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Abstract I propose a counterfactual theory of infinite regress arguments. Most theories
of infinite regress arguments present infinite regresses in terms of indicative condi-
tionals. These theories direct us to seek conditions under which an infinite regress
generates an infinite inadmissible set. Since in ordinary language infinite regresses are
usually expressed by means of infinite sequences of counterfactuals, it is natural to
expect that an analysis of infinite regress arguments should be based on a theory of
counterfactuals. The Stalnaker–Lewis theory of counterfactuals, augmented with some
fundamental notions frommetric-spaces, provides a basis for such an analysis of infinite
regress arguments. Since the technique involved in the analysis is easily adaptable to
various analyses, it facilitates a rigorous comparison among conflicting philosophical
analyses of any given infinite regress.
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1 Introduction

Infinite regress arguments are widely used as a method of refutation in philosophy and
mathematics. Ancient dialecticians were the first masters of this method, and we owe
them some of the most challenging infinite regress arguments, such as Zeno’s arguments
against the possibility of motion, the ThirdMan argument directed against Plato’s theory
of ideas, and Aristotle’s argument for the existence of a First Mover (the Unmoved
Mover). Recent examples include Russell’s argument against resemblance nominalism
and Bradley’s argument against the thesis that a particular is a bundle of properties.

Despite the plenitude of examples, there is no overarching and widely accepted
philosophical theory of infinite regress arguments. This paper aims to be a step
forward in this direction. As such, it aims at a clarification of the role of infinite
regress arguments in the assessment of theories and the identification of the condi-
tions under which this role is successfully played. My view is strongly based on the
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assumption that infinite regresses are most naturally expressed as infinite sequences
of counterfactual propositions: if it were the case that Achilles moves, then it would
be the case that he covers a distance d during a time interval t; if it were the case that
Achilles covers a distance d during t, then it would be the case that he covers two
distances consisting of the two halves of the distance d during t; if it were the case that
Achilles covers the two halves of the distance d during t, then it would be the case that
he covers four distances consisting of the four quarters of d during t; and so forth.

Based on the claim that counterfactual propositions provide a natural way of
expressing infinite regresses, the present study promotes a theory of infinite regress
arguments within the framework of a theory of counterfactuals. In the next section, a
few general notions and distinctions related to the subject are introduced; specific
notions needed for the present theory will be introduced in the relevant sections. In
the third section, I outline and briefly discuss what I will call the indicative theories of
infinite regress. I will be content with emphasizing the points that will present
themselves as the main points of difference. For an extensive study of this main-
stream view of infinite regresses, see for example Black (1996) and Gratton (2010).
In the fourth section, I develop my view while one of the key concepts, namely
“approaching to a possible world” is left unexplained. The fifth section is devoted to
fill this gap by means of the mathematical notion of limit. In the sixth section, the
theory is applied to yield analyses of a few infinite regresses. On the basis of these
examples, I want to claim that the present theory meets our intuitions: if an infinite
regress is obviously benign (vicious), then the given theory allows only analyses of
this regress that establish it to be benign (vicious). If an infinite regress is known to be
problematic, then it allows analyses in both directions. That I can make this claim
implies that what I present here is really a theory of infinite regress arguments that can
be strengthened or undermined by examining the cases.

2 Infinite Regresses and Infinite Regress Arguments

To start with a rough description, an infinite regress can be said to be an infinite
sequence of propositions A1, A2, A3,… such that the truth of any proposition Ai in the
sequence “requires” the truth of the next proposition Ai+1. A circle consisting of n
propositions A1, A2, A3, …, An where Ai requires Ai+1 for 1 ≤ i<n and An in turn
requires A1 will be considered as a special type of infinite regress where the same
subsequence recurs consecutively: A1, A2, A3, …, An, A1, A2, A3, …, An, A1, .... Note
that infinite regresses are not just infinite sequences of propositions: the requirement
condition is what makes an infinite sequence of propositions an infinite regress.

In so defining the notion of infinite regress, we do not leave out infinite regresses
of entities (e.g., beliefs, justifications, forms, causes) e1, e2, e3, … such that the
existence of any entity ei in the sequence requires the existence of the next one. For
whenever we are given an infinite sequence of entities forming an infinite regress, we
may form the corresponding infinite regress of propositions: e1 exists, e2 exists, ….

An infinite regress raises a philosophical problem when it leads to a disagreement
concerning its consequences. Some regresses are said to be pathological, or vicious, in
that they amount to an unacceptable result, if not an outright impossibility of some kind
(e.g., physical, metaphysical or logical). On the other hand, some infinite regresses, for
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example, the truth regress in the Tarskian hierarchy of languages, are widely accepted to
be innocuous, or benign. Therefore, one of the main issues in the philosophical theory of
infinite regress arguments is to invent tools to distinguish between the vicious infinite
regresses and the benign ones.

What makes the study of infinite regresses an important metaphilosophical field is
their role in the assessment of philosophical theories. Let us say that an infinite
regress of propositions A1, A2, A3,… is yielded by a theory T when it follows from T
that for all i, the proposition Ai requires the next one Ai+1. It follows from the previous
paragraph that when a theory yields an infinite regress, this cannot be categorically
identified as a reductio ad absurdum against that theory. On the face of the fact that
some infinite regresses are benign, to develop an infinite regress argument against a
theory, an infinite regress yielded by the theory should be shown to be vicious; that is,
the regress should be shown to produce a result that is intolerable by the theory.

Some, such as Black (1996), argue for the view that vicious infinite regresses
amount to refutation. Passmore, whose work (1961, Ch. 2) made infinite regresses a
metaphilosophical subject, thinks otherwise. For in every case, an infinite regress
works only within a context consisting of a body of assumptions, and so it is always
possible to give up some of these assumptions and save the theory from that particular
regress. For Passmore, infinite regresses strong enough to refute a theory are not
philosophical (cf. his discussion of the Waismann’s regress argument concerning the
irrationality of √2). I accept Passmore’s claim that philosophical infinite regress
arguments operate only within the context of a body of assumptions, but I take this
to imply that the conclusion of an infinite regress argument should be “either the
theory or at least one of the assumptions should be dismissed”, and in some cases
these assumptions are strong enough so that the vicious infinite regress succeeds in
weakening the theory. Moreover, pace Passmore, I do not think that mathematical
infinite regress arguments form an exceptional type with a different kind of relation
between the assumptions and the conclusion. The difference, if any, lies in the degree
of our belief in the assumptions.

It should be noted that vicious circles should be distinguished from circular
arguments (petitio principii arguments). A theory should be rejected if it can be
shown to yield a vicious circle, since such a circle amounts to impossibility. On the
other hand, a theory cannot be rejected just by pointing at a circular reasoning offered
in its favour. The “God and the Bible argument” is a case in point:

Ella: God exists.
Brad: How do you know?
Ella: The Bible says so.
Brad: How do I know what the Bible says is true?
Ella: Because the Bible is the word of God. (Walton 2005, 97)

The circular argument presented by Ella to Brad may be said to fail to support her
belief in God. However, this particular failure in argumentation does not prove that
God does not exist. Therefore, we should keep the distinction between circular
arguments and theories that yield a vicious circle.

Circular definitions are on a par with petitio principii arguments. Modulo logical
equivalence, we may say that, circular definitions are those such that at least one term
that is a part of the definiendum is—explicitly or implicitly—also included in the
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definiens. Suppose we have no prior knowledge of the notions “man” and “rational”
and let us be given the definition of man as the rational animal where rationality, in
turn, is defined to be an essential feature of man. Obviously, we have made no
progress in improving our knowledge on either of these notions. Analogous to the
case of circular arguments, identifying a definition to be circular may only give a
direct support to a negative claim about the definition: Circularity in the above
definition of “man” does not prove directly that this notion cannot be grasped. Rather,
it directs us to seek a non-circular definition, if any.

3 Indicative Theories of Infinite Regress Arguments

Most views on infinite regress arguments treat infinite regresses as infinite sequences of
indicative conditionals: if A1, then A2; if A2, then A3…. To reach a conclusion, the
impossibility of an infinite set generated by the infinite regress is exploited. Therefore,
these views focus on the study of the structural properties of the sets generated by infinite
regresses: Given an infinite regress, if the generated set S is inadmissible, then the regress
is vicious (cf. Sanford 1975; Gratton 2010; Wieland 2012). Below I rewrite—in linear
form—a general schema for infinite regress arguments as given by Gratton (1997, 205):

1. Regress formula
2. Triggering statement
3. Infinite regress (1, 2)
4. Premise(s)
5. Result (3, 4)
6. Premise(s)
7. Result is unacceptable (6)
8. The regress formula is unacceptable (5, 7)

What is usually missing in most examples is a reason to believe (7); that is, the
condition that states that the result (5) is inadmissible. Sometimes it is just stated or
even assumed (see also Maurin 2007, 2). However, in a philosophical debate on an
infinite regress, that is usually the heart of the matter. Consider, for example, the
schema of failure regresses given by Wieland (2012). Omitting his reference to a
fixed type of objects, his schema of failure regress arguments runs as follows:

1. (Problem) You have to φ at least one thing x.
2. (Solution) For any x, if you have to φ x, you ψ x.
3. (Extra premise) For any x, if youψ x, then there is a different thing y, and youφ x

only if you φ y first.
4. (Infinite regress) For any x, you always have to φ a further item first (i.e. before

φ-ing x). (1–3)
5. (Conclusion) If youψ anything that you have toφ, then you neverφ anything. (1–4)

Consider the following instance of the proposed schema:

1*. (Problem) You have to cover at least one distance d.
2*. (Solution) For any distance d, if you have to cover d, you cover the first half of d.
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3*. (Extra premise) For any distance d, if you cover the first half of d, then there is a
different distance d′, and you cover d only if you cover d′ first.

4*. (Infinite regress) For any distance d, you always have to cover a further distance
first (i.e. before covering d). (1–3)

5*. (Conclusion) If you cover the first half of every distance that you have to cover,
then you never cover any distance. (1–4)

As an analysis of this infinite regress argument shows, (see a related example in
the sixth section) there is an interpretation under which 1*–4* are all true, while the
conclusion 5* is false. This case is obtained by the possibility that tasks forming an
infinite sequence may get easier. Therefore, one needs to add one more premise, such
as “If you always have to φ a new item if you have to φ any item, then you never φ
any item.” Augmented with this premise, the argument schema becomes valid.
However, as witnessed by the arguably false proposition “If you always have to
cover a new distance before covering any distance, then you never cover any
distance,” the added premise does not hold at all times. Therefore, in each case one
should check whether this premise holds or not.

In the case of mathematical theories, such as a formal theory of arithmetic or set
theory, establishing inadmissibility is usually reduced to a formal proof-search issue.
Consider the widely accepted set theory of the working mathematician, ZF (Zermelo–
Fraenkel set theory). One of its axioms, the axiom of foundation, guarantees that every
set S has a ∈-minimum element; that is, an element s of S such that s ∩ S=∅.
Accordingly, one can easily prove that there cannot be an n-cycle a1 ∈ a2 ∈ … ∈ an ∈
a1 or an infinite descending sequence …∈ a3 ∈ a2 ∈ a1 of sets. That is, every such
collection of sets is inadmissible. Thus, any theory consisting of a group of set-
theoretical propositions leading to the existence of such an infinite or circular ∈-
sequence is rejected by ZF.

Though the axiom of foundation provides a technical solution to this problem of
infinite regress inside this theory ZF, why should one believe the axiom of foundation?
Indeed, one of the alternative set theories, ZFA (anti-well-founded set theory) obtained
from ZF by replacing the axiom of foundation with the axiom of anti-foundation turns
many vicious collections of ZF into benign. In ZFA, any system of set-theoretic
equations ex has a unique solution. As such, ZFA implies the existence of a unique set
a={a}, which is the unique solution of the equation x={x}. In this way, we obtain a set x
such that x ∈ x. Or there are exactly two sets a={b}, b={a} determined by the system of
equations x={y}, y={x}. In this way, we obtain two sets x and y such that x ∈ y and y ∈ x.
In general, we may produce an n-circle x1 ∈ x2 ∈ … ∈ xn ∈ x1 for n as big as we want.

The set theoryZFA is assumed to bewell adapted to the study of circularity (including
the phenomenon of self-reference). Barwise and Etchemendy (1987) and later Barwise
and Moss (1996) advocated this view. It should be pointed out that none of these major
works managed to explain why some circles are vicious while others are not. In this
direction, Kühnberger’s attempt to explicate vicious circularity as non-eliminable non-
well-foundedness is noteworthy: “An entity is circular if and only if there are aspects of
this entity that are non-well-founded.” (Kühnberger 2001, 40) “A circular entity is
pathological if it does not allow an appropriate representation that is well-founded in
the mathematical sense of well-foundedness” (2001, 41). It is not clear how the work by
Barwise, Etchemendy, Moss, Kühnberger and others on circular phenomena can be
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generalized to infinite regress arguments. In the case of circular entities, if the only way to
demarcate vicious circular entities is to see if it allows a well-founded representation; then
the liberation we get after replacing the foundation with the axiom of anti-foundation
fades. To avoid begging the question, one should admit the possibility that “the mathe-
matical sense of well-foundedness” could well be the one determined by the axiom of
foundation. Indeed, while the recursive definition is seemingly a circular phenomenon, it
seamlessly takes its place in ZF.

Moreover, the point raised by McLarty against the view that ZFA is a plausible
framework for circularity is quite strong: whether we choose ZFA or ZF is irrelevant
to the semantics of circularity. A part of his criticism is based on the observation that
membership relation is not similar to the relation that holds between two propositions
if the first is an immediate constituent of the second (cf. McLarty, 1993). Barwise and
Etchemendy (1987) exploited this similarity to support their claim that anti-
foundation axiom is required to their semantics of vicious circularity. If McLarty is
right, then the anti-foundation approach cannot give support to a successful theory of
infinite regress arguments, and in this framework we may develop at best a theory of
circular definitions and circular arguments.

In philosophical enterprise, usually there is no such fixed ground theory like ZF to
determine vicious and benign regresses. For this reason, in the case of philosophical
theories yielding an infinite regress or circle, inadmissibility conditions lie at the heart
of the controversy. Therefore, we do not make much progress by simply saying that
an infinite regress or circle produced by the theory is vicious if the generated set is
inadmissible. To produce a successful philosophical infinite regress argument, a
justification for an appropriate inadmissibility result should be incorporated in the
proposed analysis of the infinite regress under discussion.

4 A Counterfactual Theory of Infinite Regress Arguments

In section 2, an infinite regress was said to be an infinite sequence of propositionsA1, A2,
A3,… such that the truth of any proposition Ai in the sequence “requires” the truth of the
next proposition Ai+1. There I did not mention which specific notion of requirement I
will be using. In the previous section, we have seen that one possibility is to make use of
indicative conditionals. As the first step in the direction of developing a counterfactual
theory of infinite regress arguments, I suggest that infinite regresses should be elaborated
by means of counterfactual propositions (or counterfactuals, for short). A typical
counterfactual is of the form “If A were the case, C would be the case” and it is
symbolized as (A C). The proposition A is the antecedent, and the proposition C is
the consequent of the counterfactual (A C). I now redefine an infinite regress to be an
infinite sequence of counterfactuals A1 A2, A2 A3,… and thus explicate the notion
of requirement by means of counterfactual implication.

If counterfactuals are the building blocks of infinite regresses, one should start with a
working theory of counterfactuals in order to develop a theory of infinite regress
arguments. Lewis (1973a; 1973b) and, earlier, Stalnaker (1968) developed a possible
world semantics for counterfactuals. It is fair to say that despite many philosophical and
technical criticisms, the variations of the Stalnaker–Lewis semantics still dominate the
field. Below I will define a semantics of counterfactuals in this variety, and I assume a
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sound and complete deductive system for this semantics for the propositional logic of
counterfactuals. Thus, when I claim that some proposition is derivable, it means that it is
derivable within such a system. Therefore, if successful, the results of this paper will also
prove to be an application of an extension of the Stalnaker–Lewis theory.

A model for the propositional logic of counterfactuals is a quadruple M=(WM, RM,
SM, VM), where WM is the set of worlds, RM is the accessibility relation, SM is the
comparative similarity relation and VM is the valuation function of the model M. One
may omit the indexes if the model is understood or intentionally left ambiguous.

For anymodelM, its set of worldsWMmust include an initial worldw0 that represents
the actual world. With an abuse of language, w0 is said to be the actual world.

The accessibility relation is a binary relation defined on the set of possible worlds
such that R(w, w′) if and only if the world w′ is considered as a possible state of affairs
from the point of view of the world w. If R(w, w′), then it is said that w′ is accessible
from w. I assume only that R is reflexive as a minimal condition on the relation of
accessibility. This means that if a proposition is true, then possibly, it is true.

The comparative similarity relation is a ternary relation defined on the set of
possible worlds such that S(w, w′, w″) if and only if the world w′ is more similar to
w than w″ is. The comparative similarity relation may also be interpreted informally
as a comparative closeness relation. On this reading, S(w, w′, w″) means that w′ is
closer to w than w″ is. Given a model M, we may fragment its ternary comparative
similarity relation SM into binary relations SM,w (or Sw if the model is understood) so
that SM,w(w′, w″) if and only if SM(w, w′, w″). Obviously, this fragmentation is
reversible. The comparative similarity relation need not be total: it may be the case
that for some worlds w, w′, w″ neither SM,w(w′, w″) nor SM,w(w″, w′). Moreover, for
any world w, the only most similar world to w is w itself. That is, for any world w and
for every different world w′, it must be the case that SM,w(w, w′) and it is not the case
that SM,w(w′, w). Since a comparative similarity relation S is strict, it is asymmetric: if
SM,w(w′, w″), then it is not the case that SM,w(w″, w′).

The valuation function VM of the model M assigns truth-values to propositional
variables for each world. Therefore, it is a function that associates each pair (p, w)
consisting of an atomic proposition and a world with one of the truth values T(rue) and
F(alse). VM (p, w)=Twhen p denotes an atomic proposition true inwwhile VM (p, w)=F
when p denotes an atomic proposition false in w. For a quantificational logic of
counterfactuals, we need more refined structures as models, such as quintuples
M= (WM, {Dw : w ∈ WM}, RM, SM, VM), where each world w ∈ WM is assigned a
domain of individuals Dw and the valuation function interprets all individual constants,
relation symbols and function symbols of the language. For the purposes of the present
paper, I will be content with models for the propositional logic of counterfactuals.

Truth conditions for propositions other than counterfactuals are as given by the
usual Kripke semantics (cf. Creswell and Hughes: 1996). Let us be given a propo-
sitional language with negation, conditional and possibility symbols as primitive
logical constants. As usual, ‘∼’ stands for the negation, ‘→’ stands for the conditional,
‘◊’ stands for the possibility connective. The remaining propositional connectives can
be introduced with abbreviative definitions and their truth conditions can be easily
derived on the basis of those of the primitive ones. Let M= (WM, RM, SM, VM) be a
model and w ∈ WM. Truth condition for atomic propositions were already defined.
Moreover,
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1. VM (~A, w)=T if VM (A, w)=F. Otherwise, VM (~A, w)=F.
2. VM (A→C, w)=F if VM (A, w)=T and VM (C, w)=F. Otherwise, VM (A→C, w)=T.
3. VM (◊A, w) =T if in some world w′ accessible from w, VM (A, w′) =T.

To state the truth condition for counterfactual propositions briefly, let a world be
an A-world if in this world the proposition A is true. Then, (A C) is true inM in a
possible world w ∈WM if and only if C is true in all A-worlds w′ ∈WM accessible to
w such that there are no accessible A-worlds closer to the world w than w′:

4. VM (A C, w)=T if VM (C, w′) =T for all w′ ∈ WM such that

a. R(w, w′)
b. VM (A, w′) =T
c. ∀w″ [w″ ∈ WM & R(w, w″) & VM (A, w″)=T→ ~SM (w, w″, w′)]

Otherwise, VM (A C, w)=F.

Although we normally assert a counterfactual (A C) when we believe that the
antecedent A is false, the possibility that A is true in the world w does not pose a
difficulty when we evaluate the counterfactual (A C). Since I assumed reflexivity
of the accessibility relation, and since a world is one of the closest worlds to itself and
there is no closer one, if the world w ∈WM is already an A-world, then C must be true
in w so that (A C) is true in w.

We must also consider the possibility that there can be more than one closest A-world
accessible tow. This is because the comparative possibility relation need not be total: it is
possible that for some worlds w′, w″, neither SM (w, w′, w″) nor SM (w, w″, w′).

If we allow the possibility that there are no accessible closest A-worlds to w, then
for any proposition C, the counterfactual proposition (A C) becomes trivially true
in w. I will assume that the following condition holds:

Closest world assumption: If some A-world is accessible to w (that is A is
possible with respect to w), then there is at least one accessible closest A-world
to w.

This condition is normally named as the limit world assumption, but since I need
the notion of limit for some other purpose, I used a different label.

To give a general schema of infinite regress arguments, I introduce an auxiliary
formula to the effect that an infinite sequence of accessible possible worlds approaches
to another accessible possible world: For any sequence of propositions A1, A2, …,
let ◊(Ai)i∈N denote the formula such that given any model M= (W, R, S, V),

◊(Ai)i∈N is true in w, if and only if there is a sequence of possible worlds wi

starting with w approaching to a possible world w′ such that each wi is an Ai-
world accessible to w.

By means of the above notions, I may now propose the following schema as a
general representation of infinite regress arguments:

1. T (Assumption)
2. ◊A1 (Assumption)
3. For all i, Ai Ai+1 (1)
4. For all i, ◊Ai (2,3)
5. ◊(Ai)i∈N (1,4)
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6. ~5 (Premise)
7. ~1 ∨ ~2 Conclusion (5,6)

T, the regress theory, is the target of the whole argument. The third line means that T
must be shown to yield an infinite regress. This infinite regress together with an
assumption such as the one on the second line implies the possible truth of all Ai by
the semantics of counterfactuals. The fifth and sixth lines are crucial to have a successful
infinite regress argument against the regress theory. The claim that 5 is derivable from T
with the help of the additional assumption 2 means that from the point of view of T,
given that A1 is possible, not only all Ai are possible, but also there is a way to exploit all
these possibilities to reach a final possible state of affairs. The sixth line points at the
harder task of establishing that there is no way to reach such a state of affairs. Jointly
leading to a contradiction, either T or the assumption 2 should be dropped.

Consider the Zeno’s regress and let us be given the possibility (with respect to the
actual world) that Achilles moves; that is, he possibly covers a distance in a finite
period of time. Then it follows from a theory of motion (see the related example in the
sixth section for some details) that for every n=1, 2, 3… it is also possible that
Achilles were able to cover 2n many distances. Not only that: since the regress is
infinite, to cover the whole distance, Achilles should be able to cover infinitely many
divisions of a distance. This last assertion corresponds to the fifth line of the argument
schema. Now the infinite regress arguer should show that Achilles cannot be able to
cover infinitely many divisions of a distance no matter which strategy Achilles choses
(for example, Achilles may try running at a constant speed or accelerating his steps).
In other words, the infinite regress arguer should show that, for every strategy
Achilles choses, he cannot avoid stepping in worlds less and less similar to the
actual world. The infinite regress arguer may, for example, try to support this claim
on the basis of the prima facie plausible claim that the number of distances that
Achilles covers constantly increases and it is less likely that one achieves covering
more distances in the same amount of time. Therefore, he would conclude that
Achilles cannot end up with a possible world that is accessible to the actual world,
and this corresponds to the sixth line of the above schema.

This infinite regress is claimed to be vicious for it leads to the existence of an
accessible possible world including an infinite collection of tasks, while in this case
there cannot be such a world. This is in fact a special case: in more general terms, an
infinite regress would be vicious when it requires the existence of an accessible
possible world including an entity with an unacceptable degree of complexity.

The semantics of counterfactuals together with the truth definition for ◊(Ai)i∈N
allow us to generalize this idea underlying analyses of infinite regress arguments:
Let us be given an infinite regress I=A1 A2; A2 A3;… yielded by a
logically consistent theory T. Moreover, let us be given a model M=(WM, RM,
SM, VM) such that the initial world of the model w0 is a structure that satisfies T ∪ {◊
A1}. Since T yields I, it must be the case that for all i, the counterfactual
proposition Ai Ai+1 is true in w0.

(1) Let W0={w0}
(2) Since w0 satisfies ◊A1, there is an A1-world accessible to w0.

Therefore—by the closest world assumption—there is at least one closest A1-
world accessible to w0. Let W1 be the non-empty set of all accessible closest A1-
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worlds to w0. Since A1 A2 is derivable from T and w0 satisfies T, the
counterfactual A1 A2 is true in w0. Therefore, its consequent A2 is true
in all worlds in W1. Since W1 is non-empty, it follows that ◊A2 is true
with respect to w0. We may then let W2 be the non-empty set of all
accessible closest A2-worlds to w0.

(3) By similar reasoning, for all n we obtain non-empty setsWn of accessible closest
An-worlds to w0. Moreover, each world in Wn witnesses the proposition ◊An+1

with respect to w0.
(4) Therefore, given an infinite regress I and a model as described, we may form

infinite sequences of worlds w0, w1, w2, w3,… where w0 is w0 and the world w
n is

chosen from the setWn. Let us say that any such sequence of worlds is a sequence
of worlds induced by the infinite regress I, or an I-sequence. To satisfy ◊(Ai)i∈N
there should be an I-sequence approaching to a possible world accessible to w0. If
this is the case, we say that with respect to the model M the infinite regress I is
benign. Otherwise, the infinite regress I is vicious with respect to the model.

A given infinite regress argument succeeds if it produces only vicious infinite
regresses (that is, only non-approaching I-sequences) with respect to every appropri-
ate model. If one succeeds in forming such a model with an I-sequence approaching
to an accessible world, then the proponent of T may justifiably claim that the infinite
regress is benign, so that the infinite regress argument directed against T fails.

Of course, in most cases when I is believed to be benign, one may construct arbitrary
models where no I-sequence witnesses the benignity of I. However, note that the strength
of an analysis of an infinite regress by means of a modelM depends on the plausibility of
the chosen model. Though the notion of plausibility does not allow a clear-cut descrip-
tion, it seems safe to say that richness and relevance of its stock of possible worlds;
relevance of its accessibility and comparative possibility relations adds to the plausibility
of a given model as a model of analysis of a given infinite regress argument.

5 From Similarity to Distance Functions

The analysis of infinite regress arguments in the previous section requires a study of
the overall behaviour of infinite sequences of counterfactuals. Therefore, the Lewis–
Stalnaker analysis of single counterfactuals or a finite reiteration of the analysis does
not support by itself a complete analysis of infinite regress arguments. For this reason,
I exploited the notion “approaching to a possible world”. In this section, I present the
mathematical counterpart of this and related informal notions involved in the analysis
and thereby reformulate it in a more rigorous fashion.

The definition of the truth condition for counterfactual propositions in the previous
section employs the notion of relative closeness between worlds. This notion is based in
turn on the notion of comparative similarity. It is possible to develop Lewis–Stalnaker
analysis further by means of the mathematical notion of distance function, thereby
quantizing the relation of comparative similarity among worlds. This facilitates a precise
formulation of the overall behaviour of infinite sequences of counterfactuals in terms of
the mathematical properties of I-sequences of worlds. Lewis rejects the quantization of
the degrees of similarity on the basis of the claim that this would require the dubious
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assumption “that the degree of symmetry of i to j equals the degree of similarity of j to i.”
(1973b, 51) The “counterexample” he proposes shows, however, that he has some
subjective notion of similarity in mind, while I stick to an objective notion of similarity
(one independent of our interests), though I do not deny that some notions of similarity
may be epistemologically more interesting or more useful than others.

To quantize the comparative similarity relation between worlds, we interpret the
dissimilarity between two worlds as the distance between them. In general, a distance
function on a set of points X is a function d from X×X into the set of non-negative real
numbers such that the following two axioms hold:

D1: d x; yð Þ ¼ 0 if and only if x ¼ y;
D 2 : d x; yð Þ ¼ d y; xð Þ:

The first axiom is the axiom of indistinguishability and the second is the axiom of
symmetry. A set X accompanied with a distance function d is a distance space. A
distance space is denoted with an ordered pair (X, d). Where a set X is considered as
the domain of a distance space, each element of X is said to be a point in the space.

That D1 and D2 state intuitively valid conditions on the notion of distance can be
seen easily. Moreover, they naturally correspond to properties of any given compar-
ative similarity relation. In terms of comparative similarity, the indistinguishability
axiom states that x is the most similar thing to y if and only if x and y are the same; the
symmetry axiom states that the degree of similarity of x to y is the same as the degree
of similarity of y to x. This parallel suggests that in many cases where we are given a
similarity relation, we may find a corresponding distance function. However, recall
that comparative similarity need not be total. On the face of this possibility, one must
content with a weaker condition than strict correspondence. Let us say that the pair
(X, R) consisting of a set X and a comparative similarity relation R on this set is a
comparative similarity space. Obviously, we will be interested in comparative sim-
ilarity spaces whose underlying set is the set of worlds in a model and whose
comparative similarity relation is the one belonging to this model. Let us be given
a model (WM, RM, SM, VM). Consider its underlying comparative similarity space
(WM, SM) and let d be a distance function on the set WM now considered as a set of
points. We say that SM is compatible with the distance function d on WM (or SM is
given by the distance function d) if for every w, w′, w″:

SM w;w0;w00ð Þ if and only if d w;w0ð Þ < d w;w00ð Þ:

Or, in terms of the binary comparative similarity relations,

SM;w w0;w00ð Þ if and only if d w;w0ð Þ < d w;w00ð Þ:
Once we have a distance space, we can define the notion of limit for infinite

sequences of points in this space: Let (X, d) be a distance space and (pn) a sequence of
points in this space. We say that a point p in X is a limit of the infinite sequence (pn),
or the sequence (pn) converges to p (in symbols (pn)→p), if no matter how small real
number ε>0 is chosen, we can find a natural number Nε such that for all n>Nε it is the
case that d(pn, p)<ε. Note that Nε depends on ε: if we are given a smaller ε, then we
may need to choose a larger number Nε. A sequence is convergent if it converges to a
point. Otherwise, it is divergent.
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The notion of limit now replaces the informal notion of “approaching” to a
possible world: Let M=(WM, RM, SM, VM) be a model and w′, w′′, w′′′, … an infinite
sequence of possible worlds in WM. Assume also that SM is given by a distance
function d on WM. If we know that there is a limit of the sequence w′, w′′, w′′′, … in
the distance space (WM, d), then we know that there is a possible world w ∈ WM such
that our infinite sequence of possible worlds becomes more and more similar to w.
Moreover, since w ∈ WM and d is a total function, this limit world w is of some
definite real distance from w.

Let us be given an infinite regress argument directed against a theory T yielding an
infinite regress I. Assume further that we are given a model M=(W, R, S, V) such that

(a) S is given by a distance function d and
(b) The initial world satisfies the set of propositions T ∪ {◊A1}.

These assumptions let us obtain an infinite sequence of sets of possible worldsW0,
W1, W2, … Then, by choosing wn ∈ Wn, one may form I-sequences. The infinite
regress I is vicious with respect to M if there is no I-sequence w0=w

0, w1, w2,… in M
such that (wn)→w where w is a possible world accessible to w0. Otherwise, I is benign
with respect to M.

To save T from an infinite regress argument based on the regress I yielded by T,
one should find an appropriate model M satisfying (a) and (b) such that I is benign
with respect to M. The infinite regress arguer wins, if it can be shown that no such
model can be constructed.

I finish this section with a technical remark that might prove to be useful for some
applications of the present theory of infinite regress arguments. Though one may be
content with distance functions, a stronger notion of distance may be desirable
especially when analysing complex examples of infinite regresses. These stronger
notions of distance are usually obtained from the notion of distance function by
additional conditions. The most common one is the notion of metric:

A distance function satisfying the following triangle inequality condition is a metric:

D3: d x; yð Þ þ d y; zð Þ≥d x; zð Þ
A set with a metric on this set is a metric space. The notion of metric is also

plausible as a notion of distance, for the triangularity condition D3 captures the
geographical intuition that we cannot shorten the distance between two points x and y
by passing through an intermediary point y.

The most important property of metrics that one may need is the uniqueness of
limits: The axioms D1, D2 and D3 jointly imply that: if (pn)→p and (pn)→q, then
p=q. In a general distance space, a sequence may have more than one limit that is, it
could be the case that (pn)→p and (pn)→q with p≠q. In this case, by the axiom of
indistinguishability, d(p, q)≠0. In general, existence of a limit is all that matters, but if
one needs to have more control over the limit worlds, one may search for a metric to
guarantee uniqueness. (Though there are weaker conditions than triangularity that
also implies unique limits.) In fact, the main result of the paper by Schlechta and
Makinson (1994) shows that in fairly many cases, the comparative similarity relation
is given by a metric. To simplify matters, I refer to a corollary (namely, Theorem 8 in
their paper) as the “Schlechta–Makinson theorem” and adapt it to the terminology
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and notation used here. The most important notational difference is that they would
write, for example, w′<w w″ instead of Sw(w′, w″).

Let us say that a model M = (WM, RM, SM, VM) is metrizable if its comparative
similarity relation SM can be given by a metric d on WM. That is, there is a common
metric d on W such that for every w, w′, w′′ ∈ W,

S w;w0;w00ð Þ if and only if d w;w0ð Þ < d w;w00ð Þ:
A relation R is said to be modular if there is a function f from the field of the

relation R (i.e. the union of the domain and the range of R) into a set totally ordered
by a relation R* such that R(x, y) if and only if R*(f(x), f(y)). Schlechta–Makinson
theorem states that M is metrizable given that M satisfies the following conditions:

1. For all w ∈ WM, the comparative similarity relation SM,w is modular and SM,w is
given by a metric dw,

2. The size of WM is at most the size of the set of natural numbers,
3. For all w ∈ WM, if w ≠w′, then 0=dw(w, w) < dw(w, w′).

6 Examples

The technique involved in the theory developed in the last two sections will now be
exemplified by analyses of some infinite regresses. I claim that if a regress is
commonly accepted to be benign, in any model it should yield only convergent I-
sequences starting with the actual world. If an infinite regress is disputable, it should
be possible to produce some models with only divergent I-sequences and some others
with at least one convergent I-sequence. In this case, the value of the technique lies
not in providing a final resolution but in facilitating a rigorous formulation of
conflicting analyses. It is a curious fact that in philosophy—as opposed to
mathematics—no nontrivial regress is commonly accepted to be vicious.

1-proposition circle I start with a formal regress. This example also makes it clear
that in some cases the technique is able to produce a final result.

It immediately follows from the semantics of counterfactuals that the counterfac-
tual proposition p p is obviously valid. Therefore, every theory T yields the
infinite regress p, p, p, …

Let M=(W, R, S, V) be a model with a compatible distance function d such that w0

satisfies T ∪ {◊p}. There are two cases to consider:

Case 1. The proposition p is actually true (including the case where p is necessarily
true). Then, whatever d is, for every 0<i, Wi is the singleton set {w0} since
the actual world is the only closest accessible world that makes an actually
true proposition true; by the axiom D1 of indistinguishability, for all other
worlds wi, the distance d(w0, wi)>0. Therefore, the only I-sequence is the
constant sequence w0, w0, w0, … Since this sequence is convergent, with
respect to M, the infinite regress is benign in M.

Case 2. Assume now that p is actually false. By assumption, ◊p holds with respect
to the actual world. Then there are some p-worlds accessible to w0. Then,

A Counterfactual Analysis of Infinite Regress Arguments



by the closest world assumption, there is at least one closest p-world. Let
W1 be the set of all such worlds. In fact, since the infinite sequence is
formed by the same counterfactual p ;p, for every i>0, Wi consists of the
closest p-worlds accessible to w0. To obtain a convergent I-sequence, choose
one of these p-worlds w and let wi=w for every 0<i. Being an eventually
constant sequence, the resulting I-sequence w0, w, w,… is convergent and the
infinite regress is analysed to be benign with respect to M in this case too.

Therefore, wemay conclude that in everymodel there are only convergent I-sequences.
Therefore, the 1-proposition regress fails to be a refutation of T.

Tarski's truth regress Let us be given a language L with a Tarskian truth definition
such that for each L-sentence, writing that sentence inside single quotes yields a name
of the sentence in L. Tarski’s theory of truth for L implies all Tarski sentences, that is,
sentences of the following form:

TS : ‘S’ is true if and only if S:

It is well-known that Tarski’s theory leads to an infinite regress: Let L be a
language rich enough and such that Tarski and us would accept that at least one L-
sentence is possibly true. Let S be an arbitrary but fixed such L-sentence. Then, Tarski
biconditionals lead to the sequence of sentences

‘S’ is true if and only if S
“S’ is true ’ is true if and only if ‘S ’ is true
“‘S’ is true’ is true’ is true if and only if “ S’ is true’ is true

:
:
:

Obviously, Tarski sentences hold not only in the actual world, but also in every
possible world w. Now consider the following sequence of counterfactuals formed
from the right-to-left parts of the above biconditionals:

It follows from the Tarski’s definition that each of these counterfactuals is valid (true in
every possible world in every model). Consider the first counterfactual, S ‘S’ is true.

1. If S is already true in w, then w is the only closest S-world to itself. Since ‘If S, then
‘S’ is true’ holds in w, “S’ is true’ must hold in w. This makes the counterfactual “S

‘S’ is true” hold in w.
2. If S is contingently false in w, then consider any of the closest S-worlds w′. Since

the Tarski conditional ‘If S, then ‘S’ is true’ holds in w′, by modus ponens “S’ is
true’ must hold in w′. This makes the counterfactual “S ‘S’ is true” hold in w.
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3. If S is impossible in w, then the counterfactual becomes trivially true since in this
case there is no accessible S-world to check for the truth of the consequent “‘S’ is
true”.

By similar reasoning one can see that all of the counterfactuals in the sequence are
valid. Therefore, we obtain an infinite regress yielded by the Tarski’s theory of truth:

S; ‘S’ is true; “S’ is true’ is true; …

Let us now determine whether we can develop a successful infinite regress
argument based on this infinite regress. So let M be a model with any distance
function d compatible with the comparative similarity relation of M. Further assume
that S is possibly true in the actual world. There are two cases to consider:

Case 1. If S is actually true, then Tarski’s definition implies that “S’ is true’ is also
actually true. Therefore, the actual world w0 already satisfies the conse-
quent of the counterfactual ‘S ‘S’ is true’. That is, w0 ∈ W1. By the
axiom D1 of indistinguishability, w0 is the only world w such that d(w0,
w)=0. Therefore W1={w0}. Again, given that S is actually true, “S’ is true’
is actually true, and Tarski’s definition implies that “‘S’ is true’ is true’ is
also actually true. Therefore, for the same reason as above, the actual
world is the only closest (‘S’ is true)-world that is also an (“S’ is true’ is
true)-world. It follows that W2={w0}. Continuing this way, one may see
that Wi={w0} for every i>0. Therefore, one may form only one I-sequence
of possible worlds w0, w0, w0,… and this sequence is trivially convergent.
Therefore, if S is actually true, the Tarski regress is benign with respect to
the model M.

Case 2. S is contingently false but possibly true in the actual world w0. Then there is
an S-world accessible to w0. By the closest world assumption, there is at
least one closest S-world accessible to w0. W1 is the set of all such worlds.
By the Tarski biconditional,

‘S’ is true if and only if S;

“S’ is true’ is satisfied in every W1-world. In fact, the above biconditional
establishes the fact that the set of S-worlds and the set of (‘S’ is true)-worlds coincide.
It follows that, W2, the set of all closest (‘S’ is true)-worlds accessible to w0 is the set
W1. In a similar vein (by using the appropriate Tarski biconditional), we see that Wi=
W1 for every i>0. Therefore, by choosing the same world w each time, we obtain an
eventually constant sequence of possible worlds w0, w, w,…. By definition, this
sequence is convergent independently of the distance function chosen.

Since M is arbitrary, we may conclude that in any model there is no way to make
the inadmissibility premise ~◊(Ai)i∈N true where A1=S and A2=‘S’ is true; A3=“S’ is
true’ is true; and so forth. Therefore, the Tarskian truth regress is benign on the
proposed analysis.

Zeno's regress In most of the cases, philosophical infinite regress arguments are
challenging but not decisive. For example, while Zeno’s infinite regress
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arguments concerning motion are admirable, nobody sincerely believes that they
deprive of all value the usual concept of motion, let alone establish the
impossibility of motion. An ordinary language representation of Zeno’s regress
argument along the lines of the proposed schema of infinite regress arguments
would be:

1. T: Motion is covering a distance. Covering a distance d is to be at the initial point
of d at time t and to be at the terminal point of d at time t′>t and passing through
every point of d. Distance is infinitely divisible. If one was able to cover a
distance d, and d′ is a division of d, then one would be able to cover d′ too. Any
division of a division of a distance d is a division of d.

2. Achilles is able to move (or; possibly, Achilles moves.)
3. If it were the case that Achilles moves, then it would be the case that he covers a

distance d during a time interval t; if it were the case that Achilles covers a
distance d during t, then it would be the case that he covers the two halves of the
distance d during t; if it were the case that Achilles covers the two halves of the
distance d during t, then it would be the case that he covers the four quarters of
the distance d during t; and so forth.

(1)
4. For every n, Achilles is able to cover 2n distances consisting of divisions of d

during t.
(2,3)

5. It is possibly the case that Achilles covers infinitely many distances during t.
(1,4)

6. It is impossible that Achilles covers infinitely many distances during t. (Either
there is an n such that even Achilles is not able to cover 2n distances consisting of
divisions of d during t or, even if there is no such definite boundary, Achilles is
not able to cover infinitely many distances.)

(Premise)
7. Either T is incorrect or Achilles is not able to move. (Conclusion)

Those who offer the above infinite regress argument as a refutation of T may rely
on the idea that in all relevant models the similarity relation should measure the
number of distances. Let for any possible world w, #(w) be the number of distances
Achilles covers in w. Then for such a model M,

*ð Þ Sw w0;w00ð Þ if and only if # wð Þ−# w0ð Þj j < # wð Þ−# w00ð Þj j

Therefore letM=(W, R, S, V) be such that w0 satisfies T and the proposition that it is
possible that Achilles moves. Moreover, assume that the similarity relation S of M
satisfies (*). In this case, we may immediately let d(w,w′)=|#(w)−#(w′)| to obtain a
distance function compatible with S.

Case 1. Achilles actually moves. In this case, since the counterfactuals are all true in
the actual world w0, the truth definition of counterfactual propositions
implies that Wn={w0} for every n and the only I-sequence is the trivially
convergent constant sequence w0, w0, w0, …
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Case 2. It is contingently false that Achilles moves. We let W0={w0} and W1 be the
set of all closest accessible worlds to w0 where Achilles moves (such worlds
exist by the assumption 2 and the closest world assumption.) Moreover, the
counterfactual “If it were the case that Achilles moves, then it would be the
case that he covers a distance d during a time interval t.” holds with respect
to w0. Since W1 consists of the closest accessible worlds to w0 such that
Achilles moves, in every W1-world he covers a distance d during a time
interval t.” Therefore it is possible with respect to w0 that Achilles covers a
distance d during a time interval t. We let W2 be the set of all closest such
accessible worlds to w0. If we continue, we see that for every n>1,Wn consist
of all closest alternatives of w0 such that Achilles covers 2

n-2 distances during
the time interval t. Accordingly, however we choose our I-sequence, the
distance d(w0, wn) increases without limit as the number of distances that
Achilles covers in wn does. It means that on this interpretation, Zeno’s regress
supports a successful infinite regress argument.

On the other hand, one may try an Aristotelian strategy to save T from the infinite
regress argument. This strategy depends on the distinction between the actual and
potential infinities. If this course is taken, it is claimed to be misleading to say that the
number of distances increases at each step (cf. Physics. 263b3–9). There is in fact no
definite distance that increases in number. Instead, there is an infinite divisibility of
one definite distance. Therefore, to obtain an Aristotelian model, we conjoin these
divisions together, rather than count them as independent entities. Then in any of the
models above, we let d′(w0, w0)=0 and for each wi ∈Wi, d′(w0,wi)=L(∑n = 0

i 1/2n) where
L is the length of the distance that Achilles must cover. Since the sequence consisting
of the partial sums (∑n=0

i 1/2n) approaches to 1, L(∑n=0
∞ 1/2n)=L. Therefore, every I-

sequence w0, w1, w2,… approaches to a world w where, mutatis mutandis, Achilles is
L units away from the starting point. Therefore, T is saved from the Zeno’s regress
argument on the Aristotelian analysis.

7 Concluding Remarks

I proposed a theory of infinite regress arguments where infinite regresses are represented
as sequences of counterfactuals rather than indicative conditionals. In an indicative
theory, an infinite regress leads to an infinite set of entities in the actual world, or rather
to a proposition “There are infinitely many …things.” Therefore, the line labelled as
“the result” on line 5 of the Gratton schema is such a proposition as, “There is an infinite
chain of causes” or “There are infinitely many distances to be covered in a finite period.”
On the other hand, the contradicting proposition labelled as “Result is unacceptable”
asserts that “It is impossible that there are infinitely many… things” such as “An infinite
chain of causes is impossible”, or “It is impossible to cover infinitely many distances in a
finite period.” Thus one tries to contradict an actually true proposition with an impos-
sible proposition, whereas an actual falsity would suffice to contradict an actual truth.
The present theory may be considered as an attempt to remove this discrepancy by
suggesting a unified presentation and evaluation of infinite regress arguments. “The
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result”which is now a special kind of possibility proposition is now contradicted with its
proper negation.

Using counterfactuals to form infinite regresses and a triggering proposition ◊A
remarkably changes the semantic analysis of infinite regress arguments. Since an infinite
regress is now considered as a sequence of counterfactuals, we may extract a sequence
of sets of possible worlds Wi where, intuitively, each set Wi corresponds to all
possible ways of carrying on the construction at the i-th stage as required by the
regress. In this case, the sequence W0, W1, W2, … of sets of possible worlds can be
considered as an infinite decision tree. Now, choosing a sequence of possible
worlds wi one tries to complete a process dictated by the infinite regress. At each
stage, one performs an operation and this brings in some changes in the world
(unless the world is already designed that way) together with some side effects.
Therefore, a proponent of the regress theory T should be able to claim that it is
possible to choose an infinite sequence of accessible possible worlds wi from Wi in
such a way that though the sequence of operations on the initial world is infinite,
one may end up with a possible world w at the limit which is still accessible to the
actual world.

The possibility of completing an infinitary task does not automatically follow from
the fact that at each stage we have at least one possible way of proceeding: an
intuitionist would accept the existence of natural numbers 0; the successor of 0; the
successor of the successor of 0; and so forth, whereas rejecting the existence of the
infinite set of natural numbers as a closed whole. Therefore, a justification is required
for the completability of the required infinitary task, or the infinitary collections of
entities; in our semantic analysis, this corresponds to the existence of a limit in an
appropriate model with respect to a compatible distance function. Note that when one
works with a distance function that is not known to satisfy some additional condi-
tions, existence of several limits is possible. This possibility is welcome: in our case,
it means that there is more than one way to complete a prima facie impossible
infinitary task.

Accordingly, to complete a successful infinite regress argument against a theory T
yielding an infinite regress, one must now show that there is no way of constructing
such an infinite sequence of possible worlds in which case either T or the assumption
◊A should be dismissed. Note that in the present analysis, the validation of the
inadmissibility condition goes side by side with the analysis of the infinite regress
I; in the same class of models, we decide what result I produces (that is, I-sequences)
and—on the basis of the distance function embedded in M—whether that result is
acceptable (that is, whether all I-sequences converge or not).

Another virtue of the present theory is its explanatory power. Consider the truth
regress: I believe it is important that the analysis of this regress in the counterfactual
theory not only complies with our belief that this regress is benign; it also provides a
non-trivial justification for this belief. One may expect even more in terms of
explanatory power if, for example, one uses a richer logic for counterfactuals (such
as a quantificational logic for counterfactuals), but one should then face the fact that
there is no well-established quantificational logic of counterfactuals, and a great deal
of formal issues grounded in metaphysical issues (such as those related to trans-world
identity) needs to be resolved in this field.
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As theZeno regress argument shows, thekey todevelop a rigorous analysis of an infinite
regress argument is to find an appropriate distance function that correctly measures the
effectsof thechangesdictatedby thecounterfactuals forming theunderlying infinite regress.
At this stage, some technical apparatus from the field where the theory yielding the regress
belongs to comes into play. The resulting complexity at the level of semantics makes our
analyses sensitive to the subjectmatter of the argument. This should be a considerablemerit
on the face of the diversity of areas where infinite regress arguments play some role.
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