Synthesis and Anticancer Activities of Some Thiazole Derivatives

Ismail Kayagil and Seref Demirayak

Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskisehir, Turkey

In this study, 2-substituted 4-[3/4-(4-arylthiazole-2-yl)aminophenyl]thiazole derivatives and 2-[4-[2-substituted 4-methylthiazole-5-yl]thiazole-2-yl]amino-5-arylidenethiazoline-4-one derivatives have been synthesized. The cytotoxic and/or growth inhibitory effects of the 16 selected compounds were evaluated in vitro against approximately 66 human tumor cell lines derived from nine neoplastic diseases. Some of the compounds were found to act as anticancer agents.

Keywords Anticancer activity; poly-thiazole; thiazolone

INTRODUCTION

Since the initial isolation of the polypyrrole netropsin, I, in 1951 and distamycin, II, in 1964, the interest in this class of compounds has been increased. ${ }^{1}$ These natural antibiotics showed anticancer and antiviral activities by DNA binding. ${ }^{2}$ Bleomycins, a group of anticancer antibiotics, also have a bithiazole moiety along with the imidazole and pyrimidine ring systems. ${ }^{3}$

The above observations created the interest for the synthesis of some analogues of netropsin and distamycin, in which the pyrrole rings were replaced by benzene, pyridine, thiophene, thiazole, imidazole, pyrazole, or triazole, to study their anticancer and antiviral activities. ${ }^{4-13}$ The studies on the anticancer activity of thia-net, III, which is a thiazolecontaining analogue of netropsin have been popular recently. ${ }^{2}$

Received 12 June 2008; accepted 1 September 2008.
Authors are grateful to V. L. Narayanan and J. P. Bader of the National Institutes of Health, Bethesda, Maryland, USA, for anticancer screening.

Address correspondence to Seref Demirayak, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey. E-mail: sdemiray@anadolu.edu.tr

We are now reporting on the syntheses of some new compounds that possess two or three thiazole ring residues along with their anticancer activities.

RESULTS AND DISCUSSION

Chemistry

The synthesis of the title thiazole derivatives was accomplished with the sequence of reactions depicted in Scheme 1. To prepare the novel compounds, we have applied the known synthetic routes with minor modifications. ${ }^{14,15}$ The first two groups of the compounds are 2-substituted 4[3/4-(4-arylthiazole-2-yl)aminophenyl]thiazole derivatives $\mathbf{4 a - l}$ and $\mathbf{7 a - l}$, which are isomers of each other. Reaction of 2-bromo- $3^{\prime} / 4^{\prime}$-acetylaminoacetophenone with the suitable thioamides in benzene afforded 2 -substituted $3 / 4$-acetylaminophenylthiazoles. These crude derivatives were hydrolyzed with an aqueous hydrochloric acid solution to afford the corresponding amine derivatives 2a-b. Then, the amino compounds were treated with ammonium thiocyanate in hydrochloric acid solution, followed by reaction with the suitable 4^{\prime} substituted 2-bromoacetophenones to afford the target compounds 4a-l or 7a-l (see Table I).

SCHEME 1

The third group includes 2-[4-[2-substituted 4-methylthiazole-5-yl]thiazole-2-yl]amino-5-arylidenethiazoline-4-one derivatives 13a-h (Table I). These compounds were obtained by following the common reaction conditions, which have been described in the literature. ${ }^{14,15}$ Reaction of 3 -chloropentan-2,4-dione with the suitable thioamides

a: i, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, ii, $\mathrm{HCl} / \mathrm{H}_{2} \mathrm{O}$; b: $\mathrm{NH}_{4} \mathrm{SCN}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$; c: EtOH , d: $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, e: Br_{2}, AcOH , f: EtOH, g: THF, $\mathrm{Et}_{3} \mathrm{~N}$; h: $\mathrm{NH}_{4} \mathrm{SCN}$, EtOH ; i: AcONa, AcOH .

SCHEME 2

has afforded 2-substituted 4-methyl-5-acetylthiazoles 8a-b. During the reactions between 3 -chloropentan-2,4-dione and thioamides, it is obvious that both of the carbonyl groups can take place in the cyclization reactions. However, this regioselectivity does not cause the

TABLE I Some Characteristics of the Compounds

Comp.	R	R^{\prime}	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\mathrm{mp}}$	Yield (\%)	Molecular formula	Analyses Calc./Found (\%)			
						C	H	N	S
4a	CH_{3}	H	188	72	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}_{2}$	65.30	4.33	12.02	18.35
						64.96	4.67	11.86	18.06
4b	CH_{3}	CH_{3}	178	75	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}_{2}$	66.08	4.71	11.56	17.64
						66.75	5.02	11.91	17.74
4c	CH_{3}	OCH_{3}	122	82	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$	63.30	4.52	11.07	16.90
						63.56	4.92	10.87	17.20
4d	CH_{3}	Cl	224	85	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{~S}_{2}$	59.44	3.68	10.94	16.70
						59.55	3.46	11.12	1685
4e	CH_{3}	NO_{2}	218	80	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$	57.85	3.58	14.20	16.26
						58.05	4.11	14.47	16.11
4f	CH_{3}	NHCOCH_{3}	209	77	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}$	62.05	4.46	13.78	15.77
						61.85	4.35	14.04	16.12
4 g	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	159	65	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}_{2}$	70.04	4.16	10.21	15.58
						69.85	4.16	10.25	15.62
4h	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	225	71	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}_{2}$	70.56	4.50	9.87	15.07
						70.45	4.67	9.44	14.93
4i	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	193	80	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}_{2}$	68.00	4.34	9.52	14.52
						67.75	4.02	9.55	14.64
4j	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	231	88	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{~S}_{2}$	64.63	3.62	9.42	14.38
						64.89	4.34	9.32	14.22
4k	$\mathrm{C}_{6} \mathrm{H}_{5}$	NO_{2}	224	63	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$	63.14	3.53	12.27	14.05
						62.84	3.82	12.67	14.15
41	$\mathrm{C}_{6} \mathrm{H}_{5}$	NHCOCH_{3}	241	67	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}_{2}$	66.64	4.30	11.96	13.68
						66.45	4.18	12.20	13.74
7a	CH_{3}	H	172	70	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}_{2}$	65.30	4.33	12.02	18.35
						65.71	4.56	12.24	18.77
7b	CH_{3}	CH_{3}	147	72	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}_{2}$	66.08	4.71	11.56	17.64
						54.75	4.67	11.77	17.72
7c	CH_{3}	OCH_{3}	129	78	$\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{OS}_{2}$	63.03	4.52	11.07	16.90
						62.90	4.55	11.12	17.12
7d	CH_{3}	Cl	164	83	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClN}_{3} \mathrm{~S}_{2}$	59.44	3.68	10.94	16.70
						59.45	3.75	11.21	16.90
7e	CH_{3}	NO_{2}	194	76	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$	57.85	3.58	14.20	16.26
						58.15	3.68	14.22	16.26
7 f	CH_{3}	NHCOCH_{3}	111	79	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{2}$	62.05	4.46	13.78	15.77
						61.96	4.50	13.80	15.80
7g	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	202	68	$\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~S}_{2}$	70.04	4.16	10.21	15.58
						70.14	4.22	10.44	15.80
7h	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	227	71	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~S}_{2}$	70.56	4.50	9.87	15.07
						70.60	5.60	10.10	14.90
7 i	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	197	75	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}_{2}$	68.00	4.34	9.52	14.52
						68.41	4.32	9.68	14.60
7j	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	139	80	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{~S}_{2}$	64.63	3.62	9.42	14.38
						$\begin{array}{llll}64.68 & 3.70 & 9.45 & 14.44\end{array}$ (Continued on next page)			

TABLE I Some Characteristics of the Compounds Continued

Comp.	R	R^{\prime}	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\mathrm{mp}}$	Yield (\%)	Molecular formula	Analyses Calc./Found (\%)			
						C	H	N	S
7k	$\mathrm{C}_{6} \mathrm{H}_{5}$	NO_{2}	187	65	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$	63.14	3.53	12.27	14.05
						63.22	3.45	12.33	14.20
71	$\mathrm{C}_{6} \mathrm{H}_{5}$	NHCOCH_{3}	226	67	$\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}_{2}$	66.64	4.30	11.96	13.68
						66.88	4.28	12.04	13.72
13a	CH_{3}	H	271	78	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}_{3}$	54.25	3.54	14.06	24.14
						54.35	3.60	14.20	24.20
13b	CH_{3}	CH_{3}	257	77	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{3}$	55.32	3.91	13.58	23.32
						55.82	3.85	13.66	23.40
13c	CH_{3}	OCH_{3}	266	81	$\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$	53.25	3.76	13.07	22.45
						53.50	3.90	13.22	22.85
13d	CH_{3}	Cl	287	86	$\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{4} \mathrm{OS}_{3}$	49.93	3.03	12.94	22.22
						50.14	3.12	13.12	21.98
13e	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	259	63	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}_{3}$	59.98	3.50	12.16	20.88
						60.10	3.60	12.18	21.00
13 f	$\mathrm{C}_{6} \mathrm{H}_{5}$	CH_{3}	243	61	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}_{3}$	60.74	3.82	11.80	20.27
						60.55	3.92	12.00	20.30
13g	$\mathrm{C}_{6} \mathrm{H}_{5}$	OCH_{3}	218	74	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$	58.75	3.70	11.42	19.61
						58.95	3.81	11.60	19.65
13h	$\mathrm{C}_{6} \mathrm{H}_{5}$	Cl	276	79	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}_{3}$	55.80	3.05	11.32	19.43
						55.92	2.95	11.53	19.50

different products because of the symmetry of 3 -chloropentan-2,4-dione. The compounds $\mathbf{8 a - b}$ were reacted with bromine to afford the corresponding bromoacetyl derivatives. They were then treated with thiourea to give 2 -substituted 4 -methyl 5 -(2-aminothiazole-4-yl)thiazoles 10a-b. The aminothiazoles were reacted with chloroacetylchloride in tetrahydrofuran in the presence of triethylamine, followed by reaction with ammonium thiocyanate in ethanol to afford 2-[4-(2-substituted 4-methylthiazole-5-yl)thiazole-2-yl]aminothiazoline-4-ones 12a-b as starting materials. Finally, the 2 -aminothiazoline-4-one derivatives were heated with a suitable aromatic aldehyde in acetic acid in the presence of sodium acetate to give the target compounds 13a-h.

Pharmacology

The compounds selected by the National Cancer Institute (NCI) and their preliminary anticancer test results as growth percent values obtained against BC, NSCLC, and CNSC cells are given in Table II. It was

TABLE II The Preliminary Test Results

		The growth percentage		
		BC		
Compounds	Conc. (Molar)	MSCL7	NCI-H460	SF-268
$\mathbf{4 c}$	5×10^{-5}	43	42	80
$\mathbf{4 d}$	5×10^{-5}	101	99	96
$\mathbf{4 f}$	5×10^{-5}	123	110	106
$\mathbf{4 i}$	5×10^{-5}	121	120	108
$\mathbf{4 j}$	5×10^{-5}	95	85	105
$\mathbf{4 1}$	5×10^{-5}	49	70	100
$\mathbf{7 c}$	5×10^{-5}	39	20	82
$\mathbf{7 d}$	5×10^{-5}	25	5	26
$\mathbf{7 f}$	5×10^{-5}	2	0	24
$\mathbf{7 i}$	5×10^{-5}	49	70	100
$\mathbf{7 j}$	5×10^{-5}	38	7	51
$\mathbf{7 1}$	5×10^{-5}	53	12	81
$\mathbf{1 3 c}$	5×10^{-5}	138	122	98
$\mathbf{1 3 d}$	5×10^{-5}	124	120	97
$\mathbf{1 3 g}$	5×10^{-5}	81	61	71
$\mathbf{1 3 h}$	5×10^{-5}	91	83	85

reported that the compounds $\mathbf{4 c}, \mathbf{4 1}, \mathbf{7 c}, \mathbf{7 d}, \mathbf{7 f}, \mathbf{7 j}$, and $\mathbf{7 1}$ have the remarkable inhibition values for BC and NSCLC, and that $\mathbf{7 d}, \mathbf{7 f}$, and $\mathbf{7 j}$ have remarkable inhibition values for CNS. These compounds, except $\mathbf{4 c}$, were accepted for the further screening tests. In this step, the selected six compounds were evaluated in vitro against 66 human tumor cell lines derived from nine neoplastic diseases (see the Experimental section), and the detailed test results are given in Table III.

TABLE III $\log _{10} \mathbf{G I}_{\mathbf{5 0}}$ Values

Comp.	L	NSCLC	CC	CNSC	M	OC	RC	PC	BC	MG_MID
$\mathbf{4 1}$	-4.66	-4.38	-4.45	-4.77	-4.74	-4.83	-4.80	-4.57	-4.79	-4.75
$\mathbf{7 c}$	-6.54	-6.13	-6.21	-5.85	-6.01	-6.12	-5.70	-5.76	-5.92	-6.02
$\mathbf{7 d}$	-4.81	-5.10	-4.99	-4.98	-5.06	-4.93	-4.99	-5.03	-4.98	-4.99
$\mathbf{7 f}$	-5.35	-5.47	-6.64	-5.70	-6.12	-5.76	-5.68	-5.35	-5.96	-5.81
$\mathbf{7 j}$	-4.90	-4.95	-5.00	-4.97	-5.10	-4.81	-4.92	-5.14	-4.93	-4.96
$\mathbf{7 1}$	-4.55	-4.58	-4.70	-4.69	-4.93	-4.55	-4.79	-4.74	-4.66	-4.69
\mathbf{A}	-5.48	-5.17	-5.11	-5.12	-5.08	-5.18	-4.99	-4.49	-4.79	-5.09
\mathbf{B}	-6.39	-6.20	-6.14	-6.18	-6.08	-6.45	-6.17	-6.41	-6.05	-6.20

A: Melphalan, B: Cis-Diaminodichloroplatinum.

According to the test method, it is stated that the compounds having $\log _{10} \mathrm{GI}_{50}$ (GI_{50} : growth inhibition of 50%) values greater than -4 are considered as inactive. It can be seen that all of our compounds' $\log _{10} \mathrm{GI}_{50}$ values are smaller than -4 . Therefore, we may conclude that all of our compounds provide a notable activity level. Melphalan and cis-diaminodichloroplatinum, which are the commonly used clinical chemotherapeutic agents, were used as standard compounds for the test. When the mean graph midpoint (MG-MID) values of the compounds melphalan and cis-diaminodichloroplatinum, i.e., -5.09 and -6.20 respectively, are considered, it is observed that our compounds provide high activity levels. The MG-MID value of the compound $7 \mathbf{c}$ is almost equal that of the control compound cisdiaminodichloroplatinum. In a similar manner, the activity values of the compounds $\mathbf{7 c}$ and $\mathbf{7 f}$ are higher than that of the other control compound melphalan. When these data are examined according to their activity against various cancer types, it is observed that both the standard and the tested compounds are effective against leukemia for $\mathbf{7 c}$ and colon cancer for $\mathbf{7 c}$ and $\mathbf{7 f}$ in lower concentrations. The most noteworthy compound is $\mathbf{7 f}$, which is even more active than cisdiaminodichloroplatinum against colon cancer. It is noticeable that all of the compounds, except 4l, under detailed investigation are 1,3isomers between compounds $\mathbf{4}$ and $\mathbf{7}$. Another noticeable point is that the compounds $\mathbf{1 3}$ have the lowest activity values.

EXPERIMENTAL

Chemistry

Melting points were determined by using an Electrothermal 9100 digital melting point apparatus and were uncorrected. Spectroscopic data were recorded on the following instruments: FTIR: Schimadzu 8400S Spectrophotometer; ${ }^{1} \mathrm{H}$ NMR: Bruker DPX 400 NMR spectrometer. The starting compounds 5 -(3/4-aminophenyl)thiazoles $\mathbf{2 a}, \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}{ }^{16-18}$ 1-[4-(2-substituted thiazole- 5 -yl)phenyl]thioureas $\mathbf{3 a}, \mathbf{b},{ }^{16} 2$-substituted 4 -methyl-5-acetylthiazoles $\mathbf{8 a - b},{ }^{19} 2$-substituted 4 -methyl-5-(2-bromoacetyl)thiazoles $\mathbf{9 a - b},{ }^{20}$ and 4 -(2-substituted 4-methythiazole-2-yl)-2-aminothiazoles $\mathbf{1 0 a}, \mathbf{b}^{20,21}$ were obtained according to the methods in the literature. The starting compounds $\mathbf{6 a}, \mathbf{b}, 11 \mathbf{a}, \mathbf{b}$, and12a,b were prepared and used according to the steps in this section without any structural identifications. Some characteristics were shown in Table I. The spectral analyses data for
prototypes of final compounds $\mathbf{4 a - l}, \mathbf{7 a - l}$, and 13a-h are given below.

General Method for the Preparation of 2-Substituted 4[3/4-(4-arylthiazole-2-yl)aminophenyl]thiazole Derivatives 4(a-I) and 7(a-I)

A mixture of 1-[3-(2-substituted thiazole-4-yl)phenyl]thiourea or 1-[4(2 -substituted thiazole-5-yl)phenyllthiourea derivatives (5 mmol) and a suitable 2 -bromoacetophenone (5.5 mmol) in ethanol (50 mL) was refluxed for 4 h . The cooled mixture was filtered and recrystallized from ethanol.

4a: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3347(\mathrm{~N}-\mathrm{H}), 1614-1443(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.31-7.35(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.38\left(1 \mathrm{H}\right.$, s, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.43-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.78(1 \mathrm{H}$, s, thiazole $\mathrm{C}_{4}-\mathrm{H}$), $7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.73 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.49$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 7.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.12 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.43(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

4b: IR (KBr) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3354(\mathrm{~N}-\mathrm{H}), 1614-1442(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- d_{6}) $(\mathrm{ppm}): 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.70(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $7.24\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.74 \mathrm{~Hz}\right.$, Ar-H), $7.28\left(1 \mathrm{H}, \mathrm{s}\right.$, Thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.75$ $\left(1 \mathrm{H}, \mathrm{s}\right.$, Thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.78(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.61 \mathrm{~Hz}$, Ar-H), $7.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.68 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.91$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.55 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 10.39 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

4d: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3346(\mathrm{~N}-\mathrm{H}), 1616-1462(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.44(1 \mathrm{H}, \mathrm{s}$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.50(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.79 \mathrm{~Hz}$, Ar-H), $7.78(1 \mathrm{H}$, s, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.60 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.65 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $7.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.50 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.45(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

4f: $\mathrm{IR}(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3362(\mathrm{~N}-\mathrm{H}), 1672(\mathrm{C}=\mathrm{O}), 1610-1472(\mathrm{C}=\mathrm{N}$, $\mathrm{C}=\mathrm{C}$), ${ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- d_{6}) $\delta(\mathrm{ppm}): 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right.$), $2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.23\left(1 \mathrm{H}\right.$, s, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.67(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.61 \mathrm{~Hz}$, Ar-H), $7.75\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.74 \mathrm{~Hz}$, Ar-H), 7.88 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.58 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.93 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.65 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 10.05 (1 H , $\mathrm{s}, \mathrm{CONH}), 10.40$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

4g: IR (KBr) $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right): 3380(\mathrm{~N}-\mathrm{H}), 1614-1433(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 7.31-7.35(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.39(1 \mathrm{H}$, s, thiazole $\mathrm{C}_{4}-\mathrm{H}$), 7.44-7.47 ($2 \mathrm{H}, \mathrm{m}$, Ar-H), 7.51-7.57 (3H, m, Ar-H), 7.89 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.76 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 7.97 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.33 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 8.03-8.08 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 10.59(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

4h: IR (KBr) $\nu_{\text {max }}\left(\mathrm{cm}^{-1}\right)$: $3382(\mathrm{~N}-\mathrm{H}), 1614-1433(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.27(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}: 8.08 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.31\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.55(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.57 \mathrm{~Hz}$,

Ar-H), $7.86\left(4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.40 \mathrm{~Hz}\right.$, Ar-H), $8.05\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.07$ ($4 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.57 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.45$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

4k: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3378(\mathrm{~N}-\mathrm{H}), 1612-1438(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 7.51-7.57$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.79\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.70 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, 8.03-8.08 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 8.22 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.92 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), $8.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.92 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.79(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

7a: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3280(\mathrm{~N}-\mathrm{H}), 1618-1470(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) ($\mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}): 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 7.33-7.47 (5H, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.75 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.66,7.68(1 \mathrm{H}$, dd, $J=1.98,2.00 \mathrm{~Hz}, \mathrm{~J}=7.96 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right)$, $8.02(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.37 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.55 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.41$ (1H, s, NH).

7c: $\mathrm{IR}(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3276(\mathrm{~N}-\mathrm{H}), 1617-1468(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 7.00(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.81 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.18\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right)$, 7.37-7.42 (2H, m, Ar-H), 7.49-7.52 (1H, m, Ar-H), 7.67, 7.69 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $=1.54,1.52 \mathrm{~Hz}, \mathrm{~J}: 8.01 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.87\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.94(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=8.78 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.41$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

7e: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3283(\mathrm{~N}-\mathrm{H}), 1618-1474(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{DMSO}_{\mathrm{d}}^{6}\right) \delta(\mathrm{ppm}): 2.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.86 Hz , thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.73 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.67,7.69(1 \mathrm{H}$, $\mathrm{dd}, \mathrm{J}=1.79,1.80 \mathrm{~Hz}, \mathrm{~J}=7.99 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.78(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.89(1 \mathrm{H}$, s, Thiazole $\mathrm{C}_{4}-\mathrm{H}$), $8.24(2 \mathrm{H}, \mathrm{d}, \mathrm{J}:=8.83 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.84$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}), 8.55(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 10.53(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

7g: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3240(\mathrm{~N}-\mathrm{H}), 1608-1471(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 7.33-7.46(4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$, thiazole $\mathrm{C}_{4}-\mathrm{H}$), 7.52-7.58 (3H, m, Ar-H), 7.60-7.64 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 8.01 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=7.18 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.05=8.08(3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.15\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right)$, $8.73(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 10.47(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

7i: $\operatorname{IR}(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3245(\mathrm{~N}-\mathrm{H}), 1609-1469(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.93(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}: 8.73 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.21\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.41-7.45(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, $7.50-7.62$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.68 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.03-8.08(3 \mathrm{H}$, $\mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.15\left(1 \mathrm{H}, \mathrm{s}\right.$, Thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.76(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 10.43(1 \mathrm{H}, \mathrm{s}$, NH).

71: $\mathrm{IR}(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3238(\mathrm{~N}-\mathrm{H}), 1676(\mathrm{C}=\mathrm{O}), 1608-1473(\mathrm{C}=\mathrm{N}$, $\mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 2.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right)$, $7.26\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 7.44-7.62(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.66(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 8.70 Hz, Ar-H), $7.92(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.64 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.98-8.07$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-$ H), $8.15\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.62(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 10.06(1 \mathrm{H}, \mathrm{s}, \mathrm{CONH})$, $10.42(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

General Method for the Preparation of 2-[4-(2-Substituted 4-Methylthiazole-5-yl)thiazole-2-yl]amino-5-arylydenethiazoline-4-ones Derivatives 13(a-h)

A mixture of 2-[4-(2-substituted 4-methylthiazole-5-yl)thiazole-2-yl]aminothiazoline-4-one derivative (5 mmol), a suitable 4 -substituted benzaldehyde (5.5 mmol) and sodium acetate (15 mmol) in acetic acid (50 mL) was refluxed for 8 h . The cooled mixture was poured into ice water. The precipitate was filtered and crystallized from ethanol.

13a: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3120(\mathrm{~N}-\mathrm{H}), 1724,1688(\mathrm{C}=\mathrm{O})$, 1590$1430(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR (400 MHz) (DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 2.45(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.31(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}-), 7.41-7.62(5 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H})$, $8.15\left(1 \mathrm{H}\right.$, s, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 10.45(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$.

13d: $\mathrm{IR}(\mathrm{KBr}) \nu_{\max }\left(\mathrm{cm}^{-1}\right): 3128(\mathrm{~N}-\mathrm{H}), 1730,1704(\mathrm{C}=\mathrm{O}), 1589-1423$ $(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.32(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}-), 7.45(2 \mathrm{H}, \mathrm{d}, J=8.62 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$, $8.15\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.64 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.45(1 \mathrm{H}$, $\mathrm{s}, \mathrm{NH})$.

13g: IR (KBr) $\nu_{\max }\left(\mathrm{cm}^{-1}\right)$: $3126(\mathrm{~N}-\mathrm{H}), 1720,1683(\mathrm{C}=\mathrm{O}), 1589-1461$ $(\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})\left(\mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $7.12(2 \mathrm{H}, \mathrm{d}, J=7.85 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}-), 7.42-7.50(3 \mathrm{H}, \mathrm{m}$, Ar-H), 7.85-7.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), $8.12\left(1 \mathrm{H}, \mathrm{s}\right.$, thiazole $\left.\mathrm{C}_{4}-\mathrm{H}\right), 8.38(2 \mathrm{H}$, d, $J=7.90 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 10.43$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$).

Pharmacology

The cytotoxic and/or growth inhibitory effects of the compounds were evaluated in vitro against approximately 66 human tumor cell lines derived from nine neoplastic diseases, namely leukaemia (L), nonsmall cell lung cancer (NSCLC), colon cancer (CC), central nervous system cancer (CNSC), melanoma (M), ovarian cancer (OC), renal cancer (RC), prostate cancer (PC), breast cancer (BC). The evaluation of anticancer activity was performed at the NCI of Bethesda, Maryland, USA, following the in vitro screening program, which is based upon the use of multiple panels of 66 human tumor cell lines against which our compounds were tested at 10 -fold dilutions of five concentrations ranging from 10^{-4} to $10^{-8} \mathrm{M}$. The percentage growth was evaluated spectrophotometrically versus controls not treated with test agents. A 48 h continuous drug exposure protocol was followed, and a sulforhodamine B (SRB) protein assay was used to estimate cell growth. ${ }^{22,23}$

REFERENCES

[1] G. Cirrincione, A. M. Almerico, E. Aiello, and G. Dattolo, Aminopyrroles, Pyrroles Part 2. The Synthesis, Reactivity and Physical Properties of Substituted Pyrroles, A. R. Jones, Ed. (John Wiley and Sons, Inc., New York, 1992), pp. 302-310.
[2] B. Plouvier, C. Bailly, R. Houssin, and J. P. Henichart, Heterocycles, 32, 693 (1991).
[3] J. M. Riordan and T. T. Sakai, J. Heterocycl. Chem., 18, 1213 (1981).
[4] G. Pattandon, J. Heterocycl. Chem., 29, 607 (1992).
[5] H. I. El-Subbagh, A. H. Abadi, and J. Lehmann, Arch. Pharm. Med. Chem., 332, 137 (1999).
[6] V. A. Ryabinin, O. D. Zakharova, E. Y. Yurchenko, O. A. Timofeeva, I. V. Martyanov, A. A. Tokarev, E. F. Belanov, N. I. Bormotov, L. Tarrago-Litvak, M. L. Andreola, S. Litvak, G. A. Nevinsky, and A. N. Sinyakov, Bioorg. Med. Chem., 8, 985 (2000).
[7] A. Nagasaki, Y. Adachi, Y. Yonezawa, and C. Shin, Heterocycles, 60, 321 (2002).
[8] Y. Yonezawa, N. Tani, and C. Shin, Heterocycles, 65, 95 (2005).
[9] L. Garuti, M. Roberti, A. Pession, E. Leoncini, and S. Hrelia, Bioorg. Med. Chem. Lett., 11, 3147 (2001).
[10] Y. Laras, G. Quelever, C. Garino, N. Piatrancosta, M. Sheha, F. Bihel, M. S. Wolfe, and J. L. Kraus, Org. Biomol. Chem., 3, 612 (2005).
[11] H. I. El-Subbagh and A. M. Al-Obaid, Eur. J. Med. Chem., 31, 1017 (1996).
[12] K. S. Kim, S. D. Kimball, R. N. Misra, D. B. Rawlins, J. T. Hunt, H. Y. Xiao, S. Lu, L. Qian, W. C. Han, W. Shan, T. Mitt, Z. W. Cai, M. A. Poss, H. Zhu, J. S. Sack, J. S. Tokarski, C. Y. Chang, N. Pavletich, A. Kamath, W. G. Humphreys, P. Marathe, I. Bursuker, K. A. Kellar, U. Roongta, R. Batorsky, J. G. Mulheron, D. Bol, C. R. Fairchild, F. Y. Lee, and K. R. Webster, J. Med. Chem., 45, 3905 (2002).
[13] M. C. Bagley, J. W. Dale, E. A. Merritt, and X. Xiong, Chem. Rev., 105, 685 (2005).
[14] G. Vernin, Thiazole and Its Derivatives, Part 1, J. V. Metzger, Ed. (John Wiley \& Sons, New York, 1979), pp. 213-232.
[15] R. Barone, M. Chanon, and R. Gallo, Thiazole and Its Derivatives, Part 2, J. V. Metzger, Ed. (John Wiley \& Sons, New York, 1979), pp. 48-51.
[16] V. H. Patil and D. B. Ingle, J. Indian Chem. Soc., 56, 1243 (1979).
[17] S. Demirayak, K. Benkli, C. Sezer, and H. Erdeniz, Acta Pharm. Turc., 39, 133 (1997).
[18] M. Q. Zhang, A. Haemers, D. Vanden Berghe, S. R. Pattyn, W. Bollaert, and I. Levshin, J. Heterocyclic Chem., 28, 673 (1991).
[19] A. Shafiee, A. Shafaati, and B. Habibi-Khameneh, J. Heterocycl. Chem., 26, 709 (1989).
[20] J. Okamiya, Nippon Kagaku Zasshi, 87, 594 (1966).
[21] S. N. Sawhney and S. K. Arora, Indian J. Chem., 14B, 552 (1976).
[22] M. R. Boyd, Principles and Practice of Oncology, 3, 2 (1989).
[23] O. W. Weislow, R. Kiser, D. Fine, J. Bader, R. H. Shoemaker, and M. R. Boyd, J. Natl. Cancer Inst., 81, 877 (1989).

