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Abstract 

Data driven models such as Artificial Neural Networks (ANNs) became a very popular tool in hydrology for a long 
time, especially in rainfall–runoff modelling. However, it does not have common usage in mountainous catchments, 
where snowmelt plays an important role, due to lack of continuous snow observations. In order to improve the 
accuracy of snowmelt modeling, recently available satellite snow products are considered as an alternative input to 
these models. In this study, two different ANN models are employed and compared with each other using novel 
MODIS satellite snow covered area products as an alternative input into climatic data based models. Firstly, flows are 
modelled with Multi-Layer Perceptron (MLP) network using gradient-based Levenberg–Marquardt algorithm. 
Secondly, Radial Basis Function (RBF) network is developed. Both models are performed to estimate the daily flows 
of Karasu River in the Upper Euphrates Basin, Turkey using 2002 – 2011 data. The main difference between the RBF 
network and MLP network is in the nature of the nonlinearities associated with hidden nodes. The nonlinearity in 
MLP is implemented by a fixed function such as a sigmoid. On the other hand, the RBF method bases its nonlinearities 
on the training set data. In the study the determination of model architectures, optimization algorithms and methods 
to avoid overfitting are elaborately investigated. 
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1. Introduction 

Management of water resources are becoming more attractive topic due to growth in population and 
correspondingly increase in demand to water and energy. Estimation of particularly snowmelt runoff in mountainous 
basins is coped by modelers using different model sets e.g. conceptual, physical, time series (stochastic) or soft 
computing models. Due to scarcity of ground observations and uncertainty of model and model parameters across 
time and space, it is not easily adapt physical models and even sometimes conceptual models may suffer inadequacy 
of continuous point ground data. 

Among various soft computing methods, Artificial Neural Networks (ANNs) are promising tools based on their 
ability in the modelling of nonlinear processes [1]. Essentially, ANN is a massively parallel-distributed information 
processing system that has certain performance characteristics resembling biological neural networks of the human 
brain [2]. It has a flexible mathematical structure that is capable of mapping complex nonlinear relationships between 
input and output data sets and deriving general trends without describing physical relationships. However, it should 
not be considered as a mere blackbox [3]. ANNs are able to provide a mapping from one multivariate space to another, 
given a set of data representing that mapping. Even if the data is noisy and contaminated with errors, ANNs have been 
known to identify the underlying rule [4]. Thus, ANN has a strong input-output structure and well suited for 
hydrological models in terms of system estimation and prediction.  

Although there have been notable studies on comparison soft computing methods particularly in runoff modeling, 
they are generally established on rainfall dominated basins [5], [6], [7], [8], [9]. On the other hand, ANN literature is 
still very limited on snowmelt or snow water equivalent (SWE) modeling [10], [11], [12], [13], [14] due to scarcity of 
continuous snow data sets. Remote sensing data play key issue to represent change of snow in areal sense. Recently 
areal snow/SWE satellite data are investigated in hydrology for different aspects e.g. classification of snow products 
[15], determination of spatial pattern of snow cover duration [16], estimation of fractional snow cover [17] and very 
recently snowmelting modeling [18]. But, developing alternative data driven models are not well studied in 
mountainous catchments to estimate flows. 

A supervised neural network might be pursued in a number of different ways [2]. While the back-propagation 
algorithm for the design of a multilayer perceptron (under supervision) may be viewed as an application of stochastic 
approximation, radial-basis function (RBF) networks can be viewed as a curve-fitting problem in a high-dimensional 
space. Therefore, each network type has different response to model inputs and has capability of representation of 
process. In this study, two different ANN models are employed and compared with each other using novel MODIS 
satellite snow covered area products as an alternative input into climatic data based models particularly for snowmelt 
modelling in mountainous Upper Euphrates River Basin, Turkey. 

2. Study Area and Data 

Snow plays a crucial role in the headwaters of Euphrates River Basin as in many other mountainous regions. 
Snowmelt contributes up to 60–70 % of the annual volume of runoff in the Upper Euphrates River Basin (Karasu 
Basin), Turkey, during spring and early summer months (March – June). The prediction of snowmelt-induced runoff 
at the outlet of Karasu Basin has a great potential in water resources management especially for applications in flood 
forecasting, reservoir management, irrigation, hydropower generation, water supply, since large dam reservoirs exist 
at the downstream of the basin. Karasu Basin, as one of the major upstream tributaries of Euphrates River, is located 
at the eastern part of Turkey.  Fig.1 shows the location of the basin with its river network. Karasu Basin boundaries 
are within the longitudes 38o 58 E to 41 o 39 E and latitudes 39 o 23 N to 40 o 25 N. The prediction of 
snowmelt-induced runoff at the outlet of Karasu. The basin has a drainage area of 10,275 km2 and ranges in altitude 
from 1125 to 3487 m. The main land cover types are pasture, shrub, grass and bareland. The annual mean precipitation 
of the basin is approximately between 400 and 450 mmyr 1. 
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Fig. 1. Upper Euphrates (Karasu) Basin and location of large dams on Euphrates River 
 

There are totally 18 climatologic and automated weather operating stations (AWOS) ranging in elevation between 
981 and 2937 m. Daily average temperature (T) and daily total precipitation (P) values are distributed by Detrended 
Kriging method [19]; then basin average values are provided as input to the neural network models. For areal snow 
data, MODIS daily snow product with 500 m spatial resolution is obtained and the time series of SCA (Snow Depletion 
Curves, SCD) are directly used as an alternative input to models. 

3. Methodology 

 Since operational real time forecasting is targeted for forecasting period, one day before data (n-1) is preferred and 
used for all data inputs vectors in the model structures. The seasonal model from (01st of March to 30th of June) is 
preferred using March to July data for ANN based runoff model in applications, since snowmelt constitutes 
approximately 2/3 of total annual volume of runoff during spring and early summer months. ANN modeling studies 
have many user defined parts (selection of stopping criteria, normalization techniques, determination of model 
structure, optimization parameters etc.) in their methodologies, hence several architectures are tested for each model 
and the best algorithms are selected. 

Our approach for both models is firstly to split the data into two sections; the first 70 % of the data for training and 
the remaining 30 % of the data for validation. Thus the first 7 years (1071 days between 2002 to 2008) are used in the 
training and the next 3 years (459 days between 2009 to 2011) are used for forecasting (validation). The codes are 
generated using MATLAB version 2012a software. 

 

3.1. Multi-Layer Perceptron (MLP) network  

The one most widely used type of ANN in hydrological studies is the multilayer perceptron (MLP), which is a 
feedforward network that has interconnected nodes (neurons) arranged into three layers: input layer, a hidden layer 
and an output layer. The MLP can have more than one hidden layer; however, previous studies have shown that a 
single hidden layer is sufficient for an ANN to approximate any complex nonlinear function [20]. In this study, a two-
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layer feed-forward artificial neural network structure is constructed with a one-hidden-layer. The model has four input 
vectors, ten neurons in one hidden layers, and one neuron in the output layer (4_10_1_1). The number of neurons in 
the hidden layer are determined by the trial-and-error procedure. The sigmoid function is employed as an activation 
function in the training of the network and the learning of the ANN is accomplished by the back-propagation algorithm. 
Before starting the training process, a random values are assigned for the network weights and biases, respectively. 
Also, due to the nature of the sigmoid function used in the back-propagation algorithm, it was prudent to standardize 
all external input and output values before passing them into a neural network; thus input and output vectors are 
compressed into (0,1) for sigmoid functions.. 

).( jjj bWXfy                                                                                                                                         (1) 

where, X = (x1, . . . , xi, . . . , xn), Wj = (w1j, . . . , wij, . . . , wnj) and X is information from previous nodes, wij 
represents the connection weight from the ith node in the preceding layer to this node, where bj is bias, f is the activation 
function. The MLP are optimized using Levenberg-Marquart (LM) algorithm here because this technique is more 
effective than the conventional gradient techniques [21], [22]. The LM algorithm updates the weights as. 
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where xk+1 are weights during (k+1)th & kth pass (epoch), J is the Jacobian matrix that contains first derivatives of 

the network errors with respect to the weights and biases, μ is learning rate and  is a vector of network errors. When 
the scalar μ is zero, this is just Newton's method, using the approximate Hessian matrix. When μ is large, this becomes 
gradient descent with a small step size. Newton's method is faster and more accurate near an error minimum, so the 
aim is to shift toward Newton's method as quickly as possible. Thus, μ is decreased after each successful step 
(reduction in performance function) and is increased only when a tentative step would increase the performance 
function. In this way, the performance function is always reduced at each iteration of the algorithm. Instead of splitting 
the first part, a randomly selected 85 % are used for training and 15 % remaining data are used for cross-validation 
purposes. 
 

3.2. Radial Basis Function (RBF) network  

The Radial Basis Function (RBF) network model is motivated by the locally tuned response observed in biological 
neurons [23]. In the field of mathematical modeling, a radial basis function network is an artificial neural network that 
uses radial basis functions as activation functions. Contrary to MLP networks with many successive layers, RBF 
network is composed of three layers. Input layer feeds input signals to the network, middle layer includes RBF 
functions and output layer is linear combination of all outputs of the RBF layer. 
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where wi = connection weight between the hidden neuron and output neuron; w0 = bias; and x = input vector.  A 
general class of radial basis functions is described by the Gaussian function given in Equation 4. 
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where = [ci1, ci2, . . . , cin] is the center of the receptive field; ij is width of the Gaussian function. The major task 
of RBF network design is to determine center parameter. Here, a radial basis network one neuron at a time is iteratively 
created. Neurons are added to the network until the sum-squared error falls beneath an error goal or a maximum 
number of neurons has been reached using MATLAB 2012a code.  

3.3. Evaluation criteria 

The performance of the study is tested with 4 criteria defined as the square of correlation coefficient (R) called as 
coefficient of determination (R2), Nash-Sutcliffe Model Efficiency (ME), Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE) denoted as: 
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where is modelled flows, is observed flows, is average modelled flows,  is average observed flows, n 
is the number of the data sets. 

 

4. Application of models 

In this part, a comparison is carried out for MLP and RBF networks. Training data are used to determine the weights 
of network, and a forecasting (testing) part is accomplished for rest of 3 years in order to check the reliability of the 
model. MLP network is very powerful network for nonlinear relation modeling studies such as snowmelt/rainfall, 
however in this study, RBF network is also taken into account for same purpose. Both models are trained using 7 
years seasonal discharge data from Karasu (Upper Euphrates River) catchment. The input vectors are; precipitation 
(daily), temperature (daily) and snow covered area which is derived from 500 m resolution MODIS satellite images, 
and a time index to adjust model results. Both model results are tested with upper and lower 90 % confidence intervals, 
an example from RBF network modelled discharges vs. observed discharges are shown in Figure 2. 

The statistical results are presented in Table 1 in order to compare the network performances. Although, both 
models have higher correlation regression in validation periods, ME values are relatively less compared to training 
periods. Also, less RMS errors for validation period in both models may be because of lower stremflows observation 
within that time. While nonlinearities are associated with sigmoid functions and hidden layer selections in MLP 
networks, RBF network is capable to identify nonlinearities based on training data sets with radial functions that 
simplify the separation of the problem solutions. Thus, most challenging and vague part is to select a suitable network 
type in MLP which is time consuming. Contrary to MLP, RBF is easy to implement with respect to its definite 
architecture and has less user defined parameters (The training depends on goal and spread selection in MATLAB). 
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The performances of the results promote that both model networks can be an alternative model to predict runoff using 
selected data sets. 
 

 

Fig. 2. RBF network modelled discharges vs. observed discharges (Training and Test period) with upper and lower 90 % confidence intervals 

Table 1. Summary table for comparison 
Statistical measures Training Forecasting 

 MLP network RBF network MLP network RBF network 

R2 0.77 0.76 0.83 0.82 

ME 0.77 0.76 0.75 0.73 

RMSE (m3/s) 51.0 52.5 38.3 39.3 

MAE (m3/s) 33.2 34.7 29.0 29.7 

 
A scatter diagram between modelled and observed flows (Figure 3) is given to show over-and-under estimations. 

According to that low flows has higher accuracy in both models, mid-flows are underestimated in MLP and 
overestimated in RBF networks. While high flows are underestimated in both models, RBF network produces higher 
modelled flows in two peak events. 
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Fig. 3. Scatter diagram of two modeled flows vs. observed discharges for whole period. 

5. Conclusions and Recommendations 

In this study, snowmelt flows in a mountainous region of Turkey (Upper Euphrates River Basin, Karasu) are trained 
and forecasted by two different neural network approach. Satellite technology provide reliable and areal snow data 
from which is an alternative input to those models compared to point snow measurements. Besides, the selection of 
most convenient input combinations in data driven models, comparison of different model structures are essential 
issue to understand the response of the models. MLP and RBF network based flows are employed using daily 
meteorological inputs (precipitation and temperature) as well as areal MODIS satellite snow covered product data and 
compared for 2002 – 2011 March – June periods. The application results indicate that both models give similar results 
in terms of Nash-Sutcliffe correlation coefficients around 0.75 to 0.74 for training and forecasting, respectively. The 
networks is better to mimic peak flows compared to MLP structure. Compared to complex method selection of 
stopping criteria of MLP network, RBF network has less user defined parameters and certain training algorithms 
which enable for modelers to set simpler networks. In the future works, hybrid models (like ANFIS) may be developed 
and compared with MLP and RBF network models 
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