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1 Department of Mathematics, Anadolu University, 26470 Eskişehir, Turkey; nozdemir@anadolu.edu.tr (N.Ö.);
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1. Introduction

It is well-known that every connected odd dimensional Lie group is equipped with a left invariant
almost contact metric structure. These structures give rise to almost contact metric structures on
corresponding Lie algebras [1]. In literature, some certain classes of such structures are studied.
In [2], some general results on 5-dimensional Sasakian Lie algebras were stated, and it was proved that
an odd dimensional nilpotent Lie group with a left invariant Sasakian structure is isomorphic to the real
Heisenberg group. In addition, a classification of five-dimensional Sasakian Lie algebras were obtained.
Then, in [3], left invariant K-contact structures on five-dimensional Lie groups were investigated.
Three-dimensional homogeneous almost contact metric structures were considered in [4]. In [5],
cosymplectic and α-cosymplectic Lie algebras were investigated in terms of corresponding symplectic
Lie algebras and suitable derivations on them.

Our aim in this manuscript is to determine almost contact metric structures on five-dimensional
nilpotent Lie algebras by direct calculation. We use the classification of five-dimensional nilpotent
Lie algebras given in [6]. We consider some certain classes of almost contact metric structures,
and, by this approach, we get some general results on left invariant almost contact metric structures
on five-dimensional nilpotent Lie groups.

2. Preliminaries

Let M2n+ 1 be a differentiable manifold of dimension 2n + 1. If there is a (1, 1) tensor field φ,
a vector field ξ and a one-form η on M satisfying:

φ2 = −I + η ⊗ ξ, η(ξ) = 1,

then, M is said to have an almost contact structure (φ, ξ, η). A manifold with an almost contact
structure is called an almost contact manifold. If, in addition to an almost contact structure (φ, ξ, η),
M also admits a Riemannian metric g such that

g(φ(X), φ(Y)) = g(X, Y)− η(X)η(Y),
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for all vector fields X, Y, then M is an almost contact metric manifold with the almost contact metric
structure (φ, ξ, η, g). The Riemannian metric g is called a compatible metric. The one-form defined by

Φ(X, Y) = g(X, φ(Y)),

for all X, Y ∈ X(M), is called the fundamental two-form of the almost contact metric
manifold (M, φ, ξ, η, g). In [7], a classification of almost contact metric manifolds was obtained
via the study of the covariant derivative of the fundamental two-form. A space having the same
symmetries as the covariant derivative of the fundamental two-form was written, and, then, this space
was decomposed into twelve U(n)× 1 irreducible components C1, . . . , C12. There are 212 invariant
subspaces, each corresponding to a class of almost contact metric manifolds. For example, the trivial
class for which∇Φ = 0 [8], corresponds to the class of cosymplectic (called co-Kähler by some authors)
manifolds, C1 is the class of nearly-K-cosymplectic manifolds, etc. [7]. For classification of almost
contact metric structures (see also [9]). In this work, we focus on cosymplectic, nearly cosymplectic,
α-Sasakian, β-Kenmotsu and almost cosymplectic structures.

Let (φ, ξ, η, g) be an almost contact metric structure on M with the fundamental two-form Φ.
(φ, ξ, η, g) is called:

• nearly cosymplectic if ∇XΦ(X, Y) = 0,
• α-Sasakian (C6) if ∇Xφ(Y) = α(g(X, Y)ξ − η(Y)X) for a constant α,
• β-Kenmotsu (C5) if ∇Xφ(Y) = β(Φ(X, Y)η(Z)−Φ(X, Z)η(Y)) for a constant β,
• semi cosymplectic (C1⊕C2⊕C3⊕C7⊕C8⊕C9⊕C10⊕C11) if δΦ = 0 and δη = 0, where δ denotes

the coderivative of a differential form,
• almost cosymplectic (C2 ⊕ C9) if dΦ = 0 and dη = 0, where d denotes the exterior derivative of a

differential form,

for all vector fields X, Y, Z on M.
In literature, there are different but related definitions of cosymplectic structures. Here, we remind

them and relate to the classes we use. In [5,10], an almost cosymplectic manifold is defined as a smooth
manifold with a one-form η and a two-form Φ such that η ∧Φn is a volume form. If both η and Φ are
closed, then the manifold is said to be cosymplectic. In the same context, if dη = 0 and dΦ = 2αη ∧ φ

for a constant α, then the manifold is called α-cosymplectic. An almost contact metric manifold
(M, φ, ξ, η, g), where (η, Φ) is a α cosymplectic structure is called an almost co-Kählbaser manifold.
In addition, if this manifold is normal, then it is said to be co-Kähler. An almost contact metric manifold
(M, φ, ξ, η, g) such that (η, Φ) is an α-cosymplectic structure is called an almost α co-Kähler manifold.
A normal almost α co-Kähler manifold is said to be α co-Kähler. Refer to [5,10] and references therein.
“Almost cosymplectic”, “cosymlectic” and “α-Kenmotsu” structures in our paper correspond to “almost
co-Kähler”, “co-Kähler” and “α co-Kähler” in [5], respectively. Throughout the paper, the definitions
in and [7,8] will be followed.

The existence of metric connections on five-dimensional almost contact metric manifolds
compatible with the almost contact structure was investigated in [11]. The space of torsion
tensors of a metric connection splits into ten U(2)-irreducible subspaces W1, W2, . . ., W10. Thus,
there are 210 classes of almost contact metric structures in five-dimensions according to components of
torsion tensor [11].

An almost contact metric structure (φ, ξ, η, g) on a connected Lie group G is said to be left invariant
if g is left invariant and if the left multiplication map La : G −→ G, La(x) = a.x has properties

φ ◦ La = La ◦ φ, La(ξ) = ξ,

for all a ∈ G.
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Let g be an odd dimensional Lie algebra. An almost contact metric structure on g is a quadruple
(φ, ξ, η, g), where η is a one-form, φ is an endomorphism of g, ξ ∈ g such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, g(φ(X), φ(Y)) = g(X, Y)− η(X)η(Y),

for all vector fields X, Y and g is a positive definite compatible inner product on g. It is also convenient
to use defining relations for the structures on Lie algebras. For instance, an almost contact metric
structure (φ, ξ, η, g) on a Lie algebra g is said to be nearly cosymplectic if ∇XΦ(X, Y) = 0 for any X, Y
in g, etc.

Let G be a connected Lie group endowed with a left invariant almost contact metric structure
(φ, ξ, η, g) and g ∼= TeG be the corresponding Lie algebra of G. Then, this structure uniquely yields
an almost contact metric structure (φ, ξ, η, g) on g.

In this work, we study almost contact metric structures on five-dimensional nilpotent Lie algebras.
The classification of nilpotent Lie algebras of dimension ≤ 5 was obtained in [6] (see also [12,13]).
Indeed, gi are five-dimensional nilpotent algebras with the corresponding basis {e1, . . . , e5} and
non-zero brackets as follows:

g1 : [e1, e2] = e5, [e3, e4] = e5,

g2 : [e1, e2] = e3, [e1, e3] = e5, [e2, e4] = e5,

g3 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5,

g4 : [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

g5 : [e1, e2] = e4, [e1, e3] = e5,

g6 : [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5.

The rest of the classes g7, g8, g9 are abelian.

3. Almost Contact Metric Structures on gi

Let G be a connected Lie group and (φ, ξ, η, g) a left invariant a.c.m.s. (almost contact
metric structure) on G. Denote the corresponding a.c.m.s. on g by the same symbols. Choose the basis
{e1, . . . , e5} such that basis elements are g-orthonormal.

First, we investigate the existence of some classes of almost contact metric structures on each gi.

The algebra g1: By Kozsul’s formula, the covariant derivatives of the basis elements are as follows:

∇e1 e2 = 1
2 e5, ∇e1 e5 = − 1

2 e2, ∇e2 e1 = − 1
2 e5, ∇e2 e5 = 1

2 e1,

∇e3 e4 = 1
2 e5, ∇e3 e5 = − 1

2 e4, ∇e4 e3 = − 1
2 e5, ∇e4 e5 = 1

2 e3,

∇e5 e1 = − 1
2 e2, ∇e5 e2 = 1

2 e1, ∇e5 e3 = − 1
2 e4, ∇e5 e4 = 1

2 e3.

• There exists no cosymplectic structure on g1.
To see this, assume Φ = ∑ bijeij is a two-form on g1 such that ∇Φ = 0. Then, for any elements
ei, ej, ek of the basis:

(∇ei Φ)(ej, ek) = ei[Φ(ej, ek)]−Φ(∇ei ej, ek)−Φ(ej,∇ei ek) (1)

= −Φ(∇ei ej, ek)−Φ(ej,∇ei ek) = 0.

It is easy to see that ∇Φ = 0 if and only if bij = 0 for any i, j. Thus, (φ, ξ, η, g) is not cosymplectic.
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• There is no nearly cosymplectic structure (i.e., (∇XΦ)(X, Y) = 0). Let Φ = ∑ bijeij, by direct
calculation, we obtain,

(∇ei Φ)(ei, ej) = 0 ⇐⇒ b13b23 + b14b24 = b13b14 + b23b24 = 0,

where b2
14 = b2

23 and b2
13 = b2

24 and the remaining coefficents are zero. Thus Φ = b13e13 + b14e14 +

b23e23 + b24e24. By polarizing the equation (∇XΦ)(X, Y) = 0, we get

∇XΦ(Y, Z) +∇YΦ(X, Z) = 0. (2)

Then for X = e2, Y = e3 and Z = e5 in the equation (2), we obtain b13 = −b24. In addition,
replacing e3, e5 and e2 for X, Y, Z respectively in the equation (2), we get b13 = 2b24. Thus,
b13 = b24 = 0. On the other hand, we get b14 = b23 and 2b23 = −b14 for X = e3, Y = e1 and Z = e5

and X = e1, Y = e5 and Z = e3 respectively in the equation (2), which implies b14 = b23 = 0.
• There is no non-zero parallel vector field on g1. Let ξ = ∑ aiei be a parallel vector field on g1

(i.e., ∇ξ = 0). Then, by the Kozsul formula, we have ai = 0 for i = 1, . . . , 5.
Note that since (∇Xη)(Y) = g(∇Xξ, Y) for all vector fields X and Y, we have ∇η 6= 0 for
any almost contact metric structure (φ, ξ, η, g) on g1. In particular, (φ, ξ, η, g) is neither C1

(nearly-K-cosymplectic), nor C2.
• A vector field ξ on g1 is Killing if and only if ξ ∈ 〈e5〉.

Let ξ = ∑ aiei be a Killing vector field. Then, for any ei, ej, we have g(∇ei ξ, ej) = −g(∇ej ξ, ei).
Then,

g(∇e2 ξ, e5) = −
1
2

a1and g(∇e5 ξ, e2) = −
1
2

a1

yields a1 = 0. Similarly, since g(∇e1 ξ, e5) = −g(∇e5 ξ, e1), we have a2 = 0 and
g(∇e4 ξ, e5) = −g(∇e5 ξ, e4) gives a3 = 0. In addition, g(∇e3 ξ, e5) = −g(∇e5 ξ, e3) implies a4 = 0.
As a result, ξ = a5e5.

• There exists 1/2-Sasakian structure on g1, where the fundamental two-form is Φ = −e12 − e34

and ξ = e5. Note that this structure is given in [2] as a Sasakian structure because of the coefficient
2 in the defining relation of a Sasakian structure.

• There is no β-Kenmotsu structure.
Assume (φ, ξ, η, g) is a β-Kenmotsu structure with fundamental two-form Φ = ∑ bijeij. Then,
g(∇ei ξ, ej) = g(∇ej ξ, ei) for any basis elements ei, ej, which implies that ξ = a1e1 + a2e2 + a3e3 +

a4e4 and η = b1e1 + b2e2 + b3e3 + b4e4. On the other hand for X = e1, Y = e1, Z = e2 and for
X = e1, Y = e1, Z = e5 in the defining relation of a β-Kenmotsu structure, we obtain b15 = 2βb1b12

and b12 = −2βb1b15, respectively. Thus, b12 = b15 = 0. Similar arguments work if X, Y, Z
are replaced by other basis elements. We get bij = 0 for all i, j. As a result the structure is
not β-Kenmotsu.

• There is no almost cosymplectic structure.
Let η = ∑ biei and Φ = ∑ bijeij. Then, since de5 = −e12 − e34 and dei = 0 for i = 1, 2, 3, 4,
we get dη = −b5(e12 + e34). This yields dη = 0 iff b5 = 0. On the other hand, we have
dΦ = b15e134 + b25e234 + b35e123 + b45e124, which is zero iff b15 = b25 = b45 = 0. In this case,
Φ ∧Φ = 2(b12b34 + b14b23 − b13b24)e1234 and η ∧Φ2 = 0, which contradicts with the assumption
that (φ, ξ, η, g) is an almost contact metric structure.

• There are semi cosymplectic structures on g1.
For any vector X = ∑ xiei on g1, we have δΦ(X) = x5(b12 + b34). Thus, δΦ = 0 for all X iff
b12 = −b34. In addition, δη = 0 for any one-form η. Choose, for example, the a.c.m.s. (φ, ξ, η, g),
where ξ = e5, η = e5 and Φ = e12 − e34. This structure is semi cosymplectic.

• Consider the a.c.m.s. (φ, ξ, η, g), where φ(e1) = −e4, φ(e2) = −e3, φ(e3) = e2, φ(e4) = e1 and
ξ = e5, η = e5 on g1. We show that there is a metric connection ∇c compatible with this structure.
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Assume that ∇c is a metric connection of g. Then, ∇c = ∇+ A, where A is a skew-symmetric
(2, 1) tensor field. Since ∇c is compatible with ξ = e5, we have ∇c

ei
e5 = 0 for all basis elements ei.

We obtain

A(e1, e5) =
1
2

e2, A(e2, e5) = −
1
2

e1, A(e3, e5) =
1
2

e4, A(e4, e5) = −
1
2

e3.

Metric compatibility of ∇c yields

0 = e1[g(e1, e2)] = g(∇c
e1

e1, e2) + g(e1,∇c
e1

e2),

and thus g(e1,∇c
e1

e2) = 0. Note that ∇c
e1

e1 = ∇e1 e1 + A(e1, e1) = 0. Similarly, g(e2,∇c
e1

e2) =

g(e5,∇c
e1

e2) = 0. Hence, ∇c
e1

e2 = a3e3 + a4e4 for some constants a3, a4 and A(e1, e2) = a3e3 +

a4e4 − 1
2 e5.

Since ∇c is also compatible with φ, that is, ∇cφ = 0, we have

0 = (∇c
e1

φ)(e2) = ∇c
e1
(φ(e2))− φ(∇c

e1
e2) = −∇c

e1
e3 − φ(a3e3 + a4e4).

Thus,
∇c

e1
e3 = −a3e2 − a4e1 = A(e1, e3).

In addition, (∇c
e1

φ)(e4) = 0 implies φ(∇c
e1

e4) = 0. By the identity φ2 = −I + η ⊗ ξ, we get

0 = φ2(∇c
e1

e4) = −∇c
e1

e4 + g(∇c
e1

e4, e5)e5,

which gives ∇c
e1

e4 = A(e1, e4) = 0. Note that g(∇c
e1

e4, e5) = 0 since ∇c is a metric connection.
Similarly, ∇c

e2
e3 = A(e2, e3) = 0. By direct calculation, we get

∇c
e2

e4 = A(e2, e4) = a4e1 + a3e2,

∇c
e3

e4 = a3e3 + a4e4, A(e3, e4) = a3e3 + a4e4 −
1
2

e5.

To sum up,

A = e1 ⊗ {a4(−e13 + e24)− 1
2 e25}+ e2 ⊗ {a3(−e13 + e24) + 1

2 e15}
+e3 ⊗ {a3e12 − 1

2 e45}+ e4 ⊗ {a4e12 + 1
2 e35}+ e5 ⊗ {− 1

2 e12 − 1
2 e34}.

Since (φ, ξ, η, g) has a totally skew-symmetric metric connection, by Proposition 4.1 in [11], we
conclude that (φ, ξ, η, g) is in the classW3 ⊕W4 ⊕W5 ⊕W6 with respect to the classification of
Puhle in [11].

Similar observations can be made for existing structures on each gi.

The algebra g2: By Kozsul’s formula, the covariant derivatives of the basis elements are as follows:

∇e1 e2 = 1
2 e3, ∇e1 e3 = − 1

2 e2 +
1
2 e5, ∇e1 e5 = − 1

2 e3, ∇e2 e1 = − 1
2 e3,

∇e2 e3 = 1
2 e1, ∇e2 e4 = 1

2 e5, ∇e2 e5 = − 1
2 e4, ∇e3 e1 = − 1

2 e2 − 1
2 e5,

∇e3 e2 = 1
2 e1, ∇e3 e5 = 1

2 e1, ∇e4 e2 = − 1
2 e5 , ∇e4 e5 = 1

2 e2,

∇e5 e1 = − 1
2 e3, ∇e5 e2 = − 1

2 e4, ∇e5 e3 = 1
2 e1, ∇e5 e4 = 1

2 e2,
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• There exists no cosymplectic structure.
The proof is similar to that of g1.

• There exists no nearly cosymplectic structure.
Assume that there exists a nearly cosymplectic structure (φ, ξ, η, g) with the fundamental two-form
Φ = ∑ bijeij. Then, for any basis elements ei, ej, we have (∇ei Φ)(ei, ej) = −Φ(ei,∇ei ej) = 0.
Thus, we get:

(∇e1 Φ)(e1, e2) = 0 ⇒ b13 = 0, (∇e1 Φ)(e1, e3) = 0 ⇒ b12 = b15, (∇e2 Φ)(e2, e1) = 0 ⇒ b23 = 0,
(∇e2 Φ)(e2, e3) = 0⇒ b12 = 0,
(∇e2 Φ)(e2, e4) = 0⇒ b25 = 0, (∇e2 Φ)(e2, e5) = 0⇒ b24 = 0,
(∇e3 Φ)(e3, e1) = 0⇒ b35 = 0 and (∇e4 Φ)(e4, e2) = 0⇒ b45 = 0.

Thus, the fundamental two-form is of type Φ = b14e14 + b34e34. From the equation
Φ(X, Y) = g(X, φ(Y)), the endomorphism φ is defined by φ(e1) = −b14e4, φ(e2) = 0,

φ(e3) = −b34e4, φ(e4) = b14e1 + b34e3, φ(e5) = 0. Let ξ =
5
∑

i=1
aiei and η =

5
∑

i=1
biei. Then,

φ2(e2) = 0 = −e2 + η(e2)ξ ⇒ b2a2 = 1, b2a5 = 0⇒ a5 = 0.
On the other hand,
φ2(e5) = 0 = −e5 + η(e5)⇒ b5a5 = 1⇒ a5 6= 0. Therefore, the condition φ2 = −I + η ⊗ ξ does
not hold. Thus, the structure is not nearly cosymplectic.

• There is no non-zero parallel vector field on g2.
If a non-zero vector field ξ = ∑ aiei is parallel (∇ξ = 0), by calculating g(∇ei ξ, ej) for basis
elements, we get ai = 0, for i = 1, · · · , 5. It also shows that ∇η 6= 0 for any almost contact metric
structure (φ, ξ, η, g) on g2. In particular, (φ, ξ, η, g) is neither C1 (nearly-K-cosymplectic), nor C2.

• A vector field ξ on g2 is Killing if and only if ξ ∈ 〈e5〉.
Assume ξ = ∑ aiei is a Killing vector field. Then, for any ei, ej, we have g(∇ei ξ, ej) = −g(∇ej ξ, ei).
Thus,

g(∇e2 ξ, e3) = −
1
2

a1, g(∇e3 ξ, e2) = −
1
2

a1 ⇒ a1 = 0,

and similarly,
g(∇e4 ξ, e5) = −g(∇e5 ξ, e4)⇒ a2 = 0,

g(∇e1 ξ, e5) = −g(∇e5 ξ, e1)⇒ a3 = 0,

g(∇e2 ξ, e5) = −g(∇e5 ξ, e2)⇒ a4 = 0.

• There is no α-Sasakian structure. Assume that a structure (φ, ξ, η, g) on g2 is α-Sasakian.
Then, ξ ∈ 〈e5〉, since it is a Killing vector field. On the other hand, by considering the relation
∇Xξ = −αφ(X), we get the endomorphism:

φ(e1) =
a5

2α
e3, φ(e2) =

a5

2α
e4, φ(e3) = −

a5

2α
e1, φ(e4) = −

a5

2α
e2.

In addition, the structure must satisfy the defining relation of the class of α-Sasakian structures:

(∇Xφ)(Y) = α(g(X, Y)ξ − η(Y)X).

However, it is easy to see that this relation is not satisfied for X = Y = e1. Hence, the structure is
not α-Sasakian.
Let (φ, ξ, η, g) is a β-Kenmotsu structure with fundamental two-form Φ = ∑ bijeij.
Then, g(∇ei ξ, ej) = g(∇ej ξ, ei) for any basis elements ei, ej. Since g(∇e1 ξ, e2) = − a3

2 , g(∇e2 ξ, e1) =
a3
2 ⇒ a3 = 0 and g(∇e2 ξ, e4) = − a5

2 , g(∇e4 ξ, e2) =
a5
2 ⇒ a4 = 0, we have ξ = a1e1 + a2e2 + a4e4

and η = b1e1 + b2e2 + b4e4. On the other hand, for X = e1, Y = e3, Z = e5 and for X = e3,
Y = e3, Z = e5 in the defining relation of a β-Kenmotsu structure, we obtain b25 = 0 and b13 = 0,
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respectively. Similar arguments work if X, Y, Z are replaced by other basis elements. Thus, we get
bij = 0 for all i, j. As a result, the structure is not β-Kenmotsu.

• There exists a semi cosymplectic structure.
By checking covariant derivatives, it can be seen that δη = 0 for any one-form η. In addition,
for a two-form Φ = ∑ bijeij, by assuming δΦ = 0, we get b12 = 0 and b13 = −b24. If we
choose Φ = e13 − e24, then the endomorphism φ is φ(e1) = −e3, φ(e2) = e4, φ(e3) = e1,
φ(e4) = −e2, φ(e5) = 0. For ξ = e5 and η = e5, (φ, ξ, η, g) is a semi cosymplectic structure on g2.

• There exists an almost cosymplectic structure.
The almost contact metric structure (φ, ξ, η, g), where ξ = e2, η = e2 and Φ = e15 + e34 is almost
cosymplectic, that is dΦ = dη = 0.

The algebra g3: By Kozsul’s formula, the covariant derivatives of the basis elements are as follows:

∇e1 e2 = 1
2 e3, ∇e1 e3 = − 1

2 e2 +
1
2 e4, ∇e1 e4 = − 1

2 e3 +
1
2 e5, ∇e1 e5 = − 1

2 e4,

∇e2 e1 = − 1
2 e3, ∇e2 e3 = 1

2 e1 +
1
2 e5, ∇e2 e5 = − 1

2 e3,

∇e3 e1 = − 1
2 e2 − 1

2 e4, ∇e3 e2 = 1
2 e1 − 1

2 e5, ∇e3 e4 = 1
2 e1, ∇e3 e5 = 1

2 e2,

∇e4 e1 = − 1
2 e3 − 1

2 e5, ∇e4 e3 = 1
2 e1, ∇e4 e5 = 1

2 e1,

∇e5 e1 = − 1
2 e4, ∇e5 e2 = − 1

2 e3, ∇e5 e3 = 1
2 e2, ∇e5 e4 = 1

2 e1.

• There exists no cosymplectic structure.
The proof is similar to that of g1.

• There exists no nearly cosymplectic structure.
Let (φ, ξ, η, g) be a nearly cosymplectic structure with fundamental two-form Φ = ∑ bijeij. Then,
for any basis elements ei, ej, we have (∇ei Φ)(ei, ej) = −Φ(ei,∇ei ej) = 0. After some calculations,
we see that this equation holds if and only if Φ = b24e24. However, the condition η ∧Φ ∧Φ 6= 0 is
not satisfied since Φ ∧Φ = 0.

• There is no non-zero parallel vector field on g3.
The proof is similar to these of g1 and g2.

• A vector field ξ on g3 is Killing if and only if ξ ∈ 〈e5〉.
Let ξ = ∑ aiei be a Killing vector field. Then, for any ei, ej, we have g(∇ei ξ, ej) = −g(∇ej ξ, ei).
Now, g(∇e1 ξ, e3) = −g(∇e3 ξ, e1)⇒ a2 = 0,
g(∇e1 ξ, e4) = −g(∇e4 ξ, e1)⇒ a3 = 0,
g(∇e1 ξ, e5) = −g(∇e5 ξ, e1)⇒ a4 = 0,
g(∇e2 ξ, e3) = −g(∇e3 ξ, e2)⇒ a1 = 0. In other words, ξ is Killing if and only if ξ = a5e5

• There is no α-Sasakian structure.
Let (φ, ξ, η, g) be an α-Sasakian structure on g3. Then, ξ ∈ 〈e5〉, since it is a Killing vector field.
On the other hand, by considering the relation ∇Xξ = −αφ(X), we get the endomorphism as:

φ(e1) =
a5

2α
e4, φ(e2) =

a5

2α
e3, φ(e3) = −

a5

2α
e2, φ(e4) = −

a5

2α
e1.

However, for X = Y = e1, this structure does not satisfy the the defining relation
(∇Xφ)(Y) = α(g(X, Y)ξ − η(Y)X).

• There is no β-Kenmotsu structure.
Let (φ, ξ, η, g) be a β-Kenmotsu structure with fundamental two-form Φ = ∑ bijeij, ξ = ∑ aiei,
η = ∑ biei. Then, g(∇ei ξ, ej) = g(∇ej ξ, ei) for any basis elements ei, ej, which implies that
ξ = a1e1 + a2e2 and η = b1e1 + b2e2. However, replacing basis elements for vector fields in the
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defining relation of a β-Kenmotsu structure, we get bij = 0, for any i, j. Thus, there does not exist
a β-Kenmotsu structure.

• There exists a semi cosymplectic structure.
The almost contact metric structure (φ, ξ, η, g) for which ξ = e5, η = e5 and Φ = e14 − e23 is semi
cosymplectic, that is, δΦ = δη = 0.

• There exists an almost cosymplectic structure.
The almost contact metric structure (φ, ξ, η, g), such that ξ = e1, η = e1 and Φ = e25 − e34 is
almost cosymplectic.

The algebra g4: By Kozsul’s formula, the covariant derivatives of the basis elements are as follows:

∇e1 e2 =
1
2

e3, ∇e1 e3 = −1
2

e2 +
1
2

e4, ∇e1 e4 = −1
2

e3 +
1
2

e5, ∇e1 e5 = −1
2

e4,

∇e2 e1 = −1
2

e3, ∇e2 e3 =
1
2

e1,

∇e3 e1 = −1
2

e2 −
1
2

e4, ∇e3 e2 =
1
2

e1, ∇e3 e4 =
1
2

e1,

∇e4 e1 = −1
2

e3 −
1
2

e5, ∇e4 e3 =
1
2

e1, ∇e4 e5 =
1
2

e1,

∇e5 e1 = −1
2

e4, ∇e5 e4 =
1
2

e1.

• There exists no cosymplectic structure.
Assume that the two-form Φ = ∑ bijeij is parallel. Then, (∇ei Φ)(ej, ek) = 0 for any basis elements
ei, ej, ek. This gives bij = 0. Thus, there is no non-zero parallel two-form on g4.

• There is no nearly cosymplectic structure on g4.
Let Φ = ∑ bijeij be the two-form of a nearly cosymplectic a.c.m.s. Replacing X and Y by basis
elements, we have (∇e1 Φ)(e1, e2) = − 1

2 b13 = 0 and similarly bij = 0, except for b24, b25 and b35.
Thus, Φ = b24e24 + b25e25 + b35e35. We get b24 = 0, b25 = 0 and b35 = 0 for X = e1, Y = e2, Z = e3;
X = e1, Y = e2, Z = e4 and X = e1, Y = e4, Z = e5 respectively from the equation (2).

• There is no non-zero parallel vector field on g4.
If a non-zero vector field ξ = ∑ aiei is parallel (∇ξ = 0), by calculating g(∇ei ξ, ej) for basis
elements, we get ai = 0, for i = 1, · · · , 5. It also shows that ∇η 6= 0 for any almost contact metric
structure (φ, ξ, η, g) on g4. In particular, (φ, ξ, η, g) is neither C1 (nearly-K-cosymplectic), nor C2.

• A vector field ξ on g4 is Killing if and only if ξ ∈ 〈e5〉.
Let ξ = ∑ aiei be a non-zero Killing vector field. Then, for any ei, ej, we have
g(∇ei ξ, ej) = −g(∇ej ξ, ei). Thus,

g(∇e1 ξ, e3) = −g(∇e3 ξ, e1)⇒ a2 = 0,

g(∇e1 ξ, e4) = −g(∇e4 ξ, e1)⇒ a3 = 0,

g(∇e1 ξ, e5) = −g(∇e5 ξ, e1)⇒ a4 = 0,

g(∇e2 ξ, e3) = −g(∇e3 ξ, e2)⇒ a1 = 0.

No condition is obtained for a5. In other words, ξ is Killing if and only if ξ = a5e5.
• There is no α-Sasakian structure.

Let (φ, ξ, η, g) be an α-Sasakian structure on g4. Then, ξ = e5, since it is a unit Killing vector field.
On the other hand, by considering the relation ∇Xξ = −αφ(X), we get φ(e2) = − 1

2α∇e2 e5 = 0.
However, in this case, g(φ(e2), φ(e2)) 6= g(e2, e2)− η(e2)η(e2).

• There is no β-Kenmotsu structure.
Let (φ, ξ, η, g) be a β-Kenmotsu structure with fundamental two-form Φ = ∑ bijeij, ξ = ∑ aiei,
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η = ∑ biei. Then, g(∇ei ξ, ej) = g(∇ej ξ, ei) for any basis elements ei, ej, which implies that
ξ = a1e1 + a2e2 and η = b1e1 + b2e2. However, after an easy calculation on the defining relation
of a β-Kenmotsu structure, we get bij = 0, for any i, j.

• There exists a semi cosymplectic structure.
For any two-form Φ = ∑ bijeij any X = ∑ xiei ∈ g4,

δΦ(X) = −∑(∇ei Φ)(ei, X) = −{x3b12 + x4b13 + x5b14}.

Thus δΦ(X) = 0 for any X iff b12 = b13 = b14 = 0. In addition, for any one-form η = ∑ biei,
we have

δη = −∑(∇ei η)(ei) = −∑ g(∇ei ξ, ei) = 0.

Thus for example, the a.c.m.s. for which ξ = e1, η = e1 and Φ = e23 + e45 is semi cosymplectic.
• There exists no almost cosymplectic structure.

Since dη(X, Y) = 1
2{(∇Xη)(Y) − (∇Yη)(X)}, dη(X, Y) = 0 iff (∇Xη)(Y) = (∇Yη)(X),

or equivalently, g(∇Xξ, Y) = g(∇Yξ, X) for all X, Y in g4. Substituting basis elements for X and
Y implies that dη = 0 iff ξ = a1e1 + a2e2. Any almost cosymplectic structure is almost-K-contact,
thus for the fundamental form Φ = ∑ bijeij of an almost cosymplectic structure, we have∇ξ Φ = 0,
where ξ = a1e1 + a2e2. ∇ξΦ(ei, ej) = 0 yields Φ = 0.

The algebra g5: By Kozsul’s formula; the covariant derivatives of the basis elements are as follows:

∇e1 e2 = 1
2 e4, ∇e1 e3 = 1

2 e5, ∇e1 e4 = − 1
2 e2, ∇e1 e5 = − 1

2 e3,

∇e2 e1 = − 1
2 e4, ∇e2 e4 = 1

2 e1, ∇e3 e1 = − 1
2 e5, ∇e3 e5 = 1

2 e1,

∇e4 e1 = − 1
2 e2 ∇e4 e2 = 1

2 e1, ∇e5 e1 = − 1
2 e3, ∇e5 e3 = 1

2 e1

• There exists no cosymplectic structure.
The proof is similar to that in other algebras.

• There is no nearly cosymplectic structure on g5.
Let Φ = ∑ bijeij be the two-form of a nearly cosymplectic a.c.m.s. Replacing X and Y by basis
elements, we have (∇ei Φ)(ei, ej) = 0, which shows that bij = 0, except for b23, b25, b34 and b45.
Then Φ = b23e23 + b25e25 + b34e34 + b45e45. We obtain b23 = b25 = b34 = b45 = 0 for X = e1,
Y = e2, Z = e5; X = e1, Y = e2, Z = e3; X = e3, Y = e1, Z = e2 and X = e4, Y = e1, Z = e3

respectively in the equation (2).
• There is no non-zero parallel vector field on g5.

The proof is similar to other cases. In particular, (φ, ξ, η, g) is neither C1 (nearly-K-cosymplectic),
nor C2.

• A vector field ξ on g5 is Killing if and only if ξ ∈ 〈e4, e5〉.
Let ξ = ∑ aiei be a non-zero Killing vector field. Then, for any ei, ej, we have
g(∇ei ξ, ej) = −g(∇ej ξ, ei). Thus,

g(∇e1 ξ, e4) = −g(∇e4 ξ, e1)⇒ a2 = 0,

g(∇e1 ξ, e5) = −g(∇e5 ξ, e1)⇒ a3 = 0,

g(∇e2 ξ, e4) = −g(∇e4 ξ, e2)⇒ a1 = 0.

No condition is obtained for a4 and a5. Thus, ξ is Killing if and only if ξ = a4e4 + a5e5.
• There is no α-Sasakian structure.

Let (φ, ξ, η, g) be an α-Sasakian structure on g5. Then, ξ = a4e4 + a5e5, where a2
4 + a2

5 = 1 and
η = b4e4 + b5e5. By the relation ∇Xξ = −αφ(X), we get φ(e2) = − a4

2α e1 and φ(e3) = − a5
2α e1.
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Since g(φ(e2), φ(e3)) = g(e2, e3) − η(e2)η(e3), we have a4.a5 = 0. This implies φ(e2) = 0,
or φ(e3) = 0. Assume without loss of generality that φ(e2) = 0. Then, g(φ(e2), φ(e2)) 6=
g(e2, e2)− η(e2)η(e2).

• There is no β-Kenmotsu structure.
Let (φ, ξ, η, g) be a β-Kenmotsu structure with fundamental two-form Φ = ∑ bijeij, ξ = ∑ aiei,
η = ∑ biei. Then, g(∇ei ξ, ej) = g(∇ej ξ, ei) for any basis elements ei, ej, which implies that
ξ = a1e1 + a2e2 + a3e3 and η = b1e1 + b2e2 + b3e3. Replacing basis elements for X, Y, Z in
the defining relation of β-Kenmotsu structures results in Φ = 0. Thus, there does not exist a
β-Kenmotsu structure.

• There exists a semi cosymplectic structure.
For any two-form Φ = ∑ bijeij any X = ∑ xiei ∈ g5,

δΦ(X) = −∑(∇ei Φ)(ei, X) = −{x4b12 + x5b13}

Thus, δΦ(X) = 0 for any X iff b12 = b13 = 0. In addition, for any one-form η = ∑ biei, we have

δη = −∑(∇ei η)(ei) = −∑ g(∇ei ξ, ei) = 0.

Thus, for example, the a.c.m.s. for which ξ = e5, η = e5 and Φ = e14 + e23 is semi cosymplectic.
• There exists an almost cosymplectic structure.

Consider, for instance, the a.c.m.s. given by ξ = e1, η = e1 and Φ = e25 + e34.

The algebra g6: By Kozsul’s formula, the covariant derivatives of the basis elements are as follows:

∇e1 e2 = 1
2 e3, ∇e1 e3 = − 1

2 e2 +
1
2 e4, ∇e1 e4 = − 1

2 e3,

∇e2 e1 = − 1
2 e3, ∇e2 e3 = 1

2 e1 +
1
2 e5, ∇e2 e5 = − 1

2 e3,

∇e3 e1 = − 1
2 e2 − 1

2 e4, ∇e3 e2 = 1
2 e1 − 1

2 e5, ∇e3 e4 = 1
2 e1, ∇e3 e5 = 1

2 e2,

∇e4 e1 = − 1
2 e3, ∇e4 e3 = 1

2 e1, ∇e5 e2 = − 1
2 e3, ∇e5 e3 = 1

2 e2.

• There exists no cosymplectic structure on g6.
It is easy to see that ∇Φ = 0 if and only if Φ = 0, where Φ is a two-form.

• There is no nearly cosymplectic structure.
Let Φ = ∑ bijeij be a two-form with the property that (∇XΦ)(X, Y) = 0. Then, we obtain
Φ = b15e15 + b24e24 + b45e45. By considering Φ as the fundamental two-form of an almost contact
metric structure (φ, ξ, η, g), from the condition φ2 = −I + η ⊗ ξ, we get b2

15 = 1 and b45 = 0.
We get b15 = b24 = 0 for X = e5, Y = e2, Z = e3 and X = e1, Y = e3, Z = e4 respectively in the
equation (2).

• There is no non-zero parallel vector field on g6.
The proof is the same as before.

• A vector field ξ on g6 is Killing if and only if ξ ∈ 〈e4, e5〉.
Let ξ = ∑ aiei be a Killing vector field. Then, for any ei, ej, we have g(∇ei ξ, ej) = −g(∇ej ξ, ei). Thus,

g(∇e2 ξ, e3) = −g(∇e3 ξ, e2)⇒ a1 = 0,

g(∇e1 ξ, e3) = −g(∇e3 ξ, e1)⇒ a2 = 0,

g(∇e1 ξ, e4) = −g(∇e4 ξ, e1)⇒ a3 = 0.

No conditions are obtained for a4 and a5.



Symmetry 2016, 8, 76 11 of 13

• There exists no α-Sasakian structure.
Let (φ, ξ, η, g) be an α-Sasakian structure on g6. Then, ξ has the form ξ = a4e4 + a5e5 and satisfies
the equation ∇Xξ = −αφ(X). Thus, the endomorphism can be expressed with:

φ(e1) =
a4

2α
e3, φ(e2) =

a5

2α
e3, φ(e3) = −

a5

2α
e2, φ(e4) = 0, φ(e5) = 0.

From the condition φ2 = −I + η ⊗ ξ, we have

φ2(e4) = 0 = (a2
4 − 1)e4 + a4a5e5 ⇒ a2

4 = 1, a4a5 = 0

and
φ2(e5) = 0 = a5a4e4 + (a2

5 − 1)e5 ⇒ a2
5 = 1, a4a5 = 0.

However, since a2
5 = a2

4 = 1, the number a4a5 is non-zero.
• There is no β-Kenmotsu structure.

Let (φ, ξ, η, g) be a β-Kenmotsu structure with fundamental two-form Φ = ∑ bijeij, ξ = ∑ aiei.
Then, g(∇ei ξ, ej) = g(∇ej ξ, ei) for any basis elements ei, ej, which implies that ξ = a1e1 + a2e2.
However, after calculations on the defining relation, we get Φ = b12e12. However, in this case,
Φ ∧Φ = 0.

• There exists a semi cosymplectic structure.
The a.c.m.s. (φ, ξ, η, g) with ξ = e3, η = e3 and Φ = e14 + e25 is semi cosymplectic.

• There is no almost cosymplectic structure.
Obviously, de1 = 0, de2 = 0, de3 = −e12, de4 = −e13, de5 = −e23. Thus, for a one-form
η = ∑ biei, we have dη = 0 ⇐⇒ b3 = b4 = b5 = 0, and for a two-form Φ = ∑ bijeij,
we get dΦ = 0 ⇐⇒ b15 = b24, b34 = b35 = b45 = 0. So, if (φ, ξ, η, g) with the fundamental
two-form Φ = ∑ bijeij is an almost cosymplectic structure on g6, then, Φ and η have the forms
Φ = b12e12 + b13e13 + b14e14 + b15e15 + b23e23 + b15e24 + b25e25 and η = b1e1 + b2e2. However,
it is easy to see that η ∧Φ ∧Φ vanishes. Thus, the structure is not almost cosymplectic.

In summary, we state the following.

Theorem 1. An almost contact metric structure on a five-dimensional nilpotent Lie algebra g is cosymplectic if
and only if g is abelian.

The existence of cosymplectic structures on Lie groups and on their compact quotients by uniform
discrete subgroups was studied in [14]. We state Theorem 1 by direct calculation.

In the sequel, we deduce

Corollary 2. There is no cosymplectic left invariant almost contact metric structure on a five-dimensional
connected Lie group whose corresponding Lie algebra is nilpotent.

Theorem 3. There is no nearly cosymplectic structure on any five-dimensional nilpotent Lie algebra.

Corollary 4. There is no nearly cosymplectic left invariant almost contact metric structure on a five-dimensional
connected Lie group whose corresponding Lie algebra is nilpotent.

Theorem 5. There exists no non-zero parallel vector field on any five-dimensional nilpotent Lie algebra.

There are non-zero Killing vector fields on gi for i ∈ {1, 2, 3, 4, 5, 6}.

Theorem 6. Let g be one of g1, g2, g3 or g4. A vector field ξ on g is Killing if and only if ξ ∈< e5 >.
In addition, if g is g5 or g6, then ξ is Killing iff ξ ∈< e4, e5 >.
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Theorem 7. If g has an α-Sasakian structure, then g is isomorphic to g1.

Theorem 8. There is no β-Kenmotsu a.c.m.s. on any five-dimensional nilpotent Lie algebra.

We may conclude

Corollary 9. There is no β-Kenmotsu left invariant almost contact metric structure on a five-dimensional
connected Lie group whose corresponding Lie algebra is nilpotent.

Theorem 10. There exist semi cosymplectic a.c.m. structures on each gi.

Theorem 11. An a.c.m.s. on g is almost cosymplectic iff g is isomorphic to one of g2, g3 or g5.

Let G be a simply-connected nilpotent Lie group with Lie algebra g. It is known that there exists a
co-compact discrete subgroup Γ of G such that G/Γ is a compact nilmanifold [15]. Giving examples
of discrete subgroups Γ for simply-connected nilpotent Lie group Gi with Lie algebra gi is an
ongoing study.

4. Conclusions

In this paper, we examined almost contact metric structures on five dimensional nilpotent Lie
algebras by direct calculation and obtained some results about the relations between the classes of
almost contact metric structures and five dimensional nilpotent Lie algebras. In addition, we got some
general results on left invariant almost contact metric structures on five dimensional nilpotent Lie
groups by studying their corresponding Lie algebras.
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