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Abstract
The isolation of single- to few-layer transition metal dichalcogenides opens new directions in the
application of two-dimensional materials to nanoelectronics. The characterization of thermal
transport in these new low-dimensional materials is needed for their efficient implementation,
either for general overheating issues or specific applications in thermoelectric devices. In this
study, the lattice thermal conductivities of single-layer MoS2 and MoSe2 are evaluated using
classical molecular dynamics methods. The interactions between atoms are defined by Stillinger–
Weber-type empirical potentials that are developed to represent the structural, mechanical, and
vibrational properties of the given materials. In the parameterization of the potentials, a stochastic
optimization algorithm, namely particle swarm optimization, is utilized. The final parameter sets
produce quite consistent results with density functional theory in terms of lattice parameters, bond
distances, elastic constants, and vibrational properties of both single-layer MoS2 and MoSe2. The
predicted thermal properties of both materials are in very good agreement with earlier first-
principles calculations. The discrepancies between the calculations and experimental
measurements are most probably caused by the pristine nature of the structures in our simulations.

S Online supplementary data available from stacks.iop.org/nano/27/055703/mmedia
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1. Introduction

Recently, a new class of two-dimensional layered materials,
transition metal dichalcogenides (TMDs), have stimulated an
intense research effort, mainly due to their unique electronic
and magnetic properties compared to the zero-band-gap
semiconductor graphene and insulator hexagonal boron nitride

(white graphene). Numerous first-principles studies have
revealed that semiconductor TMDs, MX2 (where M = Cr, Mo
and W and X = S, Se, Te), with band gap values ranging from
visible to near infrared, may offer solutions for nanoelectronic
and optoelectronic applications where graphene and hexagonal
boron nitride are inadequate. Moreover, single-layer and few-
layer MoS2 [1, 2], MoSe2 [3], MoTe2 [3], WS2 [4, 5], and
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WSe2 [6, 7], and also heterostructures [8, 9] composed of these
materials, have already been fabricated and investigated as
ideal candidates for a variety of practical technological appli-
cations including catalysis [10], energy storage [11], sensing
[12], and electronic devices such as field-effect transistors
[7, 13, 14] and logic circuits [12, 15]. One of the key para-
meters of design in these devices is the thermal conductivity of
the constituents since in many cases small electronic parts
produce excess heat. As two-dimensional TMDs are being
considered as parts of these assemblies, the characterization of
their thermal transport properties is critical.

A specific application of low-dimensional TMDs that
requires strict thermal control is thermoelectrics [16–19], i.e.
energy harvesting and cooling devices. Recently, there have
been reports of low lattice thermal conductivity for MoS2 and
WS2 and a high power factor for MoS2. In these preliminary
works, the experimentally measured value of lattice thermal
conductivity of few-layer MoS2 has been reported to be below
55.0 Wm−1K−1 [20–22], and those of single- and double-
layer WS2 have been reported as 32.0 Wm−1K−1 and 53.0
Wm−1K−1 [23], respectively. These room-temperature
values, around two orders smaller than the lattice thermal
conductivity of single-layer graphene, have been reproduced
by classical molecular dynamics (MD) and first-principles
calculations [24–31] as well. Additionally, the promising
thermoelectric performance of these materials has been
reported. The maximum dimensionless figure of merit (ZT) of
single-layer MoS2 has been calculated to be around 0.6 by
Huang et al [18]. In addition, for n-type doped bilayer MoS2,
MoSe2, and WSe2, the peak value of ZT has been calculated
to be as much as 1.6, 2.39, and 2.1, respectively [17, 18, 32].
These reported values clearly indicate the possibility of using
two-dimensional TMDs for thermoelectric applications, and
the necessity of fundamental and comparative studies on the
lattice thermal transport properties of these monolayer mate-
rials due to the direct relation between thermal conductivity
and thermoelectric performance figure of merit, ZT.

The systematic characterization of lattice thermal trans-
port in single-layer TMDs is far from complete. A relatively
fast and reliable method to investigate lattice thermal con-
ductivity is to use empirical potentials that describe the atomic
vibrations well. In this respect, as a first step, we focus on two
of these structures, namely MoS2 and MoSe2, and develop
Stillinger–Weber (SW)-type [33] interaction potential para-
meter (IPP) sets with particular attention on reproducing
structural, mechanical, and vibrational properties. By utilizing
the IPPs and MD simulations, we further calculate the thermal
transport properties of single-layer MoS2 and MoSe2 crystals.

2. Computational details

The form of SW interatomic potential parameters [33] used in
this study can be written as,
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where 2f and 3f define the bond stretch (two-body) and bond
bending (three-body) interactions, respectively. The summa-
tion indices j and k are the neighbors of atom i within a radius
of rmax in equations (2) and (3). The terms rij and rik indicate
the pair separations and ijkq is the angle between the
separation vectors centering on atom i.

In describing single-layer MoX2 (X = S, Se) structures,
we consider three stretching terms, namely Mo–Mo, Mo–X,
and X–X within the SW formalism. For angle bending, in
contrast to stretching, we distinguish the chalcogens with
subscripts ‘u’ and ‘d’ indicating whether these atoms are
above or below the molybdenum layer, as seen on figure 1.
This distinction is needed to correctly represent the asym-
metric chalcogen polyhedra around molybdenum. We defined
three three-body terms: Xu, d( )–Mo–Xu,(d), Mo–Xu,(d)–Mo and
Xu–Mo–Xd. The first term represents the angle between two
chalcogens (both above or both below the Mo-plane) and Mo
which is at the center. The second term is the angle between
two Mo and a chalcogen (above or below the Mo-plane)
which is at the center. The third term is the angle between two
chalcogens (one above and one below the Mo-plane) and Mo
at the center. These angles are shown as 1q , 2q , and 3q ,
respectively, in figure 1.

Using global optimization schemes to obtain force-field
parameter sets is becoming increasingly accepted in the
community [34, 35]. There are various approaches and
algorithms for global optimization, such as particle swarm
optimization (PSO), genetic algorithms, simulated annealing,
basin hopping, etc. These methods are very advantageous
because one can sample much greater volumes in the para-
meter space and no intuitive initial guesses are needed. In this
study, the SW parameters are generated by using a PSO
algorithm which is a population-based stochastic optimization
method developed by Kennedy and Eberhart [36]. It is
inspired by the social behavior of bird flocking and/or fish
schooling. Throughout the optimization procedure, each
particle represents a candidate solution to the problem at hand
and particles keep a record of the best solution they experi-
ence and share this information with the particles in their
neighborhood. There are various neighborhood definitions for
PSO in the literature [37]. The neighborhood definition
employed in this study is the fully connected topology, in
which each particle can communicate with the whole swarm.
In PSO, each particle is composed of three vectors (current
location, c, current velocity, v, and the best solution found by
the particle, p) and two fitness values (c-fitness and p-fitness,
which represent the particle’s current value and the best value
of the objective function, respectively). The dimensions of the
p, c, and v vectors correspond to the number of decision
variables. The values stored in the p and c vectors are the
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values of the decision variables, whereas the values stored in
v are the amount of perturbation to be used in the next
iteration of the search. At every iteration t, the velocity and
the current position of particle i are updated according to the
formulae
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where ci is the current position of particle i, vi is the current
velocity of particle i, pi is the best solution identified by
particle i, pg is the best solution in the neighborhood of
particle i. 1j , and 2j are learning rates governing the
cognition and social interaction within the swarm, respec-
tively. d is the dth dimension of the corresponding vector,
d D1, 2, ...,= (number of decision variables), and U(0, 1) is
a uniform random number in the interval [0, 1]. K is defined
as the constriction coefficient which aims at preventing
explosion during velocity update as explained in [38]. At
every iteration, the best particle of the swarm is first identified
by comparing the p-fitness values of the particles and the
same particle (indexed by g) is used to update the velocity
vectors of the whole swarm. Once c is updated c-fitness is
computed and compared against p-fitness. If c-fitness is better
than p-fitness, p is replaced by c.

In the current implementation, the dimension of the
particles (i.e. the dimensions of p, c, and v) is determined by
the number of parameters used to ‘optimize’ the fitness
function (lattice constant, bond angles, bond lengths, elastic

constants, and phonon frequencies). Since there are several
crystal characteristics that need to be optimized simulta-
neously, the fitness function is defined as the normalized
summation of desired crystal characteristics. To be more
precise,
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where dcj denotes the desired value of characteristic j
(obtained by first-principles calculations), acj denotes the
actual value obtained through empirical potential for the
instantaneous set of parameters, and N is the number of
characteristics to be optimized simultaneously. During the
optimization process the SW parameter sets are passed to the
GULP [39] code with which the properties of MoS2 and
MoSe2 are calculated. After every update of particles
according to (4) and (5), a call to GULP is made to obtain
the vector of actual characteristics, and these values are used
to compute the fitness of the current particle according to (6).
The pseudocode of the PSO algorithm as used in this study is
given in the supplementary data, section 1 available at stacks.
iop.org/nano/27/055703/mmedia.

The desired value database used in the PSO procedure is
generated by first-principles calculations based on density
functional theory (DFT) [40] as implemented in the Vienna
ab initio simulation package [41–43]. In these simulations,
the projector augmented wave pseudopotentials [44, 45] from
the standard distribution are incorporated to describe the
core–valence interaction. For the electron exchange-correla-
tion, the generalized gradient approximation within the

Figure 1. Schematic representations of the single-layer MoS2 structure from different angles. Su and Sd represent sulfide atoms that are above
and below the molybdenum layer. Mo–Su and Mo–Sd show bond stretching terms between molybdenum and the two distinct sulfurs. 1q , 2q ,
and 3q correspond to three-body interactions: Su–Mo–Su (equivalently Sd–Mo–Sd), Mo–Su–Mo (equivalently Mo–Sd–Mo), and Su–Mo–Sd,
respectively. dS Su d- is the closest distance between Su and Sd. A separate plot for MoSe2 is not provided since it is isostructural to MoS2.
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Perdew–Burke–Ernzerhof formulation is used. For both
structures, a plane wave cut-off energy of 500 eV is used. The
Brillouin zone of the primitive cell is sampled by a Γ point
centered 26×26×1 k-point mesh within the Monkhorst–
Pack scheme. The phonon calculations are performed on
4×4×1 super-cell structures with a Γ point centered
8×8×1 k-point mesh for the Brillouin zone sampling. A
20Å vacuum spacing is used to separate the adjoint mono-
layers along the z-direction to avoid spurious interaction
between the periodic images.

The thermal conductivity of each material is investigated
through MD simulations. These calculations are performed
using LAMMPS [46, 47]. The existing SW form in this code
is different from the one fitted with PSO, thus an appropriate
form is implemented for MD simulations. The new SW-type
interatomic potential module is tested against the GULP
results and no discrepancy is detected. Further information
including vibrational properties calculated with both codes,
parameter tables, the nature of code modifications, and the
parameter conversion scheme between the codes can be found
in in the supplementary data, sections 2–5 available at stacks.
iop.org/nano/27/055703/mmedia. The thermal conductivity
of single-layer MoS2 and MoSe2 calculated using the Green–
Kubo relations derived from the fluctuation dissipation the-
orem [48, 49] and equivalently by an expression akin to the
Einstein diffusion relationships [50, 51] is as follows,

Vk T t
R t R

1
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where T, V, and kB are the temperature, volume, and
Boltzmann constant, respectively, and Rm is the time
integration of heat current in direction μ. Ordinarily, Rm for
a single particle is the total energy of the particle i times its
unwrapped coordinate rim in the simulation domain. The total
Rm of the system is calculated by a summation over all
particles as follows,

R r , 8
i

i i ( )å=m m

which can be thought of as an energy moment vector for the
system [52].

The reported values are calculated by averaging the
results of eight distinct MD simulations, which were started
with different initial particle velocities. The size of the con-
sidered periodic two-dimensional simulation cell for each
structure is ∼20 nm 20 nm´~ (which we obtain from the
converged thermal conductivity at 500 K, roughly 13000
atoms). Cross-sectional areas of the considered structures are
predicted using the mean van der Waals distance for hex-
agonal bulk crystals as the height (0.615 and 0.650 nm for
MoS2 and MoSe2, respectively). For only MoSe2, a constant
neighbor list is applied due to the hard cut-off of the SW
potential. Before the data are collected for thermal con-
ductivity calculations, the systems are relaxed for 500ps. The
systems are allowed to evolve for a minimum of 5 ns with a
time step of 0.5fs in a microcanonical ensemble for data
collection. Previously, we showed that this simulation length
is appropriate for graphene and hexagonal boron nitride

[53–55] both of which have higher thermal conductivities and
thus longer heat current autocorrelation tails than the stu-
died TMDs.

3. Results

The training set for the IPP set to represent single-layer MoS2
and MoSe2 includes lattice parameters (a0); the distance
between two chalcogen atoms, one above and one below the
Mo layer (dX ,Xu d

); elastic constants (C11 and C12), Young’s
moduli (Y), and Poisson’s ratios (ν). In table 1, we present the
results of DFT calculations regarding these properties of both
materials.

To capture correct lattice thermal transport behavior we
also considered phonon frequencies in the training set. Again
DFT calculations are performed to generate phonon disper-
sions in the first Brillouin zone. In figures 2(a) and (b), we
present phonon dispersions along high-symmetry reciprocal
space directions for MoS2 and MoSe2. In the acoustic regime,
the dispersion in both materials is similar except that MoS2
has higher mode frequencies compared to MoSe2. This in line
with the prediction of larger elastic constants and Young’s
modulus for MoS2. Considering fundamental kinetic theory,
thermal conductivity is related to phonon group velocities,
relaxation times and heat capacity (i.e. mode populations).
With significantly higher frequencies it can be expected that
MoS2 has higher group velocities even though MoSe2 has a
slightly smaller Brillouin zone. Furthermore the acoustic–
optical phonon gap is smaller in MoSe2 which can lead to
increased scattering and a decreased relaxation time for
acoustic modes (the annihilation process of two acoustic
phonon modes into one optical mode, A A Ow w w+ ¢ =  , is
suppressed because of the energy conservation requirement
[26]). In both materials, the dispersion in optical modes is
limited so the optical phonon contribution to lattice thermal
conduction is lower compared to acoustic modes.

We used the first-principles based properties and vibra-
tional frequencies and PSO algorithm to train our SW-type
force field. In tables 2 and 3 we present the two-body and the
three-body parameters obtained at the end of the training

Table 1. The lattice parameter (a0), the distance between two
chalcogen atoms above and below the Mo layer (dX ,Xu d), elastic
constants (C11 and C12), Young’s modulus (Y), and Poisson’s ratio
(ν) of MoS2 and MoSe2 evaluated with both DFT and the developed
IPP set.

a0 (Å) dX Xu d- (Å)
C11

(N m–1)
C12

(N m–1)
Y

(N m–1) ν

MoS2
DFT 3.18 1.56 132.7 33.0 124.5 0.25
SW 3.20 1.63 133.0 39.4 121.4 0.30

MoSe2
DFT 3.32 1.67 106.9 25.6 100.8 0.24
SW 3.32 1.66 114.1 43.3 97.6 0.38
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process. This final sets produce highly consistent results with
DFT in terms of lattice parameters, bond distances, and elastic
constants (except C12 of MoSe2) as given in table 1. Addi-
tionally, the force-field based vibrational properties of both
single-layer MoS2 and single-layer MoSe2, especially long-
itudinal, transverse, and out-of-plane acoustic branches (LA,
TA and ZA), have very good agreement with first-principles
results. For these mode polarizations, we obtained a better fit
(i.e shown as SW–TW in figure 2) to DFT results than a
previously developed empirical potential [27] (i.e. shown as
SW in figure 2). It should be noted that the SW-type IPP set is
less successful in describing the vibrational properties is in
the optical branches, especially at the higher end of the fre-
quency scale. However, the effect of these phonons on lattice
thermal conductivity is less important due to their very low
phonon group velocities.

The developed IPP set governs the dynamics of atoms
when coupled with the Newton’s equations of motion as
implemented in MD. The in-plane lattice thermal

conductivities of MoS2 and MoSe2 are calculated from the
classical description of atomic motion at equilibrium within
fluctuation dissipation theory. Since the simulated structures
contain no defects and edges, the main impediment in phonon
conduction is the phonon–phonon scattering due to crystal
anharmonicity. In this perspective, the calculated thermal
conductivities of MoS2 and MoSe2 are given in figure 3(a)
and (b). For the 200–500 K range, the κ of MoS2 is found to
decrease from 150 to 50 Wm−1K−1. In the case of MoSe2, we
find thermal conductivities almost half those for MoS2 within
the same temperature range. These values for MoS2 and
MoSe2 are 5 to 50 times lower compared to single-layer
hexagonal boron nitride [53] and graphene [56] evaluated
with the same methods. When we compare our results with
Boltzmann transport calculations [25, 26] we obtain good
agreement at all temperatures. However, experimental mea-
surements showed conductivities below 55 Wm−1K−1 at
room temperature in MoS2 [21–23] . There are possible rea-
sons for this discrepancy between experimental and calcu-
lated results: one important feature of the classical description
in our simulations is that every phonon mode is equally
populated. This is consistent with material behavior above the
Debye temperature (TD). For the same reason, the temperature
dependence of κ can be approximated by 1/T in figure 3. For
materials simulated at temperatures much lower than (TD)
some scaling schemes may be needed to account for the
differences in the populations between classical and quantum
mechanics. When the temperature dependence of heat capa-
city is investigated it is seen that the majority of the phonons
are populated for MoS2 below 400 K, see the supplementary
material, section 4. In the case of MoSe2, this temperature is

Figure 2. Phonon dispersions of monolayer (a)MoS2 and (b)MoSe2 along high-symmetry reciprocal space directions. The results of the first-
principles calculations (DFT, black solid line), the SW-type IPP set developed in this work (SW-TW, red dashed line), and the SW-type IPP
set presented in [27] (SW, blue dash-dot-dot line) are presented.

Table 2. Two-body SW parameters given in (2) and (3). This form is
native to GULP.

A ρ B rmin rmax

S–S 0.9641 0.9883 11.4454 0.00 3.82
Mo–S 5.0000 0.5985 16.8932 0.00 3.20
Mo–Mo 1.4867 0.9999 79.7857 0.00 4.27

Se–Se 1.8413 0.1000 20.0000 0.00 4.05
Mo–Se 30.0000 2.9998 30.0000 0.00 3.36
Mo–Mo 3.3741 1.0000 38.2674 0.00 4.55
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even lower, about 300 K, above which only few per cent
change in heat capacity is observed. From these results it can
be concluded that thermal conductivity predictions from MD
do not require corrections above 300 K. Below this temper-
ature our calculations are subject to larger discrepancies due
to energy equipartition but since these materials reach the
classical description around 300–400 K we do not expect
serious errors. Another source of inconsistency could be
related to the isotopes in the systems. In particular for
molybdenum there are seven stable isotopes with natural
abundances all below 25% [57]. With such a large spread in

mass, the phonon scattering due to mass differences can be
sizable and will be investigated in a future study. One final
issue to consider is the effect of defects other than isotopes. In
experimental measurements, it is impossible to completely
eliminate imperfections such as point (vacancies, anti-sites,
substitutionals, interstitials, surface contaminants, etc) and
extended defects (grain boundaries, dislocations, edges, etc).
These imperfections can significantly lower the thermal
conductivity since they act as scatterers for phonons.

4. Conclusion

In summary, we presented a detailed investigation of the
lattice thermal conductivity of two-dimensional crystals of
MoS2 and MoSe2 using molecular level theories. For this
purpose, using a particle swarm global optimization techni-
que, we developed a unique Stillinger–Weber-type interaction
potential parameter set that effectively represents the first-
principles mechanical and vibrational properties of these
structures. The optimized interatomic potential parameters
reproduce the lattice thermal transport properties of these
structures in quite good agreement with first-principles cal-
culations. The differences between the calculated MoS2
thermal conductivity and experimental results are possibly
due to isotropic disorder and structural flaws that are inherent
to measured structures.
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Table 3. Three-body SW parameters given in (2) and (3). This form is native to GULP.

K 0q 12r 13r r12
max r13

max r23
max

Mo–Su,(d)–Su,(d) 28.8462 82.5117 1.00 1.00 3.20 3.20 3.82
Su,(d)–Mo–Mo 28.8462 82.5117 1.00 1.00 3.20 3.20 4.27
Mo–Su–Sd 0.2357 80.8182 1.00 1.00 3.20 3.20 3.82

Mo–Seu,(d)–Seu,(d) 20.0000 81.5301 2.00 2.00 3.36 3.36 4.05
Seu,(d)–Mo–Mo 20.0000 81.5301 2.00 2.00 3.36 3.36 4.55
Mo–Seu–Sed 13.1284 82.1288 2.00 2.00 3.36 3.36 4.05

Figure 3. Calculated thermal conductivity values of MoS2 and
MoSe2 as a function of temperature (black circles and red squares).
The theoretical (PBTE [26], BTE [25], and NEGF [28]) and
experimental (EXP I [20], EXP II [22], and EXP III [21]) values
derived from the literature are also presented.
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