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Abstract. A sigmoidal curve y(t) is a monotone increasing curve such that all derivatives
vanish at infinity. Let tn be the point where the nth derivative of y(t) reaches its global
extremum. In the previous work on sol-gel transition modelled by the Susceptible-Infected-
Recovered (SIR) system, we observed that the sequence {tn} seemed to converge to a point
that agrees qualitatively with the location of the gel point [2]. In the present work we outline a
proof that for sigmoidal curves satisfying fairly general assumptions on their Fourier transform,
the sequence {tn} is convergent and we call it “the critical point of the sigmoidal curve”. In the
context of phase transitions, the limit point is interpreted as a junction point of two different
regimes where all derivatives undergo their highest rate of change.

1. Introduction

Let y(t) be a monotone increasing function with horizontal asymptotes y1 and y2 as t → ±∞
and with lim

t→±∞
y(n)(t) = 0 for all n ≥ 1, i.e, a sigmoidal curve. Let tn be the point where the

nth derivative of y(t) reaches its global extremum. If the sequence {tn} converges, its limit is
called the “critical point” of the sigmoidal curve y(t).

The present work is motivated by an observation on the behaviour of the derivatives
of sigmoidal curves representing gelation phenomena, modelled by the Susceptible-Infected-
Removed (SIR) system of differential equations [2]. We have seen that the points tn where
higher order derivatives reach their absolute extreme values seemed to accumulate at a point
in between the zeros of the second and first derivatives. The location of this accumulation
point agreed qualitatively with the so-called “gel point”. Later on, we computed higher order
derivatives for a number of different sigmoidal functions and we observed the same type of
accumulation behaviour interpreted as the existence of a critical point in the sense defined
above. For odd sigmoidal curves, we observed that the critical point was always located at
t = 0, i.e, at the zero of the first derivative, as expected, but we were unable to prove this even
for the simplest functions. After trying numerous techniques we could explain the existence of
the critical point in terms of the Fourier transform of the first derivative of the sigmoidal curve.
In this paper, we outline the steps leading to the proof of the existence of the critical point.
Complete proofs that are quite technical and lengthy will be presented elsewhere.
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2. Preliminaries

We briefly outline basic properties of Fourier transform. For simplicity assume that f(t) is in
L1. Then its Fourier transform F(f) = F and the inverse transform F−1(F ) = f are defined by

F (ω) =
1√
2π

∫ ∞

−∞
f(t) e−iωt dt, f(t) =

1√
2π

∫ ∞

−∞
F (ω) eiωt dω

respectively. The effect of differentiation in the time domain is multiplication by iω in the
frequency domain, i.e, F(f (n)(t)) = (iω)nF (ω). Multiplication and convolution in the time
and frequency domains are related by F(f(t) g(t)) = 1√

2π
F (ω)G(ω). The “modulation” of low

frequency signal in the time domain is the multiplication of this signal by a sinusoidal function
of fixed (usually high) angular frequency ω0. In the frequency domain, the Fourier transform
of the low frequency function is convolved with the Fourier transform of the sinusoid. The
Fourier transform of a pure sinusoid is represented by Dirac δ functions occurring at ±ω0 and
convolution carries the spectrum of the low frequency signal to the frequencies ±ω0. It follows
that multiplication in the time domain by a complex exponential results in a shift in the frequency
domain. Similarly, multiplication by a linear phase factor in the frequency domain leads to a
shift in the time domain, as given below:

F(f(t)eiω0t) = F (ω − ω0), F−1(e−iαωF (ω)) = f(t− α).

(See [3, 4] for more details.)

3. The existence and non-existence of the critical point

We will use the generalized logistic growth family of curves and its limiting function the
Gompertz curve to illustrate the existence and the nonexistence of the critical point and its
location. The generalized logistic growth curve with horizontal asymptotes at −1 and 1 is given
by

y(t) = −1 + 2
[

1 + ke−βt
]−1/ν

,

where k > 0, β > 0 and ν > 0. The parameter k can be adjusted by a time shift, β corresponds
to a scaling of time and ν is the key parameter that determines the shape of the growth. For
ν = 1, k = 1 and β = 2 we obtain the standard logistic growth y(t) = tanh(t). The Gompertz
curve obtained as the limit of the generalized logistic family for k = 1/n, ν = 1/n, as n→ ∞ is
the function

y(t) = −1 + 2e−e
−βt

.

We present the behavior of the derivatives of these functions in Figure 1. The critical point of
the standard logistic curve is located at t = 0; the choice k = 1 ensures that the critical point
of the generalized logistic curve is also is located at the same point. The Gompertz curve has
no critical point, because the points tn move to negative infinity.

One ingredient for the existence of a critical point is the fact that higher derivatives of
the sigmoidal function behave as localized humps modulated by sinusoids of increasingly high
frequencies and these wave packets accumulate near a certain point, as shown below in Figure 2
(see [1] for the Fourier transform of the first derivative of the generalized logistic curve).

The wave packet behavior in the time domain corresponds to the band-pass property of its
Fourier transform. That is, if higher derivatives resemble more and more closely sinusoids of
increasing frequencies, their Fourier transforms become more and more localized humps located
at higher and higher frequencies. The wave packet behavior is not sufficient to ensure the
existence of the critical point, as in the case of the Gompertz functions these wave packets move
to negative infinity. These wave packets should be agglomerate as the order of differentiation
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Figure 1. (a) Normalized derivatives of the standard logistic growth; (b) Normalized derivatives
of the generalized logistic growth (β = 1, k = 1, ν = 1/5) up to order 30. The behavior of the
generalized logistic is more or less the same except that the zeros of even derivatives are not
fixed. (c) The Gompertz function is the limit of the generalized logistic family, the critical point
move to negative infinity.
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Figure 2. Comparison of the derivatives f (n)(t) of the standard logistic function with sinusoids
of frequency ωn.

increases. The property that ensures this is the “asymptotically constant phase” condition,
given in Proposition 1 below.

The main result is the proposition below, whose proof will be published elsewhere. We claim
that if f(t) satisfies asymptotically constant phase and band-pass hypotheses, to be specified
below, then the critical point is located at t = 0. Note that the asymptotically constant phase
condition is trivially satisfied when f(t) is even.

Proposition 1 Let f(t) be the first derivative of a sigmoidal curve y(t) and f (n)(t) be its nth
derivative. If

i the Fourier transform of f(t) has the form F (ω) = |F (ω)|e−iαωeiψ(ω) where α is a constant
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and ψ(ω) has horizontal asymptotes,

ii for ω > 0, ωn|F (ω)| has a single maximum at ωn and ωn’s are unbounded,

iii the spectrum is localized in the sense that there are constants ωa and ωb (depending on n),
such that

lim
n→∞

∫

|ω|<ωa

ωn|F (ω)| dω = lim
n→∞

∫

|ω|>ωb

ωn|F (ω)| dω = 0,

then the sigmoidal curve y(t) has a critical point located at t = α.
The first condition is the key “asymptotically constant phase” assumption. If F (ω) is as

in (i), then an appropriate shift in time eliminates this phase factor and the phase of F (ω)
becomes asymptotically constant. The requirement of the existence of a single maximum in (ii)
is technical; what we need is ensure that, as n goes to infinity, the the Fourier spectrum of the
nth derivatives be shifted to the region where the phase is nearly constant. Finally (iii) is again
a technical assumption to ensure that the spectrum of the nth derivative is localized. The proof
consists of expressing |fn(t)| using the Fourier inversion formula and proving that for large n, it
is less than |fn(0)|. Intermediate steps include the determination of the location of the spectrum
of the nth derivative, from the equality ω/n = F (ω)/F ′(ω). The behavior of the solutions is
shown in Figure 3, for the standard logistic growth.
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Figure 3. Graphical solution of the equation ω/n = F (ω)/F ′(ω) for the standard logistic
growth.

Finally we note that the asymptotically constant phase assumption leads to an intrinsic
definition of even and odd components of a function f(t), by choosing the origin of the time axis
in such a way that the Fourier transform has asymptotically constant phase.
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