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In this paper, it is aimed to determine the true regressors explaining the 
dependent variable in multiple linear regression models and also to find the 
best model by using two different approaches in the presence of low, 
medium and high multicollinearity. These approaches compared in this study 
are genetic algorithm and multivariate adaptive regression splines. A 
comprehensive Monte Carlo experiment is performed in order to examine 
the performance of these approaches. This study exposes that nonparametric 
methods can be preferred for variable selection in order to obtain the best 
model when there is a multicollinearity problem in the small, medium or 
large data sets. 
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1. Introduction 

*A problem occurring frequently in multiple 
regression processes is the violation of the 
independency assumption among regressors. The 
problem of near linear dependencies is a particular 
form of data weakness which is called as collinearity 
(Belsley, 1991). Generally, researchers either ignore 
this problem or eliminate one or more variables 
causing multicollinearity. On the other hand, 
ignoring this problem causes incorrect findings. 

Some general approaches combating 
multicollinearity are given as collecting additional 
data, model respecification (create a new variable by 
using a function including nearly linearly dependent 
ones) and using some biased estimation methods 
(ridge regression, principal component regression 
etc.) Two of the corrective techniques dealing with 
multicollinearity are variable selection known at the 
same time as one stage of regression modeling and 
nonparametric estimation methods used frequently 
in recent years. 

Selecting necessary variables to the model and 
eliminating insignificant variables from the model 
are known as variable selection or the best subset 
regression model selection. In a general regression 
process, an important stage for creating the best 
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model is variable selection after examining residuals 
and regression assumptions. This stage is applied 
not only for creating a good model but also dealing 
with multicollinearity. There are two main reasons 
for selecting variables. One of them is the practical 
reasons including benefits in applications and 
economic sense. When there are more regressors in 
a model, the costs of data collection and model 
maintenance stand unreasonable. The other reason 
is known as theoretical reasons which mean that 
estimations and predictions should have some 
statistical properties in creating a model 
(Montgomery et al., 2012). 

There has been a fast improvement in terms of 
modern regression and classification methods in 
recent years. There are many studies about 
smoothers, projection pursuit regression, additive 
models, genetic algorithm (GA), multivariate 
adaptive regression splines (MARS). Some of these 
methods make the ordinary regression assumptions 
flexible. 

GA, first introduced by Holland (1975) and 
researched on different problems extensively by 
Goldberg (1989), is an evolutionary search algorithm 
based on the principles of natural selection and 
survival of the best. This method deals with a 
population of individuals which are defined as 
binary strings in the parameter space. It is tried to 
obtain solutions based on the fitness of the 
individuals. A new population is created from fitter 
individuals. The fitness of each individual in each 
generation is determined by the value of the 
objective function. In this method, there is a pressure 
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for the fitter individuals to be joined into the 
population (Pan et al., 1995). 

There are two adaptive smoothing methods 
(Pittman, 2002). First of them is a group including 
adaptive splines and kernel methods used with a 
local adaptive smoothing parameter. For instance, 
variable bandwidth given by Fan and Gijbels (1995) 
is known as a kernel method. Second of them 
includes regression splines algorithms based on the 
assumption of representing the continuous function 
at low order derivatives with continuous piecewise 
polynomials approximately. Candidate models 
represent the space S{m,t} including mth order spline 
functions, where t denotes some knots. The knot 
sequence is selected adaptively in curve fitting. In 
the first trials of adaptive selection, knots were 
added and removed iteratively like the algorithms 
given by De Boor (1978), but no optimal knot place 
was found. This algorithm only gave an optimal 
distribution for knots. Schwetlick and Schütze 
(1995) obtained the places of knots by using 
nonlinear optimization method when the number of 
knots was given. Also, Lindstrom (1999) defined a 
nonlinear optimization algorithm based on free knot 
spline modeling. A different algorithm, first 
introduced by Friedman (1991), is a strategy of 
adding/removing knots by using linear splines 
stepwisely. This algorithm is called MARS, a common 
method in recent years, also examines the linear and 
nonlinear correlations among variables. In MARS, 
one term is added to the model selection criterion, 
generalized cross validation (GCV), given by Wahba 
and Craven (1978) in order to adjust adaptive form 
of knot selection. GA is preferable because of the 
necessity of using stochastic optimization methods 
for knot selection Pittman (2002). Manela et al. 
(1993) used GA for available spline order and 
penalized least squares splines. Moreover, Rogers 
(1991) combined a modified GA with MARS. In this 
paper, the performance of GA and MARS is compared 
for obtaining the best and true model. The rest of 
this paper is organized as follows. In Section 2, the 
model and the methodology are given. In Section 3, a 
comprehensive Monte Carlo experiment is presented 
in order to make comparisons. Finally, the 
conclusion is given in Section 4. 

2. Model and methodology 

Let 𝑥𝑗 , j = 1, 2, …, k be regressors, y be the 

response and ε be the random error term. A multiple 
linear regression model is defined as (Eq. 1): 

 
𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘 + 𝜀𝑖                         (1) 
 
where, 𝛽 are unknown parameters and i=1,...n. To 
form this model by using the ordinary least squares 
(OLS) method classical assumptions related to 
regression analysis have to be satisfied. Also, the 
model given by (1) is in matrix notation as follows 
(Eq. 2): 
 

𝑌 = 𝑋𝛽 + 𝜀                    (2) 
 
where, Y is an (n x 1) vector of responses, X is an (n x 
p) matrix of regressors, β is a (p x 1) vector of  
unknown parameters and ε is an (n x 1) vector of 
random errors for given p = k + 1. 

In this section, the existing theory and operation 
of GA and MARS are outlined, respectively. 

2.1. Genetic algorithm 

Each parameter of a model is coded as a fixed-
length string of binary numbers (genes) in GA. Genes 
is given as a cascade form called a chromosome. The 
initial values of parameters are determined 
randomly. Therefore, N chromosomes are converted 
to random binary strings at the beginning of the 
estimation process (Yao and Sethares, 1994). A 
binary string should be converted to base ten for 
decoding this string into a real number. The real 
values of parameters can be calculated in this way. If 
the number of parameters is greater than one, the 
strings of each parameter can be joined into a single 
string and operations can be made on this string. The 
operations used in GA are selection, crossover and 
mutation, respectively. They are called as genetic 
operators. 

The selection operator is used for selecting 
chromosomes in the population. This operation is 
made according to the fitness level of chromosomes. 
There are many different selection strategies. Some 
of them are fitness-proportionate selection, rank 
selection and tournament selection. The originally 
used fitness-proportionate selection strategy is 
based on the division of the individual’s fitness by 
the average fitness of the population (Mitchell, 
1996). The rank selection strategy alternatively used 
for preventing too quick convergence is based on the 
rank of the fitness values of the objective function of 
chromosomes in the population. Let S(𝛽) be an 
objective function defined as (Eq. 3): 

 
𝑆(𝛽) = (𝑌 − 𝑓(𝑋, 𝛽))′(𝑌 − 𝑓(𝑋, 𝛽))                                   (3) 
 
S(βi, u) is given as the fitness value of the 
chromosome βi at generation u. The probability of 
selecting the chromosome βi into the next generation 
of the population as a parent is given by (Eq. 4): 
 

𝑟(𝛽𝑖 , 𝑢) =
2𝑚𝑖(𝑢)

𝑁(𝑁+1)
                                                                   (4) 

 
where, mi(u) denotes the rank of S(βi, u) by sorting 
descendingly and N is the number of chromosomes 
in the population (Pan et al., 995). Another 
alternatively used and computationally more 
efficient strategy is given as tournament selection. It 
is similar to rank selection in terms of selection 
pressure (Mitchell, 1996). 

The crossover operator, main distinguishing 
feature of GA, provides exchanging randomly 
selected parts of two individuals in order to form 
two offspring which are evaluated in the next 
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generation of the population (Mitchell, 1996). If 𝑃1 =
0010100110 and 𝑃2 = 1100011011 and the 
crossover point is 5, then the two new offspring will 
become 𝑃1

∗ = 0010111011 and 𝑃2
∗ = 1100000110. 

The mutation operator provides randomly 
changes on the gene from 0 to 1 or 1 to 0 with a 
small probability. It aims to inhibit premature 
convergence. If the probability of mutation is larger, 
then the convergence rate will be faster with a large 
steady state error (Yao and Sethares, 1994). 

As a summary, the algorithm of GA can be given 
as follows: 

 
1. Choose randomly initial population (t). 
2. Determine the fitness of population (t). 
3. Repeat the steps given below until the best 
individual is good enough. 
4. Select parents from population (t). 
5. Apply crossover on parents for creating 
population (t+1). 
6. Apply mutation on population (t+1). 
7. Determine the fitness of population (t+1). 

2.2. Multivariate Adaptive Regression Splines  

MARS is a nonparametric approximation of the 
relationship between a response and a set of 
regressors in reflected pairs of simple linear splines. 
The reflected pairs take the form of (Eq. 5):  

 

(𝑥 − 𝑡)+ = {
𝑥 − 𝑡,      𝑖𝑓 𝑥 > 𝑡

0,         𝑒𝑙𝑠𝑒      
                       (5) 

 
where, the subscript “+” means the argument is a 
truncated power function. The MARS model has the 
form (Eq. 6): 

 
𝑦 = 𝛽0 + ∑ 𝛽𝑚ℎ𝑚(𝑥)𝑀

𝑚=1                                  (6) 
 
where, ℎ𝑚(𝑥) are basis functions and 𝛽0, … , 𝛽𝑚 the 
unknown parameters for i=1,…, M. Once the basis 
functions (BFs) are investigated then 𝛽0, … , 𝛽𝑚   are 
estimated by ordinary least squares method. The 
basis functions can be represented by (Eq. 7):  
 
ℎ𝑚(𝒙) = ∏ [𝑆𝑘,𝑚(𝒙𝑣(𝑘,𝑚) − 𝑡𝑘,𝑚)]+

𝑞𝐾𝑚
𝑘=1                 (7) 

 
Where, 𝐾𝑚  is the number of variables (interaction 
order) in the 𝑚th basis expansion. 𝒙𝑣(𝑘,𝑚) is the 𝑣 th 

variable,  1 ≤ 𝑣(𝑘, 𝑚) ≤ 𝑛, 𝑡𝑘,𝑚 is a knot on each of 

the corresponding variable. 
MARS algorithm adaptively selects the basis 

function set by two iterative approaches: forward 
and backward selection. It uses the residual squared 
error in iterations to compare the partition points. 
The criterion used to set the final model is a 
modified generalized cross validation (GCV) of the 
first proposed one by Wahba and Craven (1978). The 
difference between the two criteria comes from a 
penalty term that reflects the complexity of the 
model in MARS by prohibiting a model with many 
variables that decreases only slightly the residual 
errors (Friedman, 1991). 

MARS approach allows a nonlinear relationship 
over different intervals of 𝑥 (the vector of 
regressors) for modeling 𝑦 (Sephton, 2001). The 
relationship between the regressors and the 
response is fitted by basis functions that are 
basically splines. The main idea behind MARS is to 
explore the relationship by splitting the regressors 
over its region into several intervals and transform 
the original regressors over the intervals. MARS fits a 
spline based model in each interval. BFs include knot 
locations relating to the regressors. BFs can be a 
single or multivariable interaction term. The final 
model is a combination of BFs. Model selection is 
accomplished using GCV criterion given in Eq. 8: 

 

𝐺𝐶𝑉 =
1

𝑁
∑ [𝑦𝑖 − 𝑓𝑀(𝒙)]2𝑁

𝑖=1 [1 −
𝐶(𝑀)

𝑁
]2⁄                             (8) 

 
here, 𝑓𝑀(𝒙) is the fitted response value with the 
observed regressors, M represents the maximum 
number of observations and  𝐶(𝑀) is the complexity 
parameter to the corresponding model. The final 
MARS model is the one with the smallest 𝐺𝐶𝑉 value 
and the largest 𝑅𝑎𝑑𝑗

2  value (Friedman, 1991; Hastie et 

al., 2001).   

3. Monte Carlo simulation study 

In this section, a simulation study was conducted 
in order to compare GA and MARS performance 
when the level of multicollinearity is low, moderate, 
and high. For this aim, two programs of the variable 
selection were generated for both MARS (Milborrow, 
2011) and GA by using R Software (RDC Team, 2006) 
and MATLAB2010a, respectively. The percentages of 
selecting the best subset among others were 
summarized and the results were interpreted. 

3.1. Design of the model 

A comprehensive Monte Carlo experiment 
designed by using the popular asphalt data (Gorman 
and Toman, 1966) in the literature was performed in 
order to examine the performance of these 
approaches. The number of observations was 
considered as n = (50; 100; 500) regarding to the 
small, medium, and large size of samples. Two types 
of Press statistics were used in order to measure the 
discrepancy between each observation and its 
prediction. To illustrate how to compute them we 
might start for the data sets including 50 
observations. ∑ (𝑦𝑖 − �̂�𝑖)

250
𝑖=1   was used to calculate 

Press1 statistic. After each data set was increased 
about extra 15 observations, ∑ (𝑦𝑖 − �̂�𝑖)

265
𝑖=51  was 

used to calculate Press2 statistic. For the data sets 
including 100 and 500 observations, the same 
computations were considered for Press statistics. 
When additional data set that was used for 
calculation of Press2 values and 100 times of 
repetition were considered, the total number of 
observations reached n = (6500, 11500,51500) 
observation.  𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽6𝑥6 + 𝜀 was 
used for the corresponding model. Here, the random 



Kilinc et al/ International Journal of Advanced and Applied Sciences, 3(12) 2016, Pages: 26-31 

29 
 

error term 𝜀 was generated from the normal 
distribution with mean 0 and standard deviation 𝜎 = 
(0.05,0.1,1) for all sample sizes. True model 
parameters were considered as 𝛽= (-1.02079, -
0.64649, 0.55547, 0, 0, 0, 0.24479)’. The regressors 
were generated from normal distribution as well. In 
addition to that, 𝑥4 was considered as dummy 
variable taking the values of 0 and 1. This 
experiment was repeated for 100 times for all 
sample sizes. In order to generate multicollinearity 
in the data set, two of regressors 𝑥2 and 𝑥3 were 
used. Hence, the multicollinearity yielded from 𝑥5 = 
2𝑥2 + 0.5𝑥3 + u where u was generated from the 
normal distribution with mean 0 and standard 
deviation h =(0.01,0.02,0.03).  

4. Results and discussion 

In the simulation study, the combinations of 
regressors (𝑥1, 𝑥2), (𝑥1, 𝑥6), (𝑥1, 𝑥2, 𝑥6), (𝑥1, 𝑥5, 𝑥6, 
(𝑥1, 𝑥2, 𝑥4, 𝑥6), and (𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6) were taken into 
account as the best subsets among the models. 
However, due to the limited size of the paper, only 
the best subset of 𝑥1, 𝑥2, 𝑥6 namely (1,2,6) set was 
given and then interpreted. Hence, the frequencies of 
this selection were recorded in Tables 1-3. GA and 

MARS were applied to 27 different scenarios with 
different values of 𝜎 =(0.05,0.1,1) and 
h=(0.01,0.02,0.03) respectively. Here, h=0.01 
indicates high multicollinearity whereas h=0.03 
indicates low multicollinearity. GA and MARS were 
devised for variable selection by using a computer 
based program code. Specifically, the frequencies of 
the best model (counts) that were able to select the 
best subset of regressors and Press values in GA and 
MARS were obtained from the code for 
interpretation. For this aim, the selection of the best 
subset of regressors was coded as 1 and 0 otherwise. 
Hence the total number of 1' s was the total count of 
the selection of the value 1 among repetitions. The 
Press2 values were estimated using a data set 
including 15 extra observations that were already 
generated at the beginning of the data set 
construction. Hence, n=15x100=1500 extra 
observations were used for validation of 
observations for each data set of n=6500, n=11500, 
and n=51500 of observations. Although Press1 and 
Press2 values were computed for two methods, only 
Press1 values and counts were summarized for both 
GA and MARS in Tables 1-3 to prevent duplication in 
explanations. 

 
Table 1: Comparison of GA and MARS when high multicollinearity occurred 

h = 0.01 
σ = 0.05 σ = 0.1 σ = 1 

GA MARS GA MARS GA MARS 

n = 50 
Press 0.112 0.103 0.431 0.426 34.820 --- 
Count 57 72 44 68 1 0 

n = 100 
Press 0.240 0.228 0.956 0.947 89.140 --- 
Count 67 81 60 80 14 0 

n = 500 
Press 1.242 1.230 4.975 4.935 502.851 489.068 
Count 67 98 61 94 49 9 

 

Among the data sets of n=50 observations given 
in Table 1 where high multicollinearity occurred, GA 
selected the best subset of (1,2,6) for 57 times 
among 100 experiments whereas MARS selected the 
best subset of regressors (1,2,6) for 72 times when 𝜎 
= 0.05. 

On the other hand, GA selected the best subset of 
regressors (1,2,6) for 44 times whereas MARS 
selected the best subset of (1,2,6) for 68 times when 
𝜎 =0.1. The Press value was computed as 0.103 in 
MARS whereas it was computed as 0.112 in GA. The 
Press value increased from 0.103 in the change of 
the 𝜎 (=0.1) to 0.426 in MARS whereas it was also 
increased from 0.112 to 0.431 in GA. Next, GA 
selected the best subset of regressors (1,2,6) for 67 
times among 100 experiments whereas the best 
subset of regressors (1,2,6) was selected by MARS 
for 81 times in the data sets of n=100 observations 
where high multicollinearty exits when 𝜎 = 0.05. On 
the other hand, GA selected the best subset of 
regressors (1,2,6) for 60 times whereas MARS 
selected the best subset of regressors of (1,2,6) for 
80 times when 𝜎 = 0.1. The Press value was 
computed as 0.228 in MARS whereas it was 
computed as 0.240 in GA when 𝜎 = 0.05. The Press 
value increased from 0.2281 to 0.947 in MARS in the 

change of the 𝜎(=0.1) whereas it was also increased 
from 0.240 to 0.956 in GA. Note that MARS could not 
compute Press values for n=(50, 100) observations 
when 𝜎=1 although it could compute for n=500 
observations. The frequency of the selection of the 
best subset was very low (=9) whereas the Press 
value was quite large (=489.068) in MARS when n = 
500. 

In Table 2, the data sets of n=(50,100,500) 
observations where medium multicollinearity 
existed were compared in terms of Press and count 
values for MARS and GA. The results show that MARS 
selected the best subset of regressors of (1,2, 6) 
more than GA for each sample size when 𝜎 = 
(0.05,0.1). 

In Table 3, the data sets of n=(50,100,500) 
observations where low multicollinearity existed 
were compared in terms of Press and count values 
for MARS and GA. As it can be seen from the results 
that the Press values and counts obtained by MARS 
were smaller than the ones obtained by GA at  𝜎 = 
(0.05, 0.1). On the other hand, MARS could not 
compute the Press values for n=(50, 100) at 𝜎 = 1 as 
given in the previoustables. The Press value obtained 
by GA was lower (=496.423) for n=500 than the ones 
in the previous multicollinearity levels. 
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In Table 4, AIC and GCV values obtained by GA 
and MARS were summarized for 27 scenarios, 
respectively. According to the results, the larger the 

sample size, the better AIC values obtained by GA. 
Similarly, the larger the sample size, the better GCV 
values obtained by MARS. 

 
Table 2: Comparison of GA and MARS when medium multicollinearity occurred 

h = 0.02 
σ = 0.05 σ = 0.1 σ = 1 

GA MARS GA MARS GA MARS 

n = 50 
Press 0.106 0.104 0.429 0.419 39.945 --- 
Count 58 75 52 66 2 0 

n = 100 
Press 0.238 0.236 0.956 0.940 91.816 --- 
Count 61 85 63 71 11 0 

n = 500 
Press 1.230 1.229 4.960 4.885 491.964 466.984 
Count 63 100 68 95 49 6 

 
Table 3: Comparison of GA and MARS when low multicollinearity occurred 

h = 0.03 
σ = 0.05 σ = 0.1 σ = 1 

GA MARS GA MARS GA MARS 

n = 50 
Press 0.112 0.105 0.446 0.437 33.609 --- 
Count 58 82 43 68 4 0 

n = 100 
Press 0.233 0.223 0.898 0.882 96.6145 --- 
Count 60 85 58 80 13 0 

n = 500 
Press 1.237 1.234 5.007 4.942 496.423 480.496 
Count 62 100 62 98 37 4 

 
Table 4: AIC and GCV values obtained by GA and MARS 

h 
GA 

n; σ AIC n; σ AIC n; σ AIC 

0.01 
50; 0.05 -154.264 100; 0.05 -310.022 500; 0.05 -1571.295 
50; 0.1 -87.307 100; 0.1 -172.690 500; 0.1 -877.284 
50; 1 134.014 100; 1 280.549 500; 1 1429.372 

0.02 
50; 0.05 -157.116 100; 0.05 -311.775 500; 0.05 -1576.024 
50; 0.1 -87.398 100; 0.1 -172.432 500; 0.1 -878.923 
50; 1 139.051 100; 1 282.452 500; 1 1418.199 

0.03 
50; 0.05 -154.483 100; 0.05 -313.956 500; 0.05 -1573.117 
50; 0.1 -85.284 100; 0.1 -178.867 500; 0.1 -874.568 
50; 1 128.593 100; 1 288.080 500; 1 1423.096 

h 
MARS 

n; σ GCV n; σ GCV n; σ GCV 

0.01 
50; 0.05 0.003 100; 0.05 0.003 500; 0.05 0.002 
50; 0.1 0.014 100; 0.1 0.012 500; 0.1 0.010 
50; 1 --- 100; 1 --- 500; 1 1.016 

0.02 
50; 0.05 0.003 100; 0.05 0.003 500; 0.05 0.002 
50; 0.1 0.014 100; 0.1 0.012 500; 0.1 0.010 
50; 1 --- 100; 1 --- 500; 1 0.973 

0.03 
50; 0.05 0.003 100; 0.05 0.002 500; 0.05 0.002 
50; 0.1 0.015 100; 0.1 0.011 500; 0.1 0.010 
50; 1 --- 100; 1 --- 500; 1 0.998 

 

5. Conclusion 

In this study, a comprehensive experiment 
designed by using the popular methods GA and 
MARS was applied in order to examine the 
performance of these approaches. The number of the 
sample sizes was considered from small to large data 
sets. It can be concluded that Press values obtained 
by MARS are smaller than the ones in GA. The 
frequency of the selection of the best subset is better 
for MARS than GA except for 𝜎 = 1. It can be also seen 
that the larger sample sizes, the more success in the 
selection of the best subset for MARS and GA. Finally, 
this study exposes that nonparametric methods can 
be preferred for variable selection in order to obtain 
the best model when there is a multicollinearity 
problem in the small, medium or large data sets. 
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