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A convenient procedure for the preparation of various substituted (thio)hydantoins is described. The
method is based on Wittig and aza-Wittig reactions of parabanic acids with phosphonium ylides. The
reactions occurred both regio- and stereo-selectively.
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Five-membered rings containing two heteroatoms are privi-
leged structures with proven utility in medicinal chemistry.1 One
example of such a heterocycle is hydantoin (I), an important phar-
macophore.2 Several hydantoin alkaloids (for example II–IV) have
been extracted from sponges, corals or marine organisms,2,3 and
some synthetic drugs such as phenytoin (V) and nilutamide (VI)
contain a hydantoin skeleton.1,2,4 Due to the interesting features
of hydantoins, recent progress has led to the development of
new methods for the preparation of these compounds.

Many processes have been published for the preparation of sub-
stituted hydantoins including the Bucherer–Bergs synthesis,5a the
Eldman method,5b the Staudinger reaction,5c microwave-assisted
approaches,5d a domino process,5e Ugi reactions5f,g and MCRs or so-
lid-phase techniques.2 Nevertheless, new methods for the rapid
synthesis of structurally varied and functionalized hydantoins re-
main desirable.
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ören).
Wittig and aza-Wittig reactions are often used for the synthesis of
acyclic and cyclic carbonyl compounds. In addition, the ability to
perform the reactions in neutral solvents, without catalysts, at mild
temperatures is advantageous.6

As an efficient new process for the preparation of alkylidene-
and imino-substituted hydantoins, the reactions of Wittig reagents

with parabanic acid derivatives are described herein by means of a
two-step synthetic procedure: a cyclization process involving
readily accessible urea and oxalyl chloride producing parabanic

http://dx.doi.org/10.1016/j.tetlet.2012.06.129
mailto:hungoren@erciyes.edu.tr
http://dx.doi.org/10.1016/j.tetlet.2012.06.129
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Scheme 1. Preparation of various substituted hydantoins in the two steps starting from ureas.

Table 1
Synthetic hydantoins 3a–c and 4a–i prepared using Wittig/aza-Wittig reactions

Entry Substrate Wittig reagent Hydantoin (product) Time (min) Yielda (%) Mp (�C)

1
N

NS

Me

Me

O

O

2a

Ph3P@CHCOOMe
N

NS

Me

Me
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O
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O
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O
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Figure 1. X-ray crystal structure of 3b.

Table 1 (Continued)

Entry Substrate Wittig reagent Hydantoin (product) Time (min) Yielda (%) Mp (�C)

9 N
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O
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Me N

NO
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a Isolated yield.
b Lit10 yellow oil.
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acids, followed by regio- and stereo-selective Wittig reaction with
the parabanic acids.

Parabanic acid derivatives 2a–c (Scheme 1) have been pre-
viously synthesized using various procedures.7 In this study, com-
pounds 2a–c were prepared via cyclizations of ureas 1a–c with
oxalyl chloride.8
The parabanic acids 2a–c reacted regioselectively with arylimi-
nophosphoranes and acylmethylenephosphoranes in xylene at re-
flux to afford 5-imino 4a–i or 5-methylidene 3a–c substituted
hydantoins (Scheme 1).9 While reactions run in xylene resulted
in moderate to good yields (56–83%) within 2 h, the use of toluene
resulted in very long reaction times and poor yields. In addition,



Fig. 2. X-ray crystal structure of 4b.
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the Wittig reagents reacted much faster with 2-thioxo substituted
imidazolidines than with 2-oxo substituted imidazolidines in xy-
lene (Table 1). All the products 3a–c and 4a–i were purified by col-
umn chromatography.

The Wittig reagents attacked the amide carbonyl of the paraba-
nic acids, but not the urea carbonyl. In addition, with parabanic
acid derivative 2c, which contained different substituents attached
to the nitrogen atoms, the Wittig reagents reacted regioselectively
on the alkyl-N–C@O group.

The 1H NMR spectrum of 3a showed a methine proton at d 5.98,
methoxy protons at d 3.80 and methyl protons at d 3.84 and d 3.36.
The 13C NMR spectrum exhibited one thione and two carbonyl car-
bons at d 181.5 (urea), d 164.4 and d 163.6 (ester and amide), C@CH
carbons at d 135.9 and d 99.4 and a methoxy and two methyl car-
bons at d 52.2, d 34.6 and d 29.0. In the 1H NMR spectra, the signals
of the methine protons of products 3a–c resonated between 6 and
7 ppm. These observations were consistent with the (Z)-geometry
for the reaction products.

Unambiguous evidence for the structures of both 5-alkylidene
and 5-imino substituted hydantoins was obtained by X-ray ana-
lyses of crystals of 3b and 4b (Figs. 1 and 2).11

In conclusion, we have described a simple, rapid and catalyst-
free procedure for the synthesis of variously substituted hydantoin
and thiohydantoin derivatives from parabanic acids by regioselec-
tive Wittig reactions.
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