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Abstract

In this paper continuity properties of the set-valued map p → Bp(μ0), p ∈ (1,+∞), are considered
where Bp(μ0) is the closed ball of the space Lp([t0, θ ];Rm) centered at the origin with radius μ0.
It is proved that the set-valued map p → Bp(μ0), p ∈ (1,+∞), is continuous. Applying obtained re-
sults, the attainable set of the nonlinear control system with integral constraint on the control is studied.
The admissible control functions are chosen from Bp(μ0). It is shown that the attainable set of the system
is continuous with respect to p.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let ‖ · ‖ be Euclidean norm in Rm, ‖u(·)‖p (1 � p < +∞) be a norm in Lp([t0, θ ],Rm),
where Lp([t0, θ ],Rm) denotes the space of measurable functions u(·) : [t0, θ ] → Rm with
bounded ‖u(·)‖p norm and

∥∥u(·)∥∥
p

=
( θ∫

t0

∥∥u(t)
∥∥p

dt

) 1
p

.
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For p � 1 and μ0 > 0 we set

Bp(μ0) = {
u(·) ∈ Lp

([t0, θ ],Rm
)
:

∥∥u(·)∥∥
p

� μ0
}
. (1.1)

It is obvious that Bp(μ0) is the closed ball centered at the origin with radius μ0 in
Lp([t0, θ ],Rm).

The Hausdorff distance between the sets A ⊂ Rm and E ⊂ Rm is denoted by h(A,E) and is
defined as

h(A,E) = max
{

sup
x∈A

d(x,E), sup
y∈E

d(y,A)
}

where d(x,E) = inf{‖x − y‖: y ∈ E}.
The Hausdorff distance between the sets U ⊂ Lp1([t0, θ ],Rm) and V ⊂ Lp2([t0, θ ],Rm) is

denoted by h1(U,V ) and is defined as

h1(U,V ) = max
{

sup
x(·)∈V

d1
(
x(·),U)

, sup
y(·)∈U

d1
(
y(·),V )}

where d1(x(·),U) = inf{‖x(·) − y(·)‖1: y(·) ∈ U}, p1 ∈ [1,∞), p2 ∈ [1,∞).
For Ω ⊂ Rn we denote by μ(Ω) the Lebesgue measure of the set Ω .
The need to evaluate the distance between the sets arises in various problems of theory and

applications (see, e.g., [1,2,4–6,8–10,13] and references therein).
In this paper, the Hausdorff distance between the sets Bp(μ0) and Bp∗(μ0) is studied where

p > 1 and p∗ > 1. In Section 2 we prove that h1(Bp(μ0),Bp∗(μ0)) → 0 as p → p∗ − 0
(Proposition 2.5). In Section 3 it is shown that h1(Bp(μ0),Bp∗(μ0)) → 0 as p → p∗ + 0
(Proposition 3.5). As a corollary of Propositions 2.5 and 3.5, Theorem 3.6 concludes that
h1(Bp(μ0),Bp∗(μ0)) → 0 as p → p∗. In Section 4 we consider attainable sets of the nonlin-
ear control system with integral constraints on control. Bp(μ0) is chosen as the set of admissible
control functions. As an application of Theorem 3.6, it is proved that the attainable set of the
control system is continuous with respect to p (Theorem 4.2).

Let H ∈ (0,∞). We set

BH
p (μ0) = {

u(·) ∈ Bp(μ0):
∥∥u(t)

∥∥ � H for every t ∈ [t0, θ ]}.
The following proposition characterizes the Hausdorff distance between the sets Bp(μ0) and

BH
p (μ0).

Proposition 1.1. Let p > 1, H > 0. Then the inequality

h1
(
Bp(μ0),B

H
p (μ0)

)
� 2μ0

p

Hp−1

holds.

Proof. Let us choose an arbitrary u(·) ∈ Bp(μ0) and define a function u∗(·) : [t0, θ ] → Rm, set-
ting for t ∈ [t0, θ ]

u∗(t) =
{

u(t), ‖u(t)‖ � H ,
u(t)

‖u(t)‖H, ‖u(t)‖ > H .
(1.2)
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It is not difficult to verify that u∗(·) ∈ BH
p (μ0). Let

Ω = {
τ ∈ [t0, θ ]: ∥∥u(τ)

∥∥ > H
}
.

Then using Hölder and Minkowski inequalities, we have from (1.2) that

∥∥u(·) − u∗(·)
∥∥

1 =
∫
Ω

∥∥u(t) − u∗(t)
∥∥dt � 2μ0μ(Ω)

p−1
p . (1.3)

Since u(·) ∈ Bp(μ0) and ‖u(τ)‖ > H for every τ ∈ Ω , we obtain

Hpμ(Ω) �
∫
Ω

∥∥u(τ)
∥∥p

dτ �
θ∫

t0

∥∥u(τ)
∥∥p

dτ � μ
p

0

and consequently

μ(Ω) �
μ

p

0

Hp
. (1.4)

Then it follows from (1.3) and (1.4)

∥∥u(·) − u∗(·)
∥∥

1 � 2μ0

(
μ

p

0

Hp

) p−1
p = 2μ

p

0

Hp−1
.

Since u(·) ∈ Bp(μ0) is arbitrarily chosen, we get the inequality

sup
u(·)∈Bp(μ0)

d1
(
u(·),BH

p (μ0)
)
�

2μ
p

0

Hp−1
. (1.5)

Since BH
p (μ0) ⊂ Bp(μ0) then (1.5) completes the proof of the proposition. �

We obtain the following corollary from Proposition 1.1.

Corollary 1.2. Let p∗ > 1 and ε > 0. Then there exists H∗(ε) > 2μ0 such that for all H > H∗(ε)
the inequality

h1
(
Bp(μ0),B

H
p (μ0)

)
� ε

holds for any p ∈ [p∗+1
2 ,2p∗].

2. Left evaluation of Bp(μ0)

In this section, we will evaluate the Hausdorff distance between the sets Bp(μ0) and Bp∗(μ0)

as p → p∗ − 0.
Let

α0 = min

{
μ0

2
,1

}
. (2.1)
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Proposition 2.1. Let p∗ > 1, ε ∈ (0, α0) and H2 > H1 > 2μ0. Then there exists δ1 =
δ1(ε,H1,H2) ∈ (0,

p∗−1
2 ] such that the inclusion

BH1
p∗ (μ0) ⊂ BH2

p (μ0) + 2(θ − t0)εB1(1)

holds for all p ∈ (p∗ − δ1,p∗) where α0 > 0 is defined by (2.1) and B1(1) is defined by (1.1).

Proof. Let

δ1(ε,H1,H2) = min
{
β1(ε,H1), β2(ε,H1),p∗ − p1(H1,H2)

}
where

p1(H1,H2) = max

{
p∗ + 1

2
,

p∗
1 + log H1

μ0

H2
H1

}
,

β1(ε,H1) = p∗
(

1 − 1

1 + log H1
μ0

H1+ε
H1

)
,

β2(ε,H1) = p∗
(

1 − 1

1 + log ε
μ0

H1−ε
H1

)
.

It is not difficult to verify that δ1(ε,H1,H2) ∈ (0,
p∗−1

2 ].
Let u∗(·) ∈ B

H1
p∗ (μ0) be arbitrarily chosen and p ∈ (p∗ − δ1(ε,H1,H2),p∗). We set

up(t) = u∗(t)
∥∥u∗(t)

∥∥ p∗−p
p μ0

p−p∗
p , t ∈ [t0, θ ]. (2.2)

Since u∗(·) ∈ B
H1
p∗ (μ0) and p ∈ (p∗ − δ1(ε,H1,H2),p∗), it is possible to prove that up(·) ∈

B
H2
p (μ0).

Denote

A(ε) = {
t ∈ [t0, θ ]: 0 �

∥∥u∗(t)
∥∥ � ε

}
, B(ε) = {

t ∈ [t0, θ ]: ε <
∥∥u∗(t)

∥∥ � H1
}
.

Let t ∈ A(ε). Then 0 � ‖u∗(t)‖ � ε. Since ε <
μ0
2 and p < p∗ then we obtain

∥∥u∗(t)
∥∥∣∣∣∣1 −

(‖u∗(t)‖
μ0

) p∗−p
p

∣∣∣∣ � ε (2.3)

for every t ∈ A(ε).
Let t ∈ B(ε). Then ε < ‖u∗(t)‖ � H1 and this gives

1 −
(

H1

μ0

) p∗−p
p

� 1 −
(‖u∗(t)‖

μ0

) p∗−p
p

� 1 −
(

ε

μ0

) p∗−p
p

. (2.4)

Since p ∈ (p∗ − δ1(ε,H1,H2),p∗), then we get from (2.4) that the inequality

∣∣∣∣1 −
(‖u∗(t)‖

μ0

) p∗−p
p

∣∣∣∣ � ε

H1

holds for every t ∈ B(ε) and consequently
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∥∥u∗(t)
∥∥∣∣∣∣1 −

(‖u∗(t)‖
μ0

) p∗−p
p

∣∣∣∣ � ε. (2.5)

Finally, it follows from (2.3) and (2.5) that∥∥up(·) − u∗(·)
∥∥

1 � ε
[
μ

(
A(ε)

) + μ
(
B(ε)

)]
� 2ε(θ − t0). (2.6)

Since p ∈ (p∗ − δ1(ε,H1,H2),p∗) and u∗(·) ∈ B
H1
p∗ (μ0) are arbitrarily chosen, (2.6) implies

the validity of the proposition. �
From Corollary 1.2 and Proposition 2.1 the validity of the following proposition follows.

Proposition 2.2. Let p∗ > 1, ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
γ1 = γ1(ε) ∈ (0,

p∗−1
2 ] such that the inclusion

Bp∗(μ0) ⊂ Bp(μ0) + εB1(1)

holds for any p ∈ (p∗ − γ1,p∗).

Proof. By Corollary 1.2 there exists H∗(ε) > 2μ0 such that for every H > H∗(ε) the inclusions

Bp(μ0) ⊂ BH
p (μ0) + ε

3
B1(1), BH

p (μ0) ⊂ Bp(μ0) + ε

3
B1(1) (2.7)

hold for any p ∈ [p∗+1
2 ,2p∗].

Let H1(ε) = 2H∗(ε), H2(ε) = 3H∗(ε). Then by virtue of Proposition 2.1 there exists γ1(ε) =
δ1(ε,H1(ε),H2(ε)) ∈ (0,

p∗−1
2 ] such that the inclusion

BH1(ε)
p∗ (μ0) ⊂ BH2(ε)

p (μ0) + ε

3
B1(1) (2.8)

holds for all p ∈ (p∗ − γ1(ε),p∗).
The proof of the proposition follows from (2.7) and (2.8). �
Now, let us give an upper estimation of the set BH

p (μ0) as p → p∗ − 0. Let

μ∗ = max

{
μ

p∗−p
p∗

0 : p ∈
[
p∗ + 1

2
,p∗

]}
, (2.9)

L∗ = (2 + μ∗)(θ − t0). (2.10)

Proposition 2.3. Let p∗ > 1, ε ∈ (0, α0), H > 2μ0 where α0 > 0 is defined by (2.1). Then there
exists δ2 = δ2(ε,H) ∈ (0,

p∗−1
2 ] such that the inclusion

BH
p (μ0) ⊂ BH

p∗(μ0) + L∗ε
1
2 B1(1)

holds for any p ∈ (p∗ − δ2,p∗).

Proof. Let

δ2(ε,H) = min
{
β3(ε,H),β4(ε,H)

}
where
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β3(ε,H) = min

{
p∗ log μ0

ε

H + ε

H
,
p∗ − 1

2

}
,

β4(ε,H) = min

{
p∗ log μ0

H

H − ε

H
,
p∗ − 1

2

}
.

It is obvious that δ2(ε,H) ∈ (0,
p∗−1

2 ].
Let p ∈ (p∗ − δ2(ε,H),p∗). Now let us choose an arbitrary u(·) ∈ BH

p (μ0) and define a
function u∗(·) : [t0, θ ] → Rm by setting

u∗(t) = u(t)
∥∥u(t)

∥∥ p−p∗
p∗ μ0

p∗−p
p∗ , t ∈ [t0, θ ]. (2.11)

Since u(·) ∈ BH
p (μ0) one can show that u∗(·) ∈ BH

p∗(μ0).
Now let us set

A(ε) = {
t ∈ [t0, θ ]: 0 �

∥∥u(t)
∥∥ � ε

}
, B(ε) = {

t ∈ [t0, θ ]: ε <
∥∥u(t)

∥∥ � H1
}
.

Let t ∈ A(ε). Then 0 � ‖u(t)‖ � ε. Since ε < α0 � 1 and p ∈ (p∗ − δ2(ε,H),p∗) ⊂
[p∗+1

2 ,p∗) we get from (2.11)∫
A(ε)

∥∥u(t) − u∗(t)
∥∥dt � ε(θ − t0) + μ

p∗−p
p∗

0 ε
p
p∗ (θ − t0)

� ε(θ − t0) + ε
1
2 μ∗(θ − t0)

� ε
1
2 (1 + μ∗)(θ − t0) (2.12)

where μ∗ is defined by (2.9).
Let t ∈ B(ε). Then ε < ‖u(t)‖ � H and

1 −
(

μ0

ε

) p∗−p
p∗

� 1 −
(

μ0

‖u(t)‖
) p∗−p

p∗
� 1 −

(
μ0

H

) p∗−p
p∗

. (2.13)

Since p ∈ (p∗ − δ2(ε,H),p∗) then (2.13) implies∣∣∣∣1 −
(

μ0

‖u(t)‖
) p∗−p

p∗
∣∣∣∣ � ε

H

and consequently

∥∥u(t)
∥∥∣∣∣∣1 −

(
μ0

‖u(t)‖
) p∗−p

p∗
∣∣∣∣ � ε (2.14)

for every t ∈ B(ε). Thus, it follows from (2.12) and (2.14)∥∥u(·) − u∗(·)
∥∥

1 � ε
1
2 (θ − t0)

[
1 + μ∗ + ε

1
2
]

� ε
1
2 (θ − t0)[2 + μ∗] = ε

1
2 L∗

where L∗ is defined by (2.10).
Since p ∈ (p∗−δ2(ε,H),p∗) and u(·) ∈ BH

p (μ0) are arbitrarily chosen, we obtain the validity
of the proposition. �

The following proposition gives an upper estimation of the set Bp(μ0) as p → p∗ − 0.
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Proposition 2.4. Let p∗ > 1, ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
γ2 = γ2(ε) ∈ (0,

p∗−1
2 ] such that the inclusion

Bp(μ0) ⊂ Bp∗(μ0) + εB1(1)

holds for any p ∈ (p∗ − γ2,p∗).

Proof. By Corollary 1.2 there exists H∗(ε) > 2μ0 such that for all H > H∗(ε) the inclusions

Bp(μ0) ⊂ BH
p (μ0) + ε

3
B1(1), BH

p (μ0) ⊂ Bp(μ0) + ε

3
B1(1) (2.15)

hold for any p ∈ [p∗+1
2 ,2p∗].

Let H(ε) = 2H∗(ε). Then due to Proposition 2.3 there exists δ2(ε) = δ2(ε,H(ε)) ∈ (0,
p∗−1

2 ]
such that the inclusion

BH(ε)
p (μ0) ⊂ BH(ε)

p∗ (μ0) + ε

3
B1(1) (2.16)

holds for any p ∈ (p∗ − δ2(ε),p∗).
Let γ2 = γ2(ε) = δ2(ε). Then (2.15) and (2.16) complete the proof. �
From Propositions 2.2 and 2.4 we get the following proposition.

Proposition 2.5. Let p∗ > 1, ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
δ∗ = δ∗(ε) ∈ (0,

p∗−1
2 ] such that the inequality

h1
(
Bp(μ0),Bp∗(μ0)

)
� ε

holds for all p ∈ (p∗ − δ∗,p∗).

3. Right evaluation of Bp(μ0)

In this section we will study right continuity of the set-valued map p → Bp(μ0), p ∈
(1,+∞). The following proposition gives an upper estimation of the set BH

p (μ0) as p → p∗ +0.

Proposition 3.1. Let p∗ > 1, ε ∈ (0, α0), H1 > H2 > μ0 where α0 > 0 is defined by (2.1). Then,
there exists ν1 = ν1(ε,H1,H2) ∈ (0,p∗] such that the inclusion

BH2
p (μ0) ⊂ BH1

p∗ (μ0) + 2(θ − t0)εB1(1)

holds for any p ∈ (p∗,p∗ + ν1).

Proof. Let

ν1(ε,H1,H2) = min
{
β∗

1 (ε,H1,H2), β
∗
2 (ε,H1,H2),p2(H1,H2) − p∗

}
where

p2(H1,H2) = min

{
2p∗,p∗

(
1 + log H2

μ0

H1

H2

)}
,

β∗
1 (ε,H1,H2) = min

{
p∗ log H2

H2 + ε
,p∗

}
,

μ0 H2
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β∗
2 (ε,H1,H2) = min

{
p∗ log ε

μ0

H2 − ε

H2
,p∗

}
.

It is obvious that ν1(ε,H1,H2) ∈ (0,p∗].
Let p ∈ (p∗,p∗ + ν1(ε,H1,H2)) and choose an arbitrary u(·) ∈ B

H2
p (μ0). Define a function

u∗(·) : [t0, θ ] → Rm by setting

u∗(t) = u(t)
∥∥u(t)

∥∥ p−p∗
p∗ μ0

p∗−p
p∗ , t ∈ [t0, θ ]. (3.1)

It is not difficult to show that u∗(·) ∈ B
H1
p∗ (μ0).

Let us denote

A(ε) = {
t ∈ [t0, θ ]: 0 �

∥∥u(t)
∥∥ � ε

}
, B(ε) = {

t ∈ [t0, θ ]: ε <
∥∥u(t)

∥∥ � H2
}
.

Let t ∈ A(ε). Since ε < μ0 and p > p∗ then we obtain

∥∥u(t)
∥∥∣∣∣∣1 −

(‖u(t)‖
μ0

) p−p∗
p∗

∣∣∣∣ � ε. (3.2)

Let t ∈ B(ε). Then ε < ‖u(t)‖ � H2 and consequently

1 −
(

H2

μ0

) p−p∗
p∗

� 1 −
(‖u(t)‖

μ0

) p−p∗
p∗

� 1 −
(

ε

μ0

) p−p∗
p∗

. (3.3)

Since p ∈ (p∗,p∗ + ν1(ε,H1,H2)), from (3.3) we see that the inequality∣∣∣∣1 −
(‖u(t)‖

μ0

) p−p∗
p∗

∣∣∣∣ � ε

H2

is satisfied and hence

∥∥u(t)
∥∥∣∣∣∣1 −

(‖u(t)‖
μ0

) p−p∗
p∗

∣∣∣∣ � ε. (3.4)

Thus, from (3.2) and (3.4) we obtain the inequality∥∥u(·) − u∗(·)
∥∥

1 � εμ
(
A(ε)

) + εμ
(
B(ε)

)
� 2ε(θ − t0).

Since p ∈ (p∗,p∗ + ν1(ε,H1,H2)) and u(·) ∈ B
H2
p (μ0) are arbitrarily chosen, the proof is com-

pleted. �
Proposition 3.2. Let p∗ > 1, ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
γ ∗

1 = γ ∗
1 (ε) ∈ (0,p∗] such that the inclusion

Bp(μ0) ⊂ Bp∗(μ0) + εB1(1)

holds for any p ∈ (p∗,p∗ + γ ∗
1 ).

The proof of Proposition 3.2 follows from Corollary 1.2 and Proposition 3.1.
Let us define constants

μ∗ = max
{
μ

p−p∗
p

0 : p ∈ [p∗,2p∗]
}
, (3.5)

L∗ = (2 + μ∗)(θ − t0) (3.6)

which are required in Proposition 3.3 and will be used in the sequel.
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Proposition 3.3. Let p∗ > 1, ε ∈ (0, α0) and H > 2μ0 where α0 > 0 is defined by (2.1). Then,
there exists ν2 = ν2(ε,H) ∈ (0,p∗] such that the inclusion

BH
p∗(μ0) ⊂ BH

p (μ0) + L∗ε
1
2 B1(1)

holds for any p ∈ (p∗,p∗ + ν2).

Proof. Let

ν2(ε,H) = min
{
β∗

3 (ε,H),β∗
4 (ε,H)

}
where

β∗
3 (ε,H) = min

{
p∗

(
1

1 − log μ0
ε

H+ε
H

− 1

)
,p∗

}
,

β∗
4 (ε,H) = min

{
p∗

(
1

1 − log μ0
H

H−ε
H

− 1

)
,p∗

}
.

It is obvious that ν2(ε,H) ∈ (0,p∗].
Let p ∈ (p∗,p∗ + ν2(ε,H)) and u∗(·) ∈ BH

p∗(μ0) be arbitrarily chosen. We set

u(t) = u∗(t)
∥∥u∗(t)

∥∥ p∗−p
p μ0

p−p∗
p , t ∈ [t0, θ ]. (3.7)

It can be shown that u(·) ∈ BH
p (μ0).

We denote

A(ε) = {
t ∈ [t0, θ ]: 0 �

∥∥u∗(t)
∥∥ � ε

}
, B(ε) = {

t ∈ [t0, θ ]: ε <
∥∥u∗(t)

∥∥ � H
}
.

Let t ∈ A(ε). Then 0 � ‖u∗(t)‖ � ε. Since ε < α0 < 1, p ∈ [p∗,2p∗] then we obtain that∫
A(ε)

∥∥u∗(t) − u∗(t)
∥∥u∗(t)

∥∥ p∗−p
p μ

p−p∗
p

0

∥∥dt � ε(θ − t0) + μ

p−p∗
p

0 ε
p∗
p (θ − t0)

� ε
1
2 (1 + μ∗)(θ − t0) (3.8)

where μ∗ is defined by (3.5).
Let t ∈ B(ε). Then, ε < ‖u∗(t)‖ � H and consequently

1 −
(

μ0

ε

) p−p∗
p

� 1 −
(

μ0

‖u∗(t)‖
) p−p∗

p

� 1 −
(

μ0

H

) p−p∗
p

. (3.9)

Since p ∈ (p∗,p∗ + υ2(ε,H)) then from (3.9) we get∣∣∣∣1 −
(

μ0

‖u∗(t)‖
) p−p∗

p
∣∣∣∣ � ε

H2

and hence

∥∥u∗(t)
∥∥∣∣∣∣1 −

(
μ0

‖u∗(t)‖
) p−p∗

p
∣∣∣∣ � ε (3.10)

for every t ∈ B(ε). From (3.8) and (3.10) we conclude that
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∥∥u(·) − u∗(·)
∥∥

1 � ε
1
2 (1 + μ∗)(θ − t0) + ε(θ − t0)

� ε
1
2 (θ − t0)[2 + μ∗] = ε

1
2 L∗

where L∗ is defined by (3.6).
Since p ∈ (p∗,p∗ + ν2(ε,H)) and u∗(·) ∈ BH

p∗(μ0) are arbitrarily chosen, this completes the
proof of the proposition. �
Proposition 3.4. Let p∗ > 1, ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
γ ∗

2 = γ ∗
2 (ε) ∈ (0,p∗] such that the inclusion

Bp∗(μ0) ⊂ Bp(μ0) + εB1(1)

holds for any p ∈ (p∗,p∗ + γ ∗
2 ).

The proof of Proposition 3.4 follows from Corollary 1.2 and Proposition 3.3.
Propositions 3.2 and 3.4 imply the validity of the following proposition.

Proposition 3.5. Let p∗ > 1 and ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
δ∗ = δ∗(ε) ∈ (0,p∗] such that the inequality

h1
(
Bp(μ0),Bp∗(μ0)

)
� ε

holds for all p ∈ (p∗,p∗ + δ∗).

Finally, from Propositions 2.5 and 3.5 we obtain the validity of following theorem, which
characterizes continuity of the set-valued map p → Bp(μ0) with respect to p where p ∈ (1+∞).

Theorem 3.6. Let p∗ > 1 and ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists
δ = δ(ε) > 0 such that the inequality

h1
(
Bp(μ0),Bp∗(μ0)

)
� ε

holds for all p ∈ (p∗ − δ,p∗ + δ).

4. Attainable sets of control systems

Consider the control system the behavior of which is described by the differential equation

ẋ(t) = f
(
t, x(t), u(t)

)
, x(t0) ∈ X0, (4.1)

where x ∈ Rn is the phase state vector of the system, u ∈ Rm is the control vector, t ∈ [t0, θ ] is
the time and X0 ⊂ Rn is a compact set.

It is assumed that the right-hand side of the system (4.1) satisfies the following conditions:

(4.A) the function f (·) : [t0, θ ] × Rn × Rm → Rn is continuous;
(4.B) for any bounded set D ⊂ [t0, θ ] × Rn there exist constants L1 = L1(D) > 0, L2 =

L2(D) > 0 and L3 = L3(D) > 0 such that∥∥f (t, x1, u1) − f (t, x2, u2)
∥∥ �

(
L1 + L2‖u2‖

)‖x1 − x2‖ + L3‖u1 − u2‖
for any (t, x1) ∈ D, (t, x2) ∈ D, u1 ∈ Rm and u2 ∈ Rm;
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(4.C) There exists a constant c > 0 such that∥∥f (t, x,u)
∥∥ � c

(
1 + ‖x‖)(1 + ‖u‖)

for every (t, x,u) ∈ [t0, θ ] × Rn × Rm.

The set Bp(μ0) is called the set of admissible control functions and a function u(·) ∈ Bp(μ0)

is said to be an admissible control function where the set Bp(μ0) is defined by (1.1).
Let u∗(·) ∈ Bp(μ0). The absolutely continuous function x∗(·) : [t0, θ ] → Rn which satisfies

the equation ẋ∗(t) = f (t, x∗(t), u∗(t)) a.e. in [t0, θ ] and the initial condition x∗(t0) = x0 ∈ X0 is
said to be a solution of the system (4.1) with initial condition x∗(t0) = x0, generated by the admis-
sible control function u∗(·). The symbol x(·; t0, x0, u(·)) denotes a solution of the system (4.1)
with initial condition x(t0) = x0, generated by the admissible control function u(·).

Let us define the sets

Xp(t0,X0,μ0) = {
x
(·; t0, x0, u(·)) : [t0, θ ] → Rn: x0 ∈ X0, u(·) ∈ Bp(μ0)

}
and

Xp(t; t0,X0,μ0) = {
x(t) ∈ Rn: x(·) ∈ Xp(t0,X0,μ0)

}
where t ∈ [t0, θ ].

The set Xp(t; t0,X0,μ0) is called the attainable set of the system (4.1) at the instant of time t .
It is clear that the set Xp(t; t0,X0,μ0) consists of all x ∈ Rn to which the system (4.1) can be
steered at the instant of time t ∈ [t0, θ ]. In general the set Xp(t; t0,X0,μ0) ⊂ Rn is not closed
(see, e.g., [3]) and it is not difficult to verify that it depends on t , t0, X0 and μ0 continuously.
Other properties of the attainable set Xp(t; t0,X0,μ0) ⊂ Rn and approximation methods for its
numerical construction have been considered in [7,8,10–13]. In this section we show that the
attainable set Xp(t; t0,X0,μ0) ⊂ Rn depends on p continuously.

The following proposition characterizes boundedness of the attainable sets of the system (4.1).

Proposition 4.1. The inequality∥∥x(t)
∥∥ � (ρ∗ + r∗) exp(r∗)

holds for every p ∈ (1,+∞), x(·) ∈ Xp(t0,X0,μ0) and t ∈ [t0, θ ] where

ρ∗ = max
{‖x‖: x ∈ X0

}
, r∗ = cr0(1 + μ0), r0 = max{θ − t0,1}, (4.2)

c > 0 is defined by condition (4.C).

The proof of the proposition follows from conditions (4.A)–(4.C) and Gronwall inequality.
Denote

D = {
(t, x) ∈ [t0, θ ] × Rn: ‖x‖ � (ρ∗ + r∗) exp(r∗)

}
(4.3)

where ρ∗ and r∗ are defined by (4.2).
According to Proposition 4.1 we get that (t, x(t)) ∈ D for every p ∈ (1,+∞), x(·) ∈

Xp(t0,X0,μ0) and t ∈ [t0, θ ]. Therefore, here and henceforth we will have in mind the cylinder
(4.3) as the set D in condition (4.B).

Note that the continuity property of the set-valued map p → Bp(μ0), p ∈ (1,+∞), im-
plies the uniform continuity (with respect to t) of the set-valued map p → Xp(t; t0,X0,μ0),
p ∈ (1,+∞).
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Theorem 4.2. Let p∗ > 1, ε ∈ (0, α0) where α0 > 0 is defined by (2.1). Then there exists ξ =
ξ(ε) > 0 such that the inequality

hc

(
Xp(t0,X0,μ0),Xp∗(t0,X0,μ0)

)
� ε

holds for any p ∈ (p∗ − ξ,p∗ + ξ) and consequently for all t ∈ [t0, θ ]
h
(
Xp(t; t0,X0,μ0),Xp∗(t; t0,X0,μ0)

)
� ε.

Here hc(S,G) denotes the Hausdorff distance between the sets S ⊂ C([t0, θ ];Rn) and G ⊂
C([t0, θ ];Rn) and is defined as

hc(S,G) = max
{

sup
x(·)∈S

dc

(
x(·),G)

, sup
y(·)∈G

dc

(
y(·), S)}

where dc(x(·),G) = inf{‖x(·)− y(·)‖c: y(·) ∈ G}, ‖z(·)‖c = max{‖z(t)‖: t ∈ [t0, θ ]}, C([t0, θ ];
Rn) is the space of continuous functions x(·) : [t0, θ ] → Rn.

Proof. Let

a0 = L1r0 + L2r0μ0, b0 = L3 exp(a0) (4.4)

where r0 is defined by (4.2).
By virtue of Proposition 3.6 for ε

b0
there exists ξ = ξ(ε) such that the inequality

h1
(
Bp(μ0),Bp∗(μ0)

)
� ε

b0
(4.5)

holds for all p ∈ (p∗ − ξ(ε),p∗ + ξ(ε)).
Let us choose an arbitrary p ∈ (p∗ − ξ(ε),p∗ + ξ(ε)) and x(·) ∈ Xp(t0,X0,μ0). Then there

exist x0 ∈ X0 and u(·) ∈ Bp(μ0) such that the equality

x(t) = x0 +
t∫

t0

f
(
τ, x(τ ), u(τ )

)
dτ (4.6)

holds for every t ∈ [t0, θ ].
According to (4.5) there exists u∗(·) ∈ Bp∗(μ0) such that∥∥u(·) − u∗(·)

∥∥
1 � ε

b0
. (4.7)

Let

x∗(t) = x0 +
t∫

t0

f
(
τ, x∗(τ ), u∗(τ )

)
dτ (4.8)

where t ∈ [t0, θ ]. Then x∗(·) ∈ Xp∗(t0,X0,μ0). It follows from (4.B), (4.6)–(4.8) that

∥∥x(t) − x∗(t)
∥∥ � L3

ε

b0
+

t∫
t0

(
L1 + L2

∥∥u∗(τ )
∥∥)∥∥x(τ) − x∗(τ )

∥∥dτ (4.9)

for all t ∈ [t0, θ ]. From (4.4), (4.9) and Gronwall’s inequality we obtain that the inequality
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∥∥x(t) − x∗(t)
∥∥ � ε

b0
L3 exp

[ θ∫
t0

(
L1 + L2

∥∥u∗(τ )
∥∥)

dτ

]

= ε

b0
L3 exp(a0) = ε (4.10)

holds for every t ∈ [t0, θ ]. Since p ∈ (p∗ − ξ(ε),p∗ + ξ(ε)) and x(·) ∈ Xp(t0,X0,μ0) are arbi-
trarily chosen, we get from (4.10) that

Xp(t0,X0,μ0) ⊂ Xp∗(t0,X0,μ0) + εBc (4.11)

holds for every p ∈ (p∗ − ξ(ε),p∗ + ξ(ε)) where Bc is unique ball of the space C([t0, θ ];Rn).
Analogously, it is possible to prove that

Xp∗(t0,X0,μ0) ⊂ Xp(t0,X0,μ0) + εBc (4.12)

for every p ∈ (p∗ − ξ(ε),p∗ + ξ(ε)).
Thus, inclusions (4.11) and (4.12) imply the validity of the theorem. �
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