 7.93 (2H, d, J = 8.65 Hz, Ar-H), 10.05 (1H, s, CONH), 10.40 (1H, s, NH).

4g: IR (KBr) ν_{max} (cm⁻¹): 3380 (N–H), 1614–1433 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 7.31–7.35 (1H, m, Ar-H), 7.39 (1H, s, thiazole C₄-H), 7.44–7.47 (2H, m, Ar-H), 7.51–7.57 (3H, m, Ar-H), 7.89 (2H, d, J = 8.76 Hz, Ar-H), 7.97 (2H, d, J = 8.33 Hz, Ar-H), 8.03–8.08 (5H, m, Ar-H, thiazole C₄-H), 10.59 (1H, s, NH).

4h: IR (KBr) ν_{max} (cm⁻¹): 3382 (N–H), 1614–1433 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.35 (3H, s, CH₃), 7.27 (2H, d, J:8.08 Hz, Ar-H), 7.31 (1H, s, thiazole C₄-H), 7.55 (3H, d, J = 7.57 Hz,

Ar-H), 7.86 (4H, d, J = 8.40 Hz, Ar-H), 8.05 (1H, s, thiazole C₄-H), 8.07 (4H, d, J = 8.57 Hz, Ar-H), 10.45 (1H, s, NH).

4k: IR (KBr) ν_{max} (cm⁻¹): 3378 (N–H), 1612–1438 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 7.51–7.57 (3H, m, Ar-H, thiazole C₄-H), 7.79 (1H, s, thiazole C₄-H), 7.89 (2H, d, J = 8.70 Hz, Ar-H), 8.03–8.08 (5H, m, Ar-H), 8.22 (2H, d, J = 8.92 Hz, Ar-H), 8.32 (2H, d, J = 8.92 Hz, Ar-H), 10.79 (1H, s, NH).

7a: IR (KBr) ν_{max} (cm⁻¹): 3280 (N–H), 1618–1470 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.77 (3H, s, CH₃), 7.33–7.47 (5H, m, Ar-H, thiazole C₄-H), 7.51 (1H, d, J = 7.75 Hz, Ar-H), 7.66, 7.68 (1H, dd, J = 1.98, 2.00 Hz, J = 7.96 Hz, Ar-H), 7.87 (1H, s, thiazole C₄-H), 8.02 (2H, d, J = 7.37 Hz, Ar-H), 8.64 (1H, d, J = 1.55 Hz, Ar-H), 10.41 (1H, s, NH).

7c: IR (KBr) ν_{max} (cm⁻¹): 3276 (N–H), 1617–1468 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.77 (3H, s, CH₃), 3.80 (3H, s, OCH₃), 7.00 (2H, d, J = 8.81 Hz, Ar-H), 7.18 (1H, s, thiazole C₄-H), 7.37–7.42 (2H, m, Ar-H), 7.49–7.52 (1H, m, Ar-H), 7.67, 7.69 (1H, dd, J = 1.54, 1.52 Hz, J:8.01 Hz, Ar-H), 7.87 (1H, s, thiazole C₄-H), 7.94 (2H, d, J = 8.78 Hz, Ar-H), 10.41 (1H, s, NH).

7e: IR (KBr) ν_{max} (cm⁻¹): 3283 (N–H), 1618–1474 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.77 (3H, s, CH₃), 7.41 (1H, t, J = 7.86 Hz, thiazole C₄-H), 7.54 (1H, d, J = 7.73 Hz, Ar-H), 7.67, 7.69 (1H, dd, J = 1.79, 1.80 Hz, J = 7.99 Hz, Ar-H), 7.78 (1H, s, Ar-H), 7.89 (1H, s, Thiazole C₄-H), 8.24 (2H, d, J: = 8.83 Hz, Ar-H), 8.30 (2H, d, J = 8.84 Hz, Ar-H), 8.55 (1H, s, Ar-H), 10.53 (1H, s, NH).

7g: IR (KBr) ν_{max} (cm⁻¹): 3240 (N–H), 1608–1471 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 7.33–7.46 (4H, m, Ar-H, thiazole C₄-H), 7.52–7.58 (3H, m, Ar-H), 7.60–7.64 (2H, m, Ar-H), 8.01 (2H, d, J = 7.18 Hz, Ar-H), 8.05 = 8.08 (3H, m, Ar-H), 8.15 (1H, s, thiazole C₄-H), 8.73 (1H, s, Ar-H), 10.47 (1H, s, NH).

7i: IR (KBr) ν_{max} (cm⁻¹): 3245 (N–H), 1609–1469 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 3.77 (3H, s, OCH₃), 6.93 (2H, d, J:8.73 Hz, Ar-H), 7.21 (1H, s, thiazole C₄-H), 7.41–7.45 (1H, m, Ar-H), 7.50–7.62 (4H, m, Ar-H), 7.94 (2H, d, J = 8.68 Hz, Ar-H), 8.03–8.08 (3H, m, Ar-H), 8.15 (1H, s, Thiazole C₄-H), 8.76 (1H, s, Ar-H), 10.43 (1H, s, NH).

71: IR(KBr) $\nu_{max}(cm^{-1})$: 3238 (N–H), 1676 (C=O), 1608–1473 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.08 (3H, s, COCH₃), 7.26 (1H, s, thiazole C₄-H), 7.44–7.62 (5H, m, Ar-H), 7.66 (2H, d, J = 8.70 Hz, Ar-H), 7.92 (2H, d, J = 8.64 Hz, Ar-H), 7.98–8.07 (3H, m, Ar-H), 8.15 (1H, s, thiazole C₄-H), 8.62 (1H, s, Ar-H), 10.06 (1H, s, CONH), 10.42 (1H, s, NH).

General Method for the Preparation of 2-[4-(2-Substituted 4-Methylthiazole-5-yl)thiazole-2-yl]amino-5-arylydenethiazoline-4-ones Derivatives 13(a-h)

A mixture of 2-[4-(2-substituted 4-methylthiazole-5-yl)thiazole-2-yl]aminothiazoline-4-one derivative (5 mmol), a suitable 4-substituted benzaldehyde (5.5 mmol) and sodium acetate (15 mmol) in acetic acid (50 mL) was refluxed for 8 h. The cooled mixture was poured into ice water. The precipitate was filtered and crystallized from ethanol.

13a: IR (KBr) ν_{max} (cm⁻¹): 3120 (N–H), 1724, 1688 (C=O), 1590– 1430 (C=N, C=C), ¹H NMR (400 MHz) (DMSO-*d*₆) δ (ppm): 2.45 (3H, s, CH₃), 2.82 (3H, s, CH₃), 7.31 (1H, s, =CH-), 7.41–7.62 (5H, s, Ar-H), 8.15 (1H, s, thiazole C₄-H), 10.45 (1H, s, NH).

13d: IR (KBr) ν_{max} (cm⁻¹): 3128 (N–H), 1730, 1704 (C=O), 1589–1423 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.44 (3H, s, CH₃), 2.80 (3H, s, CH₃), 7.32 (1H, s, =CH-), 7.45 (2H, d, J = 8.62 Hz, Ar-H), 8.15 (1H, s, thiazole C₄-H), 8.40 (2H, d, J = 8.64 Hz, Ar-H), 10.45 (1H, s, NH).

13g: IR (KBr) ν_{max} (cm⁻¹): 3126 (N–H), 1720, 1683 (C=O), 1589–1461 (C=N, C=C), ¹H NMR (400 MHz) (DMSO- d_6) δ (ppm): 2.45 (3H, s, CH₃), 7.12 (2H, d, J = 7.85 Hz, Ar-H), 7.32 (1H, s, =CH-), 7.42–7.50 (3H, m, Ar-H), 7.85–7.95 (2H, m, Ar-H), 8.12 (1H, s, thiazole C₄-H), 8.38 (2H, d, J = 7.90 Hz, Ar-H), 10.43 (1H, s, NH).

Pharmacology

The cytotoxic and/or growth inhibitory effects of the compounds were evaluated in vitro against approximately 66 human tumor cell lines derived from nine neoplastic diseases, namely leukaemia (L), non-small cell lung cancer (NSCLC), colon cancer (CC), central nervous system cancer (CNSC), melanoma (M), ovarian cancer (OC), renal cancer (RC), prostate cancer (PC), breast cancer (BC). The evaluation of anticancer activity was performed at the NCI of Bethesda, Maryland, USA, following the in vitro screening program, which is based upon the use of multiple panels of 66 human tumor cell lines against which our compounds were tested at 10-fold dilutions of five concentrations ranging from 10^{-4} to 10^{-8} M. The percentage growth was evaluated spectrophotometrically versus controls not treated with test agents. A 48 h continuous drug exposure protocol was followed, and a sulforhodamine B (SRB) protein assay was used to estimate cell growth.^{22,23}

REFERENCES

- G. Cirrincione, A. M. Almerico, E. Aiello, and G. Dattolo, *Aminopyrroles, Pyrroles Part 2. The Synthesis, Reactivity and Physical Properties of Substituted Pyrroles*, A. R. Jones, Ed. (John Wiley and Sons, Inc., New York, 1992), pp. 302–310.
- [2] B. Plouvier, C. Bailly, R. Houssin, and J. P. Henichart, Heterocycles, 32, 693 (1991).
- [3] J. M. Riordan and T. T. Sakai, J. Heterocycl. Chem., 18, 1213 (1981).
- [4] G. Pattandon, J. Heterocycl. Chem., 29, 607 (1992).
- [5] H. I. El-Subbagh, A. H. Abadi, and J. Lehmann, Arch. Pharm. Med. Chem., 332, 137 (1999).
- [6] V. A. Ryabinin, O. D. Zakharova, E. Y. Yurchenko, O. A. Timofeeva, I. V. Martyanov, A. A. Tokarev, E. F. Belanov, N. I. Bormotov, L. Tarrago-Litvak, M. L. Andreola, S. Litvak, G. A. Nevinsky, and A. N. Sinyakov, *Bioorg. Med. Chem.*, 8, 985 (2000).
- [7] A. Nagasaki, Y. Adachi, Y. Yonezawa, and C. Shin, Heterocycles, 60, 321 (2002).
- [8] Y. Yonezawa, N. Tani, and C. Shin, Heterocycles, 65, 95 (2005).
- [9] L. Garuti, M. Roberti, A. Pession, E. Leoncini, and S. Hrelia, *Bioorg. Med. Chem. Lett.*, 11, 3147 (2001).
- [10] Y. Laras, G. Quelever, C. Garino, N. Piatrancosta, M. Sheha, F. Bihel, M. S. Wolfe, and J. L. Kraus, Org. Biomol. Chem., 3, 612 (2005).
- [11] H. I. El-Subbagh and A. M. Al-Obaid, Eur. J. Med. Chem., 31, 1017 (1996).
- [12] K. S. Kim, S. D. Kimball, R. N. Misra, D. B. Rawlins, J. T. Hunt, H. Y. Xiao, S. Lu, L. Qian, W. C. Han, W. Shan, T. Mitt, Z. W. Cai, M. A. Poss, H. Zhu, J. S. Sack, J. S. Tokarski, C. Y. Chang, N. Pavletich, A. Kamath, W. G. Humphreys, P. Marathe, I. Bursuker, K. A. Kellar, U. Roongta, R. Batorsky, J. G. Mulheron, D. Bol, C. R. Fairchild, F. Y. Lee, and K. R. Webster, J. Med. Chem., 45, 3905 (2002).
- [13] M. C. Bagley, J. W. Dale, E. A. Merritt, and X. Xiong, Chem. Rev., 105, 685 (2005).
- [14] G. Vernin, *Thiazole and Its Derivatives*, Part 1, J. V. Metzger, Ed. (John Wiley & Sons, New York, 1979), pp. 213–232.
- [15] R. Barone, M. Chanon, and R. Gallo, *Thiazole and Its Derivatives*, Part 2, J. V. Metzger, Ed. (John Wiley & Sons, New York, 1979), pp. 48–51.
- [16] V. H. Patil and D. B. Ingle, J. Indian Chem. Soc., 56, 1243 (1979).
- [17] S. Demirayak, K. Benkli, C. Sezer, and H. Erdeniz, Acta Pharm. Turc., 39, 133 (1997).
- [18] M. Q. Zhang, A. Haemers, D. Vanden Berghe, S. R. Pattyn, W. Bollaert, and I. Levshin, J. Heterocyclic Chem., 28, 673 (1991).
- [19] A. Shafiee, A. Shafaati, and B. Habibi-Khameneh, J. Heterocycl. Chem., 26, 709 (1989).
- [20] J. Okamiya, Nippon Kagaku Zasshi, 87, 594 (1966).
- [21] S. N. Sawhney and S. K. Arora, Indian J. Chem., 14B, 552 (1976).
- [22] M. R. Boyd, Principles and Practice of Oncology, 3, 2 (1989).
- [23] O. W. Weislow, R. Kiser, D. Fine, J. Bader, R. H. Shoemaker, and M. R. Boyd, J. Natl. Cancer Inst., 81, 877 (1989).