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Abstract: Diabetes is an important metabolic disease affecting many organs and systems in the body. The nerv-
ous system is one of the body systems affected by diabetes and neuropathic complications are troublesome in 
diabetic patients with many consequences. As diabetes has deleterious influences almost on bodily systems, an 
integrative approach seems to be necessary accepting the body as a whole and integrating body systems with 
lifestyle and living environment. Like some traditional health systems such as Ayurveda, integrative approach 
includes additional modalities to overcome both diabetes and diabetic complications. In general, these modalities 
consist of nutraceuticals and plant products. Prebiotics and probiotics are two types of nutraceuticals having ac-
tive ingredients, such as antioxidants, nutrient factors, microorganisms, etc. Many plants are indicated for the cure 
of diabetes. All of these may be employed in the prevention and in the non-pharmacological management of mild-
to-moderate diabetes. Severe diabetes should require appropriate drug selection. Being complementary, prebiot-
ics, probiotics, plants and exercise may be additive for the drug therapy of diabetes. Similarly, there are comple-
mentary approaches to prevent and cure neurological and/or behavioral manifestations of diabetes, which may be 
included in therapy and prevention plans. A scheme is given for the prevention and therapy of comorbid depres-
sion, which is one of the most common behavioral complications of diabetes. Within this scheme, the main crite-
rion for the selection of modalities is the severity of diseases, so that personalized management may be developed 
for diabetic patients using prebiotics and probiotics in their diets, plants and drugs avoiding possible interactions.  

Keywords: Diabetes, diabetic neuropathy, prebiotics, probiotics, nutraceuticals, plants, microbiome, antioxidants. 

1. INTRODUCTION 
 Life is simply based on homeostasis, which is a precise and 
complex balance between internal conditions of living organisms 
and external conditions in the environment. In cells, similar bal-
ances are present between the  organelles at cellular and molecular 
levels. In higher organisms, there is also a balance between cells, 
tissues and physiological systems. Counterpoises within the auto-
nomic nervous system [1, 2], between hormones [3-5], autocoids 
[6-8], and chemokines [9-11], are long-known examples of bal-
ances in  molecules to systems. Interacting with each other through 
many endogenous factors, approximately 37 trillion body cells plus 
100 trillion gut microflora cells, altogether  participate in physio-
logical tasks of daily life [12, 13]. In terms of etiopathogenesis of 
diseases, the disturbances in body systems or their tissues are ex-
pected to cause a disease. Disturbances in a group of cells involved 
in specific physiological tasks may cause diseases as in the case of 
diabetes [14, 15]. Certain diseases like diabetes may affect almost 
all tissues and systems of the living body [16, 17]. An integrative or 
holistic approach, which treats  the human body as a whole includ-
ing environmental and preparatory factors, has been gaining impor-
tance for rational therapy as well as in biomedical research [18-21]. 
Starting from psychiatric diseases evolving to personalized medi-
cine [18, 21], the integrative approach has been combined to the 
microbiota as well as gaining assistance from alternative and com-
plementary medicine [20] to solve today’s complex medical prob-
lems, as well as to perform biomedical research.  
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2. THE INTEGRATIVE APPROACH IN MEDICINE 
 The terms “holistic approach” and “integrative approach” have 
been introduced independently by Dunbar [18] and Coleman [19]. 
Crosstalk mechanisms between gut and brain started to establish by 
the discovery of the presence of gut hormones in the brain as neuro-
transmitters or neuromodulators [22, 23]. The discovery of the 
presence of the same peptides both in neurons of the gastrointesti-
nal tract and the central nervous system has led to understand the 
nature of the brain-gut axis [24-27]. So, neuromodulators and hor-
mones in the gastrointestinal tract seem to be responsible for the 
modulation of gastrointestinal motility, water-electrolyte transport 
between lumen and blood circulation and absorption, while neuro-
modulators within the specific regions of brain are mainly responsi-
ble for the regulation of nutritional habits and appetite [28, 29]. 
After studying  gut hormones and neurotransmitters, it has been 
understood that this axis is also important in terms of blood glucose 
metabolism and diabetes mellitus. A similar complex regulation 
also seems to be related to the pathogenesis of depression [30, 31]. 
 An important part of the integrative approach for the neuro-
humoral regulation of the brain-gut axis is the immune system. It 
has been long-known that psychological stress causes suppression 
of the immune system through a corticosteroid-mediated mecha-
nism [32]. Along with cortisol secretion, cytokine (chemokine)-
regulation is now well-known to play a central role in the suppres-
sion of immune system [33, 34], and consequently, in the etiopa-
thogenesis of a variety of diseases, such as Alzheimer’s disease 
[35], depression [36], diabetes mellitus [37, 38], and even diabetic 
complications [39-41]. Although the relationship between stress-
induced immunosuppression with diabetes seems paradoxical, 
which has autoimmune aspects, recent scientific evidence has 
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suggested diminished glucocorticoid and mineralocorticoid re-
sponses of stress condition in diabetic patients [37]. There is also a 
scientific emphasize on the bidirectional pathophysiological link 
between stress, depression and type 2 diabetes resulting from insu-
lin resistance due to diurnal changes in blood cortisol levels, possi-
bly through immune system mediation [38].  
 Every part of the gastrointestinal tract, skin and some other 
parts of the body have abundant amounts of symbiotic microorgan-
isms. Among these, the alimentary tract exhibits an interesting 
situation: Microbiota in every part of the gastrointestinal tract have  
symbiotic microorganisms different in number and composition. 
Ranging from mouth to colon, the diversity and the number of mi-
croorganisms tend to increase, except for the mouth, which is an 
abundant source of symbiotic and saprophytic microorganisms 
(Table 1). Most probably due to its strong acidic condition, the 
stomach hosts the smallest number and low diversity of microor-
ganisms.  
 Irrespective of the composition of the microbiota in the 
alimentary tract, there are evident physiological tasks for it, provid-
ing a positive effect on the host-microbiome symbiosis [42, 43]:  
• Upholds a healthy gastrointestinal tract, 
• Confers the resistance to colonization of pathogen microorgan-

isms, 
• Regulates most systems of the body, esp. nervous system, 

cardiovascular system, 
• Supports host immune defense functions, 
• Suppresses the inflammation, 
• Provides additional metabolic potential, 
• Increases antioxidant and redox capacities, 
• Helps the detoxification of xenobiotics and biotransformation. 
 Almost two millenniums before the pioneering invention of the 
microscope by a Dutch scientist, Antonie van Loewenhook [45], the 
importance of intestine has been noticed by Hippocrates stating his 
famous quotation “death sits in the bowels” and “bad digestion is 
the root of all evil” in 400 B.C. [42]. There have been  more than 
fifty years from the discovery that it was observed that symbiotic 
microorganisms in gut microbiota play an important role in the 
biotransformation of biogenic compounds or xenobiotics to yield 
their active or inactive (detoxified) forms [46-48]. The microbial 
transformation of biogenic compounds provides invaluable nutri-
tional factors, vitamins, neurotransmitters, endogenous regulatory 
factors, etc. [13, 47]. Gut microbiota not only provide microbial 
transformation of biogenic compounds and xenobiotics but also 
help build and maintain the immune system of the body. The im-
munogenic properties of intestinal microflora on gut mucosal epi-
thelium have been found [49-51]. Interesting enough, some of these 

microorganisms (some bacteria species) have been reported to ex-
hibit electrochemical activities and produce electricity in the gut, so 
that these bacteria seem to help in  the regulation of spontaneous 
contractile functions in response to electrophysiological activity 
provided by Auerbach’s or Meissner’s intestinal plexa [52-54]. 
 Microbiome-gut-brain axis has been used as a more integrated 
concept in recent biomedical literature [13, 55]. In addition to brain, 
disturbances in gut microbiota have been reported to be involved in 
the pathogenesis of a wide range of diseases, such as different in-
fections [56], immunity disorders [57, 58], wound healing [58], 
atherosclerosis [59], obesity [60], diabetes mellitus [61], anorexia 
nervosa [62], anxiety, depression, and other similar mood disorders 
[63, 64] viz. autism spectrum disorder [64-66] and schizophrenia 
[65, 67, 68]. Therefore, it is necessary to look at diabetes and its 
neuro-psychiatric complications from a wider perspective treating 
the nutrition as an integral part of them.  

3. NUTRACEUTICAL APPROACH FOR DIABETES AND 
ITS NEUROLOGICAL COMPLICATIONS 
 Nutrition is a vital part of our lives, which involves  consuming 
appropriate foods as daily meals. By and large, foods contain vari-
ous nutritional elements, some active constituents, prebiotics, pro-
biotics, etc. Among these, nutritional elements, such as proteins, 
carbohydrates, lipids, etc., are necessary for metabolism as an es-
sential part of life, while the consumption profile of these elements 
themselves may cause some diseases or is  a key to prevent them, as 
in the case of gestational diabetes [69] and other diseases [70]. As 
integral parts of foods, prebiotics and probiotics are frequently con-
fused definitions. 
 Prebiotics are in general leafy and non-digestible parts of foods 
resisting breakdown by gastrointestinal enzymes and absorption 
from lumen. A vast majority of prebiotics are found naturally in 
different fruits and vegetables. There are three indispensable criteria 
for prebiotics: They are 1) non-hydrolysable and absorbable com-
ponents of foods, 2) provide a selective substrate/medium for sym-
biotic microorganism in the colon, such as Bifidobacterium, and 3) 
produce beneficial local and/or systemic effects within the host 
though their fermentation [71, 72]. Beyond these criteria, the ap-
propriate use of probiotics has following helpful effects on health, 
most of which may also be beneficial against pathophysiological 
consequences of the gastrointestinal diabetic neuropathy: 
• Support the regulation of mineral absorption from gastrointes-

tinal tract, 
• Reinforce intestinal microflora and suppress pathogenic mi-

croorganisms, 
• Protect cellular damage in the intestine, 
• Support host immune defense functions, 

Table 1. Variations in microbial numbers and composition across the length of the alimentary tract [42-44]. 

 Segment of Alimentary Tract Number of microorganisms Names of Microorganisms 

Mouth 

Eusophagus 

108 Actinobacteria, Bacteroidetes, Chlamydiae, Chloroflexi,  
Euryarchaeota, Firmicutes, Fusobacteria, Proteobacteria, 

Spirochaetes, Synergistetes, Tenericutes 

Stomach 101 Lactobacillus, Veillonella, Helicobacter 

Duodenum 103 

Jejunum 104 

Proximal 

Ileum 107 

Bacilli, Streptococcacea, Actinobacteria, Actinomycneae, 
Corynebacteriaceae 

Distal Colon 1012 Lachnospiraeae, Bacteroidates 
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• Limit energy intake, 
• Regulate glucose and lipid metabolisms, 
• Improve overall bowel functions. 
 Increased calcium, magnesium and iron absorptions by the help 
of prebiotics have been reported in animal experiments [72-74]. 
Increased absorption of calcium results in bone calcium resorption 
[72, 73], while increased absorption leads to an improvement in 
hematological parameters [72, 74]. Prebiotics are also fermented by 
the microbiota of the intestine enabling selective stimulation of the 
growth and/or activity of the intestinal microorganisms [75-77]. 
They usually target the activity of microorganisms like Lactobacil-
lus, Bifidobacterium and Bacteroides [78, 79], which have been 
reported to be important for the suppression of antibiotic-resistant 
pathogenic bacteria, such as Clostridium perfringens [79]. In the 
gastrointestinal tracts of experimental animals, probiotics have been 
reported to protect cellular damage induced by chemical, such as 
trinitrobenzenesulfonic acid [72, 80]. Increased immunoglobulin 
production and secretion along with increased immunoglobulin 
receptor expressions have been reported in response to probiotics in 
the gastrointestinal tract [81, 82]. Several human studies have dem-
onstrated limiting effects of prebiotics on the energy intake due to 
the sense of satiety and satiation, which may be beneficial for the 
glycemic control and the prevention of diabetic complications in-
cluding neuropathy [72, 83, 84]. Both the animal experiments and 
human studies have  stated positive  effects of prebiotics on glucose 
and lipid metabolism, which may also beneficial for the control of 
diabetes and its long-term complications. Decreased glycaemia 
after oral glucose tolerance test, fasting blood glucose concentra-
tions and improvement in the efficacy of antidiabetic drugs have 
been reported in mice given prebiotics [85]. In clinical studies, peak 
glucose response and insulin secretion of human subjects have been 
reported to be lower after consuming prebiotics [86]. In rats, de-
creased liver triglyceride content and malondialdehyde activity 
have been observed following the administration of prebiotics [87]. 
Another clinical report has specified decreases in postprandial 
triglyceride responses to probiotics in normolipidemic, obese and 
hyperlipidemic subjects on  high fat diet [72]. Last  but not the 
least, probiotics improve bowel functions by increasing gastrointes-
tinal transit time in healthy subjects [88] and in patients suffering 
from constipation [89, 90]. The later effect may also be beneficial 
for the diabetic patients with gastrointestinal neuropathy, in which 
delayed gastrointestinal transit has been reported in rats with dia-
betic gastrointestinal neuropathy [91]. 
 Probiotics are beneficial microorganisms for the life that are 
naturally created by the process of fermentation in foods. There are 
many variations in  probiotic products and none of them  can  be 
substituted for each other. Table 2 summarizes the most common 
fermented dairy products. Some of these products, such as yogurt 
etc., exhibit a wide variety depending on locality and historical 
background [92-100]. It has now been well-documented that regular 
probiotic intake has a beneficial influence on various diseases, and  
infections mainly  in the gastrointestinal and genitourinary tracts 
[101]; diseases of respiratory tract, ear, nose and throat [102]; der-
matological disorders including eczema, psoriasis, lactational mas-
titis, acne, reactive skin, UV radiation damage [103]; cardiome-
tabolic disorders including obesity, type 2 diabetes, dyslipidemia, 
cholesterolemia, stroke, gout, non-alcoholic liver diseases, polycys-
tic ovary syndrome [104]; mental and neurological diseases includ-
ing anxiety, attention-deficit/hyperactivity disorder, autism, and 
depression [105, 106].  
 There are many active compounds in the plant kingdom and in 
nutraceuticals, which may affect physiological systems of the body 
and promote health. By preventing and curing, they may help fight 
against various diseases including diabetes and its complications. 
Infact, food ingredients of  different chemical classes, such as rutin  
 

[107], quercetin [108], polyphenols [109], lycopene [110], α-lipoic 
acid [111], resveratrol [112], curcumin [113], capsaicin [114], vi-
tamin D [115], folic acid [116] etc., have been found to be effective 
against different types of diabetic neuropathies. Therefore, all 
foods/nutraceuticals containing these ingredients have the  potential 
for the management of diabetic neuropathies and glycemic control. 
Another important issue, which needs  to be emphasized here, is the 
fact that most of these food ingredients are also ingredients of 
plants effective against diabetic neuropathy. 
 By the help of exercise, changes in dietary style have been 
known to delay the onset of diabetes [117]. As in the case of Medi-
terranean diet, diet itself may prevent type 2 diabetes and improve 
glycemic control and risks of cardiovascular complications in peo-
ple with established diabetes [118, 119]. Both experimental and 
clinical studies have demonstrated that gut microbiota may play an  
important role in  maintaining glycemic control and preventing 
metabolic diseases like diabetes [61, 120-122]. In addition, nutri-
tional intervention through gastrointestinal microbiome seems 
likely to help glycemic controls in diabetes [120, 122]. Improve-
ment of gut microbiome may also have beneficial influences on 
long-term diabetic complications such as gastroenteropathy [123], 
microvascular and cardiovascular complications [124], retinopathy 
[125], neuropathy [126], etc. Until recently, almost nothing has 
been known about the mechanism of action of probiotics on the 
nervous system. However, findings of novel studies have indicated 
that the retrograde transport of small and large molecules from the 
intestines to the brain leads to both physiological and pathological 
consequences, highlighting both beneficial or harmful effects on the 
nervous system [127-129]. Fig. (1) summarizes mechanisms of the 
main effects of probiotics in the intestine. Although paracrine and 
endocrine effects of probiotics on the intestine have been known for 
quite long, retrograde transport mechanisms have been established  
recently. However, there are  limited information available on the 
nature of effects produced by probiotic microorganisms having 
different types of actions in the intestine. 
 

 
Fig. (1). Schematic representation of the mechanism of action of probiotics 
in the intestine. (1) Probiotic microorganisms on the villi have direct local 
effects, (2) Autocrine effects of factors released from probiotics both 
through muscles and enteral nerves, (3) Endocrine effects of factors released 
from probiotics after absorption from intestinal capillaries, (4) Effects of the 
autonomic nerve endings or uptake by them in the intestine, (5) Retrograde 
transport of factors by the autonomic nerve to the central nervous system. (A 
higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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Table 2. Some fermented dairy products [92-100]. 

Name of Probiotic Product Starting Material Locality of Origin Probiotics Involved 

Curd Buffalo’s or cow’s milk India L. lactis subsp. lactis, L. delbrueckii subsp. bulgari-
cus, L. plantarum,  

Streptococcus lactis, S.thermophilus, S. cremoris 

Yoghurt Buffalo’s or cow’s milk Mesopotamia  

(5000 B.C.)1 

Airan (Ayran, Yoghurt drink) Buffalo’s or cow’s milk Bulgaria, Turkey, Central Asia 

L. acidophilus, S. thermophilus 

L. bulgaricus 

Cultured butter milk Buffalo’s or cow’s milk US2 S. lactis subsp. diacetylactis,  

S. cremoris 

Lassi Buffalo’s or cow’s milk India L. bulgaricus 

Acidophilus milk 

 (Acidophiline) 

Cow’s milk Russia L. acidophilus 

Bulgarian butter milk Cow’s milk Bulgaria L. delbueckii subsp. bulgaricus 

Shrikhand (Shikhrini)  Buffalo’s or cow’s milk India S. thermophilus, L. bulgaricus 

Kumiss (Koumiss, Kumys) Mare’s, camel’s or 

donkey’s milk 

Central Asia 

(2000 B.C.) 

L. acidophilus, L. bulgaricus, 

Saccharomyces micrococci 

Kefir Sheep’s, cow’s, goat’s or 
mixed milk 

China/Caucasia S. lactis, Leuconostoc sp., Saccharomyces kefir, 
Torula kefir, Micrococci 

Leben Goats, sheep’s milk Iraq S. lactis, S. thermophilus, L. bulgaricus, Lactose 
fermenting yeast 

Cheese Cow’s, Buffalo’s, goat’s milk, 
sheep milk 

Ancient Egypt (6000 B.C.) L. lactis subsp. lactis, L. lactis subsp. cremoris, 
L.lactis subsp. diacetylactis, S. thermophilus, L. 

delbueckii subsp. bulgaricus, Priopionibacterium-
shermanii, Penicillium roquefortietc. 

Dahi (A version of Curd) Cow’s, Buffalo’s, goat’s milk India  

(6000-4000 B.C.) 

L. lactis, S. diacetylactis, S. cremoris, L. delbrueckii 
subsp. bulgaricus, S.thermophilus. 

Chhash, (Ghol, Moru, Ale, 
Laban, Buttermilk) 

Cow’s, Buffalo’s, goat’s milk India  

(6000-4000 B.C.) 

(A diluted version of Dahi) 

Laban zeer (Khad, Laban 
rayeb) 

Buffalo’s or cow’s milk Egypt, Sudan 

(5000-3000 B.C.) 

Lactobacillus (30 different strains), 

Leuconostoc (18 different strains) 

Zabadi Cow’s milk Egypt, Sudan 

(2000 B.C.) 

Natural type (strained or unstrained) yoghurt 

Cultured cream Buffalo’s or cow’s milk Mesopotamia 

(1300 B.C.) 

L. acidophilus, S. thermophilus, 

L. bulgaricus 

Shrikhand Cow’s, Buffalo’s, goat’s milk India 

(1300 B.C.) 

Sweetened and concentrated Dahi 

Kishk Cow’s milk, goat’s milk Egypt and Arab World Dry fermented product from labanzeer and parboiled 
wheat 

Mast Sheep milk Iran Natural type of yoghurt with flavor 

Viili  Finland Geotrichumcandidum, L. lactis subsp.cremoris, 
Lactococcus lactis subsp. lactis biovar.diacetylactis, 

Leuconostoc mesenteroides subsp.cremoris. 

(Table 2) Contd.... 
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Name of Probiotic Product Starting Material Locality of Origin Probiotics Involved 

Taette Cow’s milk Norway S.lactis var. hollandicus, Saccharomyces taette, 
L.taette, Bacillus acidactislogus 

Lagfil (Tattemjolk) Cow’s milk Sweden - 

Ymer Cow’s milk Denmark 

(1937 A.D.) 

Lactococcus lactis 

Skyr Cow’s milk Iceland  

(870 A.D.) 

Streptococcus thermophilus,L. delbrueckii subsp. 
bulgaricus 

Trahana (Tarana, Tarhana) Cow’s milk + grain Balkan region Pediococcus acidilactici, P. pentosaceus, Strepto-
coccus thermophilus, L. fermentum, L. plantarum, L. 

delbrueckii spp. bulgaricus, L. paraplantarum, L. 
casei, Leuconostoc citreum, Leuconostoc pseu-

domesenteroides, Enterococcus faecium, Weissella 
cibaria. 

Yakult Buffalo’s or cow’s skimmed 
milk 

Japan  

(1935 A.D.) 

Lactobacillus paracasei 

1 Although the term “yoghurt” has been derived from Turkish “yoğurt”, the exact origin and inventors have not been known. It has been defined in many old 
inscriptions of different ancient cultures. 2 First commercial production has been made in 1920. 
 

Table 3. Plants and nutraceuticals indicated for the treatment of diabetes [136-138]. 

Plant Name Plant Scientific 
Name 

Parts Used Effect Side Effects Contraindications Interactions 

Alfalfa Medicago sativa Whole-plant, 
seeds 

Decreases lipid 
absorption, low-

ers blood glu-
cose (STZ) 

Hypokalemia Gout, Sytemic lupus 

Pregnancy 

Azathioprine 

Cyclosporine  

Prednisone  

Anticoagulants 

Alpine Rag-
wort 

Senecio nemo-
rensis 

Herb Lowers blood 
glucose 

Hepatotoxicity 

Carcinogenicity 

Not known  Not known  

Bean Pod Phaseolus vul-
garis 

Pods and 
beans; also 

used as Food  

Diuretic, Lowers 
blood glucose 

Not known  Not known  Not known  

Behen Moringo oleifera Seeds  Lowers blood 
glucose 

Not known Pregnancy (possibly abortive) Not known 

Bilberry Vaccinium mytil-
lus 

Fruits and 
leaves; also 
used as food 

Lowers blood 
glucose and 

regulates lipids; 
proctects some 
diabetic compli-

cations 

Longer use at 
higher amounts 

causes gastrointes-
tinal complaints 

Pregnancy and lactation Anticoagulants, anti-
thrombotics 

Bitter melon Momordica 
charantia 

Fruits; also 
used as food 

Lowers blood 
glucose 

Not known Pregnancy (possibly abortive) 
and lactation 

Antidiabetic drugs  pos-
sibly potentiate 

cholesterol-lowering 
drugs 

(Table 3) Contd.... 
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Plant Name Plant Scientific 
Name 

Parts Used Effect Side Effects Contraindications Interactions 

Black Catnip Phyllantus  
amarus 

Whole Herb Lowers blood 
glucose 

Not known Not known Not known 

Centaury Centaurium 
erythraea 

Aerial parts Lowers blood 
glucose 

Not known Not known Not known 

Cocoa Theobroma 
cocao 

Seeds and 
seeds' skin; 
also used as 

food 

Lowers blood 
glucose 

Uses at large 
amounts may cause 

constipation, cns 
stimulation, palpi-

tation etc. 

Not known Not known 

Cranberry Vaccinium mac-
rocarpon 

Fruits; also 
used as food 

Lowers blood 
glucose 

Uses at large 
amounts may cause 

gastrointestinal 
complaints 

Aspirin allergy, atrophic gastri-
tis, hypochlorhydria, kidney 

stones, safety in pregnancy is not 
known 

Warfarin, H2 receptor 
blockers, proton pump 

inhibitors 

Dandelion Taraxacum 
officinale 

Roots and 
leaves 

Lowers blood 
glucose, in-
creases bile 

secretion 

Mild gastric com-
plaints, prolonged 

use may cause 
hyperkalemia 

Bile duct obstruction, safety in 
pregnancy is not known 

Anticoagulants, anti-
thrombotics, fluoroqui-

nolones  

Divi-Divi Caesalpinia 
bonducella 

Seeds Lowers blood 
glucose 

Not known Not known Not known 

Eucalyptus Eucalyptus 
globulus 

Essential oil Lowers blood 
glucose 

Gastrointestinal 
complaints, skin 
rushes, pruritis 

Hypersensitivity conditions, 
Liver diseases; safety in preg-

nancy is not known 

Antidiabetic drugs, Bar-
biturates  

European 
Golden Rod 

Solidago virgau-
rea 

Aerial parts Lowers blood 
glucose 

Not known Cases of edema due to cardiac 
and/or renal functions; safety in 

pregnancy is not known 

Not known 

Garlic Allium sativum Bulb; also 
used as food  

Lowers blood 
glucose 

Anaphylaxis, gas-
tric complaints, 

headache, myalgia, 
etc. 

Surgery (increases bleeding 
risk), breastfeeding 

Anticoagulants, Protease 
inhibitors, Antithrombot-

ics, Indomethacin, 
Chlorzoxazone  

German 
Sarsaparilla 

Carex arenaria Dried rhi-
zomes 

Lowers blood 
glucose 

Not known Not known Not known 

Goat’s Rue Galega offici-
nalis 

Leaves, flow-
ering branches 

Lowers blood 
glucose 

Not known Not known, possibly safe during 
lactation  

Antidiabetic drugs 

Greek Sage Salvia triloba Leaf Reduces glucose 
absorption 

Not known Not known Not known 

Guar Gum Cyamopsis tet-
ragonoloba 

Whole plant Reduces glucose 
absorption 

Gastrointestinal 
complaints, hypo-
glycemia symp-

toms 

Diseases of esophagus, stomach 
and intestine 

Not known 

 
(Table 3) Contd.... 
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Plant Name Plant Scientific 
Name 

Parts Used Effect Side Effects Contraindications Interactions 

Jambol Syzigium cumini Bark, seed 
kernels 

Regulates pan-
creatic functions  

Not known Not known Not known 

Kudzu Pueraria lobata Roots Corrects insulin 
resistance, blood 

lipid profile, 
lowers blood 

glucose 

Not known Not known Possibly interacts with 
estrogens, antiarrhyth-
mics, antihypertensive 

drugs 

Mountain 
Ash Berry 

Sorbus aucu-
paria 

Fruits; also 
used as food 

Lowers blood 
glucose 

Not known Not known Not known 

Noni Morinda citrifo-
lia 

Leaf, fruit, 
root; also used 

as foot 

Lowers blood 
glucose 

Not known Not known Not known 

Oats Avena sativa Fruits, leaf, 
stem 

Regulates blood 
glucose and lipid 

profile 

Not known Celiac disease Statins  

Onion Allium cepa Bulb Regulates blood 
glucose and lipid 

profile 

Gastric complaints Not known Not known 

Plantain Musa paradi-
siaca 

Fruits Regulates blood 
glucose and lipid 

profile 

May trigger mi-
graine attacks 

Not known Not known 

Poley Teucrium polium Whole herb Lowers blood 
glucose 

Not known Not known Not known 

Reed Herb Phragmites 
communis 

Stem and 
rhizome 

Lowers blood 
glucose 

Not known Not known Not known 

Stevia Stevia rebaudi-
ana 

Leaves Increase glucose 
metabolism rate 

Adverse CV and 
genito-urinary 

effects reported 

Not known Not known 

Wild Service 
Tree 

Sorbus tormi-
nalis 

Fruits; also 
used as food 

Lowers blood 
glucose 

Not known Not known Not known 

 
4. PLANT-BASED APPROACH FOR DIABETES AND ITS 
NEUROLOGICAL COMPLICATIONS 
 Being approved in 1958 for diabetes therapy, metformin, the 
today’s miraculous antidiabetic drug, has been produced from 
Galega officinalis, whose antidiabetic properties have been known 
since the 18thcentury [130]. After this innovation, many investiga-
tors around the globe have  investigated many plants to develop 
novel modalities for the treatment of diabetes [131-135]. Unfortu-
nately, except for  metformin, there are no active constituents of 
plants developed as a drug up to date, despite extensive research in 
this area. Some of these plants have been approved for the treat-
ment of diabetes as a therapeutic indication (Table 3). Generally, 
they have been used as over-the-counter drugs for the management 

of mild diabetes or as an adjunct for the dietary management of 
diabetes. 
 Many plants have been reported to be effective against diabetic 
neuropathy. Among these plants, Trichilia catigua [139], Boswellia 
serrata [140], Ligustrum vulgare [141], Rosmarinus officinalis 
[142], Eruca sativa [143], Juglans regia [144], and Dillenia indica 
[145] are quite recent examples reported to ameliorate diabetic 
neuropathy in experimental models of diabetes. 
 There are several plants and plant mixtures, which have been 
reported to be effective against diabetic wounds, which is a com-
plex phenomenon of diabetes involving vasculopathy, neuropathy 
and delayed wound repair due to deformed collagen production 
[146]. Among these plants, Hypericum perforatum (St.-John’s 
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Wort), as a long-known cure for wounds, has been reported to ac-
celerate wound healing in diabetes [147], possibly through a 
mechanism depending on collagen production of fibroblasts [148, 
149]. The same plant has also been reported to correct some psy-
cho-neuropathic complications, while it normalizes elevated blood 
glucose levels in experimental diabetes. H. perforatum ameliorates 
pain perceptions in streptozotocin-diabetic rats [150]. As H. perfo-
ratum decreases blood glucose levels, it may be advantageous to 
use in patients with diabetic neuropathy and/or psychiatric compli-
cations [151]. 
 The Plant kingdom has many active compounds in different 
chemical classes affecting both diabetes and diabetic complications. 
One of the most important groups in this context is antioxidants and 
antiradicals. Both nutraceuticals [152, 153] and plants [154, 155] 
may have active molecules having antioxidant and antiradical ac-
tivities, which are helpful in to correcting either impaired carbohy-
drate metabolism in diabetes or diabetic complications, since oxida-
tive stress seems to play a role in the pathogenesis of diabetes [16, 
156, 157] and in the development of diabetic complications includ-
ing neuropathy [158-160]. These molecules may protect tissues 
from damages, which are due to diabetes or other factors. In diabe-
tes, these damages usually result in diabetic complications. For 
example, phenolic compounds, a class of antioxidant molecules, 
have been reported to reduce the risk of cardiovascular diseases 
[161, 162]. They are quite common in plant species and foods, like 
Thymus sp. [163], Achillea sp. [164] Pomegranate [165], Crataegus 
sp. [166], Anethum graveolens [167] and Hypericum sp. [168]. 
 Neuroprotection and neuroplasticity are important restorative 
factors in neuronal damages such as diabetic neuropathy [169]. 
There are good examples for neuroprotective compounds and ex-
tracts both from nutraceuticals and plants, which may consequently 
induce neuroprotection. For instance, isofuranodiene, an active 
ingredient of wild celery (Smyrnium olusatrum), has been reported 
to induce neurite growth of PC-12 cells as a clear evidence of for 
the neuroprotection and neuroplasticity [170]. Similarly, curcumin 
and epigallocatechin gallate have also been observed to exhibit 
neuroprotection by stimulating neurite growth and they have an 
additive interaction in terms of this action [171]. Among these two 
nutritional constituents, curcumin has been repeatedly reported to 
possess antidiabetic/antihyperglycemic activities [172, 173] and 
beneficial effects on comorbid neurological manifestations of dia-
betes [174-176]. Epigallocatechin gallate is another phyto-
nutritional constituent having a beneficial effect on diabetes [177, 
178] and neurological comorbidities of diabetes [179, 180]. From 
previous reports, it seems to have beneficial effects on various psy-
cho-neurological manifestations, such as Alzheimer’s disease [181], 
schizophrenia and bipolar disorders [182], various types of memory 
and cognitive deficits [183], etc. Other compounds from this group, 
gallic acid has been reported to correct diabetic neuropathy [184] in 
animal models. Another example of  neuroprotection is the neurite 
growth of the same cells induced by the extract of gentian (Gen-
tiana lutea) [185, 186], whose beneficial effects on neurological 
functions have been reported previously in animal experiments 
[187]. Its effect on diabetic neuropathy may be expected based on a 
study reporting its inhibitory action on aldose reductase [188]. 
There are certain plants and nutraceuticals, which have been re-
ported to inhibit key enzymes involved in the development of dia-
betic complications including neuropathic pain. These are aldose 
reductase inhibitors from plants such as Acacia catechu, Alangium 
salvifolium, Allium sativum, Carum carvi, Gentiana lutea, and ad-
vanced glycation end products (AGEs) inhibiting plants, such as 
Agrimonia eupatoria [188, 189]. Also, there are also well-known 
examples of topical management of neuropathic pain, which in-
clude capsaicin containing extracts and Citrullus colocynthis extract 
oil [190]. All these plants and nutraceuticals may be utilized for the 
proper management of diabetic neuropathy. 
 

CONCLUSION 
 Based on the above-mentioned findings and data, it may be 
concluded mainly that new strategies should be followed in the 
management of diabetes and comorbid neurological manifestations. 
Nutritional factors being related to the microbiota of the body seem 
to be related to both controls of diabetes and its neurological com-
plications in high degrees. Recent findings along with the notions of 
traditional medicine systems have indicated that the integrative 
approach [19] is quite important for disease  management and the 
body should be considered as a whole in terms of the management 
of diabetes and its neurological comorbidities. Due to the severity 
of clinical situations of diabetic neuropathic pain, plants and drugs 
may be analgesic ones, respectively. It should be noted that appro-
priate nutritional interventions are indicated in every case. Exercise 
should also be applied as non-pharmacological interventions when 
indicated. 
 Glycated hemoglobin (HbA1c) is an important parameter of 
long-term glycemic control and elevated HbA1c levels are a clear 
indicator of the risk of diabetic complications including diabetic 
neuropathy [191]. Plant and/or nutraceutical-based approaches 
seem to be effective for the maintenance of HbA1c levels at lower 
levels [192], so that prevention of diabetic neuropathy may become 
possible. Another important issue is the differences between pre-
vention and therapy of diabetes/diabetic complications. The main 
difference between prevention and therapy is the presence of an 
appropriate drug. The critical point is to avoid the interaction of a 
drug with other components of intervention. Neuroprotection 
through enhanced neuroplasticity seems to have importance for the 
management of neurological complications of diabetes, as it may 
restore neuronal damages, and consequently increase the quality of 
life in diabetic patients. In conclusion, both prevention and therapy 
in diabetes/its neuropathic complications seem to need novel ap-
proaches, which should include appropriate and convenient 
complimentary materials. Well organized research is necessary in 
the future to enhance the success of the prevention and treatment of 
diabetes and diabetic neuropathy.  
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