Seiberg-Witten Like Equations on Pseudo-Riemannian Spin ${ }^{c}$ Manifolds with $G_{2(2)}^{*}$ Structure

Nülifer Özdemir and Nedim Deǧirmenci
Department of Mathematics, Anadolu University, Eskisehir, Turkey
Correspondence should be addressed to Nedim Deǧirmenci; ndmdegirmenci@gmail.com

Received 26 August 2015; Accepted 28 September 2015
Academic Editor: Dimitrios Tsimpis
Copyright © 2016 N. Özdemir and N. Deǧirmenci. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We consider 7-dimensional pseudo-Riemannian spin^{c} manifolds with structure group $G_{2(2)}^{*}$. On such manifolds, the space of 2forms splits orthogonally into components $\Lambda^{2} M=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$. We define self-duality of a 2 -form by considering the part Λ_{7}^{2} as the bundle of self-dual 2 -forms. We express the spinor bundle and the Dirac operator and write down Seiberg-Witten like equations on such manifolds. Finally we get explicit forms of these equations on $\mathbb{R}^{4,3}$ and give some solutions.

1. Introduction

The Seiberg-Witten theory, introduced by Witten in [1], became one of the most important tools to understand the topology of smooth 4 -manifolds. The Seiberg-Witten theory is based on the solution space of two equations which are called the Seiberg-Witten equations. The first one of the Seiberg-Witten equations is Dirac equation and the second one is known as curvature equation [2]. The first equation is the harmonicity condition of spinor fields; that is, the spinor field belongs to the kernel of the Dirac operator. The second equation couples the self-dual part of the curvature 2 -form with a spinor field. There exist various generalizations of Seiberg-Witten equations to higher dimensional Riemannian manifolds [3-6]. All of these generalizations are done for the manifolds which have special structure groups. Also Seiberg-Witten like equations are studied over 4-dimensional Lorentzian spin c manifolds [7] and 4 -dimensional pseudoRiemannian manifolds with neutral signature [8].

Parallel spinors on pseudo-Riemannian spin ${ }^{c}$ manifolds are studied by Ikemakhen [9]. In the present work, we consider 7-dimensional manifolds with structure group $G_{2(2)}^{*}$. In order to define spinors and Dirac operator, the manifold M must have a spin^{c}-structure. We assume that 7-dimensional pseudo-Riemannian manifold M with signature (,,,---- , $+,+,+)$ has spin c-structure. On the other hand, to write down
curvature equation, we need a self-duality notion of a 2 -form on such manifolds. In 4 dimensions, self-duality concept of 2forms is well known. The bundle of 2-forms $\Lambda^{2}(M)$ decomposes into two parts on this manifold [10]. Then we will define self-duality of a 2 -form on a 7 -manifold with structure group $G_{2(2)}^{*}$ by using decomposition of 2-forms on this manifold.

2. Manifolds with Structure Group $G_{2(2)}^{*}$

The exceptional Lie group G_{2}, automorphism group of octonions, is well known. There is another similar Lie group $G_{2(2)}^{*}$ which is automorphism group of split octonions [11]. On \mathbb{R}^{7}, we consider the metric

$$
\begin{align*}
g_{4,3}(x, y)= & -x_{1} y_{1}-x_{2} y_{2}-x_{3} y_{3}-x_{4} y_{4}+x_{5} y_{5} \tag{1}\\
& +x_{6} y_{6}+x_{7} y_{7}
\end{align*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{7}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{7}\right) \in \mathbb{R}^{7}$. From now on, we denote the pair $\left(\mathbb{R}^{7}, g_{4,3}\right)$ by $\mathbb{R}^{4,3}$. The isometry group of this space is

$$
\begin{align*}
& O(4,3)=\left\{A \in G L(7, \mathbb{R}): g_{4,3}(A(x), A(y))\right. \tag{2}\\
& \left.\quad=g_{4,3}(x, y), \forall x, y \in \mathbb{R}^{7}\right\} .
\end{align*}
$$

The special orthogonal subgroup of $O(4,3)$ is

$$
\begin{equation*}
\mathrm{SO}(4,3)=\{A \in O(4,3): \operatorname{det} A=1\} . \tag{3}
\end{equation*}
$$

The group $G_{2(2)}^{*}$ is the subgroup of $\operatorname{SO}(4,3)$, preserving the following 3-form:

$$
\begin{equation*}
\varphi_{0}=-e^{127}-e^{135}+e^{146}+e^{236}+e^{245}-e^{347}+e^{567} \tag{4}
\end{equation*}
$$

where $\left\{e^{1}, \ldots, e^{7}\right\}$ is the dual base of the standard basis $\left\{e_{1}, \ldots, e_{7}\right\}$ of $\mathbb{R}^{4,3}$, with the notation $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$ and with the metric $g_{4,3}=(-1,-1,-1,-1,1,1,1)$; that is,

$$
\begin{equation*}
G_{2(2)}^{*}=\left\{A \in G L(7, \mathbb{R}): A^{*} \varphi_{0}=\varphi_{0}\right\} \tag{5}
\end{equation*}
$$

where φ_{0} is called the fundamental 3-form on $\mathbb{R}^{4,3}[10,11]$. The space of 2-forms $\Lambda^{2} \mathbb{R}^{7}$ decomposes into two parts $\Lambda^{2} \mathbb{R}^{7}=$ $\Lambda_{7}^{2} \mathbb{R}^{7} \oplus \Lambda_{14}^{2} \mathbb{R}^{7}$, where

$$
\begin{align*}
\Lambda_{7}^{2} \mathbb{R}^{7} & =\left\{\alpha \in \Lambda^{2} \mathbb{R}^{7}: \star\left(\varphi_{0} \wedge \alpha\right)=2 \alpha\right\} \\
\Lambda_{14}^{2} \mathbb{R}^{7} & =\left\{\alpha \in \Lambda^{2} \mathbb{R}^{7}: \star\left(\varphi_{0} \wedge \alpha\right)=-\alpha\right\} \tag{6}
\end{align*}
$$

A semi-Riemannian 7-manifold M with the metric of signature $(-,-,-,-,+,+,+)$ is called a $G_{2(2)}^{*}$ manifold if its structure group reduces to the Lie group $G_{2(2)}^{*}$; equivalently, there exists a nowhere vanishing 3 -form on M whose local expression is of the form φ_{0}. Such a form is called a $G_{2(2)}^{*}$ structure on M [12]. If the structure group of M is the group $G_{2(2)}^{*}$ then the bundle of 2-forms $\Lambda^{2}(M)$ decomposes into two parts similar to $\Lambda^{2} \mathbb{R}^{7}$ and we denote it by $\Lambda^{2}(M)=\Lambda_{7}^{2}(M) \oplus$ $\Lambda_{14}^{2}(M)[10]$.

It is known that square of the Hodge $*$ operator on 2forms over 4-dimensional Riemannian manifolds is identity and ± 1 are eigenvalues of the Hodge $*$ operator. The elements of eigenspace of 1 are called self-dual 2-forms and the others are called anti-self-dual forms. But this situation does not generalize to higher dimensional manifolds directly. Selfduality of 2 -form has been studied on some higher dimensions [3, 13]. In this work, we need self-duality concept of 2forms on 7-dimensional manifolds with structure group $G_{2(2)}^{*}$.

Now we define a duality operator over bundle of 2-form $\Lambda^{2}(M)$ as

$$
\begin{align*}
T_{\varphi}: \Lambda^{2}(M) & \longrightarrow \Lambda^{2}(M) \tag{7}\\
T_{\varphi}(\alpha) & :=\star(\varphi \wedge \alpha)
\end{align*}
$$

The eigenvalues of this map are 2 and -1 . Note that the subbundle $\Lambda_{7}^{2}(M)$ corresponds to the eigenvalue 2 and the subbundle $\Lambda_{14}^{2}(M)$ corresponds to the eigenvalue -1 . Let α be a 2 -form over M. If α belongs to $\Lambda_{7}^{2}(M)$, then we call α a selfdual 2-form. If α belongs to $\Lambda_{14}^{2}(M)$, then we call α an anti-self-dual 2-form. Because of decomposition of 2-forms on M, any 2 -form α on M can be written uniquely as

$$
\begin{equation*}
\alpha=\alpha^{+}+\alpha^{-} \tag{8}
\end{equation*}
$$

where $\alpha^{+} \in \Lambda_{7}^{2}(M)$ and $\alpha^{-} \in \Lambda_{14}^{2}(M)$. Similar to the 4dimensional case, we say that α^{+}is self-dual part of α and α^{-} is anti-self-dual part of α.

3. Spinor Bundles over $G_{2(2)}^{*}$ Manifolds

It is known that the group $\operatorname{SO}(4,3)$ has two connected components. The connected component to the identity of $\mathrm{SO}(4,3)$ is denoted by $\mathrm{SO}_{+}(4,3)$. In this work we deal with the group $\mathrm{SO}_{+}(4,3)$. The covering space of $\mathrm{SO}(4,3)$ is the group $\operatorname{Spin}(4,3)$ which lies in Clifford algebra $\mathrm{Cl}_{4,3}=\mathrm{Cl}\left(\mathbb{R}^{7}\right.$, $\left.-g_{4,3}\right) \subset \mathbb{C l}_{4,3}$ and we denoted the connected component of $1 \in \operatorname{Spin}(4,3)$ by $\operatorname{Spin}_{+}(4,3)$. There is a covering map $\lambda: \operatorname{Spin}_{+}(4,3) \rightarrow \mathrm{SO}_{+}(4,3)$ which is a $2: 1$ group homomorphism given by $\lambda(g)(x)=g \cdot x \cdot g^{-1}$ for $x \in \mathbb{R}^{4,3}, g \in$ $\operatorname{Spin}_{+}(4,3)[10,11,14]$.

One can define another group which lies in the complex Clifford algebra $\mathbb{C l}\left(\mathbb{R}^{4,3}\right) \cong \mathbb{C l} l_{7}$ by

$$
\begin{equation*}
\operatorname{Spin}_{+}^{c}(4,3):=\frac{\left(\operatorname{Spin}_{+}(4,3) \times S^{1}\right)}{\mathbb{Z}_{2}} \tag{9}
\end{equation*}
$$

where the elements of $\operatorname{Spin}_{+}^{c}(4,3)$ are the equivalence classes $[g, z]$ of pair $(g, z) \in \operatorname{Spin}_{+}(4,3) \times S^{1}$, under the equivalence relation $(g, z) \sim(-g,-z)[9]$. There exist two exact sequences as

$$
\begin{align*}
& 1 \longrightarrow \mathbb{Z}_{2} \longrightarrow \operatorname{Spin}_{+}(4,3) \xrightarrow{\lambda} \operatorname{SO}_{+}(4,3) \longrightarrow 1 \\
& 1 \longrightarrow \mathbb{Z}_{2} \longrightarrow \operatorname{Spin}_{+}^{c}(4,3) \xrightarrow{\xi} \operatorname{SO}_{+}(4,3) \times S^{1} \longrightarrow 1 \tag{10}
\end{align*}
$$

where $\xi([g, z])=\left(\lambda(g), z^{2}\right)$.
Let $\left\{e_{1}, \ldots, e_{7}\right\}$ be an orthonormal basis of $\mathbb{R}^{4,3}$; then the Lie algebras of $\operatorname{Spin}(4,3)$ and $\operatorname{Spin}^{c}(4,3)$ are

$$
\begin{align*}
\operatorname{spin}(4,3) & =\left\{e_{i} e_{j}: 1 \leq i, j \leq 7\right\} \\
\operatorname{spin}^{c}(4,3) & =\operatorname{spin}(4,3) \oplus i \mathbb{R} \tag{11}
\end{align*}
$$

respectively. The derivative of $\xi: \operatorname{Spin}_{+}^{c}(4,3) \rightarrow \mathrm{SO}_{+}(4,3) \times$ S^{1} is obtained as

$$
\begin{equation*}
\xi_{*}\left(e_{i} e_{j}, i r\right)=\left(\lambda_{*}\left(e_{i} e_{j}\right), i r\right)=\left(2 E_{i j}, 2 i r\right) \tag{12}
\end{equation*}
$$

where $E_{i j}$ is the 8×8-matrix whose (i, j)-entry is $1,(j, i)$-entry is -1 , and the other entries are zero [9]. Since the Clifford algebra $\mathbb{C} l_{7}$ is isomorphic to the algebra $\mathbb{C}(8) \oplus \mathbb{C}(8)$, we can project this isomorphism onto the first component. Hence, we get spinor representation:

$$
\begin{equation*}
\kappa: \mathbb{C l}_{7} \longrightarrow \mathbb{C}(8) \cong \operatorname{End}\left(\mathbb{C}^{8}\right) \tag{13}
\end{equation*}
$$

By restricting κ to the group $\operatorname{Spin}_{+}^{c}(4,3)$ we get

$$
\begin{equation*}
\left.\kappa\right|_{\operatorname{Sin}_{+}^{c}(4,3)}: \operatorname{Spin}_{+}^{c}(4,3) \longrightarrow \operatorname{Aut}\left(\mathbb{C}^{8}\right) \tag{14}
\end{equation*}
$$

and $\left.\kappa\right|_{\text {Spin }_{+}^{c}(4,3)}$ is called spinor representation of the group $\operatorname{Spin}_{+}^{c}(4,3)$; shortly we denote it by κ. The elements of \mathbb{C}^{8} are called spinors and the complex vector space \mathbb{C}^{8} is called the spinor space and it is denoted by $\Delta_{4,3}$. By using spinor representation, the Clifford multiplication of vectors with spinors is defined by

$$
\begin{equation*}
X \cdot \psi:=\kappa(X)(\psi) \tag{15}
\end{equation*}
$$

where $X \in \mathbb{R}^{4,3}$ and $\psi \in \Delta_{4,3}$. The spinor space has a nondegenerate indefinite Hermitian inner product as

$$
\begin{equation*}
\left\langle\psi_{1}, \psi_{2}\right\rangle_{\Delta_{4,3}}:=i^{4(4-1) / 2}\left\langle\kappa\left(e_{1} e_{2} e_{3} e_{4}\right) \psi_{1}, \psi_{2}\right\rangle \tag{16}
\end{equation*}
$$

where $\langle z, w\rangle=\sum_{i=1}^{8} z_{i} \bar{w}_{i}$ is the standard Hermitian inner product on \mathbb{C}^{8} for $z=\left(z_{1}, \ldots, z_{8}\right), w=\left(w_{1}, \ldots, w_{8}\right) \in \mathbb{C}^{8}$. The new inner product $\langle,\rangle_{\Delta_{4,3}}$ is invariant with respect to the group $\operatorname{spin}_{+}^{c}(4,3)$ and satisfies the following property:

$$
\begin{equation*}
\left\langle\kappa(Z) \psi_{1}, \psi_{2}\right\rangle_{\Delta_{4,3}}=-\left\langle\psi_{1}, \kappa(Z) \psi_{2}\right\rangle_{\Delta_{4,3}} \tag{17}
\end{equation*}
$$

where $Z \in \mathbb{R}^{4,3}$ and $\psi_{1}, \psi_{2} \in \Delta_{4,3}$. In this work, we use the following spinor representation κ :

$$
\begin{align*}
& \kappa\left(e_{1}\right)=\varepsilon \otimes \varepsilon \otimes \delta, \\
& \kappa\left(e_{2}\right)=-\delta \otimes \delta \otimes \tau, \\
& \kappa\left(e_{3}\right)=-\delta \otimes I \otimes \delta, \\
& \kappa\left(e_{4}\right)=\delta \otimes \tau \otimes \tau, \tag{18}\\
& \kappa\left(e_{5}\right)=-I \otimes \varepsilon \otimes \tau, \\
& \kappa\left(e_{6}\right)=-\tau \otimes \varepsilon \otimes \delta, \\
& \kappa\left(e_{7}\right)=I \otimes I \otimes \varepsilon,
\end{align*}
$$

where

$$
\begin{align*}
& I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \delta=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \tau=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{19}\\
& \varepsilon=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{align*}
$$

Now, we recall the main definitions concerning spin^{c} structure and the spinor bundle. Let M be a 7 -dimensional pseudo-Riemannian manifold with structure group $G_{2(2)}^{*}$. Then, there is an open covering $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of M and transition functions $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G_{2(2)}^{*} \subset \operatorname{SO}_{+}(4,3)$ for $T M$.

If there exists another collection of transition functions

$$
\begin{equation*}
\tilde{g}_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \longrightarrow \operatorname{Spin}_{+}^{c}(4,3) \tag{20}
\end{equation*}
$$

such that the following diagram commutes

(i.e., $\xi \circ \widetilde{g}_{\alpha \beta}=g_{\alpha \beta}$ and the cocycle condition $\tilde{g}_{\alpha \beta} \widetilde{g}_{\beta \gamma}=\tilde{g}_{\alpha \gamma}$ on $U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ is satisfied), then M is called a spin^{c} manifold. Then one can construct a principal $\operatorname{Spin}_{+}^{c}(4,3)$-bundle $P_{\text {Spin }_{+}^{c}(4,3)}$ on M and a bundle map $\Lambda: P_{\text {Spin }_{+}^{c}(4,3)} \rightarrow P_{\mathrm{SO}_{+}(4,3)}$.

Let $\left(P_{\text {Sinin }_{+}^{c}(4,3)}, \Lambda\right)$ be a spin^{c}-structure on M. We can construct an associated complex vector bundle:

$$
\begin{equation*}
S=P_{\text {Spin }_{+}^{c}(4,3)} \times{ }_{k} \Delta_{4,3} \tag{22}
\end{equation*}
$$

where $\kappa: \operatorname{Spin}_{+}^{c}(4,3) \rightarrow \operatorname{Aut}\left(\Delta_{4,3}\right)$ is the spinor representation of $\operatorname{Spin}_{+}^{c}(4,3)$. This complex vector bundle is called spinor bundle for a given spin^{c}-structure on M and sections of S are called spinor fields. The Clifford multiplication given by (15) can be extended to a bundle map:

$$
\begin{equation*}
\mu: T M \otimes S \longrightarrow S \tag{23}
\end{equation*}
$$

Parallel spinors on the spinor bundle S are studied in [9].
Since M is a pseudo-Riemannian spin^{c} manifold, then by using the map

$$
\begin{align*}
& \ell: \operatorname{Spin}_{+}^{c}(4,3) \longrightarrow S^{1} \\
& \ell([g, z])=z^{2} \tag{24}
\end{align*}
$$

we can get an associated principal S^{1}-bundle:

$$
\begin{equation*}
P_{S^{1}}=P_{\text {Spin }_{+}^{c}(4,3)} \times_{\ell} S^{1} \tag{25}
\end{equation*}
$$

Also, the map ℓ induces a bundle map:

$$
\begin{equation*}
L: P_{\text {Spin }_{+}^{c}(4,3)} \longrightarrow P_{S^{1}} \tag{26}
\end{equation*}
$$

Now, fix a connection 1-form $A: T P_{S^{1}} \rightarrow i \mathbb{R}$ over the principal $U(1)$-bundle $P_{S^{1}}$. Let ∇ be the Levi-Civita covariant derivative associated with the metric $g_{4,3}$ which determines an so $(4,3)$-valued connection 1 -form ω on the principal bundle $P_{\mathrm{SO}_{+}(4,3)}$. The connection 1-form ω can be written locally

$$
\begin{equation*}
\omega=\sum_{i<j} \omega_{i j} E_{i j} \tag{27}
\end{equation*}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$ is a local orthonormal frame on open set $U \subset M$ and $\omega_{i j}=g_{4,3}\left(\nabla e_{i}, e_{j}\right)$. By using the connection 1 -form A and ω, one can obtain a connection 1-form on the principal bundle $P_{\mathrm{SO}_{+}(4,3)} \widetilde{\times} P_{S^{1}}$ (the fibre product bundle):

$$
\begin{equation*}
\omega \times A: T\left(P_{\mathrm{SO}_{+}(4,3)} \widetilde{\times} P_{S^{1}}\right) \longrightarrow \mathrm{SO}_{+}(4,3) \times i \mathbb{R} \tag{28}
\end{equation*}
$$

The connection $\omega \times A$ can be lift to a connection 1-form Z^{A} on the principal bundle $P_{\mathrm{SO}_{+}^{c}(4,3)}$ via the 2 -fold covering map:

$$
\begin{equation*}
\pi:=(\Lambda, L): P_{\mathrm{Spin}_{+}^{c}(4,3)} \longrightarrow P_{\mathrm{SO}_{+}(4,3)} \widetilde{\times} P_{S^{1}} \tag{29}
\end{equation*}
$$

and the following commutative diagram.

One can obtain a covariant derivative operator ∇^{A} on the spinor bundle S by using the connection 1-form Z^{A}. The local form of the covariant derivative ∇^{A} is

$$
\begin{equation*}
\nabla^{A} \Psi=d \Psi+\frac{1}{2} \sum_{i<j} \varepsilon_{i} \varepsilon_{j} \omega_{i j} \kappa\left(e_{i} e_{j}\right) \Psi+\frac{1}{2} A \Psi \tag{31}
\end{equation*}
$$

where $\left\{e_{1}, \ldots, e_{7}\right\}$ is a orthonormal frame on open set $U \subset$ M. We note that some authors use the term $A \Psi$ instead of $(1 / 2) A \Psi$ in the local formula of $\nabla^{A} \Psi$. The covariant derivative ∇^{A} is compatible with the metric $\langle,\rangle_{\Delta_{4,3}}$

$$
\begin{equation*}
X\left\langle\psi_{1}, \psi_{2}\right\rangle_{\Delta_{4,3}}=\left\langle\nabla_{X}^{A} \psi_{1}, \psi_{2}\right\rangle_{\Delta_{4,3}}+\left\langle\psi_{1}, \nabla_{X}^{A} \psi_{2}\right\rangle_{\Delta_{4,3}} \tag{32}
\end{equation*}
$$

and the Clifford multiplication

$$
\begin{equation*}
\nabla_{X}^{A}(Y \cdot \psi)=Y \cdot \nabla_{X}^{A} \psi+\left(\nabla_{X} Y\right) \cdot \psi \tag{33}
\end{equation*}
$$

where ψ, ψ_{1}, ψ_{2} are spinor fields and sections of S, X, and Y are vector fields on M. We can define the Dirac operator D_{A} as the following composition:

$$
\begin{align*}
D_{A}: & =\mu \circ \nabla^{A}: \Gamma(S) \xrightarrow{\nabla^{A}} \Gamma\left(T M^{*} \otimes S\right) \stackrel{g_{4,3}}{=}(T M \otimes S) \tag{34}\\
& \xrightarrow{\mu} \Gamma(S),
\end{align*}
$$

which can be written locally as

$$
\begin{equation*}
D_{A}(\psi)=\sum_{i=1}^{7} \varepsilon_{i} \kappa\left(e_{i}\right) \nabla_{e_{i}}^{A}(\psi) \tag{35}
\end{equation*}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$ is any oriented local orthonormal frame of TM.

4. Seiberg-Witten Like Equations on $G_{2(2)}^{*}$ Manifolds

Let M be a spin^{c} manifold with structure group $G_{2(2)}^{*}$. Fix a spin ${ }^{c}$-structure and a connection A in the principal $U(1)-$ bundle $P_{S^{1}}$ associated with the $\operatorname{spin}^{\text {c }}$-structure. Note that the curvature F_{A} of the connection A is $i \mathbb{R}$-valued 2 -form. The curvature 2-form F_{A} on the $P_{S^{1}}$ determines an $i \mathbb{R}$-valued 2form on M uniquely (see [15]) and we denote it again by F_{A}.

We can define a map

$$
\begin{equation*}
\sigma(\psi)(X, Y)=\langle X \cdot Y \cdot \psi, \psi\rangle_{\Delta_{4,3}}+g_{4,3}(X, Y)|\psi|^{2} \tag{36}
\end{equation*}
$$

where $X, Y \in \Gamma(T M)$. Note that the map $\sigma(\psi)$ satisfies the following properties:

$$
\begin{align*}
& \sigma(\psi)(X, Y)=-\sigma(\psi)(Y, X) \\
& \overline{\sigma(\psi)(X, Y)}=-\sigma(\psi)(X, Y) \tag{37}
\end{align*}
$$

Hence, the map σ associates an $i \mathbb{R}$-valued 2-form with each spinor field $\psi \in \Gamma(S)$, so we can write

$$
\begin{equation*}
\sigma: \Gamma(S) \longrightarrow \Omega^{2}(M, i \mathbb{R}) \tag{38}
\end{equation*}
$$

In local frame $\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$ on $U \subset M$, the map σ can be expressed as

$$
\begin{equation*}
\sigma(\psi)=-\frac{1}{4} \sum_{i<j}\left\langle\kappa\left(e_{i} e_{j}\right) \psi, \psi\right\rangle_{\Delta_{4,3}} e_{i} \wedge e_{j} \tag{39}
\end{equation*}
$$

Now we are ready to express the Seiberg-Witten equations. Let M be a spin^{c} manifold with structure group $G_{2(2)}^{*}$. Fix a $\operatorname{Spin}_{+}^{c}(4,3)$ structure and take a connection 1-form A on the principal bundle $P_{S^{1}}$ and a spinor field $\psi \in \Gamma(S)$. We write the Seiberg-Witten like equations as

$$
\begin{align*}
D_{A} \psi & =0, \\
F_{A}^{+} & =-\frac{1}{4} \sigma(\psi)^{+}, \tag{40}
\end{align*}
$$

where F_{A}^{+}is the self-dual part of the curvature F_{A} and $\sigma(\psi)^{+}$ is the self-dual part of the 2-form $\sigma(\psi)$ corresponding to the spinor $\psi \in \Gamma(S)$.

5. Seiberg-Witten Like Equations on $\mathbb{R}^{4,3}$

Let us consider these equations on the flat space $M=\mathbb{R}^{4,3}$ with the $G_{2(2)}^{*}$ structure given by φ_{0}. We use the standard orthonormal frame $\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$ on $M=\mathbb{R}^{4,3}$ and the spinor representation in (18). The spin ${ }^{c}$ connection ∇^{A} on $\mathbb{R}^{4,3}$ is given by

$$
\begin{equation*}
\nabla_{j}^{A} \Psi=\frac{\partial \Psi}{\partial x_{j}}+A_{j} \Psi \tag{41}
\end{equation*}
$$

where $A_{j}: \mathbb{R}^{4,3} \rightarrow i \mathbb{R}$ and $\Psi: \mathbb{R}^{4,3} \rightarrow \Delta_{4,3}$ are smooth maps. Then, the associated connection on the line bundle $L_{\Gamma}=\mathbb{R}^{4,3} \times \mathbb{C}$ is the connection 1-form

$$
\begin{equation*}
A=\sum_{i=1}^{7} A_{i} d x_{i} \in \Omega^{1}\left(\mathbb{R}^{4,3}, i \mathbb{R}\right) \tag{42}
\end{equation*}
$$

and its curvature 2-form is given by

$$
\begin{equation*}
F_{A}=d A=\sum_{i<j} F_{i j} d x_{i} \wedge d x_{j} \in \Omega^{2}\left(\mathbb{R}^{4,3}, i \mathbb{R}\right) \tag{43}
\end{equation*}
$$

where $F_{i j}=\partial A_{j} / \partial x_{i}-\partial A_{i} / \partial x_{j}$ for $i, j=1, \ldots, 7$. Now we can write the Dirac operator D_{A} on $\mathbb{R}^{4,3}$ with respect to a given spin^{c}-structure and spin^{c}-connection ∇^{A}.

We denote the dual basis of $\left\{e_{1}, e_{2}, \ldots, e_{7}\right\}$ by $\left\{e^{1}, e^{2}, \ldots\right.$, $\left.e^{7}\right\}$. Now one can give a frame for the space of self-dual 2forms on $\mathbb{R}^{4,3}$ as

$$
\begin{align*}
& f_{1}=e^{1} \wedge e^{2}+e^{3} \wedge e^{4}-e^{5} \wedge e^{6}, \\
& f_{2}=e^{1} \wedge e^{3}-e^{2} \wedge e^{4}-e^{6} \wedge e^{7}, \\
& f_{3}=e^{1} \wedge e^{4}+e^{2} \wedge e^{3}-e^{5} \wedge e^{7}, \\
& f_{4}=e^{1} \wedge e^{5}-e^{2} \wedge e^{6}-e^{4} \wedge e^{7}, \tag{44}\\
& f_{5}=e^{1} \wedge e^{6}+e^{2} \wedge e^{5}-e^{3} \wedge e^{7}, \\
& f_{6}=e^{1} \wedge e^{7}+e^{3} \wedge e^{6}+e^{4} \wedge e^{5}, \\
& f_{7}=e^{2} \wedge e^{7}+e^{3} \wedge e^{5}-e^{4} \wedge e^{6} .
\end{align*}
$$

Let F_{A} be the curvature form of the $i \mathbb{R}$-valued connection 1-form A and let F_{A}^{+}be its self-dual part. Then,

$$
\begin{align*}
F_{A}^{+} & =\sum_{i=1}^{7}\left\langle F_{A}, f_{i}\right\rangle \frac{f_{i}}{\left|f_{i}\right|^{2}}=\frac{1}{3}\left\{\left(F_{12}+F_{34}-F_{56}\right) f_{1}\right. \\
& +\left(F_{13}-F_{24}-F_{67}\right) f_{2}+\left(F_{14}+F_{23}-F_{57}\right) f_{3} \tag{45}\\
& +\left(F_{15}-F_{26}-F_{47}\right) f_{4}+\left(F_{16}+F_{25}-F_{37}\right) f_{5} \\
& \left.+\left(F_{17}+F_{36}+F_{45}\right) f_{6}+\left(F_{27}+F_{35}-F_{46}\right) f_{7}\right\} .
\end{align*}
$$

Now we calculate the 2 -form $\sigma(\psi)^{+}$, for a spinor $\psi \in S$. Then $\sigma(\psi)$ can be written in the following way:

$$
\begin{equation*}
\sigma(\psi)=\sum_{i<j}\left\langle e_{i} e_{j} \psi, \psi\right\rangle e^{i} \wedge e^{j} \tag{46}
\end{equation*}
$$

The projection onto the subspace $\Lambda_{7}^{2}\left(\mathbb{R}^{4,3}, i \mathbb{R}\right)$ is given by

$$
\begin{equation*}
\sigma(\psi)^{+}=\sum_{i=1}^{7}\left\langle\sigma(\psi), f_{i}\right\rangle \frac{f_{i}}{\left|f_{i}\right|^{2}} . \tag{47}
\end{equation*}
$$

If $\sigma(\psi)^{+}$is calculated explicitly, then we obtain the following identity:

$$
\begin{aligned}
& 3 \sigma(\psi)^{+}=\left\{-3 \psi_{2} \bar{\psi}_{1}+3 \psi_{1} \bar{\psi}_{2}+\psi_{4} \bar{\psi}_{3}-\psi_{3} \bar{\psi}_{4}-\psi_{6} \bar{\psi}_{5}\right. \\
& \left.\quad+\psi_{5} \bar{\psi}_{6}-\psi_{8} \bar{\psi}_{7}+\psi_{7} \bar{\psi}_{8}\right\} f_{1}+\left\{3 \psi_{3} \bar{\psi}_{1}+\psi_{4} \bar{\psi}_{2}\right. \\
& \left.-3 \psi_{1} \bar{\psi}_{3}-\psi_{2} \bar{\psi}_{4}+\psi_{7} \bar{\psi}_{5}-\psi_{8} \bar{\psi}_{6}-\psi_{5} \bar{\psi}_{7}+\psi_{6} \bar{\psi}_{8}\right\} \\
& \cdot f_{2}+\left\{-3 \psi_{4} \bar{\psi}_{1}+\psi_{3} \bar{\psi}_{2}-\psi_{2} \bar{\psi}_{3}+3 \psi_{1} \bar{\psi}_{4}+\psi_{8} \bar{\psi}_{5}\right. \\
& \left.+\psi_{7} \bar{\psi}_{6}-\psi_{6} \bar{\psi}_{7}-\psi_{5} \bar{\psi}_{8}\right\} f_{3}+\left\{-3 \psi_{6} \bar{\psi}_{1}+\psi_{5} \bar{\psi}_{2}\right. \\
& \left.\quad+\psi_{8} \bar{\psi}_{3}+\psi_{7} \bar{\psi}_{4}-\psi_{2} \bar{\psi}_{5}+3 \psi_{1} \bar{\psi}_{6}-\psi_{4} \bar{\psi}_{7}-\psi_{3} \bar{\psi}_{8}\right\} \\
& \quad \cdot f_{4}+\left\{-3 \psi_{5} \bar{\psi}_{1}-\psi_{6} \bar{\psi}_{2}-\psi_{7} \bar{\psi}_{3}+\psi_{8} \bar{\psi}_{4}+3 \psi_{1} \bar{\psi}_{5}\right. \\
& \left.\quad+\psi_{2} \bar{\psi}_{6}+\psi_{3} \bar{\psi}_{7}-\psi_{4} \bar{\psi}_{8}\right\} f_{5}+\left\{-3 \psi_{7} \bar{\psi}_{1}-\psi_{8} \bar{\psi}_{2}\right. \\
& \left.\quad+\psi_{5} \bar{\psi}_{3}-\psi_{6} \bar{\psi}_{4}-\psi_{3} \bar{\psi}_{5}+\psi_{4} \bar{\psi}_{6}+3 \psi_{1} \bar{\psi}_{7}+\psi_{2} \bar{\psi}_{8}\right\} \\
& \cdot f_{6}+\left\{-3 \psi_{8} \bar{\psi}_{1}+\psi_{7} \bar{\psi}_{2}-\psi_{6} \bar{\psi}_{3}-\psi_{5} \bar{\psi}_{4}+\psi_{4} \bar{\psi}_{5}\right. \\
& \left.\quad+\psi_{3} \bar{\psi}_{6}-\psi_{2} \bar{\psi}_{7}+3 \psi_{1} \bar{\psi}_{8}\right\} f_{7} .
\end{aligned}
$$

Hence, the curvature equation can be written explicitly as

$$
\begin{align*}
& \begin{array}{l}
F_{12}+F_{34}-F_{56}=\frac{1}{4}\left\{3 \psi_{2} \bar{\psi}_{1}-3 \psi_{1} \bar{\psi}_{2}-\psi_{4} \bar{\psi}_{3}+\psi_{3} \bar{\psi}_{4}\right. \\
\left.\quad+\psi_{6} \bar{\psi}_{5}-\psi_{5} \bar{\psi}_{6}+\psi_{8} \bar{\psi}_{7}-\psi_{7} \bar{\psi}_{8}\right\}, \\
F_{13}-F_{24}-F_{67}=\frac{1}{4}\left\{-3 \psi_{3} \bar{\psi}_{1}-\psi_{4} \bar{\psi}_{2}+3 \psi_{1} \bar{\psi}_{3}\right. \\
\left.\quad+\psi_{2} \bar{\psi}_{4}-\psi_{7} \bar{\psi}_{5}+\psi_{8} \bar{\psi}_{6}+\psi_{5} \bar{\psi}_{7}-\psi_{6} \bar{\psi}_{8}\right\}, \\
F_{14}+F_{23}-F_{57}=\frac{1}{4}\left\{3 \psi_{4} \bar{\psi}_{1}-\psi_{3} \bar{\psi}_{2}+\psi_{2} \bar{\psi}_{3}-3 \psi_{1} \bar{\psi}_{4}\right. \\
\left.\quad-\psi_{8} \bar{\psi}_{5}-\psi_{7} \bar{\psi}_{6}+\psi_{6} \bar{\psi}_{7}+\psi_{5} \bar{\psi}_{8}\right\}, \\
F_{15}-F_{26}-F_{47}=\frac{1}{4}\left\{-3 \psi_{6} \bar{\psi}_{1}+\psi_{5} \bar{\psi}_{2}+\psi_{8} \bar{\psi}_{3}+\psi_{7} \bar{\psi}_{4}\right. \\
\left.\quad-\psi_{2} \bar{\psi}_{5}+3 \psi_{1} \bar{\psi}_{6}-\psi_{4} \bar{\psi}_{7}-\psi_{3} \bar{\psi}_{8}\right\}, \\
F_{16}+F_{25}-F_{37}=\frac{1}{4}\left\{-3 \psi_{5} \bar{\psi}_{1}-\psi_{6} \bar{\psi}_{2}-\psi_{7} \bar{\psi}_{3}+\psi_{8} \bar{\psi}_{4}\right. \\
\left.\quad+3 \psi_{1} \bar{\psi}_{5}+\psi_{2} \bar{\psi}_{6}+\psi_{3} \bar{\psi}_{7}-\psi_{4} \bar{\psi}_{8}\right\}, \\
F_{17}+F_{36}+F_{45}=\frac{1}{4}\left\{-3 \psi_{7} \bar{\psi}_{1}-\psi_{8} \bar{\psi}_{2}+\psi_{5} \bar{\psi}_{3}-\psi_{6} \bar{\psi}_{4}\right. \\
\left.\quad-\psi_{3} \bar{\psi}_{5}+\psi_{4} \bar{\psi}_{6}+3 \psi_{1} \bar{\psi}_{7}+\psi_{2} \bar{\psi}_{8}\right\}, \\
F_{27}+F_{35}-F_{46}=\frac{1}{4}\left\{-3 \psi_{8} \bar{\psi}_{1}+\psi_{7} \bar{\psi}_{2}-\psi_{6} \bar{\psi}_{3}-\psi_{5} \bar{\psi}_{4}\right. \\
\left.\quad+\psi_{4} \bar{\psi}_{5}+\psi_{3} \bar{\psi}_{6}-\psi_{2} \bar{\psi}_{7}+3 \psi_{1} \bar{\psi}_{8}\right\} .
\end{array} .
\end{align*}
$$

Dirac equation $D_{A} \Psi=0$ can be expressed as follows:

$$
\begin{aligned}
& \frac{\partial \psi_{8}}{\partial x_{1}}- \frac{\partial \psi_{7}}{\partial x_{2}}-\frac{\partial \psi_{6}}{\partial x_{3}}+\frac{\partial \psi_{5}}{\partial x_{4}}-\frac{\partial \psi_{3}}{\partial x_{5}}-\frac{\partial \psi_{4}}{\partial x_{6}}+\frac{\partial \psi_{2}}{\partial x_{7}} \\
&=-A_{1} \psi_{8}+A_{2} \psi_{7}+A_{3} \psi_{6}-A_{4} \psi_{5}+A_{5} \psi_{3} \\
&+A_{6} \psi_{4}-A_{7} \psi_{2}, \\
& \frac{\partial \psi_{7}}{\partial x_{1}}+\frac{\partial \psi_{8}}{\partial x_{2}}-\frac{\partial \psi_{5}}{\partial x_{3}}-\frac{\partial \psi_{6}}{\partial x_{4}}+\frac{\partial \psi_{4}}{\partial x_{5}}-\frac{\partial \psi_{3}}{\partial x_{6}}-\frac{\partial \psi_{1}}{\partial x_{7}} \\
&=-A_{1} \psi_{7}-A_{2} \psi_{8}+A_{3} \psi_{5}+A_{4} \psi_{6}-A_{5} \psi_{4} \\
&+A_{6} \psi_{3}+A_{7} \psi_{1}, \\
&-\frac{\partial \psi_{6}}{\partial x_{1}}-\frac{\partial \psi_{5}}{\partial x_{2}}-\frac{\partial \psi_{8}}{\partial x_{3}}-\frac{\partial \psi_{7}}{\partial x_{4}}+\frac{\partial \psi_{1}}{\partial x_{5}}+\frac{\partial \psi_{2}}{\partial x_{6}}+\frac{\partial \psi_{4}}{\partial x_{7}} \\
&= A_{1} \psi_{6}+A_{2} \psi_{5}+A_{3} \psi_{8}+A_{4} \psi_{7}-A_{5} \psi_{1}-A_{6} \psi_{2} \\
&-A_{7} \psi_{4}, \\
&- \frac{\partial \psi_{5}}{\partial x_{1}}+\frac{\partial \psi_{6}}{\partial x_{2}}-\frac{\partial \psi_{7}}{\partial x_{3}}+\frac{\partial \psi_{8}}{\partial x_{4}}-\frac{\partial \psi_{2}}{\partial x_{5}}+\frac{\partial \psi_{1}}{\partial x_{6}}+\frac{\partial \psi_{3}}{\partial x_{7}} \\
&= A_{1} \psi_{5}-A_{2} \psi_{6}+A_{3} \psi_{7}-A_{4} \psi_{8}+A_{5} \psi_{2}-A_{6} \psi_{1} \\
&-A_{7} \psi_{3},
\end{aligned}
$$

$$
\begin{align*}
&- \frac{\partial \psi_{4}}{\partial x_{1}}-\frac{\partial \psi_{3}}{\partial x_{2}}-\frac{\partial \psi_{2}}{\partial x_{3}}+\frac{\partial \psi_{1}}{\partial x_{4}}-\frac{\partial \psi_{7}}{\partial x_{5}}+\frac{\partial \psi_{8}}{\partial x_{6}}+\frac{\partial \psi_{6}}{\partial x_{7}} \\
&= A_{1} \psi_{4}+A_{2} \psi_{3}+A_{3} \psi_{2}-A_{4} \psi_{1}+A_{5} \psi_{7}-A_{6} \psi_{8} \\
&-A_{7} \psi_{6} \\
&- \frac{\partial \psi_{3}}{\partial x_{1}}+\frac{\partial \psi_{4}}{\partial x_{2}}-\frac{\partial \psi_{1}}{\partial x_{3}}-\frac{\partial \psi_{2}}{\partial x_{4}}+\frac{\partial \psi_{8}}{\partial x_{5}}+\frac{\partial \psi_{7}}{\partial x_{6}}-\frac{\partial \psi_{5}}{\partial x_{7}} \\
&= A_{1} \psi_{3}-A_{2} \psi_{4}+A_{3} \psi_{1}+A_{4} \psi_{2}-A_{5} \psi_{8}-A_{6} \psi_{7} \\
&+A_{7} \psi_{5}, \\
& \frac{\partial \psi_{2}}{\partial x_{1}}-\frac{\partial \psi_{1}}{\partial x_{2}}-\frac{\partial \psi_{4}}{\partial x_{3}}-\frac{\partial \psi_{3}}{\partial x_{4}}+\frac{\partial \psi_{5}}{\partial x_{5}}-\frac{\partial \psi_{6}}{\partial x_{6}}+\frac{\partial \psi_{8}}{\partial x_{7}} \\
&=-A_{1} \psi_{2}+A_{2} \psi_{1}+A_{3} \psi_{4}+A_{4} \psi_{3}-A_{5} \psi_{5} \\
&+A_{6} \psi_{6}-A_{7} \psi_{8}, \\
& \frac{\partial \psi_{1}}{\partial x_{1}}+ \frac{\partial \psi_{2}}{\partial x_{2}}-\frac{\partial \psi_{3}}{\partial x_{3}}+\frac{\partial \psi_{4}}{\partial x_{4}}-\frac{\partial \psi_{6}}{\partial x_{5}}-\frac{\partial \psi_{5}}{\partial x_{6}}-\frac{\partial \psi_{7}}{\partial x_{7}} \\
&=-A_{1} \psi_{1}-A_{2} \psi_{2}+A_{3} \psi_{3}-A_{4} \psi_{4}+A_{5} \psi_{6} \\
&+A_{6} \psi_{5}+A_{7} \psi_{7} \tag{50}
\end{align*}
$$

These equations admit nontrivial solutions. For example, direct calculation shows that the spinor field

$$
\begin{equation*}
\psi=\left(0,0, \psi_{3}, i \psi_{3}, \psi_{3}, i \psi_{3}, 0,0\right) \tag{51}
\end{equation*}
$$

with $\psi_{3}\left(x_{1}, x_{2}, \ldots, x_{7}\right)=e^{-(i / 2) x_{1}^{2} x_{2}}$ and the connection 1form

$$
\begin{equation*}
A\left(x_{1}, x_{2}, \ldots, x_{7}\right)=\left(i x_{1} x_{2}\right) d x_{1}+\left(\frac{i}{2} x_{1}^{2}\right) d x_{2} \tag{52}
\end{equation*}
$$

satisfy the above equations.
Now we consider the space

$$
\begin{equation*}
\mathscr{C}=\mathscr{A} \times \Gamma(S), \tag{53}
\end{equation*}
$$

where \mathscr{A} is the space of connection 1-forms on the principle bundle $P_{S^{1}}$ and $\Gamma(S)$ is the space of spinor fields. The space \mathscr{C} is called the configuration space. There is an action of the gauge group $\mathscr{G}:=\operatorname{Map}\left(X, S^{1}\right)$ on the configuration space by

$$
\begin{equation*}
u \cdot(A, \psi):=\left(A+u^{-1} d u, u^{-1} \psi\right) \tag{54}
\end{equation*}
$$

where $u \in \mathscr{G}$ and $(A, \psi) \in \mathscr{C}$. The action of the gauge group enjoys the following equalities:

$$
\begin{align*}
F_{A+u^{-1} d u} & =F_{A} \\
D_{A}\left(u^{-1} \psi\right) & =u^{-1} D_{A} \psi \tag{55}
\end{align*}
$$

Hence, if the pair (A, ψ) is a solution to the Seiberg-Witten equations, then the pair $\left(A+u^{-1} d u, u^{-1} \psi\right)$ is also a solution to the Seiberg-Witten equations.

One can obtain infinitely many solutions for the SeibergWitten equations on $\mathbb{R}^{4,3}$: Consider the spinor

$$
\begin{align*}
\psi & =\left(0,0, \psi_{3}, i \psi_{3}, \psi_{3}, i \psi_{3}, 0,0\right), \\
\psi_{3}\left(x_{1}, x_{2}, \ldots, x_{7}\right) & =e^{-(i / 2) x_{1}^{2} x_{2}} \tag{56}
\end{align*}
$$

and the connection 1 -form

$$
\begin{equation*}
A\left(x_{1}, x_{2}, \ldots, x_{7}\right)=\left(i x_{1} x_{2}\right) d x_{1}+\left(\frac{i}{2} x_{1}^{2}\right) d x_{2} \tag{57}
\end{equation*}
$$

Since the pair (A, ψ) is a solution on $\mathbb{R}^{4,3}$, the pair $(A+$ $i d f, e^{-i f} \psi$) is also a solution, where $u=e^{i f}$ and f is a smooth real valued function on $\mathbb{R}^{4,3}$.

The moduli space of Seiberg-Witten equations on the manifold with structure group $G_{2(2)}^{*}$ is

$$
\begin{equation*}
\mathfrak{M}=\frac{\left\{(A, \psi) \in \mathscr{C}: D_{A} \psi=0, F_{A}^{+}=-(1 / 4) \sigma(\psi)^{+}\right\}}{\mathscr{G}} \tag{58}
\end{equation*}
$$

Whether the moduli space \mathfrak{M} has similar properties of moduli space of Seiberg-Witten equations on a 4-dimensional manifold is a subject of another work.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This study was supported by Anadolu University Scientific Research Projects Commission under Grant no. 1501F017.

References

[1] E. Witten, "Monopoles and four-manifolds," Mathematical Research Letters, vol. 1, no. 6, pp. 769-796, 1994.
[2] J. W. Morgan, The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds, Princeton University Press, Princeton, NJ, USA, 1996.
[3] N. Deǧirmenci and N. Özdemir, "Seiberg-Witten-like equations on 7-manifolds with G_{2}-structure," Journal of Nonlinear Mathematical Physics, vol. 12, no. 4, pp. 457-461, 2005.
[4] N. Değirmenci and N. Özdemir, "Seiberg-Witten like equations on 8-manifolds with structure group spin(7)," Journal of Dynamical Systems and Geometric Theories, vol. 7, no. 1, pp. 2139, 2009.
[5] Y. H. Gao and G. Tian, "Instantons and the monopole-like equations in eight dimensions," Journal of High Energy Physics, vol. 5, article 036, 2000.
[6] T. Nitta and T. Taniguchi, "Quaternionic Seiberg-Witten equation," International Journal of Mathematics, vol. 7, no. 5, p. 697, 1996.
[7] N. Değirmenci and N. Özdemir, "Seiberg-Witten like equations on Lorentzian manifolds," International Journal of Geometric Methods in Modern Physics, vol. 8, no. 4, 2011.
[8] N. Değirmenci and S. Karapazar, "Seiberg-Witten like equations on Pseudo-Riemannian Spin ${ }^{c}$-manifolds with neutral signature," Analele stiintifice ale Universitatii Ovidius Constanta, vol. 20, no. 1, 2012.
[9] A. Ikemakhen, "Parallel spinors on pseudo-Riemannian Spin ${ }^{c}$ manifolds," Journal of Geometry and Physics, vol. 56, no. 9, pp. 1473-1483, 2006.
[10] H. Baum and I. Kath, "Parallel spinors and holonomy groups on pseudo-Riemannian spin manifolds," Annals of Global Analysis and Geometry, vol. 17, no. 1, pp. 1-17, 1999.
[11] F. R. Harvey, Spinors and Calibrations, Academic Press, 1990.
[12] I. Kath, " $G_{2(2)}^{*}$-structures on pseudo-riemannian manifolds," Journal of Geometry and Physics, vol. 27, no. 3-4, pp. 155-177, 1998.
[13] E. Corrigan, C. Devchand, D. B. Fairlie, and J. Nuyts, "Firstorder equations for gauge fields in spaces of dimension greater than four," Nuclear Physics, Section B, vol. 214, no. 3, pp. 452464, 1983.
[14] H. B. Lawson and M. Michelsohn, Spin Geometry, Princeton University Press, Princeton, NJ, USA, 1989.
[15] T. Friedrich, Dirac Operators in Riemannian Geometry, American Mathematical Society, 2000.

Advances in
Operations Research
$=$

The Scientific World Journal

International
Journal of
Mathematics and
Mathematical
Sciences

Advances in
Decision Sciences
$\pm=$

Applied Mathematics
$\underline{=}$

Hindawi

Submit your manuscripts at http://www.hindawi.com

Journal of Function Spaces

