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Abstract: In this present investigation, we introduced a certain subclass of starlike and convex functions of complex
order b , using a linear multiplier differential operator Dm

λ,µf(z) . For this class, the Fekete–Szegö problem is completely
solved. Various new special cases are considered.
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1. Introduction
Let A denote the family of functions f of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U = {z : |z| < 1} . And let S denote the class of functions which are
univalent in U . It is well known that for f ∈ S ,

∣∣a3 − a22
∣∣ ⩽ 1 . A classical theorem of Fekete–Szegö (see [7])

states that for f ∈ S given by (1.1)

∣∣a3 − ηa22
∣∣ ⩽


3− 4η if η ⩽ 0,

1 + 2 exp
(

−2η
1−η

)
if 0 < η < 1,

4η − 3 if η ⩾ 1.

The latter inequality is sharp in the sense that for each η there exists a function in S such that the
equality holds. Later, Pfluger (see [18]) has considered the complex values of η and provided the inequality

∣∣a3 − ηa22
∣∣ ⩽ 1 + 2

∣∣∣∣exp( −2η

1− η

)∣∣∣∣ .
To date, several authors have attempted to extend the inequality above to more general classes of analytic

functions.
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Given 0 ⩽ α < 1 , a function f ∈ A is said to be in the class S∗(α) of starlike functions of order α in U
if

ℜ
(
zf ′(z)

f(z)

)
> α, z ∈ U , 0 ⩽ α < 1.

On the other hand, a function f ∈ A is said to be in the class of convex functions of order α in U , denoted by
C(α) , if

ℜ
(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ U , 0 ⩽ α < 1.

A function f ∈ A is said to be in the class of starlike functions of complex order b (b ∈ C− {0}) , denoted by
S∗
c (b), provided that

ℜ
{
1 +

1

b

(
zf ′(z)

f(z)
− 1

)}
> 0, (z ∈ U) .

Furthermore, a function f ∈ Cc(b) is convex functions of complex order b (b ∈ C− {0}) and type
α (0 ≤ α < 1) , that is, f ∈ Cc(b), if it satisfies the inequality

ℜ
{
1 +

1

b

(
zf ′′(z)

f ′(z)

)}
> 0, (z ∈ U) .

The class S∗
c (b) of starlike functions of complex order b (b ∈ C− {0}) was introduced by Nasr and

Aouf [13] while the class Cc(b)) of convex functions of complex order b (b ∈ C− {0}) was presented earlier by
Wiatrowski [22]. In particular, the classes S∗

c (1−α) = S∗(α) and Cc(1−α) = C(α) are the familiar classes of
starlike and convex functions of order α (0 ⩽ α < 1) in U , respectively.

The linear multiplier differential operator Dm
λ,µf was defined by Deniz and Orhan in [6] as follows

D0
λ,µf(z) = f(z)

D1
λ,µf(z) = Dλ,µf(z) = λµz2(f(z))′′ + (λ− µ)z(f(z))′ + (1− λ+ µ)f(z)

D2
λ,µf(z) = Dλ,µ

(
D1

λ,µf(z)
)

...

Dm
λ,µf(z) = Dλ,µ

(
Dm−1

λ,µ f(z)
)

where λ ⩾ µ ⩾ 0 and m ∈ N0 = N ∪ {0}.
If f is given by (1.1), from the definition of the operator Dm

λ,µf(z) it is easy to see that

Dm
λ,µf(z) = z +

∞∑
n=2

[1 + (λµn+ λ− µ)(n− 1)]manz
n. (1.2)

It should be remarked that Dm
λ,µ is a generalization of many other linear operators considered earlier. In

particular, for f ∈ A we have the following:

• Dm
1,0f(z) ≡ Dmf(z) is investigated by Sãlãgean [21].
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• Dm
λ,0f(z) ≡ Dm

λ f(z) is studied by Al-Oboudi [2].

• Dm
λ,µf(z) is firstly considered for 0 ⩽ µ ⩽ λ ⩽ 1, by Rãducanu and Orhan [20].

Now, by making use of the differential operator Dm
λ,µ, we define a new subclass of analytic functions.

Definition 1.1 Let b be a nonzero complex number, and let f ∈ A , such that Dm
λ,µf(z) ̸= 0 for z ∈ U −{0} .

We say that f belongs to Sm(b, λ, µ, ν) if

ℜ

(
1 +

1

b

(
z(Dm

λ,µf(z))
′
+ νz2(Dm

λ,µf(z))
′′

(1− ν)Dm
λ,µf(z) + νz(Dm

λ,µf(z))
′ − 1

))
> 0, 0 ⩽ µ ⩽ λ, m ∈ N, 0 ≤ ν ≤ 1, z ∈ U .

By giving specific values to the parameters m, b, λ , and µ, we obtain the following important sub-
classes studied by various authors in earlier works, for instance, Sm(1 − α, 1, 0, 0) = Sm(α) (Sãlãgean [21]),
S0(b, 1, 0, 0) = S∗

c (b) (Nasr and Aouf [13]), S1(b, 1, 0, 1) = Cc(b) (Wiatrowski [22], Nasr and Aouf [14]). Indeed,
many authors have considered the Fekete–Szegö problem for various subclasses of A, the upper bound for∣∣a3 − ηa22

∣∣ has been investigated by various authors (see [1, 3–5, 9–12]), see also recent investigations on this
subject by [6, 8, 15, 16]. In the present paper we concentrate on the Fekete–Szegö problem for the subclasses
Sm(b, λ, µ) and Cm(b, λ, µ).

2. Main results
We denote by P a class of analytic function in U with p(0) = 1 and ℜp(z) > 0 . In order to derive our main
results, we have to recall here the following Lemma (see, [19]).

Lemma 2.1 Let p ∈ P with p(z) = 1 + c1z + c2z
2 + ... , then

|cn| ⩽ 2, for n ⩾ 1.

If |c1| = 2 then p(z) ≡ p1(z) = (1 + γ1z)/(1 − γ1z) with γ1 = c1/2 . Conversely, if p(z) ≡ p1(z) for some
|γ1| = 1 , then c1 = 2γ1 and |c1| = 2 . Furthermore, we have

∣∣∣∣c2 − c21
2

∣∣∣∣ ⩽ 2− |c1|2

2
.

If |c1| < 2 and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|2
2 , then p(z) ≡ p2(z) , where

p2(z) =
1 + z γ2z+γ1

1+γ̄1γ2z

1− z γ2z+γ1

1+γ̄1γ2z

,

and γ1 = c1/2 , γ2 =
2c2−c21
4−|c1|2

.Conversely, if p(z) ≡ p2(z) for some |γ1| < 1 and |γ2| = 1 then γ1 = c1/2 ,

γ2 =
2c2−c21
4−|c1|2

and
∣∣∣c2 − c21

2

∣∣∣ ⩽ 2− |c1|2
2 .

Now, consider the functional
∣∣a3 − ηa22

∣∣ for a nonzero complex number b and η ∈ C .
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Theorem 2.2 Let b be a nonzero complex number and 0 ≤ ν ≤ 1, η ∈ C, 0 ⩽ µ ⩽ λ . If f, represented in
the form (1.1), is in Sm(b, λ, µ, ν) , then

|a2| ⩽
2 |b|

(ν + 1)Am
, (2.1)

|a3| ⩽
|b|

(2ν + 1)Bm
max {1, |1 + 2b|} (2.2)

and ∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
max

{
1,

∣∣∣∣∣1 + 2b− 4ηb
(2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣
}
, (2.3)

where A = (1 + (2λµ+ λ− µ) ) and B = (1 + 2(3λµ+ λ− µ)) .Consider the functions

z(∆v,m
λ,µ f(z)))

′

∆v,m
λ,µ f(z)

= 1 + b[p1(z)− 1] (2.4)

and
z(∆v,m

λ,µ f(z))
′

∆v,m
λ,µ f(z)

= 1 + b[p2(z)− 1], (2.5)

where p1, p2 are given in Lemma 2.1. Equality in (2.1) holds provided that (2.4) is valid. The equality in (2.2)
is attained if (2.4) and (2.5) are both satisfied. Similarly, the equality in (2.3) is satisfied for each η given that
(2.4) and (2.5) are valid.

Proof Denote ∆v,m
λ,µ f(z) =(1− ν)Dm

λ,µf(z) + νz(Dm
λ,µf(z))

′
= z + β2z

2 + β3z
3 + ... . Then

β2 = (ν + 1)Ama2, β3 = (2ν + 1)Bma3. (2.6)

By definition of the class Sm(b, λ, µ, ν) , there exists p ∈ P such that z(∆v,m
λ,µ f(z))′

∆v,m
λ,µ f(z)

= 1 + b(p(z)− 1) , so that

(
z
(
1 + 2β2z + 3β3z

2 + ...
)

z + β2z2 + β3z3 + ...

)
= 1− b+ b(1 + c1z + c2z

2 + ...),

which implies the equality

z+2β2z
2+3β3z

3 + ... = z + (bc1 + β2)z
2 + (bc2 + β2bc1 + β3)z

3 + ... .

Equating the coefficients of both sides of the latter we have

β2 = bc1, β3 =
b2c21
2

+
bc2
2

, (2.7)

so that, on account of (2.6) and (2.7)

a2 =
bc1

(ν + 1)Am
, a3 =

b

2 (2ν + 1)Bm
(bc21 + c2). (2.8)
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Taking into account (2.8) and Lemma 2.1, we obtain

|a2| =
∣∣∣∣ b

(ν + 1)Am
c1

∣∣∣∣ ⩽ 2 |b|
(ν + 1)Am

, (2.9)

and

|a3| =

∣∣∣∣ b

2 (2ν + 1)Bm

[
c2 −

c21
2

+
1 + 2b

2
c21

]∣∣∣∣
⩽ |b|

2 (2ν + 1)Bm

[
2− |c1|2

2
+ |1 + 2b| |c1|

2

2

]

=
|b|

(2ν + 1)Bm

[
1 + |c1|2

|1 + 2b| − 1

4

]
⩽ |b|

(2ν + 1)Bm
max {1, [1 + |1 + 2b| − 1]}

resulting in

|a3| ⩽
|b|

(2ν + 1)Bm
max {1, |1 + 2b|} .

Then, with the aid of Lemma 2.1, we obtain

∣∣a3 − ηa22
∣∣ = ∣∣∣∣∣ b

2 (2ν + 1)Bm
(bc21 + c2)− η

b2c21

(ν + 1)
2
A2m

∣∣∣∣∣
≤ |b|

2 (2ν + 1)Bm

(∣∣∣∣c2 − c21
2

∣∣∣∣+ |c1|2

2

∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣
)

(2.10)

≤ |b|
2 (2ν + 1)Bm

(
2− |c1|2

2
+

|c1|2

2

∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣
)

=
|b|

(2ν + 1)Bm

[
1 +

|c1|2

4

(∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣− 1

)]

⩽ |b|
(2ν + 1)Bm

max

{
1,

∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣
}
.

Let us now obtain the accuricies of the estimates in (2.1)–(2.3).
Firstly, in (2.1) the equality holds if c1 = 2. Equivalently, we have p(z) ≡ p1(z) = (1 + z)/(1 − z).

Therefore, the extremal function in Sm(b, λ, µ, ν) is given by

z(∆v,m
λ,µ f(z))

′

∆v,m
λ,µ f(z)

=
1 + (2b− 1)z

1− z
. (2.11)
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Next, in (2.2), for the first case, the equality holds if c1 = c2 = 2. Therefore, the extremal functions in
Sm(b, λ, µ, ν) is given by (2.11) and for the second case, the equality holds if c1 = 0, c2 = 2. Equivalently, we
have p(z) ≡ p2(z) = (1 + z2)/(1− z2). Therefore, the extremal function in Sm(b, λ, µ, ν) is given by

z(∆v,m
λ,µ f(z))

′

∆v,m
λ,µ f(z)

=
1 + (2b− 1)z2

1− z2
. (2.12)

Finally, in (2.3), the equality holds. The extremal function obtained for (2.2) is also valid for (2.3).
Thus, the proof of Theorem 2.2 is completed. 2

Next we consider the case when η and b are real. In this case, the following theorem holds.

Theorem 2.3 Let b > 0 and let f ∈ Sm(b, λ, µ, ν) . For η ∈ R we have

∣∣a3 − ηa22
∣∣ ⩽


b

(2ν+1)Bm

{
1 + 2b

[
1− 2η(2ν+1)Bm

(ν+1)2A2m

]}
if η ⩽ (ν+1)2A2m

2(2ν+1)Bm ,

b
(2ν+1)Bm if (ν+1)2A2m

2(2ν+1)Bm ⩽ η ⩽ (1+2b)(ν+1)2A2m

4b(2ν+1)Bm ,

b
(2ν+1)Bm

[
4ηb(2ν+1)Bm

(ν+1)2A2m − 2b− 1
]

if η ⩾ (1+2b)(ν+1)2A2m

4b(2ν+1)Bm .

where A = (1 + (2λµ+ λ− µ)) and B = (1 + 2(3λµ+ λ− µ)) . For each η, the equality holds for the functions
given in equations (2.4) and (2.5).

Proof First, let η ⩽ (ν+1)2A2m

2(2ν+1)Bm ⩽ (1+2b)(ν+1)2A2m

4b(2ν+1)Bm . In this case it follows from (2.8) and Lemma 2.1 that

∣∣a3 − ηa22
∣∣ ⩽ b

2 (2ν + 1)Bm

[
2− |c1|2

2
+

|c1|2

2

(
1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

)]

⩽ b

(2ν + 1)Bm

[
1 + 2b

(
1− 2η (2ν + 1)Bm

(ν + 1)
2
A2m

)]

Let, now, (ν+1)2A2m

2(2ν+1)Bm ⩽ η ⩽ (1+2b)(ν+1)2A2m

4b(2ν+1)Bm . Then, using the estimations obtained above, we reach

∣∣a3 − ηa22
∣∣ ⩽ b

(2ν + 1)Bm
.

Finally, for η ⩾ (1+2b)(ν+1)2A2m

4b(2ν+1)Bm , it follows that

∣∣a3 − ηa22
∣∣ ⩽ b

2 (2ν + 1)Bm

[
2− |c1|2

2
+

|c1|2

2

(
4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

− 1− 2b

)]

=
b

2 (2ν + 1)Bm

[
2 +

|c1|2

2

(
4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

− 2− 2b

)]

⩽ b

(2ν + 1)Bm

[
4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

− 2b− 1

]
,

which concludes the proof of Theorem 2.3. 2

Finally, considering the case of a nonzero complex number b and real η , we obtain:
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Theorem 2.4 Let b be a nonzero complex number and let f ∈ Sm(b, λ, µ, ν) . For η ∈ R we have

∣∣a3 − ηa22
∣∣ ⩽


4|b|2

(ν+1)2A2m [ℜ(k1)− η] + |b||sin θ|
(2ν+1)Bm if η ⩽ N1,

|b|
(2ν+1)Bm if N1 ⩽ η ⩽ R1,

4|b|2

(ν+1)2A2m [η −ℜ(k1)] +
|b||sin θ|

(2ν+1)Bm if η ⩾ R1.

where A = (1 + (2λµ+ λ− µ)) and B = (1 + 2(3λµ+ λ− µ)) , |b| = beiθ , k1 = (ν+1)2A2m

2(2ν+1)Bm + (ν+1)2A2meiθ

4|b|(2ν+1)Bm ,

ℓ1 = (ν+1)2A2m

4|b|(2ν+1)Bm , N1 = ℜ(k1)− ℓ1(1− |sin θ| and R1 = ℜ(k1)+ ℓ1 (1− |sin θ|) . For each η there is a function

in Sm(b, λ, µ, ν) such that the equality holds.

Proof From inequality (2.10), we may write

∣∣a3 − ηa22
∣∣ =

|b|
2 (2ν + 1)Bm

(∣∣∣∣c2 − c21
2

∣∣∣∣+ |c1|2

2

∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣
)

⩽ |b|
2 (2ν + 1)Bm

[
2− |c1|2

2
+

|c1|2

2

∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣
]

=
|b|

2 (2ν + 1)Bm

[
|c1|2

2

(∣∣∣∣∣1 + 2b− 4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

∣∣∣∣∣− 1

)
+ 2

]

=
|b|

(2ν + 1)Bm
+

|b|
4 (2ν + 1)Bm

[∣∣∣∣∣4ηb (2ν + 1)Bm

(ν + 1)
2
A2m

− 2b− 1

∣∣∣∣∣− 1

]
|c1|2

=
|b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[∣∣∣∣∣η − (ν + 1)
2
A2m

2 (2ν + 1)Bm
− (ν + 1)

2
A2m

4b (2ν + 1)Bm

∣∣∣∣∣− (ν + 1)
2
A2m

4 |b| (2ν + 1)Bm

]
|c1|2 .

Expressing |b| = beiθ (or b = |b| e−iθ ), (ν+1)2A2m

2(2ν+1)Bm + (ν+1)2A2meiθ

4|b|(2ν+1)Bm = k1 and (ν+1)2A2m

4|b|(2ν+1)Bm = ℓ1 in the last
inequality, we get

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[|η − k1| − ℓ1] |c1|
2

⩽ |b|
(2ν + 1)Bm

+
|b|2

(ν + 1)
2
A2m

[
|η −ℜ(k1)|+ ℓ1|sin θ| − ℓ1

]
|c1|2

=
|b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[
|η −ℜ(k1)| − ℓ1(1− |sin θ|)

]
|c1|2 . (2.13)

We consider the following cases for (2.13). Suppose η ⩽ ℜ(k1) . Then

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[ℜ(k1)− ℓ1(1− |sin θ|)− η] |c1|2

=
|b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[N1−η] |c1|2 . (2.14)
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Let η ⩽ N1 = ℜ(k1)− ℓ1 (1− |sin θ|) . On using Lemma 2.1 and ℓ1 = (ν+1)2A2m

4|b|(2ν+1)Bm in inequality (2.14), we get

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
+

4 |b|2

(ν + 1)
2
A2m

(ℜ(k1)− η)− 4 |b|2

(ν + 1)
2
A2m

(ν + 1)
2
A2m

4 |b| (2ν + 1)Bm
(1− |sin θ|)

=
|b|

(2ν + 1)Bm
+

4 |b|2

(ν + 1)
2
A2m

(ℜ(k1)− η)− |b|
(2ν + 1)Bm

(1− |sin θ|)

=
4 |b|2

(ν + 1)
2
A2m

(ℜ(k1)− η) +
|b| |sin θ|

(2ν + 1)Bm
.

If we take N1 = ℜ(k1)− ℓ1 (1− |sin θ|) ⩽ η ⩽ ℜ(k1) , then (2.14) gives

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
.

Let η ⩾ ℜ(k1) . It then follows, from (2.13), that

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[η− (ℜ(k1) + ℓ1(1− |sin θ|))] |c1|2

=
|b|

(2ν + 1)Bm
+

|b|2

(ν + 1)
2
A2m

[η −R1] |c1|
2
. (2.15)

Let η ⩽ R1 = ℜ(k1) + ℓ1 (1− |sin θ|) . On using (2.15) we obtain

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
.

Let η ⩾ R1 = ℜ(k1)+ ℓ1 (1− |sin θ|) . Employing Lemma 2.1 together with ℓ1 = (ν+1)2A2m

4|b|(2ν+1)Bm in equality (2.15),
we obtain

∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1)Bm
+

4 |b|2

(ν + 1)
2
A2m

(η −ℜ(k1))−
|b|

(2ν + 1)Bm
(1− |sin θ|)

⩽ 4 |b|2

(ν + 1)
2
A2m

(η −ℜ(k1)) +
|b| |sin θ|

(2ν + 1)Bm
.

Therefore, the proof is completed. 2

Corollary 2.5 If we take λ = 1 and µ = 0 in Theorems 2.2–2.4, we have the following results, respectively:

1. Let b ∈ C, b ̸= 0 and f ∈ Sm(b, ν) . Then, for η ∈ C we have

|a2| ⩽ |b|
(ν + 1) 2m−1

,

|a3| ⩽ |b|
(2ν + 1) 3m

max {1, |1 + 2b|}
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and ∣∣a3 − ηa22
∣∣ ⩽ |b|

(2ν + 1) 3m
max

{
1,

∣∣∣∣∣1 + 2b− 4ηb
(2ν + 1)

(ν + 1)
2

(
3

4

)m
∣∣∣∣∣
}
.

Equality holds for the cases λ = 1 , µ = 0 of 2.4 and 2.5 in Theorem 2.2.

2. Let b > 0 and f ∈ Sm(b, ν) . Then, for η ∈ R we have

∣∣a3 − ηa22
∣∣ ⩽


b

(2ν+1)3m

{
1 + 2b

[
1− 2η(2ν+1)

(ν+1)2

(
3
4

)m]} if η ⩽ (ν+1)2

2(2ν+1)

(
4
3

)m
,

b
(2ν+1)3m if (ν+1)2

2(2ν+1)

(
4
3

)m ⩽ η ⩽ (1+2b)(ν+1)2

4b(2ν+1)

(
4
3

)m
,

b
(2ν+1)3m

[
4ηb(2ν+1)

(ν+1)2

(
3
4

)m −2b− 1
]

if η ⩾ (1+2b)(ν+1)2

4b(2ν+1)

(
4
3

)m
.

For each η, the equality holds for the cases λ = 1 , µ = 0 of 2.4 and 2.5.

3. Let b ∈ C, b ̸= 0 and f ∈ Sm(b, ν) . Then, for η ∈ R we have

∣∣a3 − ηa22
∣∣ ⩽


|b|2

(ν+1)24m−1 [ℜ(k1)− η] + |b||sin θ|
(2ν+1)3m if η ⩽ N1,

|b|
(2ν+1)3m if N1 ⩽ η ⩽ R1,

|b|2

(ν+1)24m−1 [η −ℜ(k1)] +
|b||sin θ|

(2ν+1)3m if η ⩾ R1.

where |b| = beiθ , k1 = (ν+1)2

2(2ν+1)

(
4
3

)m −
(
4
3

)m (ν+1)2eiθ

4|b|(2ν+1) , ℓ1 =
(
4
3

)m (ν+1)2

4|b|(2ν+1) , N1 = ℜ(k1)− ℓ1 (1− |sin θ|)

and R1 = ℜ(k1)+ ℓ1 (1− |sin θ|) . For each η , there is a function in Sm(b, ν) such that the equality holds.

For the particular cases of the parameter ν in Theorems 2.2–2.4, the results of the current paper agrees
with that of [17].
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