On the continuity property of L_{p} balls and an application ${ }^{\text {NT }}$

Kh.G. Guseinov *, A.S. Nazlipinar
Anadolu University, Science Faculty, Department of Mathematics, 26470 Eskisehir, Turkey

Received 28 November 2006
Available online 20 February 2007
Submitted by M.A. Noor

Abstract

In this paper continuity properties of the set-valued map $p \rightarrow B_{p}\left(\mu_{0}\right), p \in(1,+\infty)$, are considered where $B_{p}\left(\mu_{0}\right)$ is the closed ball of the space $L_{p}\left(\left[t_{0}, \theta\right] ; R^{m}\right)$ centered at the origin with radius μ_{0}. It is proved that the set-valued map $p \rightarrow B_{p}\left(\mu_{0}\right), p \in(1,+\infty)$, is continuous. Applying obtained results, the attainable set of the nonlinear control system with integral constraint on the control is studied. The admissible control functions are chosen from $B_{p}\left(\mu_{0}\right)$. It is shown that the attainable set of the system is continuous with respect to p. © 2007 Elsevier Inc. All rights reserved.

Keywords: L_{p} space; Set-valued map; Control system; Attainable set

1. Introduction

Let $\|\cdot\|$ be Euclidean norm in $R^{m},\|u(\cdot)\|_{p}(1 \leqslant p<+\infty)$ be a norm in $L_{p}\left(\left[t_{0}, \theta\right], R^{m}\right)$, where $L_{p}\left(\left[t_{0}, \theta\right], R^{m}\right)$ denotes the space of measurable functions $u(\cdot):\left[t_{0}, \theta\right] \rightarrow R^{m}$ with bounded $\|u(\cdot)\|_{p}$ norm and

$$
\|u(\cdot)\|_{p}=\left(\int_{t_{0}}^{\theta}\|u(t)\|^{p} d t\right)^{\frac{1}{p}}
$$

[^0]For $p \geqslant 1$ and $\mu_{0}>0$ we set

$$
\begin{equation*}
B_{p}\left(\mu_{0}\right)=\left\{u(\cdot) \in L_{p}\left(\left[t_{0}, \theta\right], R^{m}\right):\|u(\cdot)\|_{p} \leqslant \mu_{0}\right\} \tag{1.1}
\end{equation*}
$$

It is obvious that $B_{p}\left(\mu_{0}\right)$ is the closed ball centered at the origin with radius μ_{0} in $L_{p}\left(\left[t_{0}, \theta\right], R^{m}\right)$.

The Hausdorff distance between the sets $A \subset R^{m}$ and $E \subset R^{m}$ is denoted by $h(A, E)$ and is defined as

$$
h(A, E)=\max \left\{\sup _{x \in A} d(x, E), \sup _{y \in E} d(y, A)\right\}
$$

where $d(x, E)=\inf \{\|x-y\|: y \in E\}$.
The Hausdorff distance between the sets $U \subset L_{p_{1}}\left(\left[t_{0}, \theta\right], R^{m}\right)$ and $V \subset L_{p_{2}}\left(\left[t_{0}, \theta\right], R^{m}\right)$ is denoted by $h_{1}(U, V)$ and is defined as

$$
h_{1}(U, V)=\max \left\{\sup _{x(\cdot) \in V} d_{1}(x(\cdot), U), \sup _{y(\cdot) \in U} d_{1}(y(\cdot), V)\right\}
$$

where $d_{1}(x(\cdot), U)=\inf \left\{\|x(\cdot)-y(\cdot)\|_{1}: y(\cdot) \in U\right\}, p_{1} \in[1, \infty), p_{2} \in[1, \infty)$.
For $\Omega \subset R^{n}$ we denote by $\mu(\Omega)$ the Lebesgue measure of the set Ω.
The need to evaluate the distance between the sets arises in various problems of theory and applications (see, e.g., $[1,2,4-6,8-10,13]$ and references therein).

In this paper, the Hausdorff distance between the sets $B_{p}\left(\mu_{0}\right)$ and $B_{p_{*}}\left(\mu_{0}\right)$ is studied where $p>1$ and $p_{*}>1$. In Section 2 we prove that $h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \rightarrow 0$ as $p \rightarrow p_{*}-0$ (Proposition 2.5). In Section 3 it is shown that $h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \rightarrow 0$ as $p \rightarrow p_{*}+0$ (Proposition 3.5). As a corollary of Propositions 2.5 and 3.5 , Theorem 3.6 concludes that $h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \rightarrow 0$ as $p \rightarrow p_{*}$. In Section 4 we consider attainable sets of the nonlinear control system with integral constraints on control. $B_{p}\left(\mu_{0}\right)$ is chosen as the set of admissible control functions. As an application of Theorem 3.6, it is proved that the attainable set of the control system is continuous with respect to p (Theorem 4.2).

Let $H \in(0, \infty)$. We set

$$
B_{p}^{H}\left(\mu_{0}\right)=\left\{u(\cdot) \in B_{p}\left(\mu_{0}\right):\|u(t)\| \leqslant H \text { for every } t \in\left[t_{0}, \theta\right]\right\} .
$$

The following proposition characterizes the Hausdorff distance between the sets $B_{p}\left(\mu_{0}\right)$ and $B_{p}^{H}\left(\mu_{0}\right)$.

Proposition 1.1. Let $p>1, H>0$. Then the inequality

$$
h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p}^{H}\left(\mu_{0}\right)\right) \leqslant \frac{2 \mu_{0}^{p}}{H^{p-1}}
$$

holds.

Proof. Let us choose an arbitrary $u(\cdot) \in B_{p}\left(\mu_{0}\right)$ and define a function $u_{*}(\cdot):\left[t_{0}, \theta\right] \rightarrow R^{m}$, setting for $t \in\left[t_{0}, \theta\right]$

$$
u_{*}(t)= \begin{cases}u(t), & \|u(t)\| \leqslant H \tag{1.2}\\ \frac{u(t)}{\|u(t)\|} H, & \|u(t)\|>H\end{cases}
$$

It is not difficult to verify that $u_{*}(\cdot) \in B_{p}^{H}\left(\mu_{0}\right)$. Let

$$
\Omega=\left\{\tau \in\left[t_{0}, \theta\right]:\|u(\tau)\|>H\right\}
$$

Then using Hölder and Minkowski inequalities, we have from (1.2) that

$$
\begin{equation*}
\left\|u(\cdot)-u_{*}(\cdot)\right\|_{1}=\int_{\Omega}\left\|u(t)-u_{*}(t)\right\| d t \leqslant 2 \mu_{0} \mu(\Omega)^{\frac{p-1}{p}} \tag{1.3}
\end{equation*}
$$

Since $u(\cdot) \in B_{p}\left(\mu_{0}\right)$ and $\|u(\tau)\|>H$ for every $\tau \in \Omega$, we obtain

$$
H^{p} \mu(\Omega) \leqslant \int_{\Omega}\|u(\tau)\|^{p} d \tau \leqslant \int_{t_{0}}^{\theta}\|u(\tau)\|^{p} d \tau \leqslant \mu_{0}^{p}
$$

and consequently

$$
\begin{equation*}
\mu(\Omega) \leqslant \frac{\mu_{0}^{p}}{H^{p}} \tag{1.4}
\end{equation*}
$$

Then it follows from (1.3) and (1.4)

$$
\left\|u(\cdot)-u_{*}(\cdot)\right\|_{1} \leqslant 2 \mu_{0}\left(\frac{\mu_{0}^{p}}{H^{p}}\right)^{\frac{p-1}{p}}=\frac{2 \mu_{0}^{p}}{H^{p-1}} .
$$

Since $u(\cdot) \in B_{p}\left(\mu_{0}\right)$ is arbitrarily chosen, we get the inequality

$$
\begin{equation*}
\sup _{u(\cdot) \in B_{p}\left(\mu_{0}\right)} d_{1}\left(u(\cdot), B_{p}^{H}\left(\mu_{0}\right)\right) \leqslant \frac{2 \mu_{0}^{p}}{H^{p-1}} . \tag{1.5}
\end{equation*}
$$

Since $B_{p}^{H}\left(\mu_{0}\right) \subset B_{p}\left(\mu_{0}\right)$ then (1.5) completes the proof of the proposition.
We obtain the following corollary from Proposition 1.1.

Corollary 1.2. Let $p_{*}>1$ and $\varepsilon>0$. Then there exists $H_{*}(\varepsilon)>2 \mu_{0}$ such that for all $H>H_{*}(\varepsilon)$ the inequality

$$
h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p}^{H}\left(\mu_{0}\right)\right) \leqslant \varepsilon
$$

holds for any $p \in\left[\frac{p_{*}+1}{2}, 2 p_{*}\right]$.

2. Left evaluation of $\boldsymbol{B}_{\boldsymbol{p}}\left(\mu_{0}\right)$

In this section, we will evaluate the Hausdorff distance between the sets $B_{p}\left(\mu_{0}\right)$ and $B_{p_{*}}\left(\mu_{0}\right)$ as $p \rightarrow p_{*}-0$.

Let

$$
\begin{equation*}
\alpha_{0}=\min \left\{\frac{\mu_{0}}{2}, 1\right\} . \tag{2.1}
\end{equation*}
$$

Proposition 2.1. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ and $H_{2}>H_{1}>2 \mu_{0}$. Then there exists $\delta_{1}=$ $\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inclusion

$$
B_{p_{*}}^{H_{1}}\left(\mu_{0}\right) \subset B_{p}^{H_{2}}\left(\mu_{0}\right)+2\left(\theta-t_{0}\right) \varepsilon B_{1}(1)
$$

holds for all $p \in\left(p_{*}-\delta_{1}, p_{*}\right)$ where $\alpha_{0}>0$ is defined by (2.1) and $B_{1}(1)$ is defined by (1.1).
Proof. Let

$$
\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right)=\min \left\{\beta_{1}\left(\varepsilon, H_{1}\right), \beta_{2}\left(\varepsilon, H_{1}\right), p_{*}-p_{1}\left(H_{1}, H_{2}\right)\right\}
$$

where

$$
\begin{aligned}
& p_{1}\left(H_{1}, H_{2}\right)=\max \left\{\frac{p_{*}+1}{2}, \frac{p_{*}}{1+\log _{\frac{H_{1}}{\mu_{0}}} \frac{H_{2}}{H_{1}}}\right\}, \\
& \beta_{1}\left(\varepsilon, H_{1}\right)=p_{*}\left(1-\frac{1}{1+\log _{\frac{H_{1}}{\mu_{0}}} \frac{H_{1}+\varepsilon}{H_{1}}}\right), \\
& \beta_{2}\left(\varepsilon, H_{1}\right)=p_{*}\left(1-\frac{1}{1+\log _{\frac{\varepsilon}{\mu_{0}}} \frac{H_{1}-\varepsilon}{H_{1}}}\right) .
\end{aligned}
$$

It is not difficult to verify that $\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right) \in\left(0, \frac{p_{*}-1}{2}\right]$.
Let $u_{*}(\cdot) \in B_{p_{*}}^{H_{1}}\left(\mu_{0}\right)$ be arbitrarily chosen and $p \in\left(p_{*}-\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right), p_{*}\right)$. We set

$$
\begin{equation*}
u_{p}(t)=u_{*}(t)\left\|u_{*}(t)\right\|^{\frac{p_{*}-p}{p}} \mu_{0} \frac{p-p_{*}}{p}, \quad t \in\left[t_{0}, \theta\right] . \tag{2.2}
\end{equation*}
$$

Since $u_{*}(\cdot) \in B_{p_{*}}^{H_{1}}\left(\mu_{0}\right)$ and $p \in\left(p_{*}-\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right), p_{*}\right)$, it is possible to prove that $u_{p}(\cdot) \in$ $B_{p}^{H_{2}}\left(\mu_{0}\right)$.

Denote

$$
A(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: 0 \leqslant\left\|u_{*}(t)\right\| \leqslant \varepsilon\right\}, \quad B(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: \varepsilon<\left\|u_{*}(t)\right\| \leqslant H_{1}\right\} .
$$

Let $t \in A(\varepsilon)$. Then $0 \leqslant\left\|u_{*}(t)\right\| \leqslant \varepsilon$. Since $\varepsilon<\frac{\mu_{0}}{2}$ and $p<p_{*}$ then we obtain

$$
\begin{equation*}
\left\|u_{*}(t)\right\|\left|1-\left(\frac{\left\|u_{*}(t)\right\|}{\mu_{0}}\right)^{\frac{p_{*}-p}{p}}\right| \leqslant \varepsilon \tag{2.3}
\end{equation*}
$$

for every $t \in A(\varepsilon)$.
Let $t \in B(\varepsilon)$. Then $\varepsilon<\left\|u_{*}(t)\right\| \leqslant H_{1}$ and this gives

$$
\begin{equation*}
1-\left(\frac{H_{1}}{\mu_{0}}\right)^{\frac{p_{*}-p}{p}} \leqslant 1-\left(\frac{\left\|u_{*}(t)\right\|}{\mu_{0}}\right)^{\frac{p_{*}-p}{p}} \leqslant 1-\left(\frac{\varepsilon}{\mu_{0}}\right)^{\frac{p_{*}-p}{p}} . \tag{2.4}
\end{equation*}
$$

Since $p \in\left(p_{*}-\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right), p_{*}\right)$, then we get from (2.4) that the inequality

$$
\left|1-\left(\frac{\left\|u_{*}(t)\right\|}{\mu_{0}}\right)^{\frac{p *-p}{p}}\right| \leqslant \frac{\varepsilon}{H_{1}}
$$

holds for every $t \in B(\varepsilon)$ and consequently

$$
\begin{equation*}
\left\|u_{*}(t)\right\|\left|1-\left(\frac{\left\|u_{*}(t)\right\|}{\mu_{0}}\right)^{\frac{p_{*}-p}{p}}\right| \leqslant \varepsilon . \tag{2.5}
\end{equation*}
$$

Finally, it follows from (2.3) and (2.5) that

$$
\begin{equation*}
\left\|u_{p}(\cdot)-u_{*}(\cdot)\right\|_{1} \leqslant \varepsilon[\mu(A(\varepsilon))+\mu(B(\varepsilon))] \leqslant 2 \varepsilon\left(\theta-t_{0}\right) . \tag{2.6}
\end{equation*}
$$

Since $p \in\left(p_{*}-\delta_{1}\left(\varepsilon, H_{1}, H_{2}\right), p_{*}\right)$ and $u_{*}(\cdot) \in B_{p_{*}}^{H_{1}}\left(\mu_{0}\right)$ are arbitrarily chosen, (2.6) implies the validity of the proposition.

From Corollary 1.2 and Proposition 2.1 the validity of the following proposition follows.
Proposition 2.2. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\gamma_{1}=\gamma_{1}(\varepsilon) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inclusion

$$
B_{p_{*}}\left(\mu_{0}\right) \subset B_{p}\left(\mu_{0}\right)+\varepsilon B_{1}(1)
$$

holds for any $p \in\left(p_{*}-\gamma_{1}, p_{*}\right)$.
Proof. By Corollary 1.2 there exists $H_{*}(\varepsilon)>2 \mu_{0}$ such that for every $H>H_{*}(\varepsilon)$ the inclusions

$$
\begin{equation*}
B_{p}\left(\mu_{0}\right) \subset B_{p}^{H}\left(\mu_{0}\right)+\frac{\varepsilon}{3} B_{1}(1), \quad B_{p}^{H}\left(\mu_{0}\right) \subset B_{p}\left(\mu_{0}\right)+\frac{\varepsilon}{3} B_{1}(1) \tag{2.7}
\end{equation*}
$$

hold for any $p \in\left[\frac{p_{*}+1}{2}, 2 p_{*}\right]$.
Let $H_{1}(\varepsilon)=2 H_{*}(\varepsilon), H_{2}(\varepsilon)=3 H_{*}(\varepsilon)$. Then by virtue of Proposition 2.1 there exists $\gamma_{1}(\varepsilon)=$ $\delta_{1}\left(\varepsilon, H_{1}(\varepsilon), H_{2}(\varepsilon)\right) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inclusion

$$
\begin{equation*}
B_{p_{*}}^{H_{1}(\varepsilon)}\left(\mu_{0}\right) \subset B_{p}^{H_{2}(\varepsilon)}\left(\mu_{0}\right)+\frac{\varepsilon}{3} B_{1}(1) \tag{2.8}
\end{equation*}
$$

holds for all $p \in\left(p_{*}-\gamma_{1}(\varepsilon), p_{*}\right)$.
The proof of the proposition follows from (2.7) and (2.8).
Now, let us give an upper estimation of the set $B_{p}^{H}\left(\mu_{0}\right)$ as $p \rightarrow p_{*}-0$. Let

$$
\begin{align*}
& \mu_{*}=\max \left\{\mu_{0}^{\frac{p_{*}-p}{p_{*}}}: p \in\left[\frac{p_{*}+1}{2}, p_{*}\right]\right\}, \tag{2.9}\\
& L_{*}=\left(2+\mu_{*}\right)\left(\theta-t_{0}\right) . \tag{2.10}
\end{align*}
$$

Proposition 2.3. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right), H>2 \mu_{0}$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\delta_{2}=\delta_{2}(\varepsilon, H) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inclusion

$$
B_{p}^{H}\left(\mu_{0}\right) \subset B_{p_{*}}^{H}\left(\mu_{0}\right)+L_{*} \varepsilon^{\frac{1}{2}} B_{1}(1)
$$

holds for any $p \in\left(p_{*}-\delta_{2}, p_{*}\right)$.
Proof. Let

$$
\delta_{2}(\varepsilon, H)=\min \left\{\beta_{3}(\varepsilon, H), \beta_{4}(\varepsilon, H)\right\}
$$

where

$$
\begin{aligned}
& \beta_{3}(\varepsilon, H)=\min \left\{p_{*} \log _{\frac{\mu_{0}}{\varepsilon}} \frac{H+\varepsilon}{H}, \frac{p_{*}-1}{2}\right\}, \\
& \beta_{4}(\varepsilon, H)=\min \left\{p_{*} \log _{\frac{\mu_{0}}{H}} \frac{H-\varepsilon}{H}, \frac{p_{*}-1}{2}\right\} .
\end{aligned}
$$

It is obvious that $\delta_{2}(\varepsilon, H) \in\left(0, \frac{p_{*}-1}{2}\right]$.
Let $p \in\left(p_{*}-\delta_{2}(\varepsilon, H), p_{*}\right)$. Now let us choose an arbitrary $u(\cdot) \in B_{p}^{H}\left(\mu_{0}\right)$ and define a function $u_{*}(\cdot):\left[t_{0}, \theta\right] \rightarrow R^{m}$ by setting

$$
\begin{equation*}
u_{*}(t)=u(t)\|u(t)\|^{\frac{p-p_{*}}{p_{*}}} \mu_{0} \frac{p_{*}-p}{p_{*}}, \quad t \in\left[t_{0}, \theta\right] . \tag{2.11}
\end{equation*}
$$

Since $u(\cdot) \in B_{p}^{H}\left(\mu_{0}\right)$ one can show that $u_{*}(\cdot) \in B_{p_{*}}^{H}\left(\mu_{0}\right)$.
Now let us set

$$
A(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: 0 \leqslant\|u(t)\| \leqslant \varepsilon\right\}, \quad B(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: \varepsilon<\|u(t)\| \leqslant H_{1}\right\} .
$$

Let $t \in A(\varepsilon)$. Then $0 \leqslant\|u(t)\| \leqslant \varepsilon$. Since $\varepsilon<\alpha_{0} \leqslant 1$ and $p \in\left(p_{*}-\delta_{2}(\varepsilon, H), p_{*}\right) \subset$ [$\frac{p_{*}+1}{2}, p_{*}$) we get from (2.11)

$$
\begin{align*}
\int_{A(\varepsilon)}\left\|u(t)-u_{*}(t)\right\| d t & \leqslant \varepsilon\left(\theta-t_{0}\right)+\mu_{0}^{\frac{p_{*}-p}{p_{*}}} \varepsilon^{\frac{p}{p_{*}}}\left(\theta-t_{0}\right) \\
& \leqslant \varepsilon\left(\theta-t_{0}\right)+\varepsilon^{\frac{1}{2}} \mu_{*}\left(\theta-t_{0}\right) \\
& \leqslant \varepsilon^{\frac{1}{2}}\left(1+\mu_{*}\right)\left(\theta-t_{0}\right) \tag{2.12}
\end{align*}
$$

where μ_{*} is defined by (2.9).
Let $t \in B(\varepsilon)$. Then $\varepsilon<\|u(t)\| \leqslant H$ and

$$
\begin{equation*}
1-\left(\frac{\mu_{0}}{\varepsilon}\right)^{\frac{p_{*}-p}{p_{*}}} \leqslant 1-\left(\frac{\mu_{0}}{\|u(t)\|}\right)^{\frac{p_{*}-p}{p_{*}}} \leqslant 1-\left(\frac{\mu_{0}}{H}\right)^{\frac{p_{*}-p}{p_{*}}} . \tag{2.13}
\end{equation*}
$$

Since $p \in\left(p_{*}-\delta_{2}(\varepsilon, H), p_{*}\right)$ then (2.13) implies

$$
\left|1-\left(\frac{\mu_{0}}{\|u(t)\|}\right)^{\frac{p_{*}-p}{p_{*}}}\right| \leqslant \frac{\varepsilon}{H}
$$

and consequently

$$
\begin{equation*}
\|u(t)\|\left|1-\left(\frac{\mu_{0}}{\|u(t)\|}\right)^{\frac{p_{*}-p}{p_{*}}}\right| \leqslant \varepsilon \tag{2.14}
\end{equation*}
$$

for every $t \in B(\varepsilon)$. Thus, it follows from (2.12) and (2.14)

$$
\begin{aligned}
\left\|u(\cdot)-u_{*}(\cdot)\right\|_{1} & \leqslant \varepsilon^{\frac{1}{2}}\left(\theta-t_{0}\right)\left[1+\mu_{*}+\varepsilon^{\frac{1}{2}}\right] \\
& \leqslant \varepsilon^{\frac{1}{2}}\left(\theta-t_{0}\right)\left[2+\mu_{*}\right]=\varepsilon^{\frac{1}{2}} L_{*}
\end{aligned}
$$

where L_{*} is defined by (2.10).
Since $p \in\left(p_{*}-\delta_{2}(\varepsilon, H), p_{*}\right)$ and $u(\cdot) \in B_{p}^{H}\left(\mu_{0}\right)$ are arbitrarily chosen, we obtain the validity of the proposition.

The following proposition gives an upper estimation of the set $B_{p}\left(\mu_{0}\right)$ as $p \rightarrow p_{*}-0$.

Proposition 2.4. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\gamma_{2}=\gamma_{2}(\varepsilon) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inclusion

$$
B_{p}\left(\mu_{0}\right) \subset B_{p_{*}}\left(\mu_{0}\right)+\varepsilon B_{1}(1)
$$

holds for any $p \in\left(p_{*}-\gamma_{2}, p_{*}\right)$.
Proof. By Corollary 1.2 there exists $H_{*}(\varepsilon)>2 \mu_{0}$ such that for all $H>H_{*}(\varepsilon)$ the inclusions

$$
\begin{equation*}
B_{p}\left(\mu_{0}\right) \subset B_{p}^{H}\left(\mu_{0}\right)+\frac{\varepsilon}{3} B_{1}(1), \quad B_{p}^{H}\left(\mu_{0}\right) \subset B_{p}\left(\mu_{0}\right)+\frac{\varepsilon}{3} B_{1}(1) \tag{2.15}
\end{equation*}
$$

hold for any $p \in\left[\frac{p_{*}+1}{2}, 2 p_{*}\right]$.
Let $H(\varepsilon)=2 H_{*}(\varepsilon)$. Then due to Proposition 2.3 there exists $\delta_{2}(\varepsilon)=\delta_{2}(\varepsilon, H(\varepsilon)) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inclusion

$$
\begin{equation*}
B_{p}^{H(\varepsilon)}\left(\mu_{0}\right) \subset B_{p_{*}}^{H(\varepsilon)}\left(\mu_{0}\right)+\frac{\varepsilon}{3} B_{1}(1) \tag{2.16}
\end{equation*}
$$

holds for any $p \in\left(p_{*}-\delta_{2}(\varepsilon), p_{*}\right)$.
Let $\gamma_{2}=\gamma_{2}(\varepsilon)=\delta_{2}(\varepsilon)$. Then (2.15) and (2.16) complete the proof.
From Propositions 2.2 and 2.4 we get the following proposition.

Proposition 2.5. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\delta_{*}=\delta_{*}(\varepsilon) \in\left(0, \frac{p_{*}-1}{2}\right]$ such that the inequality

$$
h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \leqslant \varepsilon
$$

holds for all $p \in\left(p_{*}-\delta_{*}, p_{*}\right)$.

3. Right evaluation of $B_{p}\left(\mu_{0}\right)$

In this section we will study right continuity of the set-valued map $p \rightarrow B_{p}\left(\mu_{0}\right), p \in$ $(1,+\infty)$. The following proposition gives an upper estimation of the set $B_{p}^{H}\left(\mu_{0}\right)$ as $p \rightarrow p_{*}+0$.

Proposition 3.1. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right), H_{1}>H_{2}>\mu_{0}$ where $\alpha_{0}>0$ is defined by (2.1). Then, there exists $\nu_{1}=v_{1}\left(\varepsilon, H_{1}, H_{2}\right) \in\left(0, p_{*}\right]$ such that the inclusion

$$
B_{p}^{H_{2}}\left(\mu_{0}\right) \subset B_{p_{*}}^{H_{1}}\left(\mu_{0}\right)+2\left(\theta-t_{0}\right) \varepsilon B_{1}(1)
$$

holds for any $p \in\left(p_{*}, p_{*}+v_{1}\right)$.
Proof. Let

$$
\nu_{1}\left(\varepsilon, H_{1}, H_{2}\right)=\min \left\{\beta_{1}^{*}\left(\varepsilon, H_{1}, H_{2}\right), \beta_{2}^{*}\left(\varepsilon, H_{1}, H_{2}\right), p_{2}\left(H_{1}, H_{2}\right)-p_{*}\right\}
$$

where

$$
\begin{aligned}
& p_{2}\left(H_{1}, H_{2}\right)=\min \left\{2 p_{*}, p_{*}\left(1+\log _{\frac{H_{2}}{\mu_{0}}} \frac{H_{1}}{H_{2}}\right)\right\}, \\
& \beta_{1}^{*}\left(\varepsilon, H_{1}, H_{2}\right)=\min \left\{p_{*} \log _{\frac{H_{2}}{\mu_{0}}} \frac{H_{2}+\varepsilon}{H_{2}}, p_{*}\right\},
\end{aligned}
$$

$$
\beta_{2}^{*}\left(\varepsilon, H_{1}, H_{2}\right)=\min \left\{p_{*} \log _{\frac{\varepsilon}{\mu_{0}}} \frac{H_{2}-\varepsilon}{H_{2}}, p_{*}\right\} .
$$

It is obvious that $\nu_{1}\left(\varepsilon, H_{1}, H_{2}\right) \in\left(0, p_{*}\right]$.
Let $p \in\left(p_{*}, p_{*}+\nu_{1}\left(\varepsilon, H_{1}, H_{2}\right)\right)$ and choose an arbitrary $u(\cdot) \in B_{p}^{H_{2}}\left(\mu_{0}\right)$. Define a function $u_{*}(\cdot):\left[t_{0}, \theta\right] \rightarrow R^{m}$ by setting

$$
\begin{equation*}
u_{*}(t)=u(t)\|u(t)\|^{\frac{p-p *}{p *}} \mu_{0} \frac{p_{*}-p}{p_{*}}, \quad t \in\left[t_{0}, \theta\right] . \tag{3.1}
\end{equation*}
$$

It is not difficult to show that $u_{*}(\cdot) \in B_{p_{*}}^{H_{1}}\left(\mu_{0}\right)$.
Let us denote

$$
A(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: 0 \leqslant\|u(t)\| \leqslant \varepsilon\right\}, \quad B(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: \varepsilon<\|u(t)\| \leqslant H_{2}\right\} .
$$

Let $t \in A(\varepsilon)$. Since $\varepsilon<\mu_{0}$ and $p>p_{*}$ then we obtain

$$
\begin{equation*}
\|u(t)\|\left|1-\left(\frac{\|u(t)\|}{\mu_{0}}\right)^{\frac{p-p_{*}}{p_{*}}}\right| \leqslant \varepsilon . \tag{3.2}
\end{equation*}
$$

Let $t \in B(\varepsilon)$. Then $\varepsilon<\|u(t)\| \leqslant H_{2}$ and consequently

$$
\begin{equation*}
1-\left(\frac{H_{2}}{\mu_{0}}\right)^{\frac{p-p_{*}}{p_{*}}} \leqslant 1-\left(\frac{\|u(t)\|}{\mu_{0}}\right)^{\frac{p-p_{*}}{p_{*}}} \leqslant 1-\left(\frac{\varepsilon}{\mu_{0}}\right)^{\frac{p-p_{*}}{p_{*}}} . \tag{3.3}
\end{equation*}
$$

Since $p \in\left(p_{*}, p_{*}+v_{1}\left(\varepsilon, H_{1}, H_{2}\right)\right)$, from (3.3) we see that the inequality

$$
\left|1-\left(\frac{\|u(t)\|}{\mu_{0}}\right)^{\frac{p-p_{*}}{p_{*}}}\right| \leqslant \frac{\varepsilon}{H_{2}}
$$

is satisfied and hence

$$
\begin{equation*}
\|u(t)\|\left|1-\left(\frac{\|u(t)\|}{\mu_{0}}\right)^{\frac{p-p_{*}}{p_{*}}}\right| \leqslant \varepsilon . \tag{3.4}
\end{equation*}
$$

Thus, from (3.2) and (3.4) we obtain the inequality

$$
\left\|u(\cdot)-u_{*}(\cdot)\right\|_{1} \leqslant \varepsilon \mu(A(\varepsilon))+\varepsilon \mu(B(\varepsilon)) \leqslant 2 \varepsilon\left(\theta-t_{0}\right) .
$$

Since $p \in\left(p_{*}, p_{*}+v_{1}\left(\varepsilon, H_{1}, H_{2}\right)\right)$ and $u(\cdot) \in B_{p}^{H_{2}}\left(\mu_{0}\right)$ are arbitrarily chosen, the proof is completed.

Proposition 3.2. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\gamma_{1}^{*}=\gamma_{1}^{*}(\varepsilon) \in\left(0, p_{*}\right]$ such that the inclusion

$$
B_{p}\left(\mu_{0}\right) \subset B_{p_{*}}\left(\mu_{0}\right)+\varepsilon B_{1}(1)
$$

holds for any $p \in\left(p_{*}, p_{*}+\gamma_{1}^{*}\right)$.
The proof of Proposition 3.2 follows from Corollary 1.2 and Proposition 3.1.
Let us define constants

$$
\begin{align*}
& \mu^{*}=\max \left\{\mu_{0}^{\frac{p-p_{*}}{p}}: p \in\left[p_{*}, 2 p_{*}\right]\right\}, \tag{3.5}\\
& L^{*}=\left(2+\mu^{*}\right)\left(\theta-t_{0}\right) \tag{3.6}
\end{align*}
$$

which are required in Proposition 3.3 and will be used in the sequel.

Proposition 3.3. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ and $H>2 \mu_{0}$ where $\alpha_{0}>0$ is defined by (2.1). Then, there exists $\nu_{2}=\nu_{2}(\varepsilon, H) \in\left(0, p_{*}\right]$ such that the inclusion

$$
B_{p_{*}}^{H}\left(\mu_{0}\right) \subset B_{p}^{H}\left(\mu_{0}\right)+L_{*} \varepsilon^{\frac{1}{2}} B_{1}(1)
$$

holds for any $p \in\left(p_{*}, p_{*}+v_{2}\right)$.
Proof. Let

$$
\nu_{2}(\varepsilon, H)=\min \left\{\beta_{3}^{*}(\varepsilon, H), \beta_{4}^{*}(\varepsilon, H)\right\}
$$

where

$$
\begin{aligned}
& \beta_{3}^{*}(\varepsilon, H)=\min \left\{p_{*}\left(\frac{1}{1-\log _{\frac{\mu_{0}}{\varepsilon}} \frac{H+\varepsilon}{H}}-1\right), p_{*}\right\} \\
& \beta_{4}^{*}(\varepsilon, H)=\min \left\{p_{*}\left(\frac{1}{1-\log \frac{\mu_{0}}{H} \frac{H-\varepsilon}{H}}-1\right), p_{*}\right\} .
\end{aligned}
$$

It is obvious that $\nu_{2}(\varepsilon, H) \in\left(0, p_{*}\right]$.
Let $p \in\left(p_{*}, p_{*}+v_{2}(\varepsilon, H)\right)$ and $u_{*}(\cdot) \in B_{p_{*}}^{H}\left(\mu_{0}\right)$ be arbitrarily chosen. We set

$$
\begin{equation*}
u(t)=u_{*}(t)\left\|u_{*}(t)\right\|^{\frac{p_{*}-p}{p}} \mu_{0} \frac{p-p_{*}}{p}, \quad t \in\left[t_{0}, \theta\right] . \tag{3.7}
\end{equation*}
$$

It can be shown that $u(\cdot) \in B_{p}^{H}\left(\mu_{0}\right)$.
We denote

$$
A(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: 0 \leqslant\left\|u_{*}(t)\right\| \leqslant \varepsilon\right\}, \quad B(\varepsilon)=\left\{t \in\left[t_{0}, \theta\right]: \varepsilon<\left\|u_{*}(t)\right\| \leqslant H\right\} .
$$

Let $t \in A(\varepsilon)$. Then $0 \leqslant\left\|u_{*}(t)\right\| \leqslant \varepsilon$. Since $\varepsilon<\alpha_{0}<1, p \in\left[p_{*}, 2 p_{*}\right]$ then we obtain that

$$
\begin{align*}
\int_{A(\varepsilon)}\left\|u_{*}(t)-u_{*}(t)\right\| u_{*}(t)\left\|^{\frac{p_{*}-p}{p}} \mu_{0}^{\frac{p-p_{*}}{p}}\right\| d t & \leqslant \varepsilon\left(\theta-t_{0}\right)+\mu_{0}^{\frac{p-p_{*}}{p}} \varepsilon^{\frac{p *}{p}}\left(\theta-t_{0}\right) \\
& \leqslant \varepsilon^{\frac{1}{2}}\left(1+\mu^{*}\right)\left(\theta-t_{0}\right) \tag{3.8}
\end{align*}
$$

where μ^{*} is defined by (3.5).
Let $t \in B(\varepsilon)$. Then, $\varepsilon<\left\|u_{*}(t)\right\| \leqslant H$ and consequently

$$
\begin{equation*}
1-\left(\frac{\mu_{0}}{\varepsilon}\right)^{\frac{p-p_{*}}{p}} \leqslant 1-\left(\frac{\mu_{0}}{\left\|u_{*}(t)\right\|}\right)^{\frac{p-p_{*}}{p}} \leqslant 1-\left(\frac{\mu_{0}}{H}\right)^{\frac{p-p_{*}}{p}} . \tag{3.9}
\end{equation*}
$$

Since $p \in\left(p_{*}, p_{*}+v_{2}(\varepsilon, H)\right)$ then from (3.9) we get

$$
\left|1-\left(\frac{\mu_{0}}{\left\|u_{*}(t)\right\|}\right)^{\frac{p-p_{*}}{p}}\right| \leqslant \frac{\varepsilon}{H_{2}}
$$

and hence

$$
\begin{equation*}
\left\|u_{*}(t)\right\|\left|1-\left(\frac{\mu_{0}}{\left\|u_{*}(t)\right\|}\right)^{\frac{p-p_{*}}{p}}\right| \leqslant \varepsilon \tag{3.10}
\end{equation*}
$$

for every $t \in B(\varepsilon)$. From (3.8) and (3.10) we conclude that

$$
\begin{aligned}
\left\|u(\cdot)-u_{*}(\cdot)\right\|_{1} & \leqslant \varepsilon^{\frac{1}{2}}\left(1+\mu^{*}\right)\left(\theta-t_{0}\right)+\varepsilon\left(\theta-t_{0}\right) \\
& \leqslant \varepsilon^{\frac{1}{2}}\left(\theta-t_{0}\right)\left[2+\mu^{*}\right]=\varepsilon^{\frac{1}{2}} L^{*}
\end{aligned}
$$

where L^{*} is defined by (3.6).
Since $p \in\left(p_{*}, p_{*}+\nu_{2}(\varepsilon, H)\right)$ and $u_{*}(\cdot) \in B_{p_{*}}^{H}\left(\mu_{0}\right)$ are arbitrarily chosen, this completes the proof of the proposition.

Proposition 3.4. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\gamma_{2}^{*}=\gamma_{2}^{*}(\varepsilon) \in\left(0, p_{*}\right]$ such that the inclusion

$$
B_{p_{*}}\left(\mu_{0}\right) \subset B_{p}\left(\mu_{0}\right)+\varepsilon B_{1}(1)
$$

holds for any $p \in\left(p_{*}, p_{*}+\gamma_{2}^{*}\right)$.
The proof of Proposition 3.4 follows from Corollary 1.2 and Proposition 3.3.
Propositions 3.2 and 3.4 imply the validity of the following proposition.
Proposition 3.5. Let $p_{*}>1$ and $\varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\delta^{*}=\delta^{*}(\varepsilon) \in\left(0, p_{*}\right]$ such that the inequality

$$
h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \leqslant \varepsilon
$$

holds for all $p \in\left(p_{*}, p_{*}+\delta^{*}\right)$.
Finally, from Propositions 2.5 and 3.5 we obtain the validity of following theorem, which characterizes continuity of the set-valued map $p \rightarrow B_{p}\left(\mu_{0}\right)$ with respect to p where $p \in(1+\infty)$.

Theorem 3.6. Let $p_{*}>1$ and $\varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\delta=\delta(\varepsilon)>0$ such that the inequality

$$
h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \leqslant \varepsilon
$$

holds for all $p \in\left(p_{*}-\delta, p_{*}+\delta\right)$.

4. Attainable sets of control systems

Consider the control system the behavior of which is described by the differential equation

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t), u(t)), \quad x\left(t_{0}\right) \in X_{0}, \tag{4.1}
\end{equation*}
$$

where $x \in R^{n}$ is the phase state vector of the system, $u \in R^{m}$ is the control vector, $t \in\left[t_{0}, \theta\right]$ is the time and $X_{0} \subset R^{n}$ is a compact set.

It is assumed that the right-hand side of the system (4.1) satisfies the following conditions:
(4.A) the function $f(\cdot):\left[t_{0}, \theta\right] \times R^{n} \times R^{m} \rightarrow R^{n}$ is continuous;
(4.B) for any bounded set $D \subset\left[t_{0}, \theta\right] \times R^{n}$ there exist constants $L_{1}=L_{1}(D)>0, L_{2}=$ $L_{2}(D)>0$ and $L_{3}=L_{3}(D)>0$ such that

$$
\left\|f\left(t, x_{1}, u_{1}\right)-f\left(t, x_{2}, u_{2}\right)\right\| \leqslant\left(L_{1}+L_{2}\left\|u_{2}\right\|\right)\left\|x_{1}-x_{2}\right\|+L_{3}\left\|u_{1}-u_{2}\right\|
$$

for any $\left(t, x_{1}\right) \in D,\left(t, x_{2}\right) \in D, u_{1} \in R^{m}$ and $u_{2} \in R^{m}$;
(4.C) There exists a constant $c>0$ such that

$$
\|f(t, x, u)\| \leqslant c(1+\|x\|)(1+\|u\|)
$$

for every $(t, x, u) \in\left[t_{0}, \theta\right] \times R^{n} \times R^{m}$.
The set $B_{p}\left(\mu_{0}\right)$ is called the set of admissible control functions and a function $u(\cdot) \in B_{p}\left(\mu_{0}\right)$ is said to be an admissible control function where the set $B_{p}\left(\mu_{0}\right)$ is defined by (1.1).

Let $u_{*}(\cdot) \in B_{p}\left(\mu_{0}\right)$. The absolutely continuous function $x_{*}(\cdot):\left[t_{0}, \theta\right] \rightarrow R^{n}$ which satisfies the equation $\dot{x}_{*}(t)=f\left(t, x_{*}(t), u_{*}(t)\right)$ a.e. in $\left[t_{0}, \theta\right]$ and the initial condition $x_{*}\left(t_{0}\right)=x_{0} \in X_{0}$ is said to be a solution of the system (4.1) with initial condition $x_{*}\left(t_{0}\right)=x_{0}$, generated by the admissible control function $u_{*}(\cdot)$. The symbol $x\left(\cdot ; t_{0}, x_{0}, u(\cdot)\right)$ denotes a solution of the system (4.1) with initial condition $x\left(t_{0}\right)=x_{0}$, generated by the admissible control function $u(\cdot)$.

Let us define the sets

$$
X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)=\left\{x\left(\cdot ; t_{0}, x_{0}, u(\cdot)\right):\left[t_{0}, \theta\right] \rightarrow R^{n}: x_{0} \in X_{0}, u(\cdot) \in B_{p}\left(\mu_{0}\right)\right\}
$$

and

$$
X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right)=\left\{x(t) \in R^{n}: x(\cdot) \in X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)\right\}
$$

where $t \in\left[t_{0}, \theta\right]$.
The set $X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right)$ is called the attainable set of the system (4.1) at the instant of time t. It is clear that the set $X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right)$ consists of all $x \in R^{n}$ to which the system (4.1) can be steered at the instant of time $t \in\left[t_{0}, \theta\right]$. In general the set $X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right) \subset R^{n}$ is not closed (see, e.g., [3]) and it is not difficult to verify that it depends on t, t_{0}, X_{0} and μ_{0} continuously. Other properties of the attainable set $X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right) \subset R^{n}$ and approximation methods for its numerical construction have been considered in [7,8,10-13]. In this section we show that the attainable set $X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right) \subset R^{n}$ depends on p continuously.

The following proposition characterizes boundedness of the attainable sets of the system (4.1).

Proposition 4.1. The inequality

$$
\|x(t)\| \leqslant\left(\rho_{*}+r_{*}\right) \exp \left(r_{*}\right)
$$

holds for every $p \in(1,+\infty), x(\cdot) \in X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)$ and $t \in\left[t_{0}, \theta\right]$ where

$$
\begin{equation*}
\rho_{*}=\max \left\{\|x\|: x \in X_{0}\right\}, \quad r_{*}=c r_{0}\left(1+\mu_{0}\right), \quad r_{0}=\max \left\{\theta-t_{0}, 1\right\} \tag{4.2}
\end{equation*}
$$

$c>0$ is defined by condition (4.C).
The proof of the proposition follows from conditions (4.A)-(4.C) and Gronwall inequality.
Denote

$$
\begin{equation*}
D=\left\{(t, x) \in\left[t_{0}, \theta\right] \times R^{n}:\|x\| \leqslant\left(\rho_{*}+r_{*}\right) \exp \left(r_{*}\right)\right\} \tag{4.3}
\end{equation*}
$$

where ρ_{*} and r_{*} are defined by (4.2).
According to Proposition 4.1 we get that $(t, x(t)) \in D$ for every $p \in(1,+\infty), x(\cdot) \in$ $X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)$ and $t \in\left[t_{0}, \theta\right]$. Therefore, here and henceforth we will have in mind the cylinder (4.3) as the set D in condition (4.B).

Note that the continuity property of the set-valued map $p \rightarrow B_{p}\left(\mu_{0}\right), p \in(1,+\infty)$, implies the uniform continuity (with respect to t) of the set-valued map $p \rightarrow X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right)$, $p \in(1,+\infty)$.

Theorem 4.2. Let $p_{*}>1, \varepsilon \in\left(0, \alpha_{0}\right)$ where $\alpha_{0}>0$ is defined by (2.1). Then there exists $\xi=$ $\xi(\varepsilon)>0$ such that the inequality

$$
h_{c}\left(X_{p}\left(t_{0}, X_{0}, \mu_{0}\right), X_{p_{*}}\left(t_{0}, X_{0}, \mu_{0}\right)\right) \leqslant \varepsilon
$$

holds for any $p \in\left(p_{*}-\xi, p_{*}+\xi\right)$ and consequently for all $t \in\left[t_{0}, \theta\right]$

$$
h\left(X_{p}\left(t ; t_{0}, X_{0}, \mu_{0}\right), X_{p_{*}}\left(t ; t_{0}, X_{0}, \mu_{0}\right)\right) \leqslant \varepsilon
$$

Here $h_{c}(S, G)$ denotes the Hausdorff distance between the sets $S \subset C\left(\left[t_{0}, \theta\right] ; R^{n}\right)$ and $G \subset$ $C\left(\left[t_{0}, \theta\right] ; R^{n}\right)$ and is defined as

$$
h_{c}(S, G)=\max \left\{\sup _{x(\cdot) \in S} d_{c}(x(\cdot), G), \sup _{y(\cdot) \in G} d_{c}(y(\cdot), S)\right\}
$$

where $d_{c}(x(\cdot), G)=\inf \left\{\|x(\cdot)-y(\cdot)\|_{c}: y(\cdot) \in G\right\},\|z(\cdot)\|_{c}=\max \left\{\|z(t)\|: t \in\left[t_{0}, \theta\right]\right\}, C\left(\left[t_{0}, \theta\right]\right.$; $\left.R^{n}\right)$ is the space of continuous functions $x(\cdot):\left[t_{0}, \theta\right] \rightarrow R^{n}$.

Proof. Let

$$
\begin{equation*}
a_{0}=L_{1} r_{0}+L_{2} r_{0} \mu_{0}, \quad b_{0}=L_{3} \exp \left(a_{0}\right) \tag{4.4}
\end{equation*}
$$

where r_{0} is defined by (4.2).
By virtue of Proposition 3.6 for $\frac{\varepsilon}{b_{0}}$ there exists $\xi=\xi(\varepsilon)$ such that the inequality

$$
\begin{equation*}
h_{1}\left(B_{p}\left(\mu_{0}\right), B_{p_{*}}\left(\mu_{0}\right)\right) \leqslant \frac{\varepsilon}{b_{0}} \tag{4.5}
\end{equation*}
$$

holds for all $p \in\left(p_{*}-\xi(\varepsilon), p_{*}+\xi(\varepsilon)\right)$.
Let us choose an arbitrary $p \in\left(p_{*}-\xi(\varepsilon), p_{*}+\xi(\varepsilon)\right)$ and $x(\cdot) \in X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)$. Then there exist $x_{0} \in X_{0}$ and $u(\cdot) \in B_{p}\left(\mu_{0}\right)$ such that the equality

$$
\begin{equation*}
x(t)=x_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau), u(\tau)) d \tau \tag{4.6}
\end{equation*}
$$

holds for every $t \in\left[t_{0}, \theta\right]$.
According to (4.5) there exists $u_{*}(\cdot) \in B_{p_{*}}\left(\mu_{0}\right)$ such that

$$
\begin{equation*}
\left\|u(\cdot)-u_{*}(\cdot)\right\|_{1} \leqslant \frac{\varepsilon}{b_{0}} \tag{4.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
x_{*}(t)=x_{0}+\int_{t_{0}}^{t} f\left(\tau, x_{*}(\tau), u_{*}(\tau)\right) d \tau \tag{4.8}
\end{equation*}
$$

where $t \in\left[t_{0}, \theta\right]$. Then $x_{*}(\cdot) \in X_{p_{*}}\left(t_{0}, X_{0}, \mu_{0}\right)$. It follows from (4.B), (4.6)-(4.8) that

$$
\begin{equation*}
\left\|x(t)-x_{*}(t)\right\| \leqslant L_{3} \frac{\varepsilon}{b_{0}}+\int_{t_{0}}^{t}\left(L_{1}+L_{2}\left\|u_{*}(\tau)\right\|\right)\left\|x(\tau)-x_{*}(\tau)\right\| d \tau \tag{4.9}
\end{equation*}
$$

for all $t \in\left[t_{0}, \theta\right]$. From (4.4), (4.9) and Gronwall's inequality we obtain that the inequality

$$
\begin{align*}
\left\|x(t)-x_{*}(t)\right\| & \leqslant \frac{\varepsilon}{b_{0}} L_{3} \exp \left[\int_{t_{0}}^{\theta}\left(L_{1}+L_{2}\left\|u_{*}(\tau)\right\|\right) d \tau\right] \\
& =\frac{\varepsilon}{b_{0}} L_{3} \exp \left(a_{0}\right)=\varepsilon \tag{4.10}
\end{align*}
$$

holds for every $t \in\left[t_{0}, \theta\right]$. Since $p \in\left(p_{*}-\xi(\varepsilon), p_{*}+\xi(\varepsilon)\right)$ and $x(\cdot) \in X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)$ are arbitrarily chosen, we get from (4.10) that

$$
\begin{equation*}
X_{p}\left(t_{0}, X_{0}, \mu_{0}\right) \subset X_{p_{*}}\left(t_{0}, X_{0}, \mu_{0}\right)+\varepsilon B_{c} \tag{4.11}
\end{equation*}
$$

holds for every $p \in\left(p_{*}-\xi(\varepsilon), p_{*}+\xi(\varepsilon)\right)$ where B_{c} is unique ball of the space $C\left(\left[t_{0}, \theta\right] ; R^{n}\right)$.
Analogously, it is possible to prove that

$$
\begin{equation*}
X_{p_{*}}\left(t_{0}, X_{0}, \mu_{0}\right) \subset X_{p}\left(t_{0}, X_{0}, \mu_{0}\right)+\varepsilon B_{c} \tag{4.12}
\end{equation*}
$$

for every $p \in\left(p_{*}-\xi(\varepsilon), p_{*}+\xi(\varepsilon)\right)$.
Thus, inclusions (4.11) and (4.12) imply the validity of the theorem.

References

[1] J.P. Aubin, H. Frankowska, Set Valued Analysis, Birkhäuser, Boston, 1990.
[2] D. Burago, Yu. Burago, S. Ivanov, A Course in Metric Geometry, Grad. Stud. Math., vol. 33, American Mathematical Society, Providence, RI, 2001.
[3] R. Conti, Problemi di controllo e di controllo ottimale, UTET, Torino, 1974.
[4] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, New York, 1992.
[5] A.F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Kluwer Acad. Publ., Dordrecht, 1988.
[6] Sh. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. 1, Theory, Kluwer Acad. Publ., Dordrecht, 1997.
[7] F. Gozzi, P. Loreti, Regularity of the minimum time function and minimum energy problems: The linear case, SIAM J. Control Optim. 37 (1999) 1195-1221.
[8] Kh.G. Guseinov, A.N. Moiseev, V.N. Ushakov, On the approximation of reachable domains of control systems, J. Appl. Math. Mech. 62 (2) (1998) 169-175.
[9] Kh.G. Guseinov, O. Ozer, S.A. Duzce, On differential inclusions with prescribed attainable sets, J. Math. Anal. Appl. 277 (2) (2003) 701-713.
[10] Kh.G. Guseinov, O. Ozer, E. Akyar, V.N. Ushakov, The approximation of reachable sets of control systems with integral constraint on controls, NoDEA Nonlinear Differential Equations Appl. (2007), in press.
[11] H.W. Lou, On the attainable sets of control systems with p-integrable controls, J. Optim. Theory Appl. 123 (1) (2004) 123-147.
[12] M. Motta, C. Sartori, Minimum time with bounded energy, minimum energy with bounded time, SIAM J. Control Optim. 42 (2003) 789-809.
[13] A.I. Panasyuk, Equations of attainable set dynamics, Part 1: Integral Funnel equations, J. Optim. Theory Appl. 64 (2) (1990) 349-366.

[^0]: * Supported by the Scientific and Technological Research Council of Turkey (TUBITAK) project No. 106T012.
 * Corresponding author. Fax: +90 2223204910.

 E-mail addresses: kguseynov@anadolu.edu.tr (Kh.G. Guseinov), asnazlipinar@anadolu.edu.tr (A.S. Nazlipinar).

