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Abstract 

Data driven techniques have become well-known application in hydrology in which physical processes are highly nonlinear. They 
require detailed analyses of different input combinations, selecting the appropriate model structures, assigning the optimization 
parameters etc. Besides, the model performance are also highly correlated with additional analysis techniques. In this study, the 
value of using different data sets such as air temperature, precipitation, evaporation and streamflow records, evapotranspiration 
around the basin are investigated to estimate monthly inflows using a multi-layer perceptron network model. Since the noise always 
exists in the time-series data, Discrete Wavelet Transform (DWT) is applied for data decomposition. Çamldere dam basin, which 
is one of the vital water supply reservoir of the capital city of Turkey, Ankara, is selected as an application area. The model sets 
are employed using 1960 – 2016 monthly observed data. The reliability of the modelled flows are verified with: coefficient of 
determination (R2), Nash-Sutcliffe model efficiency (NSME), root mean square error (RMSE) and mean absolute error (MAE). 
According to the results, instead of increasing input vector number, application of data pre-processing have more impact to capture 
especially high flows. Decomposed discharge data together with meteorological other inputs perform 0.85 –  0.73 both for R2 and 
NSME for training and testing periods, respectively. 
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1. Introduction 

Reservoirs are still one of the important component in water resources systems. They are usually used for multi-
purpose demands e.g. water supply, hydropower, irrigation, navigation, therefore optimal operation of them is an 
important issue. The operational decisions are attributed to the different facets such as operational strategy of the 
system, resource allocation, environmental and physical constraints etc. Besides, the system performance is highly 
related with accurate future prediction of hydrological response of the basin even if a perfect decision support system 
would be utilized. Models to mimic streamflow processes can be classified in different types such as distributed 
physical models (Refsgaard & Knudsen, 1996), lumped/distributed conceptual models (Lindström et al., 1997), 
stochastic models (Valipour et al., 2013), statistical models and soft computing methods (Uysal et al., 2016). Data 
availability is one of the main problem to construct a reliable model. Though physical models are more representative 
of the rainfall-runoff processes by using parameters which are related directly to the physical characteristics of the 
catchment (topography, soil, vegetation, geology etc.) and providing spatial variability of physical and meteorological 
conditions by its distributed framework, they have a predictive capability at model grid scale due to limitations of data 
availability and uncertainty of model conceptualizations (Refsgaard et al., 2016). When the model becomes more 
physical representation, the performances would be increased, however more information is required which is not 
always practical (Karimi et al., 2016). 

Contrary, soft computing approaches have recently been exploited in hydrological modeling (Kentel, 2009). There 
are some different types like Fuzzy Logic (FL), Evolutionary Computation (EC), Machine Learning (ML) and 
Probabilistic Reasoning (PR) etc. with the latter subsuming belief networks and parts of learning theory. A neural 
network is characterized by its architecture that represent the pattern of connection between nodes, its method of 
determining the connection weights, and the activation function (Fausett, 1994). One of the significant advantage of 
these models, supervised training (which provides a class of the functions matches the targets such as discharge) with 
different data sets is possible, even if the data is noisy and contaminated with errors. A network with sufficient 
parameters can approximate any nonlinear function (target) to any degree of accuracy by flexible nonlinear transfer 
functions (Kisi & Sanikhani, 2015). Therefore, application of them in hydrology and water resources have become 
common, since the models can learn, memorize and generalize knowledge from data sets, which makes it potential to 
solve complex, non-linear problems (Govindaraju, 2000a). Determining the elements of the artificial neural networks 
issue that affect the forecasting performance of artificial neural networks, and it should be carefully considered. 
Networks might be within hourly, daily (Uysal et al., 2016) and monthly (Shiri & Kisi, 2010) time intervals depending 
on different purposes. There are many user defined parts (selection of stopping criteria, normalization techniques, 
determination of model structure, optimization parameters etc.) in their methodologies, hence it is recommended to 
try several architectures and select the best algorithm for different data sets. Also, extreme events can create problems 
in any data analysis and modeling by having the sample mean and standard deviation to be much smaller/higher than 
the population values. 

Recently, hybrid systems which performs better compared to conventional counterparts e.g. the integration of 
artificial neural networks with conceptual models (Chen & Adams, 2006), wavelet and neuro-fuzzy conjunction model 
(Shiri & Kisi, 2010), ANFIS (Adaptive Neuro-Fuzzy Inference System) (Tayfur & Brocca, 2015) or hybrid intelligent 
systems (Bhadra et al., 2010) has been remarked. The wavelet-based seasonal models are more efficient than only 
Autoregressive models (i.e., ANN and ANFIS) for representing peak values (Nourani et al., 2014). In this study, 
monthly streamflows into Çamldere dam basin, which is the main water supply reservoir of the capital city of Turkey, 
estimated considering different input data combinations, splitting the training and validation instances. Further, a 
Discrete Wavelet Transform (DWT) is applied to inputs and improvement of the model performances are compared 
with pure neural network models. 
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2. Methodology 

The neural network model based streamflows are generated with a feedforward Multi-Layer Perceptrons (MLP) 
model. These models are capable to represent the input-output relationship by layers and nodes. A node is a processor 
which is connected to the others by weights, whereas the nodes are generally arranged in layers. The output y that is 
transmitted to the other nodes is obtained by the following equation: 

).( jj bWXfy                                                                                                                                          (1) 

where, X = (x1, . . . , xi, . . . , xn), Wj = (w1j, . . . , wij, . . . , wnj) and X is information from previous nodes, wij 
represents the connection weight from the ith node in the preceding layer to this node, where bj is bias, f is the activation 
function. The sigmoid function is a bounded, monotonic, nondecreasing function that provides a graded, nonlinear 
response (Govindaraju, 2000b). Since the relationship in the hydrology is mainly nonlinear, accordingly based on 
performances of different activation functions, sigmoid activation function is used in this study. Data are transformed 
to values between [0,1] using minimum and maximum of the data sets. 

At the beginning, the initial weights of the nodes are assigned and then these weights are changed/corrected in the 
training. This is accomplished by a backpropagation learning algorithm that involves two phases: a feedforward phase 
in which the external input information at the input nodes is propagated forward to compute the output information 
signal at the output unit, and a backward phase in which modifications to the connection strengths are made based on 
the differences between the computed and observed information signals at the output units (Eberhard & Dobbins, 
1990). The fast, efficient and robust the Levenberg-Marquardt (LM) backpropagation optimization technique 
(Marquardt, 1963; Levenberg, 1994) is used in the study. The LM algorithm updates the weights as: 

   TT
kk JJJww 1

1


                                                                                                                              (2) 

where wk+1 and wk are weights during (k+1)th & kth epoch, J is the Jacobian matrix that contains first derivatives of 
the network errors with respect to the weights and biases, µ is learning rate and ε is a vector of network errors.  

The neurohydrologist must specify the number of hidden layers and neurons in each hidden layer (Dawson & 
Wilby, 2001). The input layer number depends on input vector used in the model. The autocorrelation analysis, cross 
correlation analysis and some physical considerations can be helpful in determining the number of inputs using a trial 
and error process. On the other hand, more hidden layer increases the element number in the model and does not 
drastically increases the efficiency of the model, therefore the developed model has three layer by having n input 
vectors, m neurons with one hidden layers, and one neuron in the output layer (n_m_1_1). The number of neurons are 
determined by the trial-and-error procedure. Model parameters are effected by stooping criteria. One way of selecting 
the best network parameters is training the model according to cross-validation by repeating K times, with K as large 
as possible, and estimating the errors by averaging across the K validation folds (Barrow & Crone, 2013). Similar to 
this approach, considering two circumstances (randomized initial weights and randomized data partitioning), we run 
the whole algorithm for several times (each starts with different randomized initial weights, different randomized 
partitioning and stopping epoch number depending on training and cross-validation instances), and get the average 
values both for training (including cross-validation) and testing (validation) period. Accuracy performance assessment 
is accomplished to decide on the number of runs. According to this, running the model for approximately 200 times 
is found to be satisfactory (after which the errors and relation measures become constant). The codes are generated 
using MATLAB version 2012a software (License number: 991708). 

Data might be decomposed into subsets as a signal process. The transform of a signal might be continuous wavelet 
transform (CWT) or the discrete wavelet transform (DWT), whereas DWT necessitates not as much of computation 
time and is relatively simply applied compared to CWT. The formulations have been explained in detailed in literature 
by many researchers (Kalteh, 2016). In this study, we preferred DWT and 1-D wavelet decomposition is employed to 
perform a single-level wavelet decomposition of input signals using wavelet family of ‘db1’.  

The performance of the study is tested with 4 criteria defined as the square of correlation coefficient (R) called as 
coefficient of determination (R2), Nash-Sutcliffe Model Efficiency (NSME), Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE) denoted as: 
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where t
mQ is modelled flows, t

oQ is observed flows, mQ is average modelled flows, oQ is average observed flows, n 
is the number of the data sets.  

The coefficient of determination R2 describes the percentage of total variation explained by the model. To 
determine systematically over or under-prediction of a model, NSME is popular in evaluation of runoff forecasting 
and it accounts for model errors in estimating the mean or variance of the observed data sets. ME is sensitive to 
extreme values thus describes the accuracy of the maximum values and timing of the discharges. Contrary to R2 and 
ME, the model's fitness and diagnose the variation in the model errors can be determined by selecting the smallest of 
RMSE and MAE. While RMSE is a quadratic score, MAE is a linear score of the average magnitude of the errors. 
RMSE usually results in larger errors that occur in the vicinity of high flows in general; whereas MAE computes all 
deviations from the original data series and is not weighted towards high values. 

3. Study Area and Data 

The developed model is applied to Çamldere Dam basin that supplies most of the domestic water to the capital 
city Turkey (Ankara) where the total supplied water is about 800 000 m3/day. The location of the basin is shown in 
Fig. 1. The data used in the study is the monthly records of precipitation (P), air temperature (T), potential 
evapotranspiration (PET) and streamflow (Q). There is streamflow stations data which was recorded by the State 
Hydraulic Works (DSI) in Çamldere basin for the period 1960 - 2016. The precipitation data were recorded by the 
State Meteorological Service (DMI) in Esenboga, Ankara, Kizilcahamam stations as shown in Fig.1. The average 
value of them are used in the modelling. The temperature data is obtained for the same period from Ankara station. 
PET losses in the basin is simply modeled by temperature values using Thornthwaite's formula and deliberated as an 
extra input data set. 

For input data sets, current month’s value as indicated by (n), previous one month values (n-1), previous two month 
values (n-2) are provided to estimate the current discharge. First 501 months (from January 1960 to September 2001) 
is used for training while left behind data (180 months) which are not used in any part of the training (from September 
2002 to October 2016) is kept for testing. During the training process, a randomly selected 15 % (76 months) are used 
as cross-validation to determine the stopping epoch.  
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Fig. 1. The study catchment & meteorological stations 

 
There are different method to partition the training and testing data sets. We consider that training and testing 

periods should be selected by having similarly statistical parameters. Hence, xmean, xmin, xmax, Sx and Csx, denoting the 
mean, minimum, maximum, standard deviation and skewness, respectively of all evaluated variables are presented in 
Table 1. Different periods are tried and abovementioned split is preferred. All periods presents similar discharge 
characteristics especially in terms of mean and maximum. Last column identifies the linear correlation (R) of each 
variable with runoff data. These relations are useful to understand the added value of extra inputs in data sets. The 
highest correlation with discharge values is observed between precipitation data for both training and testing periods.  

Table 1. Input data statistics. 

Input variable Period xmin xmean xmax Sx Csx R 

Runoff 

[m3/s] 

 

training 0.3 14.0 114.8 19.2 1.92 1.000 

testing 0.0 13.3 112.1 19.5 2.38 1.000 

whole 0.0 13.8 114.8 19.2 2.04 1.000 

Precipitation [Pave, mm] training 0.0 39.0 145.7 28.4 0.88 0.458 

testing 0.0 39.3 187.8 31.5 1.37 0.431 

whole 0.0 39.1 187.8 29.2 1.05 0.450 

Air Temperature [Temp, oC] 

 

training -4.2 11.8 26.5 8.2 -0.08 -0.294 

testing -3.9 13.0 28.5 8.6 0.00 -0.322 

whole -4.2 12.1 28.5 8.3 -0.05 -0.302 

Potential Evaporation 

[PET, mm] 

 

training 0.0 5.9 16.9 4.9 0.40 -0.323 

testing 0.0 5.9 17.6 5.3 0.59 -0.339 

whole 0.0 5.9 17.6 5.0 0.46 -0.327 
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highest correlation with discharge values is observed between precipitation data for both training and testing periods.  

Table 1. Input data statistics. 

Input variable Period xmin xmean xmax Sx Csx R 

Runoff 

[m3/s] 

 

training 0.3 14.0 114.8 19.2 1.92 1.000 

testing 0.0 13.3 112.1 19.5 2.38 1.000 

whole 0.0 13.8 114.8 19.2 2.04 1.000 

Precipitation [Pave, mm] training 0.0 39.0 145.7 28.4 0.88 0.458 

testing 0.0 39.3 187.8 31.5 1.37 0.431 

whole 0.0 39.1 187.8 29.2 1.05 0.450 

Air Temperature [Temp, oC] 

 

training -4.2 11.8 26.5 8.2 -0.08 -0.294 

testing -3.9 13.0 28.5 8.6 0.00 -0.322 

whole -4.2 12.1 28.5 8.3 -0.05 -0.302 

Potential Evaporation 

[PET, mm] 

 

training 0.0 5.9 16.9 4.9 0.40 -0.323 

testing 0.0 5.9 17.6 5.3 0.59 -0.339 

whole 0.0 5.9 17.6 5.0 0.46 -0.327 
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4. Model results 

Alternative models are generated with different input combinations. Due to the high correlation between 
streamflows, using previous months’ observed streamflow data as an input vector is well-known application. It is 
noted that two month time lag is enough according to the partial auto-correlation function of daily streamflow data. 
The models inputs are available in Table 2. They are developed from simple to complex, consequently input number 
increases by the model name id. While only runoff data is considered for MLP_01 and MLP_02 models, the added 
value of meteorological data into them is analyzed for MLP_03 to MLP_05 models. In case of no runoff data 
availability, an alternative model is tested by providing only meteorological data into network by MLP_06 model. 

Table 2. MLP models according to input vector selection. 

Model name id Runoff(n-1) Runoff(n-2) Pave(n) Pave(n-1) Pave(n-2) Temp(n-1) PET(n-1) 

MLP_01 X - - - - - - 

MLP_02 X X - - - - - 

MLP_03 X - X - - - - 

MLP_04 X - - X - X - 

MLP_05 X X - X - X - 

MLP_06 - - - X X X - 

4.1. Neural network model results 

The performances of aforementioned models are summarized in Table 3. According to that, using previous month 
discharge data as input vector can explain/model 64 % and 55 % of the observed streamflows for training and testing 
periods, respectively (MLP_01). There is no drastic improvement adding Q(n-2) discharge into the model input vector 
(MLP_02). Adding extra inputs on MLP_01 model is not much appreciated according to R2 and NSME. Considering 
current Pave data (MLP_03) as an extra input to discharge based model (MLP_01) increases the performances 
especially for training part. As a substitute, one can model the monthly runoff only with meteorological data (MLP_06) 
by having quite similar performances to runoff data based models. Though different input combination experiments, 
the model results have still low performances, and requires to be improved by other techniques. 

Table 3. MLP model performances. 

model period R2 NSME RMSE [m3/s] MAE [m3/s] 

MLP_01 Training 0.64 0.64 11.5 6.7 

Forecast 0.55 0.55 13.0 7.5 

MLP_02 Training 0.63 0.62 11.8 6.8 

Testing 0.56 0.56 12.9 7.6 

MLP_03 Training 0.75 0.75 9.7 5.4 

Testing 0.57 0.55 13.0 6.7 

MLP_04 Training 0.68 0.67 10.9 6.3 

Testing 0.59 0.58 12.5 7.0 

MLP_05 Training 0.67 0.67 11.1 6.3 

Testing 0.60 0.59 13.3 7.4 

MLP_06 Training 0.65 0.65 11.33 6.56 

Testing 0.52 0.52 13.48 7.79 
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4.2. Improvement with Discrete Wavelet Transform (DWT) Decomposition  

An improvement is expected by decomposition of runoff/precipitation data. Even if MLP_01 and MLP_02 models 
have similar performances, pre-processing provide noteworthy improvement (if the one step before runoff data is 
decomposed into two subsets), then better performance is achieved by MLP_02_DWT (Table 4). DWT on previous 
month’s runoff data (MLP_04_DWT_1) or precipitation data (MLP_04_DWT_2), the improvement is still less than 
MLP_02_DWT model. MLP_05_DWT improves the testing period performances. MLP_06_DWT, where  P(n-1) and 
P(n-2) are separately decomposed into each two subsets, gives similar performances to MLP_04_DWT_2.  

Table 4. DWA improvement performances on MLP model. 

model DWA Period R2 NSME RMSE [m3/s] MAE [m3/s] 

MLP_01_DWT 

 

Q(n-1) Training 0.79 0.79 8.8 4.7 

 Testing 0.55 0.54 13.2 6.4 

MLP_02_DWT Q(n-1) Training 0.80 0.80 8.65 4.5 

 Testing 0.65 0.65 11.5 6.0 

MLP_04_DWT_1 Q(n-1) Training 0.80 0.79 8.7 4.6 

 Testing 0.59 0.59 12.4 6.3 

MLP_04_DWT_2 Q(n-1) & Pave(n-1) Training 0.80 0.80 8.6 4.7 

 Testing 0.55 0.54 13.2 6.5 

MLP_05_DWT Q(n-1) Training 0.80 0.80 8.6 4.6 

  Testing 0.63 0.63 11.8 6.1 

MLP_06_DWT Pave(n-1) & Pave(n-

2) 
Training 0.73 0.72 10.1 5.73 

 Testing 0.54 0.54 13.23 7.75 

A final model MLP_05_DWT(n), having P(n) and T(n) together with other inputs, improves the performances up to 
0.85, 0.73 for both R2 and NSME and RMSE is reduced to 7.5 and 10.1 m3/s and MAE to 4.0 and 5.1 m3/s for training 
and testing periods, respectively. Comparison of the two models is presented by a scatter diagram by Fig. 2.  

 
Fig. 2. Scatter diagram of the neural network models (a) MLP_05 model training period, (b) MLP_05_DWT(n) model training period, (c) 

MLP_05 model testing period, (d) MLP_05_DWT(n) model training period 
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5. Conclusion and Outlook 

In this study, monthly runoff values for Çamldere dam basin are estimated by feedforward backpropagation neural 
network model using multi-layer perceptrons. Previous months’ streamflow records has major impact for next month’s 
modelled flow results. Instead of increasing model input number, advanced hybrid techniques like wavelet analysis 
has much added value to better model the streamflows. Both metrological and discharge data based models provide 
similar model performances. Moreover, meteorological data should be used to improve discharge based models. 
Discrete Wavelet Transform of inputs especially on runoff has major impact to improve peak flows, thus 
correspondingly whole model performances. Since the seasonal pattern is highlighted as the main characteristic of the 
monthly time series, this can be captured by wavelet analysis in terms of sub-signals. For future studies, Fuzzy theory 
concept based models might lead to more reliable results instead of new data sets. 
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