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Privacy-preserving collaborative filtering methods offer useful filtering
skills without deeply jeopardizing individual privacy. However, they mostly
suffer from accuracy, scalability, and sparseness problems. Applying privacy
measures to conceal confidential data in recommendation systems causes a
bias in collected data, which might make accuracy worse. As the content in
recommendation domain proliferates, the size of collected data expands rapidly,
which aggravates scalability challenge of those systems. In addition, since users
are typically able to rate a small fraction of existing products, sparseness of
collected data becomes an issue.

In this dissertation, various preprocessing methods are proposed to over-
come accuracy, scalability, and sparseness challenges faced by various privacy-
preserving collaborative filtering systems. Through application of the proposed
preprocessing techniques like item ordering and elimination, clustering, dimen-
sionality reduction, user profiling, profile cloning, and son on, novel privacy-
preserving collaborative filtering schemes are cultivated. Essentially, the pro-
posed enhanced systems focus on producing accurate predictions while coping
with constantly growing nature of collections without jeopardizing individual
privacy. The proposed schemes are analyzed in terms of privacy and overhead
costs. Also, real data-based experiments are performed to scrutinize their
effects on accuracy, scalability, and privacy. The analysis and experimental
outcomes demonstrate that the methods preserve individual privacy and offer
adequately accurate recommendations in scalable amount of time.

Keywords: Preprocessing; Privacy; Scalability; Accuracy; Sparsity; Collabo-
rative filtering.
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ÖZET

Doktora Tezi

GİZLİLİK TEMELLİ ORTAK SÜZGEÇLEME
YÖNTEMLERİNİN BAŞARIMININ İYİLEŞTİRİLMESİ

Alper BİLGE

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Hüseyin POLAT
2013, 117 sayfa

Gizliliği koruyan ortak süzgeçleme yöntemleri bireylerin gizliliklerini teh-
likeye atmadan yararlı süzgeçleme becerileri ortaya koymaktadır. Ancak bu sis-
temler doğruluk, ölçeklenebilirlik ve boşluklu veri sorunlarıyla karşı karşıyadır.
Gizli kalması gereken tercihlerin saklı tutulması için uygulanan gizlilik ölçütleri,
toplanan veride bozulmaya yol açar ve dolayısıyla gizliliği koruyan ortak süzgeç-
leme sistemlerinin doğruluğuna zarar verebilir. Öneri alanındaki içerik genişle-
dikçe toplanan verinin boyutları hızlı biçimde büyür ve sistemlerin ölçeklenebi-
lirlik sorunlarını daha da zorlaştırır. Ek olarak, kullanıcılar mevcut ürünlerin
genelde küçük bir yüzdesine tercih belirtebildiklerinden dolayı derlenen verinin
boşluklu yapısı bir sorun haline gelmektedir.

Bu tezde gizliliği koruyan ortak süzgeçleme sistemlerinin karşılaştığı doğ-
ruluk, ölçeklenebilirlik ve boşluklu veri sorunlarınının üstesinden gelmek üzere
çeşitli önişleme yöntemleri önerilmiştir. Ürün sıralama ve eleme, kümeleme,
boyut indirgeme, kullanıcı ayrımlama, profil klonlama vb. gibi önerilen önişleme
yöntemlerinim uygulanmasıyla yeni gizliliği koruyan ortak süzgeçleme şemaları
geliştirilmiştir. Önerilen önişleme ile iyileştirilmiş şemalar kişilerin gizliliğini
tehlikeye sokmadan, verinin sürekli genişleyen yapısıyla başa çıkabilmek ve
yeterli doğrulukla öneriler üretmek üzerine odaklanmıştır. Önerilen taslaklar,
sağlanan gizlilik ve ortaya çıkan ek yükler açısından analiz edilmiştir. Ayrıca
gerçek veri tabanlı deneyler yapılarak, bu taslakların doğruluk, ölçeklenebilirlik
ve gizliliğe etkileri ölçülmüştür. Analizler ve deneysel sonuçlar yöntemlerin giz-
liliği koruduğunu ve ölçeklenebilir zaman dilimleri içinde yeterli doğrulukla
öneriler ürettiğini göstermiştir.

Anahtar Kelimeler: Önişleme; Gizlilik; Ölçeklenebilirlik; Doğruluk; Boşluklu
veri; Ortak süzgeçleme.
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NBC Näıve Bayesian classifier

NF Netflix prize data set

PBP Purchase-based profile

PCA Principal component analysis

PCC Pearson’s correlation coefficient

PPCF Privacy-preserving collaborative filtering

xii



PPNBC Privacy-preserving NBC-based CF

PSP Pseudo-self-prediction

RBP Rating-based profile

RPTs Randomized perturbation techniques

RRTs Randomized response techniques

q Target item

SA Single arrangement

SOM Self-organizing map

SVD Singular value decomposition

T Total elapsed time

U User rating data

U ′ Disguised user rating data

xiii



1. INTRODUCTION

From the beginning of the Industrial Age, lives of people have been constantly

changing. On one hand, modernization helps people reach data easily. On

the other hand, amount of data augments rapidly, which confuses people and

causes anxiety. Rapid integration of the Internet services into daily lives has

attracted people to use online shopping amenities rather than discretionary

shopping (McLaughlin, 2003). However, as such services pervade, it also leads

to a difficulty for people to make decisions caused by the presence of too much

information, called information overload problem or infobesity.

Recommender systems are emerging tools to deal with infobesity by

providing personalized predictions to help customers find entities they might

like. Such recommendations might be about products like movies, music CDs,

books, news, images, web pages, research papers, etc. or social elements like

events, people, or groups (Herlocker et al., 2004). There has been a number of

ways to produce automated predictions including content-based, collaborative,

or knowledge-based techniques (Burke, 2002; Melville et al., 2002; Ziqiang and

Boqin, 2004).

1.1 Collaborative Filtering

Within a menu of many offered dishes, people tend to get recommendations

from the waiters and the cooks about the cooking styles and tastes to have

delicious nourishment. Among several places available to visit, they again ask

for endorsement of travel guides; and read comments and critics before buying

a new book and/or a music CD. When there are too many choices to select

one of them, the very nature of human being is to get a recommendation

from those who have an idea about them. As the subset of available products

1



expands over the Internet, e-commerce companies come up with prediction

generation abilities relying on previous customers’ opinions on clicked and/or

purchased items. Collaborative filtering (CF) is one such approach utilized for

recommendation purposes, where the term was first coined by the Tapestry

system serving as an e-mail filtering system (Goldberg et al., 1992).

CF filters out irrelevant content and/or ranks items to be evaluated rely-

ing on wisdom of crowds (Surowiecki, 2004) and law of large numbers principles

(Van Roy and Yan, 2010). Based on the assumption that users having similar

tastes in the past are tend to agree in the future, CF systems primarily attempt

to predict a newbie’s tastes for available products operating on the collection

of previous users’ rating information. There are several studies demonstrating

the prosperity and the efficiency of CF systems on impressing people with suc-

cessful referrals (Bobadilla et al., 2011; Symeonidis et al., 2008; Chen et al.,

2009; Bilge and Polat, 2012). CF has also been deployed by many online

services such as Amazon.com, YouTube, Last.fm, and so on to render online

services more entertaining and boost sales (Linden et al., 2003; Cechinel et al.,

2013). CF systems rely on a database, which is typically very large and sparse,

containing preference information by users about items to estimate future pre-

dictions on requested products. Such database, commonly referred to as the

user-item matrix, consists of collected ratings from n users on m products.

Memory-based, model-based, and hybrid schemes are three classes of

CF algorithms (Breese et al., 1998; Al-Shamri and Bharadwaj, 2008; Her-

locker et al., 2004). Memory-based algorithms typically operate on the entire

data collection to produce recommendations. Model-based schemes, on the

other hand, operate on a prototype derived from the original user-item ma-

trix. Although models are helpful in practice, it is relatively hard to fine-tune

their parameters and they often come with the cost of accuracy (Xue et al.,

2005). Hybrid schemes utilize both schemes for improved performance. Su

2



and Khoshgoftaar (2009) present a detailed survey about the most common

CF techniques.

Most practical deployments of CF schemes are memory-based implemen-

tations in which similarities are calculated among all pairwise entities (users

or items) using a variety of similarity metrics such as Pearson’s correlation

coefficient (PCC), cosine similarity, distance-based similarity, or concordance

(Sarwar et al., 2000; Lathia et al., 2007; Choi and Suh, 2013). Online vendors

marketing over a diverse variety of products mostly prefer item-based meth-

ods (Linden et al., 2003), which performs relatively faster. Conversely, others

prefer user-based systems to obtain better accuracy (Herlocker et al., 2004).

In order to operate through binary ratings, Miyahara and Pazzani (2000) pro-

pose an algorithm based on näıve Bayesian classifier (NBC). Such systems are

simple and they do not have complicated parameters to tune.

Model-based CF approaches depend on training data and utilize a learn-

ing model. They usually require considerably large computation power to

tune model parameters. Such methods are proposed to handle shortcomings of

memory-based implementations like scalability and sparseness. Model-based

algorithms mostly utilize various data mining techniques such as clustering

(Chen et al., 2009; Zhang and Chang, 2006), dimensionality reduction (Vozalis

et al., 2010), decision trees (Breese et al., 1998), Bayesian classifiers (Miyahara

and Pazzani, 2002), and association rule mining (Shyu et al., 2005) to simplify

and compact original database. Such produced prototypes need to be updated

periodically (Breese et al., 1998; Herlocker et al., 2004). Dimensionality reduc-

tion techniques project data into a narrower dimension handling sparseness

and scalability problems; however, they generally suffer from loss of potential

useful information (Xue et al., 2005; Russell and Yoon, 2008). Conventional

clustering approaches, on the other hand, are preferable in relieving scalability

to some extent without sacrificing accuracy much (Zhang and Chang, 2006).

3



Researchers propose to construct hybrid schemes to combine advantages

of both memory- and model-based techniques. Pennock et al. (2000) performs

a personality diagnosis analysis prior to prediction estimation. Chen et al.

(2009) propose applying a clustering-based approach through nonnegative tri-

factorization method along with user- and item-based methods. Russell and

Yoon (2008) propose a wavelet data reduction-based model construction to

reduce number of items. Jeong et al. (2009) propose a novel iterative semi-

explicit rating method, which aggregates neighbor ratings and extrapolates

unrated elements in a semi-supervised manner to obtain a dense matrix.

Unlike CF schemes, there are content-based filtering (CBF) systems used

to provide predictions through analysis of contextual information of docu-

ments, URLs, web-logs, product descriptions, and comments of users on their

purchases (Pazzani, 1999). Melville et al. (2002) introduce a content-boosted

CF algorithm to improve accuracy. In addition to CF and CBF systems,

some approaches also take product contents into account and propose hybrid

schemes combining CBF along with CF. Although combining CBF with CF

enhances recommendation accuracy, such hybrid systems require a complex

implementation (Burke, 2002; Pazzani, 1999).

1.2 Privacy-Preserving Collaborative Filtering

Privacy is a variable term and it is very hard to define it succinctly. The exact

definition and borders of this concept is still discussed by diverse communities.

According to Westin (1968), it can be defined as “the claim of individuals,

groups or institutions to determine for themselves when, how, and to what

extent information about them is communicated to others.” However, emerging

collaborative recommendation service technologies threaten this right. In order

to benefit from recommendation services, a user must provide her personal

data to such systems. Such data might be used to disturb customers via

4



spam e-mails and phone calls for unsolicited marketing. Other examples of

privacy risks might be price discrimination, profiling users, being subject to

government surveillance, data transferring, and so on (Ackerman et al., 1999;

Cranor, 2003; Jensen et al., 2005; Calandrino et al., 2011).

Rating values and rated and/or unrated items can be considered as confi-

dential data in CF. Due to the increasing popularity of protecting confidential

data, privacy issues have been receiving increasing attention in CF commu-

nity. People become more conscious about privacy risks and avoid using such

services even if they get benefit in return (Berkovsky et al., 2007). Hence,

estimating accurate predictions without violating privacy becomes important

(Canny, 2002a; Kaleli and Polat, 2012). Various privacy-preserving collabo-

rative filtering (PPCF) methods have been utilized to provide CF tasks while

preserving confidentiality. The most widely used methods are randomization,

encryption, anonymization, aggregation, agent-based methods, and so on.

First approaches to build privacy measures on CF applications are dis-

tributed solutions by Canny (2002a,b), relying on formation of an aggregate

data using cryptographic techniques to hide confidential data in distributed

environments. Unlike distributed schemes, central server-based applications

are more popular, where individuals submit their preferences after perturbing

their confidential data up to a level for concealing their actual ratings and rated

products. Data perturbation methods like randomized perturbation techniques

(RPTs), randomized response techniques (RRTs), and data substitution are

employed to perform filtering processes without violating privacy.

Polat and Du (2003, 2005a,b) propose to implement RPTs in order to

allow customers control their privacy by employing individual level of cau-

tions rather than joining an aggregate. They investigate providing private

predictions using a memory-based CF algorithm (Polat and Du, 2003). They
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also apply RPTs to achieve confidentiality in singular value decomposition

(SVD)-based CF scheme, where scalability issue is addressed by reducing di-

mensionality (Polat and Du, 2005b). RRTs are utilized in a similar way to

conceal binary rating-based preferences (Polat and Du, 2006). Like perturba-

tion, data substitution methods are proposed to preserve individual privacy,

which completely replaces individual votes (Berkovsky et al., 2012).

Although data obfuscation methods prevent data holders from disclosing

confidential data, they inevitably come with reasonable loss of accuracy (Po-

lat and Du, 2005a). Since they are more practical to assure individual user

privacy against central servers, such methods have been employed extensively.

Different from data masking and disguising techniques, Wim F. J. Verhaegh

(2004) propose to utilize encryption techniques in order to achieve individual

privacy in memory-based central server CF algorithms. They describe how to

measure similarities and estimate recommendations on encrypted profiles.

1.3 Related Work

CF is the most popular and widely used information filtering method in e-

commerce. In addition, providing privacy measures helps them become more

widespread and more reputable. However, there are some common limitations

of CF and PPCF schemes. Such limitations shall be overcome to produce qual-

ified predictions. In this section, major challenges of CF and PPCF systems

are listed and previous studies proposed to alleviate them are examined.

1.3.1 Scalability

Typically, CF and PPCF systems operate over large user-item matrices. Due

to continually enlarging nature of e-commerce facilities, the number of users

and/or products tend to be quite large in online shopping databases (often in

terms of millions) (Chen et al., 2009). Complexity of online prediction estima-

tion process is related to both dimensions of user-item matrix. Consequently,
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the amount of time required to calculate similarities among users increases ex-

ponentially as the user-item matrix grows causing scalability problems (Zhang

and Chang, 2006). CF systems are supposed to respond many customers at

any given time; therefore, it becomes a challenge to offer online predictions in

a reasonable amount of time. Thus, CF systems are required to become more

robust against the grow in size of data to overcome such problems.

The most widely adopted approach to overcome scalability problem in

CF schemes is dimensionality reduction in which the dimension of users and/or

items are decreased to improve scalability consequently. Zhang et al. (2005)

propose using SVD as a dimensionality reduction method and Vozalis and

Margaritis (2007) implement demographic data along with SVD for enhanc-

ing scalability. Other approaches of dimensionality reduction employed to

solve scalability are principal component analysis (PCA) and correspondence

analysis (Kim and Yum, 2005; Vozalis et al., 2009). Another approach on

scalability problem is clustering in which neighborhood selection is performed

according to previously clustered groups of customers. One example of these

approaches combines case-based reasoning with self organizing map (SOM)

clustering (Roh et al., 2003) and another example utilizes smoothing-based

clustering (Xue et al., 2005). However, these approaches are computationally

expensive limiting the benefits of data reduction to be handled. Also, they tend

to be ineffective with extremely large data sets. To overcome pitfalls of such

approaches, Bilge et al. (2012) propose to employ a recursive clustering-based

layout, which performs considerably robust against growth of data. Alterna-

tively, Russell and Yoon (2008) propose discrete wavelet transform (DWT)

to reduce data efficiently and increase performance in large data sets without

compromising accuracy. In addition, Chen et al. (2009) propose to use orthog-

onal nonnegative matrix tri-factorization and Jeong et al. (2009) propose a

novel iterative semi-explicit rating method, which aggregates neighbor ratings
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and extrapolates unrated elements in a semi-supervised manner to obtain a

dense preference matrix. Honda et al. (2001) offer to employ PCA and fuzzy

clustering simultaneously, where they extract local principal components by

using lower rank approximation of the data matrix and predict the missing

values as an approximation. Also, genetic algorithms-based clustering meth-

ods are proposed by (Zhang and Chang, 2006; Georgiou and Tsapatsoulis,

2010; Bobadilla et al., 2011).

In order to relieve scalability issues in PPCF framework, Polat and Du

(2005b) apply SVD-based data reduction, where RPTs are employed to achieve

individual privacy. Subsequently, Yakut and Polat (2007) build privacy in

Eigentaste-based CF scheme, which relies on a constant time recommenda-

tion algorithm using RPT-based approach. Tada et al. (2010) address the

scalability problem of PPCF schemes by replacing similarity between users

with similarity between items. Similar to non-private schemes, Bilge and Po-

lat (2013a) employ clustering algorithms onto privacy-preserving framework

to obtain scalable PPCF schemes. An item-based algorithm is presented to

provide private predictions in binary data configurations utilizing RRTs (Polat

and Du, 2006). When the users’ preferences are represented with binary rat-

ings, NBC-based CF scheme can be utilized while preserving privacy (Kaleli

and Polat, 2007). However, due to privacy-preserving measures, overall perfor-

mance of the scheme degrades. In order to enhance its performance using some

preprocessing techniques, additional schemes have been proposed by Kaleli and

Polat (2009) and Bilge and Polat (2010).

1.3.2 Sparsity

As explained in Section 1.3.1, there are too much items in a typical CF and/or

PPCF database. However, users are only able to rate a very small fraction

of such products. Therefore, resulting collections are typically highly sparse
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(often with less than 5% density) (Acilar and Arslan, 2009; Bilge and Polat,

2013a). Hence, it gets more unlikely to find co-rated items between users

and it gets much harder to determine accurate neighborhoods because the

similarities can only be calculated through overlapping ratings (Jeong et al.,

2009). Furthermore, even if the similarities can be accurately determined, it

is likely that most of the neighbors might not have a rating on the item for

which the prediction will be estimated. Thus, it renders the effort of finding

similar users pointless, which affects quality of predictions adversely.

There are also other challenges caused by sparse structure of databases.

Cold start problem refers to system’s disability of producing predictions to new

users having a limited number of ratings due to lack of information to calculate

correlations with existing users (Ahn, 2008). The same condition also applies

to the products, where the system is not able to produce a prediction for

a given newly inserted item due to limited number of ratings on it, called

coverage problem (Sarwar et al., 2001).

The success of CF and PPCF algorithms mainly depends on data spar-

sity and size of the matrix they operate on. The performance of any CF and/or

PPCF approach immediately decreases as data get sparse, which habitually

happens in most web applications. Researchers have long been studying on

this issue and they have made a significant progress to handle it. Examples

of research focusing on alleviating sparseness issues in CF applications include

using artificial immune networks (Acilar and Arslan, 2009), factorization of

user-item matrix via orthogonality properties (Chen et al., 2009), employing

a random walk recommender (Yildirim and Krishnamoorthy, 2008), utilizing

a hybrid approach consisting of both user- and item-based CF by defining a

similarity weight (Liang et al., 2008), applying back-propagation neural net-

works to predict values of null ratings on users whose non-null ratings intersect

the most (Zhang and you Chang, 2005), and a novel and efficient algorithm
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to effectively predict missing ratings by setting a similarity threshold for users

and items (Ma et al., 2007).

In order to lessen the effects of data sparsity in PPCF framework, Bilge

and Polat (2011) propose a profiling scheme. The proposed profiling method

deals with both the sparseness and the scalability problems by projecting large

and sparse user vectors onto compact and dense item features-based profiles.

Such profiling approach is also utilized to recover from sparseness side effects

(Bilge and Polat, 2013a).

1.3.3 Accuracy

CF and PPCF systems either provide predictions for single items or top-N

recommendation lists. Accuracy of produced recommendations is important

for recommendation frameworks because accuracy level defines reputability

of such systems. Qualified predictions should not exceed a narrow boundary

of error range to make customers feel comfortable to follow such guidance.

Also, top-N recommendation lists should not yield to especially false positive

referrals, which might lead angry customers and damage system’s credibility.

Various techniques have been utilized to enhance the quality of the pre-

dictions. The most successful implementations are memory-based solutions

in which whole database is utilized supporting wisdom of crowds principle.

Bogdanova and Georgieva (2008) propose an algorithm based on discovering

the functional error-correcting dependencies in a data set by using the frac-

tal dimension for tackling accuracy problem. Runran Liu (2009) propose a

modified CF method computing the similarity between congeneric nodes in

bipartite networks substituting standard cosine similarity and achieve a sig-

nificant improvement of algorithmic accuracy. Jeong et al. (2010) propose a

similarity update method that uses an iterative message passing procedure and

an accuracy metric in order to minimize the predictive accuracy error and to
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evenly distribute predicted ratings over true rating scales. Kim et al. (2010)

perform collaborative tagging, which is employed as an approach to grasp and

filter users’ preferences for items and Lee et al. (2010) propose a CF recom-

mendation approach based on both implicit ratings and less ambitious ordinal

scales for mobile music recommendations. Recently, Choi and Suh (2013) pro-

pose a new similarity function to improve quality of predictions by ranking

item votes according to their similarity to the target item.

In order to enhance both accuracy and online performance of PPCF

schemes, Bilge and Polat (2012) discuss how to achieve predictions on reduced

space using DWT without violating individual users’ privacy. The same au-

thors also employ a modified similarity function along with an item elimination

preprocessing scheme on memory-based PPCF schemes to obtain better qual-

ity referrals in scalable amount of time (Bilge and Polat, 2013c). Also, Renckes

et al. (2012) propose a new recommendation algorithm, which is a hybrid al-

gorithm, to generate truthful referrals efficiently. Recently, Bilge and Polat

(2013b) propose a bisecting k -means clustering PPCF approach to obtain re-

ferrals with comparable accuracy to non-private schemes even when individual

privacy is preserved.

1.4 Scope and Contributions

This dissertation focuses on improving overall performance of PPCF schemes

with respect to robustness against data sparsity and dimensions, quality of pre-

dictions, and online performance. In order to achieve such enhancements, novel

preprocessing schemes are proposed onto either previously proposed or newly

developed privacy-preserving recommendation schemes. If suggested prepro-

cessing schemes have not been implemented in non-private schemes before,

they are also evaluated in traditional CF schemes without privacy along with

PPCF schemes. In addition, state-of-the-art privacy-preservation mechanisms
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are investigated in detail and novel information theory-based evaluations are

performed to assess their extent in provided privacy levels. Main contributions

of the dissertation can be summarized in the following.

A detailed privacy analysis of the state-of-the-art PPCF recommendation

scheme is performed by means of privacy protection parameters. In addition to

theoretical analysis, various experiments are performed on traditional PPCF

schemes to present effects of varying privacy parameters on accuracy.

Memory-based CF and PPCF schemes are addressed in terms of both ac-

curacy and scalability. A formerly proposed target item-based similarity mod-

ification function is investigated in privacy-preserving environment. Moreover,

a preprocessing method to eliminate relatively dissimilar items from predic-

tion process is proposed over the similarity function to alleviate scalability

challenges (Bilge and Polat, 2013c).

Model-based CF and PPCF schemes are analyzed and DWT-based trans-

formations are applied on PPCF schemes to improve scalability. Also, an item

ordering preprocessing is proposed to improve quality of predictions before

applying DWT in privacy-preserving layout (Bilge and Polat, 2012). As an-

other model-based approach, a novel content-based profiling method utilizing

categorical information of items to alleviate sparsity-related problems is pro-

posed. Applicability of both conventional and soft non-hierarchical clustering

techniques (k -means, fuzzy c-means, and SOM) to the PPCF framework to

overcome scalability issues is discussed in detail. Additionally, a comparison

among utilized clustering techniques is provided. This research presents the

first analysis and evaluation on integrating uncertainty-based soft computing

constituents on PPCF framework (Bilge and Polat, 2013a). Also, a novel

PPCF framework based on bisecting k -means clustering is proposed. A two-

level preprocessing scheme is suggested to deal with scalability and accuracy
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problems of PPCF in general. Effects of scalability and sparseness challenges

are alleviated considerably and significantly higher prediction accuracy is ob-

tained compared to the traditional methods (Bilge and Polat, 2013b).

Binary ratings-based systems are investigated in terms of scalability is-

sues. Online performance of privacy-preserving NBC-based CF scheme (PPNBC)

proposed by (Kaleli and Polat, 2007) is enhanced without greatly compromis-

ing accuracy of individuals by two preprocessing methods. NBC-based CF

algorithm’s ability to estimate predictions from a small amount of training

data is utilized (Bilge and Polat, 2010).

1.5 Organization of the Dissertation

The rest of the dissertation is organized, as follows: In Chapter 2, general

background and preliminaries about CF and PPCF are explained. In Chapter

3, detailed privacy analysis of the state-of-the-art PPCF scheme by means of

privacy protection parameters are discussed. Also, effects of varying privacy

parameters on accuracy are presented. Chapter 4 focuses on memory-based CF

and PPCF schemes and proposes an item elimination preprocessing to alleviate

scalability challenges. In Chapter 5, DWT-based transformations are applied

on PPCF schemes to improve scalability and a preprocessing is proposed to

obtain better quality of predictions. In Chapter 6, clustering methods are em-

ployed on PPCF schemes. Chapter 7 proposes a novel PPCF framework based

on bisecting k -means clustering and Chapter 8 addresses scalability issues of

binary ratings-based systems. Finally, in Chapter 9, concluding remarks and

recommendations for further research are discussed.
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2. PRELIMINARIES

In this chapter, general background and preliminaries on CF and PPCF are

explained. Recommendation systems are described and CF prediction estima-

tion algorithm is defined. Afterwards, randomization-based individual privacy-

protection mechanisms are discussed. Data perturbation protocols for numer-

ical and binary ratings-based PPCF systems are investigated. Then, PPCF

prediction estimation process is introduced and formulated. Finally, real data

sets and evaluation metrics used in the experiments are described.

2.1 Prediction Estimation

CF systems collect ratings and form a user-item matrix, Un×m, containing

preference information from n users on m items. During an online interaction

with a CF system, an active user (a) requests a prediction for a target item (q)

after sending her available ratings. CF prediction estimation can be thought as

a two-step process: (i) locating neighbors by computing similarities between a

and all other users in the system and (ii) estimating a prediction as a weighted

average based on preferences of neighbors on q. Such similarities between a

and any user u are calculated using various methods. According to results

presented in (Choi and Suh, 2013), the best similarity measure is PCC, which

is given in Eq. 2.1.

wau =
∑m

′

i=1[(vai − va)(vui − vu)]√
∑m

′

i=1(vai − va)2
√
∑m

′

i=1(vui − vu)2
, (2.1)

where vai and vui are the votes for item i by users a and u, respectively.

Similarly, va and vu are the average votes of users a and u, respectively, and

m′ is the number of co-rated items by both a and u. Such similarity weight is

utilized in prediction estimation process as will later be explained in Eqs. 2.2
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and 2.5. After calculating similarities, the most similar k users are marked as

neighbors (Herlocker et al., 2004). A prediction for a on q, referred to as paq,

is produced as a weighted average of neighbors’ ratings on q using the formula

given in Eq. 2.2.

PCCaq = va +
∑ku=1[(vuq − vu) ×wau]

∑ku=1wau
, (2.2)

where wau is the similarity weight between a and u.

2.2 Privacy Protection by Randomization

High quality predictions can only be produced from authentic data. How-

ever, customers often hesitate to submit their true preferences due to privacy

concerns. Hence, the goal is to provide accurate predictions by guaranteeing

confidentiality. Privacy-preserving schemes generally require a level of distor-

tion in user profiles. Accordingly, accuracy losses are inevitable. Therefore,

privacy parameters must be well-tuned as not allowing the server to extract any

valuable information from user profiles and still be able to produce accurate

predictions. Randomization methods can be utilized to mask numerical and

binary ratings in such a way so that precise recommendations can be provided

without violating privacy.

2.2.1 Disguising numerical ratings

PPCF has two key aspects in privacy perspective (Polat and Du, 2005a): (i)

hiding individual preferences and (ii) concealing the list of rated items. Disclo-

sure of the actual preferences might cause privacy violations such as profiling

and price discrimination; and revelation of the rated items list can be abused

to achieve unsolicited marketing. Primary approach for preserving individual

privacy is to disguise personal data by randomly perturbing each vote in the

profile and randomly filling some fraction of the empty cells (Polat and Du,

15



2005a). RPTs are useful for applying a preferred level of distortion on data to

provide proper privacy intervals by obstructing disclosure of individual data

items.

In terms of PPCF, RPTs offer to disguise a vote entry v by replacing

it with v + r, where r is a random number drawn from either a uniform or

Gaussian distribution. In Gaussian distribution, random numbers are gen-

erated with zero mean (µ = 0) and standard deviation (σ) while in uniform

distribution, random numbers are generated over the range [−α,+α], where

α is a constant and
√

3σ. Also, users insert additional random numbers to

selectively or uniformly randomly chosen β percent of empty cells as fake rat-

ings. The values of σ and β control privacy and accuracy levels. Their values

can be determined based on the values of σmax and βmax, respectively. After

the data holder sets σmax and βmax, each user determines individual σ and β

values randomly from (0, σmax] and (0, βmax] intervals, respectively. Users can

perturb their vectors, as described in Protocol 1 (Polat and Du, 2005a).

Procedure 1 Perturbation Protocol for Numeric Data

Input: User vector (u1×m), σmax, βmax
Estimate z-scores (→ Z):

1: u← mean(u); σu ← std(u)
2: for all items in u (j ← 1 to m) do
3: zj = (uj − u)/σu
4: end for

Determine privacy parameters:
5: β ← rnd(0, βmax); σ ← rnd(0, σmax); α ←

√
3σ

6: e← # of empty cells; g ← # of genuine ratings
7: F ← e × β% ▷ # of empty cells to be filled

Select distribution & generate random numbers:
8: dist← random(uniform, Gaussian)
9: R ← dist(g + F ;µ = 0, σ∣α)

Disguise z-scores (→ Z ′):
10: for all items in u (j ← 1 to m) do
11: z

′

j = (zj +Rj)
12: end for
13: return Z ′

16



After data disguising, users send their disguised vectors rather than true

ratings vector to the data holder, which creates a disguised user-item matrix,

U
′

n×m, and estimates predictions based on it. Hereafter, each active user a

disguises her private data similarly and sends masked data along with a query

to the server in order to get a prediction.

2.2.2 Disguising binary ratings

In binary ratings-based PPCF systems, RRTs are useful for masking individual

rating entries. RRTs were first introduced by Warner (1965) as a research

method to estimate the percentage of people in a population that has any

particular attribute. They allow respondents to respond to sensitive issues

(such as criminal behavior or sexuality) while maintaining confidentiality. The

interviewer asks two questions to each respondent for which the answers are

opposite to each other. Respondents choose the first question with probability

θ and the second question with probability 1 − θ to answer. The interviewer

learns responses but does not know which question is answered.

In PPCF schemes, sensitive questions are whether a purchased product is

liked or disliked by the user. An example binary ratings vector can be written

as u1×m = [11�00�101], where � refers to unrated item. To mask ratings, u is

first divided into M vectors (u1, u2, . . . , uM), where M ≪ m, and M random

numbers (r1×M) are generated using uniform distribution over the range [0, 1].

Then, user sends either true or negated values of ui (i = 1,2, . . . ,M) vectors to

the central server. After the data holder sets θ and M , users can mask their

vectors, as described in Protocol 2 (Kaleli and Polat, 2007).

After data disguising, users send their masked vectors to the data holder,

which creates a masked user-item matrix and estimates predictions based on

it. Hereafter, each active user a masks her vector similarly and sends masked

data along with a query to the server in order to get a prediction.
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Procedure 2 Perturbation Protocol for Binary Data

Input: User vector (u1×m), θ, M
Initialize masked vector:

1: u′ ← null
Divide vector into M chunks & mask ratings:

2: chunkSize←m/M
3: for all groups of u (i← 1 to M) do
4: ui ← u[(i − 1) × chunkSize ∶ i × chunkSize]
5: ri ← U(0,1)
6: if ri > θ then u′i ← ¬ui ▷ chunk negated
7: else u′i ← ui
8: end if
9: end for

10: u′ = [u′1 ∶ u′2 ∶ ⋯ ∶ u′M]
11: return u′

2.3 Estimating Predictions with Privacy

Due to privacy concerns, users prefer to submit their disguised vectors instead

of explicit expressions, as explained in Section 2.2.1. Therefore, the central

server needs to estimate predictions based on such disguised collections with

decent accuracy. The PCC (Eq. 2.1) is modified to incorporate an item-

variance weight factor by Herlocker et al. (1999). The modified version is

represented as the covariance of two users’ rating vectors, which consist of

z-scores, as shown in Eq. 2.3.

wau =
∑mi=1 zai × zui

m
. (2.3)

Since PPCF schemes collect disguised z-scores according to previously de-

scribed privacy preservation protocol, they typically employ the formula given

in Eq. 2.3 to estimate similarity between any two perturbed user vectors,

which converges to the non-private similarity calculation relying on the prin-

ciple of producing random numbers from a zero-mean distribution, as shown

in Eq. 2.4.
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w′
au = Z ′

a ⋅Z ′
u

m
= (Za +Ra) ⋅ (Zu +Ru)

m

= ∑mi=1 z′ai × z′ui
m

= ∑
m
i=1(zai + rai)(zui + rui)

m

= ∑mi=1 zaizui +∑mi=1 zairui +∑mi=1 zuirai +∑mi=1 rairui
m

≈ ∑mi=1 zai × zui
m

. (2.4)

Notice that Ra and Ru vectors are noise data drawn from a zero-mean

distribution, which are generated to disguise original z-score values. Similarly,

the expected means of z-scores are zero, as well. Thus, the expected values of

the last three summations in Eq. 2.4 converge to zero, which helps the server

estimate similarities with decent accuracy on perturbed aggregate data.

Eq. 2.2 can be rewritten for producing a private prediction for a on q, as

follows (Polat and Du, 2005a; Bilge and Polat, 2012) because predictions are

generated relying on masked z-scores:

p′aq = va + σa ×
∑ku=1 z′uqw′

au

∑ku=1w′
au

= va + σa × P ′
aq, (2.5)

where k is the number of neighbors utilized in the prediction production pro-

cess, va and σa represent a’s mean vote and standard deviation values, respec-

tively. Therefore, the server estimates P ′
aq and sends it back to a, where she

de-normalizes the received aggregate and obtains the final prediction. The

server can estimate P ′
aq based on masked data, as follows:

P ′
aq = ∑ku=1(wau + Vau)(zuq + ruq)

∑ku=1wau + Vau

= ∑ku=1wauzuq +∑ku=1wauruq +∑ku=1 Vauzuq +∑ku=1 Vauruq
∑ku=1wau +∑ku=1 Vau

≈ ∑ku=1wauzuq
∑ku=1wau

. (2.6)

19



Eq. 2.6 holds because expected values of the last three summations in

the nominator and the second one in the denominator converge to zero due

to zero-mean random number distributions. In other words, the server can

estimate P ′
aq on masked data and still can produce accurate predictions.

2.4 Data Sets and Evaluation Criteria

There are a number of qualified crawls forming a variety of data sets containing

preferences of real people whom they are sometimes defined by demographic

information. Throughout the dissertation, experiments are performed on three

well-known benchmark data sets. MovieLens data set (ML) is probably the

mostly widely used data set collected by GroupLens at the University of Min-

nesota1. It has two variations by varying dimensions and densities according

to the included number of ratings, i.e. 100K (MLP) and 1M (MLM) data sets.

Netflix2 is another data set of 100,480,507 ratings that 480,189 users gave to

17,770 movies. During the experiments, a subset of Netflix prize data set (NF)

is utilized, where 10,000 users from differing density ranges are sampled. These

data sets contain discrete preferences for movies in a 5-star rating scale. In

addition, each movie in ML data set contains at least one or more genre fea-

tures from predefined 18 categories. ML and NF data sets are suitable to show

effects of preprocessing schemes as they are extremely sparse and large. Jester

(Gupta et al., 1999) is a web-based joke recommendation system developed

at University of California, Berkeley. Different from ML and NF data sets,

Jester contains continuous ratings in [-10,+10] range for jokes and is much

more dense than ML and NF. The data sets are summarized in Table 2.1.

Success of the proposed preprocessing schemes are evaluated with respect

to the quality of produced predictions and online performance. Evaluations are

conducted based on empirical results derived from real data-based experiments.

1http://www.grouplens.org/
2http://www.netflixprize.com/
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Table 2.1: Descriptions of data sets

Name Users × Items Rating scale Total votes Density (%)

ML
MLP 943 × 1,682 5-star 100K 6.3%
MLM 6,040 × 3,952 5-star 1M 4.25%

NF 10,000 × 17,700 5-star 2,337,295 1.32%

Jester 48,483 × 100 [-10,10] 3,519,448 72.59%

While statistical predictive accuracy metrics are valuable for experimenting on

data sets containing numerical ratings, classification-based accuracy metrics

are more useful on binary data sets.

Most widely utilized metric for numerical ratings-based systems is mean

absolute error (MAE), which measures how close the predictions are to the

actual ratings as an average of absolute errors, i.e., ∑P (ei/n) = ∑P (∣pi−vi∣/N),

where pi is the estimated prediction, vi is the actual rating value, and P is the

number of produced predictions. Thus, the smaller the MAE is, the better the

results are.

Quality of predictions in binary ratings-based systems are measured us-

ing classification accuracy (CA) and F-Measure (F1) (Miyahara and Pazzani,

2002). CA measures the percentage of true classifications. F1 is generated

to build precision and recall together, as follows: F1 = (2 × precision × re-

call)/(precision + recall). This measure combines precision and recall into one

single number producing a useful metric for recommender systems. In the

context of recommender systems, precision measures the probability of recom-

mended item while recall is defined as the ratio of desirable and recommended

items to all desirable items. The bigger the CA and F1 values, the better the

results are.

In addition to accuracy, preprocessing approaches are proposed to im-

prove scalability, as well. Thus, total elapsed time (T ) in seconds spent on

producing online referrals is recorded to demonstrate online improvements..
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3. PRIVACY BY DESIGN

In this chapter, privacy-preserving mechanisms explained in Chapter 2 are ana-

lyzed by means of privacy controlling parameters to see how and to what extent

they are effective in protecting confidentiality. Also, experiments are performed

to show the effects of such parameters on accuracy in PPCF schemes.

3.1 Privacy Analysis

Data disguising protocols focus on preventing the central server from deducing

(i) if a rating is genuine or forged and (ii) actual values of the genuine ratings.

Accordingly, these two considerations are analyzed to evaluate the privacy level

provided by the system.

3.1.1 Privacy analysis of rated items disguising

According to Procedure 1, each user profile contains genuine ratings along with

the fake ones, which fill β% of the empty cells, where β is uniformly randomly

chosen by the user from the interval (0, βmax], as explained in Section 2.2.1.

Therefore, the server first needs to guess the value of uniformly randomly

chosen β and then it can predict the exact set of genuine items with some

probability.

Privacy provided by uniform random selection of β is measured by uti-

lizing Shannon entropy (Shannon, 1948) of user’s apparent rating distribu-

tion. Recall that the entropy of a random variable X with possible values of

{x1, x2,⋯, xn} and distributed by a probability mass function p is defined as in

Eq. 3.1, which can be interpreted as a measure of uncertainty or randomness

of the outcome.

H(X) = −
n

∑
i=1
p(xi) log2 p(xi). (3.1)
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Intuitively, such uncertainty can be maximized through uniform selec-

tion of β over (0, βmax]. Inline with the perturbation scheme described in

Section 2.2.1, users of a PPCF system can be modeled as random variables

taking on values from normal distribution N (x; 0, σ2) or uniform distribution

U(x; 2σ
√

3). Let g and b be the numbers of genuine ratings and empty cells

of a particular user, respectively. Accordingly, let P = {p1, p2,⋯, pg} defines

the probability distribution of genuine ratings and R = {r1, r2,⋯, rb×β} defines

the distribution of fake ratings. Now, user’s distribution can be modeled as

S = #P+#R
g+(b×βmax) , where #P and #R indicate the number of elements in the sets

P and R, respectively. Thus, privacy obtained by Pr(β) can be quantified as

the entropy of S, i.e., H(S). An example of provided privacy levels for varying

βmax (accordingly β) values is depicted in Fig. 3.1 for 1M runs, where the user

is assumed to have 50 genuine ratings. Note that there are 1,682, 3,952, and

17,700 ratable items in MLP, MLM, and NF data sets, respectively.
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Figure 3.1: Privacy levels for varying βmax values

As seen from Fig. 3.1, inserting fake ratings has a definite effect on pro-

vided privacy levels. However, privacy levels differ according to βmax, number

of ratable items, and density of data sets. While relatively small βmax values,

such as 5% and 10%, are enough to provide the highest privacy intervals for

data sets with so many items like MLM and NF, little more higher βmax val-
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ues, such as 25%, provides the best privacy level. Accordingly, increasing βmax

values do not provide more privacy due to loss of uncertainty between genuine

and forged ratings. Therefore, it can be concluded that optimal selection of

βmax for obtaining the highest privacy levels must be done inline with number

of ratable items and data density within the data set.

After guessing β with probability 1 out of βmax, the server can try to

extract the list of truly rated items. However, due to perturbation protocol,

the server has g′ and b′ instead of g and b as numbers of actual ratings and

empty cells, respectively. Hereafter, g can be calculated as g = m − b, where

b = b′ × 100/β. Then, the list of genuine ratings can be predicted as one of the

combinations of selecting g ratings out of g′ disguised values. Combining these

probabilities, the probability of determining the exact list of genuine ratings

from a given disguised user vector can be estimated as 1 out of βmax × (g
′

g
),

where (g
′

g
) is the number of combinations of g′ objects chosen g at a time.

3.1.2 Privacy analysis of ratings disguising

Even if the central server distinguishes genuine votes from faked ones, it still

needs to extract real values from their perturbed z-score forms. Additionally,

the privacy obtained by adding random noise on ratings must also be quanti-

fied. Agrawal and Aggarwal (2001) propose a differential entropy-based metric

to quantify privacy of an additive noise-based perturbed variable, where such

metric is utilized in PPCF context by (Polat and Du, 2005a; Bilge and Polat,

2012, 2013a). Let random variables P and R represent the original user vector

and perturbing random data, respectively yielding U = P +R. Then average

conditional privacy of P is defined as Π(P ∣U) = 2H(P ∣U), where 2H(P ∣U) repre-

sents conditional differential entropy of P given U . Recall that P and R are

independent random variables. Thus, privacy level of P after disclosing U is

given by Π(P ∣U) = Π(P ) × (1 − Pr(P ∣U)), where Pr(P ∣U) = 1 − 2H(U ∣P )−H(U).
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Assuming that P distributes normally, privacy levels, Π(P ∣U), for various per-

turbation levels are presented in Fig. 3.2. Note that the distribution of R is

determined by coin tosses. As seen from Fig. 3.2, provided privacy levels en-

hance with increasing level of perturbation, as expected. Normal distribution

provides slightly better privacy.
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Figure 3.2: Privacy levels for varying σmax values

Finally, as Eq. 2.5 demonstrates, the server needs to de-normalize ex-

tracted z-score values, which requires deducing mean and standard deviation

of each user’s original rating profiles.

3.2 Effects of Privacy Parameters on Accuracy

In order to demonstrate effects of privacy controlling parameters on accuracy,

various experiments are performed based on three data sets using traditional

k -nearest neighbor-based PPCF algorithm. During such experiments, data

sets are divided into two subsets. One is used for training and the other is

used for testing. A total of 1,570, 9,060, and 2,500 predictions are produced

for MLP, MLM, and NF data sets, respectively. Number of neighbors to be

utilized in prediction process is kept constant at 40 for all trials. While testing

on βmax parameter, σmax is also kept constant at 2. The trials are performed

100 times due to randomization and average results are presented. Changes in
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error levels of produced referrals with varying βmax are demonstrated in Fig.

3.3.
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Figure 3.3: Accuracy levels for varying βmax values

As can be followed from Fig. 3.3, increasing βmax values generally have

a positive effect on accuracy. Especially for extremely sparse NF data set,

inserting ratings into the profiles, even if they are fake, improves accuracy.

The reason for such improvement is it becomes possible to find co-rated items

among users with inserted fake ratings. Therefore, as more fake ratings are

inserted, accuracy enhances. However, considering the privacy levels presented

in Fig. 3.1, reasonable βmax could be 10% or 25% for MLP, 10% for MLM, and

50% for NF. Next set of experiments investigate how accuracy changes with

varying perturbation levels. Keeping optimum βmax values, several experi-

ments are conducted 100 times while changing σmax values. Overall averages

of the outcomes are demonstrated in Fig. 3.4.

As expected, accuracy and σmax are inversely correlated because pertur-

bation level increases with increasing σmax; and that makes accuracy worse.

As seen from Fig. 3.4, with increasing σmax values, the quality of the referrals

gets worse. The bigger such values are, the more randomness added into the

original data is. Although accuracy becomes worse with increasing σmax val-

ues, privacy enhances due to augmented randomness, as demonstrated in Fig.
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Figure 3.4: Accuracy levels for varying σmax values

3.2. It is crucial to avoid data holders from estimating true rating values for

individual privacy concerns. However, it is shown by (Huang et al., 2005) and

(Kargupta et al., 2003) that utilizing σ less than 1 might result in recovery of

actual ratings from perturbed values. Therefore, its value should be chosen

carefully in order to still produce dependable and accurate recommendations

while not deeply jeopardizing individual privacy.
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4. AN ENHANCED RECOMMENDATION SCHEME

ON TARGET ITEM-BASED SIMILARITY FUNC-

TION WITH PRIVACY

In this chapter, a preprocessing method is proposed to enhance the scalabil-

ity of the recommendation scheme on target item-based similarity function.

A formerly proposed similarity function is integrated into PPCF framework

to improve quality of private referrals. The proposed preprocessing scheme

finally is used to enhance the overall performance of the PPCF scheme on tar-

get item-based similarity function. Empirical outcomes demonstrate that the

proposed preprocessing scheme relieves scalability issues significantly in both

CF and PPCF environments and also improves accuracy in privacy-preserving

frameworks.

4.1 Introduction

Memory-based CF schemes are one of the most successful recommendation

technologies in terms of quality of predictions even though they commonly suf-

fer from accuracy, scalability, and privacy issues. Such CF systems operate on

entire collection to calculate similarities using a similarity metric such as PCC,

cosine similarity, or distance-based similarity (Sarwar et al., 2000; Choi and

Suh, 2013). Practical deployments to cover a large number of products prefer

item-based similarity calculations while others perform user-based similarities

to obtain better accuracy (Linden et al., 2003; Herlocker et al., 2004). Recently,

Choi and Suh (2013) propose an intuitively reasonable modification in similar-

ity function, which is proven to provide more accurate recommendations than

the ones estimated by the state-of-the-art memory-based CF methods. This

method introduces a ranking on neighbors’ ratings by item similarities between
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corresponding items and the target item. The proposed modification, which

favors target items’ similarity to those of other items, introduces additional

computational costs on similarity measures, which further complicates scala-

bility issues in memory-based CF schemes. Moreover, although the proposed

similarity function results in better recommendation skills in CF systems, the

framework does not consider privacy preservation.

In this chapter, the method proposed by Choi and Suh (2013) is in-

vestigated in terms of overhead costs and a preprocessing method to accel-

erate prediction production process is proposed. Preprocessing scheme aims

at filtering out items that do not strongly correlate to the target item. In

addition, privacy-preserving measures are employed on original and enhanced

non-private schemes. Effects of the new similarity function and preprocessing

method on scalability and accuracy of both non-private and privacy-preserving

frameworks are investigated. Different sets of experiments are performed to

evaluate proposed preprocessing scheme and similarity function with respect

to scalability and accuracy.

4.2 Target Item-based Similarity Function

According to PCC (Eq. 2.1), the mostly utilized similarity calculation method

in CF systems, each co-rated item has equal effect on similarity measure. Choi

and Suh (2013) propose to modify the similarity metric so that each co-rated

item’s effect is also ranked with the item similarity between corresponding

item and the target item in consideration. In other words, if an item is very

similar to the target item, then it will have a superior influence on estimated

prediction compared to a less similar one’s effect. Therefore, they propose to

apply adjustments on several similarity metrics. The best performing user-user

similarity measure, a modified version of PCC, is presented in Eq. 4.1 (Choi

and Suh, 2013).
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PCCq
au =

∑m
′

i=1[IS2
iq × (vai − va) × (vui − vu)]

√
∑m

′

i=1[ISiq × (vai − va)]2
√
∑m

′

i=1[ISiq × (vui − vu)]2
, (4.1)

where PCCq
au denotes PCC between a and u for q and ISiq denotes the item

similarity between co-rated items i and q. The best metric to calculate ISiq

might vary for different data sets; however, PCC (Eq. 2.1) and cosine similarity

(Eq. 4.2) are shown to be the most feasible ones (Choi and Suh, 2013).

ISiq = Cosineiq =
∑n

′

u=1(vui × vuq)√
∑n

′

u=1 v2ui
√
∑n

′

u=1 v2uq
. (4.2)

4.3 A More Precise and Scalable PPCF Scheme

In this section, proposed schemes to enhance scalability of CF and PPCF

methods based on formerly recommended similarity function are described.

First, the preprocessing approach, which eliminates dissimilar items from pre-

diction process to alleviate scalability issues and possibly enhance accuracy

of referrals in non-private scheme, is described. Then, modifications to apply

the similarity function on perturbed data to improve recommendation qual-

ity are introduced. Finally, proposed preprocessing method is applied to the

privacy-enhanced environment to further improve scalability and accuracy.

4.3.1 A preprocessing scheme to eliminate irrelevant items

The similarity function proposed by Choi and Suh (2013) utilizes item simi-

larities between a commonly rated item and the target item in user similarity

function. Since user-similarity calculation becomes more complicated due to

new function, such computational overhead also affects online performance of

the recommender system. Moreover, memory-based CF applications already

suffer from scalability issues due to constantly growing size of data. Inspiring
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from the idea of ranking preferences according to item similarity, an addi-

tional preprocessing step is proposed to eliminate relatively dissimilar items

from prediction estimation process. Such preprocessing scheme is aimed to en-

hance scalability of CF system because it focuses on reducing online response

time significantly by eliminating irrelevant items to each related target item.

According to the scheme proposed in (Choi and Suh, 2013), similarities,

calculated between items using either Eq. 2.1 or Eq. 4.2 in off-line time, can be

utilized in the online prediction estimation process, as outlined in Procedure

3. Item similarities rank each rating’s effect on the estimation of prediction.

Thus, co-rated items resembling more similarity to the target item have a

superior effect on the estimation. However, all items still join to the process

no matter they have a dissimilar manner to the target item. Therefore, such

items are proposed to be eliminated from the prediction estimation process

so that the process speeds up due to the reduction of dimensions in original

user-item matrix.

Procedure 3 Off-line Item Similarity Calculation

Input: User-item matrix (Un×m)
1: Initialize: ISm×m ← 0 ▷ item similarities matrix

Calculate and sort item similarities:
2: for all itemi in U (i← 1 to m) do
3: for all itemj in U (j ← i to m) do
4: IS(i, j) = similarity(U(itemi), U(itemj)) ▷ using Eq. 2.1 or Eq. 4.2
5: end for
6: end for
7: [IS values, IS index] = sort(IS, descending) ▷ to be used in online process
8: return IS values and IS index

According to the CF recommendation estimation process explained in

Section 2.1, the bottleneck in the process is the calculation of similarities be-

tween a and each user in the system. Therefore, the proposed preprocessing

scheme focuses on handling such bottleneck. If relatively dissimilar items are

removed from the matrix for that particular target item, then a significant re-

duction can be obtained in dimensions of the original user-item matrix. Such
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dissimilarity can be determined relying on a predetermined similarity thresh-

old value (τ), so that the items having less similarity than the threshold value

are eliminated. Then, a temporary user-item matrix can be formed for each

corresponding target item, which is to be used in neighborhood formation pro-

cess. Since similarity calculations are performed in the compact and reduced

form of original user-item matrix, it will take much less time to calculate user

similarities online. Pseudo code of the prediction estimation process relying

on our preprocessing scheme is given in Procedure 4.

Procedure 4 Online Prediction Estimation via Preprocessing

Input: User-item matrix (Un×m), active user (a), neighbor count (k),
target item (q), threshold value (τ)
Locate items more similar than τ :

1: remaining items← IS index(q, IS values(q) > τ)
Reduce dimensions of matrices:

2: U ← U(remaining items);
3: a← a(remaining items);
4: IS ← IS(remaining items)
5: Initialize: US1×n ← 0 ▷ user similarities vector

Calculate and sort user similarities:
6: for all useri in U (i← 1 to n) do
7: US(i, j) = similarity(U(useri), q) ▷ using Eq. 4.1
8: end for
9: [sim val, neighbor idx] = sort(US,descending) ▷ used in prediction

estimation
Estimate prediction:

10: paq ← prediction(U, sim val, neighbor idx, k) ▷ estimated using Eq. 2.2
11: return paq

4.3.2 A PPCF scheme using target item-based similarity function

Due to privacy concerns, people prefer to submit their disguised vectors in-

stead of explicit expressions. Therefore, the central server needs to estimate

predictions based on such disguised collections with decent accuracy. How

formerly proposed target item-based similarity function can be applied onto

private prediction generation algorithm is explained in the following.

Neighborhood formation. The PCC equation (Eq. 2.1) can be represented

as the covariance of two z-score transformed user vectors (Herlocker et al.,
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1999). PPCF schemes typically employ the similarity calculation method given

in Eq. 2.3 due to perturbation scheme. To employ target item-based similarity

function onto such similarity calculation method, utilization of item similarities

as a factor to covariance calculation is proposed, as shown in Eq. 4.3.

wqau =
∑mi=1 ISiq × zai × zui

m
, (4.3)

where wqau denotes covariance-based PCC weight between a and u for q, zai and

zui represent z-score transformations of users’ ratings on item i, respectively.

However, as explained in Section 2.2, users submit their disguised z-scores, Z ′,

due to privacy concerns. Hence, similarities between users in an RPT-based

PPCF scheme are estimated on perturbed data, as shown in Eq. 4.4.

wq
′

au = IS(q) ⋅Z ′
a ⋅Z ′

u

m

= ∑mi=1 ISiq × z′ai × z′ui
m

= ∑
m
i=1 ISiq(zai + rai)(zui + rui)

m

= ∑mi=1 ISiqzaizui +∑mi=1 ISiqzairui +∑mi=1 ISiqzuirai +∑mi=1 ISiqrairui
m

≈ ∑mi=1 ISiq × zai × zui
m

. (4.4)

Notice that Ra and Ru vectors are noise data drawn from a zero-mean

distribution, which are generated to disguise original z-score values. Similarly,

the expected means of z-scores are zero, as well. Thus, the expected values of

the last three summations in Eq. 4.4 converge to zero, which helps the server

estimate similarities with decent accuracy relying on perturbed aggregate data.

Off-line item similarity calculations are also performed on perturbed

data. Without privacy concerns, it is trivial to calculate such similarities using

PCC or cosine similarity. However, since users send their disguised z-scores, the

data collector should be able to estimate weights between items from masked

data, as well. Due to disguising mechanism, the server can similarly utilize
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covariance-based PCC for item similarities, as shown in Eq. 4.4. It can esti-

mate similarities between co-rated item i and target item q, as explained in

the following: In Eq. 4.2, the numerator part performs multiplication between

co-rated users, which can be treated as a dot product in privacy-preserving

scheme because unrated items have a zero rating value. With increasing num-

ber of users in the system, as can be followed from Eq. 4.3, such dot product

calculations can be performed with sufficient accuracy due to zero-mean nature

of random number distribution. The denominator holds magnitude calculation

of two vectors. The server can estimate such magnitudes for an item vector,

as shown in Eq. 4.5.

∣∣Z ′∣∣2 = ∣∣(Z +R)∣∣2 =
√
∑
u∈S

(zu + ru)2, (4.5)

where S is the set of users who rated corresponding item and R represents

the distribution of such users’ random perturbing factors added onto genuine

ratings. Eq. 4.5 can be rewritten without square roots, as follows:

∑
u∈S

(zu + ru)2 = ∑
u∈S

z2u + 2∑
u∈S

zuru +∑
u∈S

r2u ≈ ∑
u∈S

z2u +∑
u∈S

r2u. (4.6)

Eq. 4.6 holds as number of users submitting a vote for the item increases

due to generated random numbers distribution with zero mean. However,

to get rid of the second summation, the server can subtract its contribution

relying on the maximum allowed standard deviation of the random numbers,

as follows:

∑
u∈S

(zu + ru)2 ≈ ∑
u∈S

z2u +∑
u∈S

r2u − Sσ2
max ≈ ∑

u∈S
z2u. (4.7)

After computing the summation, the server can take the square root and

estimate magnitudes of vectors and similarity weights between items based on

masked data. Then, the most similar k of such users are labeled as neighbors
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to be used in prediction production process.

Prediction estimation. The server estimates an aggregate based on per-

turbed data and sends it back to a who de-normalizes the received aggregate

via her ratings mean and standard deviation. Since predictions are generated

relying on masked z-scores data, Eq. 2.5 can be rewritten for producing a

private prediction for a on q, as follows (Bilge and Polat, 2012):

p′aq = va + σa ×
∑ku=1 z′uqw

q′

au

∑ku=1w
q′
au

= va + σa × P ′
aq, (4.8)

where k is the number of neighbors utilized in the prediction production pro-

cess, va and σa represent a’s mean vote and standard deviation, respectively.

Therefore, the server estimates P ′
aq and sends it back to a, where she de-

normalizes provided aggregation and obtains the final prediction. The server

can estimate P ′
aq based on masked data, as follows:

P ′
aq = ∑ku=1(w

q
au + V q

au)(zuqruq)
∑ku=1w

q
au + V q

au

= ∑ku=1w
q
auzuq +∑ku=1w

q
auruq +∑ku=1 V

q
auzuq +∑ku=1 V

q
auruq

∑ku=1w
q
au +∑ku=1 V

q
au

≈ ∑ku=1w
q
auzuq

∑ku=1w
q
au

. (4.9)

Eq. 4.9 holds because expected values of the last three summations in

nominator and the second one in denominator converge to zero due to zero-

mean random number distributions. In other words, the server can estimate

P ′
aq on masked data and still can produce accurate predictions.

4.3.3 Improving performance of PPCF via preprocessing

It is possible to apply the preprocessing idea proposed in Section 4.3.1 onto

PPCF framework described in Section 4.3.2. The PPCF scheme utilizes the

target item-based similarity function. In this proposed framework, PPCF re-
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ferrals are aimed to be produced in less amount of time to enhance scalability.

In addition, it is possibly expected to obtain more qualified private referrals.

Hence, accuracy-enhanced traditional CF scheme via target item-based simi-

larity function will be further improved to provide private referrals with better

accuracy and in scalable time. To do so, the private framework defined in Sec-

tion 4.3.2 utilizes Procedure 3 and Procedure 4 along with privacy-preserving

similarity calculations (Eq. 4.3 and Eq. 4.7) and prediction estimation equa-

tions (Eq. 4.8 and Eq. 4.9).

4.4 Overhead Costs Analysis

It is imperative to analyze the proposed preprocessing scheme, which is em-

ployed in both non-private and privacy-preserving CF schemes, with respect

to off-line and online costs. During such analysis and experimental examina-

tion, traditional recommendation approach, similarity function-enhanced CF

method, and preprocessing applied ultimate model are denoted as CF, CF+,

and CF++, respectively. Overhead costs due to introduced preprocessing

scheme must be analyzed by means of (i) communication, (ii) storage, and

(iii) computational costs. An overview of the analysis is given in Table 4.1.

Table 4.1: Overview of overhead costs

Comm. Storage
Computational

Off-line Online

CF O(1) O(nm) — O(k + nmP )

CF+ O(1) O(nm) +O(m2
) O(nm2

) O(k + nmP ′
)

CF++ O(1) O(nm) +O(m2
) O(nm2

) +O(m logm) O(k + nmP ′
)

P and P ′: number of calculations in Eq. 2.1 and Eq. 4.1, respectively.
m: reduced number of items for corresponding target item

Compared to the traditional CF approach, CF+ approach proposed

by Choi and Suh (2013) and our item reduction preprocessing-based CF++

approach scheme does not cause any extra communication overheads. All three

schemes require a transfer of 1-by-m user vector, which introduces an O(1)
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complexity in terms of communications costs. Hence, it can be concluded that

both the number of communications and amount of transmitted data online

and off-line phases remain the same for all three schemes.

CF scheme requires a storage cost in the order of O(nm) to record prefer-

ences of n users on m items. However, CF+ and CF++ schemes utilize item

similarities in user-user similarity computations. Therefore, CF+ requires a

total storage area in the order of O(nm) + O(m2) to hold item similarities,

as well. Additionally, CF++ approach also eliminates some items from the

collection relying on item similarities, which requires to hold sorted item sim-

ilarity index values in addition to item similarities, which results in a storage

cost in the order of O(nm) +O(m2) in total.

Computation costs should be analyzed separately for off-line and online

phases. Although off-line computations are not critical for recommender sys-

tems, it is better to provide a report on off-line work overload. Traditional

CF scheme solely runs online and does not perform any off-line computations.

However, CF+ and CF++ schemes calculate item-item similarities in off-line

phase in the order of O(nm2), where CF++ scheme also sorts such similari-

ties, which requires an additional O(m logm) time using quick sort algorithm.

The important component of recommender systems’ performance is de-

termined by how fast queries are responded online. CF scheme runs in O(k +

nmP ) time, where k represents the number of neighbors to be utilized and

P is the complexity of computations performed in user-user similarity calcu-

lation via a similarity measure. CF+ scheme also produces predictions in a

similar manner; however, drawback of CF+ scheme is that it further compli-

cates online similarity calculation step by assembling item-similarity factors

into similarity formulas. Such increased computational complexity is denoted

with O(k+nmP ′) in Table 4.1, where P ′ represents the increased complexity of
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calculations and P ′ > P all the time. The proposed preprocessing, on the other

hand, reduces the number of items to be utilized in similarity calculation step

and requires an online computation time in the order of O(k + nmP ′), where

the size of m is determined for each corresponding target item separately, but

making sure that m ≪ m to relieve scalability issues. Data disguising proce-

dure allows PPCF systems to collect and store preference data similar to the

non-private schemes and produce predictions in an identical way. Thus, such

overhead costs analysis is also valid for privacy-preserving conjugates of CF,

CF+, and CF++.

4.5 Experimental Evaluation

Several experiments are performed on two benchmark data sets, i.e., MLM

and NF, to scrutinize the effects of applying the similarity function in privacy-

preserving systems and employing the proposed preprocessing scheme on non-

private and privacy-preserving schemes.

Experiments are realized on uniformly randomly chosen train and test

sets. The original data set (U or U ′) is divided into two parts, where uniformly

randomly chosen 30% of all users are assigned to be test users and remaining

ones as train users. After training and test sets are constructed, five rated

items’ actual votes are withheld for each test (active) user. Such entries are

replaced with null, their values are tried to be predicted, and estimations are

compared with actual values. User-user similarities are computed via PCC on

both data sets and item-item similarities are calculated by PCC in MLM and

by cosine similarity in NF because they are the best performing measures on

those data sets, as shown by (Choi and Suh, 2013). Also, number of neighbors

(k) is set to 10. Trials are performed in MATLAB 8.0 environment using a

computer with an Intel Core i7 2.8 GHz dual-core processor and 4 GB RAM.

Three sets of experiments are utilized. First, CF++ scheme is exper-
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imented on by employing the proposed preprocessing method to see its ef-

fects on accuracy and scalability compared to CF and CF+ schemes. Sec-

ondly, PPCF+ scheme is derived by implementing the similarity function onto

privacy-preserving scheme and investigated how it performs in terms of accu-

racy. Finally, PPCF++ scheme is obtained by preprocessing PPCF+ and

its performance is examined with respect to accuracy and online performance.

4.5.1 Evaluating preprocessing technique in non-private schemes

In order to examine the effects of the proposed preprocessing scheme by means

of scalability and accuracy, the method is applied to non-private scheme first.

As demonstrated Choi and Suh (2013), applying the similarity function onto

traditional CF schemes improves accuracy. However, they do not perform

any online performance test, which is vital for recommender systems. Experi-

mental results of accuracy and online performance for both similarity function

enhanced CF+ scheme and preprocessing enhanced CF++ are demonstrated.

While utilizing τ for CF++ scheme, although PCC takes values in the inter-

val [-1.0, 1.0] for item similarity calculations, such values are transformed to

[0, 1.0] interval to form a common base with cosine similarity, which also takes

values in the interval [0, 1.0]. Then, τ is varied from 0.05 to 0.5 in order to

eliminate dissimilar items. To present a more clear comparison, improvements

of CF+ and CF++ schemes over traditional CF scheme are presented in

percentage. The outcomes with respect to accuracy and online performance

are given in Fig. 4.1 and Fig. 4.2, respectively.

As seen from Fig. 4.1, CF+ scheme achieves better accuracy improve-

ments (about 4%) compared to the proposed CF++ scheme (about 3%).

Especially for MLM data set, such improvements can be obtained even for

very high τ values. For MLM data set, the best improvement is obtained at

τ = 0.5 with 2.96%, where CF+ scheme achieves 3.7%. Due to its extreme

39



0 0.05 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Similarity threshold (τ)

Im
p
ro

v
e
m
e
n
t
in

M
A
E

(%
)

 

 

CF+ CF++

(a) MLM Data Set

0 0.05 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

3

3.5

4

Similarity threshold (τ)

Im
p
ro

v
e
m
e
n
t
in

M
A
E

(%
)

 

 

CF+ CF++

(b) NF Data Set

Figure 4.1: Accuracy improvements with varying τ values for CF+ and CF++
schemes

sparse nature, increasing τ values affect accuracy adversely for NF data set.

Therefore, the best improvement for NF is obtained at τ=0.1 with 3.2%, where

CF+ scheme achieves 3.8%.
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Figure 4.2: Performance improvements with varying τ values for CF+ and
CF++ schemes

Performance improvements, on the other hand, are vast. As can be

followed from Fig. 4.2, CF+ scheme introduces extra burden compared to

traditional CF scheme and degrades performance by 5.5% for MLM data set.

However, losses due to integration of the similarity function is negligible in NF

data set due to extreme sparsity. Also, improvements due to preprocessing

are significant for both data sets. As τ grows, online performance enhances

for CF++ scheme, as expected. Improvements are about 98% and 77% for

MLM and NF data sets, respectively, where the highest quality of predictions
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are obtained, i.e., τ=0.5 for MLM and τ=0.1 for NF. It can be concluded

that employing the proposed preprocessing, at a level of satisfactory quality

of predictions is obtained, is also beneficial for improving scalability.

4.5.2 Evaluation of privacy-preserving schemes

After examining the effects of the proposed preprocessing scheme on non-

private CF schemes and determining the optimum threshold values for dif-

ferent data sets, privacy-preserving environment is then evaluated experimen-

tally. First, effects of applying the similarity function onto traditional PPCF

algorithm, which is called PPCF+, is investigated. Then, the preprocessing

method is implemented onto PPCF+ and PPCF++ scheme is derived. Sim-

ilar to the experiments in non-private environment, the success of PPCF+

and PPCF++ schemes against traditional PPCF approach is scrutinized by

varying τ from 0.05 to 0.5. For data disguising procedure, standard deviation

of produced random values (σmax) is kept constant because there is no need to

investigate such parameter’s effects as it obviously deteriorates accuracy inline

with the distortion amount, as shown in Fig. 3.2. However, due to the results

of (Huang et al., 2005) and (Kargupta et al., 2003), utilizing σ ≤ 1 may permit

recovery of original data from perturbed values. Thus, σmax is kept at 2.0 dur-

ing the experiments. Also, maximum forgery rate (βmax) is kept constant at

25. Effects of different distortion values and varying βmax values on accuracy

are studied in Section 3.2 and also can be found in (Polat and Du, 2005a; Bilge

and Polat, 2012). Due to randomized selection of σ and β by each user, the

experiments are repeated 100 times and overall averages of the outcomes are

demonstrated in Fig. 4.3.

As demonstrated in Fig. 4.3, the similarity function is effective in privacy-

preserving algorithms, as well. PPCF+ scheme manages to reduce the error

values by 3.42% (from 0.818 to 0.790) in MLM data set and 3.53% (from
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Figure 4.3: Accuracy improvements with varying τ values for PPCF, PPCF+,
and PPCF++ schemes

0.881 to 0.849) in NF data set compared to original PPCF scheme. Such

improvements are similar to the ones achieved in non-private schemes. In

addition, applying preprocessing causes further improvements in quality of

predictions. For τ=0.05 and τ=0.1 values, PPCF++ scheme performs better

than PPCF+ in both data sets. However, increased τ values like τ=0.5 cause

too much loss of information; and therefore, accuracy diminishes. However,

it can be concluded that for τ ≤0.2, PPCF++ scheme is able to perform at

least as efficient as PPCF+ scheme in terms of accuracy for both data sets.

Although accuracy improvements are similar to non-private schemes’ results,

to present a clear overview, elapsed time (in seconds) to produce predictions

are demonstrated in Table 4.2.

Table 4.2: Online performance with varying τ values for PPCF, PPCF+, and
PPCF++ schemes

PPCF PPCF+
PPCF++

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5

MLM 1,285s 1,351s 416s 171s 70s 37s 28s 26s
NF 18,822s 18,891s 5,247s 4,235s 2,964s 1,740s 1,019s 838s

Table 4.2 presents elapsed time spent for producing five predictions for

each active user. Thus, 9,060 and 15,000 predictions are generated for MLM

and NF, respectively. It is clearly seen that PPCF+ scheme brings extra
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online computational cost and the proposed PPCF++ scheme significantly

enhances scalability with increasing τ values. Combining these experimental

results with the ones presented in Fig. 4.3, it can be concluded that applying

the preprocessing technique with τ=0.2 provides an optimal performance in

terms of both accuracy and scalability. Since in such arrangement, quality of

predictions is very close to the values achieved by PPCF+ scheme, yet online

performance is enhanced by about 94% for MLM and 84% for NF data sets.

4.6 Conclusions

In this chapter, applying a target item-based similarity function on privacy-

preserving collaborative recommender systems is investigated, which was pre-

viously adapted on non-private schemes and performed well. It is theoretically

examined how to integrate such similarity function onto privacy-preserving

collaborative filtering architecture and its applicability is proven. It is also

studied how individual privacy is preserved by following such scheme. How-

ever, applying the similarity function introduces slight extra computational

costs to the existing schemes. In order to alleviate this problem, item simi-

larities are utilized, which were already computed for the similarity function.

Motivating from the same idea of ranking item ratings with the target item

similarities, eliminating relatively dissimilar items from the original matrix is

proposed before calculating user similarities. Such elimination reduces the size

of user-item matrix, which helps scaling the system. After analyzing the pro-

posed preprocessing scheme with respect to overhead costs, several experiments

are performed to scrutinize the effects of the scheme in both non-private and

privacy-preserving environments. According to overall empirical outcomes,

implementing the similarity function onto privacy-preserving framework re-

sults promising as the quality of predictions are enhanced like in non-private

schemes. Moreover, the proposed preprocessing scheme achieves slightly better
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accuracy in privacy-preserving framework. Most importantly, improvements

in terms of online performance are major, where traditional and accuracy-

enhanced CF and PPCF schemes are significantly outperformed.

Although improvements are similar for both MLM and NF , the prepro-

cessing scheme performs slightly better for MLM because it is more than three-

times dense than NF. Since NF is extremely sparse, it is expected that there is

already limited number of co-rated items between users, which makes harder

to improve online response time by eliminating dissimilar items. Moreover,

improvements in quality of predictions are also less than the values achieved

in MLM. The same reason applies here, as well. Since the likelihood of finding

co-rated items between users gets harder, item elimination causes too much

loss of information, which makes accuracy worse. It is shown that combining

the similarity function with the preprocessing method achieves better accuracy

and online performance in privacy-preserving framework.
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5. AN IMPROVED PRIVACY-PRESERVING DWT-

BASED COLLABORATIVE FILTERING SCHEME

In this chapter, privacy-preserving schemes are proposed to produce accu-

rate predictions efficiently based on DWT without deeply exposing customers’

privacy. Also, a preprocessing method, which orders items before applying

DWT is recommended to boost accuracy. Experimental results show that the

proposed privacy-preserving methods are able to offer referrals with decent ac-

curacy and the preprocessing method utilized to sort items improve accuracy.

5.1 Introduction

DWT has a wide application area in science, engineering, mathematics, and

computer science. It is widely used for audio and video compression (Kumari

and Sadasivam, 2007), object recognition (Cheng and Chen, 2006), and nu-

merical analysis (Van de Plas et al., 2008). Furthermore, it has an ability to be

combined with previously discussed dimensionality reduction techniques like

SVD (Zhao and Ye, 2009), PCA (Korürek and Nizam, 2010), and clustering

(Yu and Kamarthi, 2010) in data mining.

One approach to enhance scalability of CF systems is to apply DWT

techniques on the input matrix. Russell and Yoon (2008) apply DWT to

recommender systems, where input data are transformed and reduced signifi-

cantly to decrease the amount of time for producing a prediction. DWT-based

CF schemes significantly overcome the scalability problem. However, they fail

to protect individual users’ privacy. Moreover, although such schemes provide

accurate predictions, the quality of the recommendations provided by DWT-

based CF schemes can be further improved by applying some preprocessing

methods.
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In this chapter, it is investigated how to produce DWT-based referrals

relying on perturbed data. In other words, privacy-preserving schemes are

proposed in which users disguise their ratings and rated items before they

send them to the data collector. Also, preprocessing methods are proposed

to order items before applying DWT so that accuracy can be improved. It

is hypothesized that items’ ordering might affect the information losses in

DWT. If it is possible to order the items in such a way to reduce information

losses, the quality of the predictions can be improved without sacrificing on

scalability. Supplementary costs due to proposed schemes are analyzed and

real data-based experiments are conducted to assess accuracy changes.

5.2 DWT-based Collaborative Filtering

DWT reduction approach is applied to CF by Russell and Yoon (2008) using

Haar wavelets to reduce the amount of items in order to achieve scalability

in recommendation process. DWT-based CF approach basically divides the

original user-item matrix into two components, approximation and detail co-

efficients, using Eq. 5.1:

Capproximation =
uj + uj+1√

2
,Cdetail =

uj − uj+1√
2

. (5.1)

While approximation coefficient is a time domain expression of original

data, detail coefficient is a frequency domain perspective of it. Both coefficients

consist of half of the items compared to original user-item matrix. However,

there is a much difference between coefficients in the perspective of informa-

tion held by them as approximation coefficient holding a very large portion of

it. With this feature of DWT, consecutive transformations can be performed

proceeding exclusively on approximation coefficient and hereby obtaining a

very much compact form of original data with a sacrifice of negligible amount
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Figure 5.1: A depiction of DWT

of information. Since DWT process halves the size of an original user-item

matrix of size n ×m, applying transformation t times, a compact form with

size n × (m/2t) is obtained as depicted in Figure 5.1.

In (Russell and Yoon, 2008), such a model (the reduced data) is used to

determine similarities among users. Similarity calculation between two users

is calculated using PCC. In the sense of such an approach to determine simi-

larities, entire process is accelerated remarkably because the number of items

significantly decreases, which enhances the scalability of the system. After de-

termining similarities and selecting the nearest neighbors to a particular user,

items with the highest predicted ratings are provided as a recommendation

using adjusted weighted sum CF method. The approach presented in (Rus-

sell and Yoon, 2008) is shown to perform well in terms of both accuracy and

performance. It is proven by experiments that DWT is a solution to overcome

scalability and accuracy problems of CF systems.

5.3 Privacy-Preserving DWT-based Prediction Scheme

The proposed privacy-preserving scheme is explained in detail. Reducing per-

turbed user data and producing online predictions using DWT is investigated.

5.3.1 Reducing perturbed data using DWT

As explained by Russell and Yoon (2008), a Haar-based DWT produces an

approximation coefficient for each pair in the distribution being transformed.
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Given a user-item matrix U , transformed ratings matrix can be easily obtained.

The server can transform the disguised user-item matrix U ′, as in the following

steps, using the Haar-based DWT:

1. It fills empty cells with related user averages to obtain a dense set. To

do so, it should estimate such values from disguised data. The average

z-scores can be estimated from perturbed data for each user, as follows:

z′u =
∑Ru
j=1 z

′
uj

Ru

=
∑Ru
j=1(zuj + ruj)

Ru

=
∑Ru
j=1 zuj
Ru

+
∑Ru
j=1 ruj
Ru

≈
∑Ru
j=1 zuj
Ru

. (5.2)

Since the random numbers are drawn from a distribution with zero mean,

the expected value of their average is zero. With increasing Ru values,

the observed value of random number averages will become closer to

zero. Thus, the server can estimate averages of masked z-scores, fills the

empty cells, and obtains a dense set.

2. It then estimates approximation coefficients using the Haar-based DWT

based on masked z-scores, as follows:

z′approximationu
=

z′uj + z′uj+1√
2

=
(zuj + ruj) + (zuj+1 + ruj+1)√

2

=
zuj + zuj+1√

2
+
ruj + ruj+1√

2
≈
zuj + zuj+1√

2
. (5.3)

For similar reasons, approximation coefficients can be estimated with

decent accuracy from perturbed data. With increasing level of transfor-

mations, contributions of each pair of random numbers will converge to

zero. Notice also that since users do not add or insert random numbers

to all cells in their vectors, some pairs might have only one perturbed

value, some may have undisguised pairs. In all cases, due to the nature
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of random number distribution and data transformation, approximation

coefficient can be estimated from perturbed data.

3. After performing data transformation one to three levels, it finally gets

U ′′ with size n×mt including transformed masked z-scores. The compu-

tations so far are done off-line. It can now estimate predictions online.

5.3.2 Online recommendation estimation

Online computations include transforming a’s data, neighborhood formation,

and prediction estimation, explained in detail in the following.

Transformation of a’s Data. Since a normalizes her ratings into z-scores

and disguises them along with rated items like other users do, the server can

similarly fill her empty cells and transform her data by applying DWT.

Formation of Neighborhood. This step consists of (i) estimating similar-

ities between a and each user in the database and (ii) selecting the nearest

similar users. The similarity weights are estimated based on PCC from masked

and transformed data, as formulated by Eq. 2.4.

Recommendation Estimation. Since all users, including active users, send

normalized ratings to the server, paq (the prediction for a on item q) can be

estimated using Eq. 2.5 and Eq. 2.6. In other words, the server is still able

to estimate predictions from disguised data without violating users’ privacy.

Although the users are free to use either uniform or Gaussian distribution with

a randomly chosen σ over a specified range, the server is still able to compute

referrals. Due to z-scores, noise data, filled cells, and variably perturbing

methods, the server cannot derive users’ private data from received data.

5.3.3 Reducing U ′ with minimum information loss

DWT is used to transform a discretely sampled continuous signal into its time

and frequency domain components in signal processing and coding applica-
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tions. The reason why DWT is very successful in representing a signal in

terms of its time and frequency components is that it produces approximation

and detail coefficients from two consecutive samples, which are relatively very

close to each other in the spectrum due to being the samples of a continuous

signal. However, this condition is not satisfied while applying DWT to rec-

ommenders systems for the purpose of transforming and reducing a user-item

matrix supposing items as discrete samples of a signal. In the transformation

process, as explained previously, two consecutive samples produce an approx-

imation coefficient through division of their sum by
√

2. Therefore, if two

consecutive samples are far from each other in the spectrum, at the end of

the transformation, those samples will neutralize each other’s effect causing

information loss in original data. We hypothesize that if similar items are

transformed together, such transformations might reduce information losses

in the matrix. For this reason, we propose to order items of the matrix in

such a way so that the most similar items are transformed together. Due to

the reduced information losses, the quality of the recommendations then can

be improved, as well. Since the natural order is not necessarily suitable for

transformation, we propose to merge the most similar items together to form

non-neutralizing consecutive pairs in the matrix. Moreover, this process does

not affect the online performance because such orderings can be conducted

off-line. Thus, accuracy can be improved without sacrificing on online perfor-

mance while protecting users’ privacy.

Two items, x and y, can be thought of as two vectors in the n dimensional

space and the similarity between them, sim(x, y), is measured by means of the

cosine of the angle between those vectors, as described in Eq. 5.4 (Sarwar et al.,

2001).

sim(x, y) = cos(Ð→x ,Ð→y ) = x ⋅ y
∣∣x∣∣2 × ∣∣y∣∣2

. (5.4)
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Similarity weights between all items are estimated using Eq. 5.4 off-line

to form proper pairs so that information losses are minimized before transfor-

mation. Two different approaches are proposed to arrange items, as follows:

Single Arrangement (SA): The most similar items are put adjacently once

and DWT is repeatedly performed on arranged matrix.

Multiple Arrangements (MA): After putting the most similar items ad-

jacently, this arrangement process is repeated for all transformations.

Without privacy concerns, estimating similarities between items using

cosine similarity measure is an easy task. However, since users disguise their

z-scores using RPTs, data collector should be able to estimate such weights

from masked data, as well. Note that each user masks her z-scores variably,

i.e. using whether Gaussian or uniform distributions with different σ values.

The server can estimate sim(x, y) values from perturbed data with decent

approximation, as explained in Section 4.3.2.

5.4 Performance and Overhead Costs Analysis

The proposed schemes should be analyzed in terms of both online and off-line

costs like storage, communication, and computation costs. Notice that off-line

costs are not that critical for overall performance.

The proposed privacy-preserving schemes have no effect on storage costs.

In other words, online and off-line storage costs do not change due to privacy-

preserving measures. The storage cost is in the order of O(nm) for both

the original and the proposed privacy-preserving DWT-based CF schemes. In

the proposed schemes, number of communications in online and off-line phases

remains the same compared to the original algorithm. Moreover, during online

interactions, amount of transferred data remains the same, as well.
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Due to the nature of data disguising schemes used in the proposed schemes,

online computation costs do not change. In the proposed schemes, the server

performs the same tasks like it does in the original DWT-based CF algorithm.

Privacy-preserving measures do not cause any additional computation costs

during online phase. However, the proposed preprocessing schemes introduce

extra computation costs during off-line phase. Although online computation

costs are the critical ones for web-based applications; nevertheless, it is still

needed to analyze off-line computation costs. Compared to the DWT-based

CF algorithm, item-ordering scheme requires an extra off-line computation

costs. In an n ×m user-item matrix, a similarity computation between two

items requires n multiplication operations according to cosine-based similar-

ity calculation. Also, since such similarity computation is performed among

all items, there will be (m − 1) + (m − 2) + ⋯ + 1 + 0 = (m−1)×(m−2)
2 similarity

calculations for all m items. Therefore, when the server utilizes SA method

to order items, this requires extra off-line computation costs in the order of

O(m2n). If it employs MA approach for item ordering, it needs to apply item

ordering multiple times, where each time number of calculations decreases by

four times. Although total number of similarity computations in MA approach

increases compared to the ones in SA, the number of similarity computations

are still in the order O(m2n).

5.5 Experimental Evaluation

Privacy-preserving schemes definitely cause a decrease on accuracy due to con-

flicting goals privacy and accuracy. Item-ordering preprocessing is proposed

to minimize information loss due to applying DWT on user-item matrix. Al-

though privacy-preserving schemes make accuracy worse, item-ordering scheme

might recover such losses. During experiments, the original non-private DWT-

based CF scheme will be referred as DWT and the privacy-preserving DWT-
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based CF scheme as PPDWT. Also, the preprocessed PPDWT schemes will

be referred as SA and MA for single and multiple arrangements, respectively.

Experiments are performed using MLP and MLM data sets. While MLP

is utilized completely, 1,000 users are uniformly randomly chosen from MLM

among whom provided at least 40 ratings. Data sets are divided into train

and test sets for each experiment. For test purposes, 40% of all available

actual ratings are uniformly randomly chosen. Each time a rating is taken into

consideration, the user whom that rating belongs to is treated as the active

user and the remaining users are treated as train users. Data are transformed

for three levels using DWT because it is determined to be an optimum value

according to (Russell and Yoon, 2008).

5.5.1 Evaluating privacy-preserving DWT-based CF schemes

DWT and PPDWT schemes are compared with respect to the quality of

produced predictions by varying number of neighbors (k) utilized in prediction

production process from 10 to 200. Similar to the reasons referred in Chapter

4, σmax and βmax parameters are kept constant at 2 and 25%, respectively

for data disguising procedure. Due to randomization, the experiments are

repeated 100 times and average of the outcomes are demonstrated. Overall

accuracy results of DWT and PPDWT schemes are presented in Fig. 5.2.
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Figure 5.2: MAE values for varying k values
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For DWT scheme, 10 and 50 neighbors provide the best results for MLP

and MLM, respectively, as seen from Fig. 5.2. With increasing number of

neighbors from 10 to 100, accuracy becomes stable for MLM. For neighbors

larger than 100, the quality of the predictions becomes worse. For MLP, ac-

curacy decreases with increasing number of k up to 100 and becomes stable

after that. For PPDWT scheme, trials to determine the optimum k show

that incorporating 25 neighbors for MLP with an MAE of 0.8695 produce the

best results. Similarly, for MLM, 10 neighbors with an MAE of 0.8308 and 25

neighbors with an MAE of 0.8335 achieve the best results. As seen from Fig.

5.2, it is not reasonable to collaborate with more than 25 neighbors, because

accuracy gets worse with more than 25 neighbors for PPDWT scheme.

5.5.2 Evaluating item ordering methods

Due to the randomness used to preserve users’ privacy, accuracy is expected

to decrease. As shown by previous experimental results, accuracy slightly

becomes worse due to privacy-preserving measures. However, the items can be

rearranged, as explained in Section 5.3.3, to reduce information loss caused by

neglecting detail coefficients of transformation so that accuracy is improved.

To investigate how item ordering affects accuracy, experiments are conducted

using both data sets while utilizing the proposed two preprocessing methods

to order items. After performing experiments 100 times, overall averages in

terms of MAE are displayed in Fig. 5.3 for both data sets.

As can be seen from Fig. 5.3, the SA scheme does not have a positive

effect on accuracy for MLP; however, it has a slightly encouraging achievement

for MLM. Unlike the SA method, the MA scheme has much more optimistic

consequences for both data sets. These results actually support the main

motivation to arrange items to reduce information loss. The results presented

in Fig. 5.3 belong to three-level transformation as stated previously and since
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Figure 5.3: Accuracy vs. item ordering schemes for both data sets

an arrangement takes place at every step in the MA scheme, accuracy gets

better at the final transformation step. However, in the SA scheme, there

is one arrangement only, which takes place in the first transformation step.

Therefore, the positive effect of arrangement is either lost or negated reaching

up to third transformation. On the other hand, the MA scheme cumulates

the enhancement through arrangement and produces more accurate results

compared to PPDWT.

Although the proposed schemes, especially the MA, improve accuracy,

such improvements do not entirely compensate the losses due to privacy con-

cerns for MLP data set. However, as can be seen from the outcomes, they

both enhance the quality of privacy-preserving scheme-based referrals. In ad-

dition, such transformation performs better in larger data sets, as expected.

Especially, MA scheme recovers losses due to privacy protection mechanism

in MLM data set.

5.6 Conclusions

DWT-based CF scheme is able to overcome the scalability problem and pro-

duce predictions with decent accuracy. However, it fails to protect privacy.

Privacy-preserving schemes are proposed in order to alleviate privacy problem
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that DWT-based CF scheme faces. Due to distortion on input data, the quality

of the referrals becomes worse. However, compared to the original DWT-based

CF scheme, relative errors due to proposed scheme are about 4.7% for MLP

and 10% for MLM. Such losses can be considered acceptable because accuracy

and privacy are conflicting goals. Thus, the proposed scheme is able to achieve

privacy while sacrificing little from accuracy. Like accuracy and privacy, per-

formance is also among the goals that should be accomplished. Applying

privacy-preserving methods might introduce supplementary costs. Online per-

formance is extremely critical for the success of CF systems. It is demonstrated

that although the proposed scheme introduces additional costs, as expected,

they are negligible and they do not immensely affect online performance.

In DWT-based CF schemes, item ordering is an important issue. DWT

can be applied to naturally ordered items. However, it is hypothesized that

items can be ordered based on some metrics in such a way so that accuracy

might be enhanced. For this purpose, two item arrangement methods are

proposed. Although single arrangement scheme does not perform well for

one of the sets, it is shown that multiple arrangement approach improves

accuracy. Empirical results show that multiple arrangement approach is able

to reimburse some of the losses while not introducing any extra online costs.
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6. A COMPARISON OF CLUSTERING-BASED PRI-

VACY PRESERVING COLLABORATIVE FILTER-

ING SCHEMES

In this chapter, an item features-based profiling of users is proposed to over-

come sparsity while performing clustering. Then, applying k -means cluster-

ing, fuzzy c-means method, and SOM clustering while preserving users’ con-

fidentiality is studied in order to cope with scalability and accuracy problems

of PPCF schemes. Empirical outcomes demonstrate that privacy-preserving

methods are able to offer precise predictions and fuzzy c-means method achieves

the best low cost performance due to its approximation-based model.

6.1 Introduction

Prediction estimation process of user-based PPCF systems basically automates

the old habit of “word-of-mouth”. However, all so-called dependable PPCF

recommendations rely on doubted past preferences of existing users, which

might simply be imprecise or even inconsistent. At this juncture, due to their

uncertainty and approximation-based performance, PPCF technologies can be

subject to soft computing methods such as fuzzy logic and neural computing

rather than conventional (hard) computing techniques.

It is proposed to employ a feature-based profiling (FBP) of users’ ratings

based on item categories to get rid of the effects of sparse nature of user-item

matrix and empower separation skills of clustering algorithms. Such profiling

performs a mapping of rating profiles of users onto a category-based profile.

Feature-based profiles are much smaller and dense facilitating to determine

similarities with decent accuracy and operate clustering algorithms more effi-

ciently. Then, it is proposed to employ some well-known non-hierarchical clus-
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tering algorithms, namely, k -means clustering (KMC), fuzzy c-means method

(FCM), and SOM clustering to PPCF schemes and provide a comparison in

terms of accuracy and performance among them. It is especially expected

to enhance tractability and robustness of PPCF schemes by integrating them

with fuzzy and neural computing approaches. This chapter presents the first

analysis and evaluation on integrating uncertainty-based soft computing con-

stituents on PPCF framework.

6.2 Clustering Algorithms and Clustering-based Colla-

borative Filtering

In CF applications, clustering is widely used to cope with the scalability prob-

lem. It reduces the size of data set involved in CF process. KMC is probably

the most well-known clustering approach, where k random initial objects are

chosen as centers one for each cluster (MacQueen, 1967). Then, n objects are

compared with each seed by means of discrimination criterion and assigned to

the closest cluster. This procedure is performed repeatedly and at each stage,

cluster centers are recalculated as the average of objects assigned to corre-

sponding cluster. The algorithm converges when the modification in cluster

centers between successive stages is close to zero or less than a pre-defined

value. At the end, each object is assigned to one cluster only.

Like KMC, FCM also requires c pre-defined initial objects as cluster

centers (Bezdek, 1981; Yang et al., 2009). At each stage of the algorithm, a

membership value for every object is estimated to each cluster center using

a comparison criterion. The cluster centers are recalculated at each stage

according the membership of objects to clusters as their weighted average.

At the end, the algorithm provides the degree of membership to each cluster

center and according to those memberships; objects either can be included in

more than one cluster or to the cluster for which the degree of membership is
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higher. Unlike KMC, FCM is more flexible [25] because it provides objects,

which might have more than one interface with clusters. Such objects deserve

more attention to figure out why they contribute to more than one cluster.

In mathematical terms, given a data set D = {x1, x2, . . . , xn}, FCM minimizes

the objective function given in Eq. 6.1, with respect to U (a fuzzy c-partition

of the data set) and to V (a set of c prototypes), where Q is a real number

greater than 1, Vi is the centroid of cluster i, uij is the degree of membership of

object xj belonging to cluster i, d2(⋅, ⋅) is an inner product metric, and c is the

number of clusters. The parameter Q controls the “fuzziness” of the resulting

clusters (Gan, 2007).

JQ(U,V ) =
n

∑
j=1

c

∑
i=1
uQijd

2(xj, Vi). (6.1)

SOM is a type of artificial neural network reducing dimensions by pro-

ducing a map of usually one or two dimensions that plots the similarities of the

data by grouping similar objects together (Kohonen, 1989). SOM architecture

consists of two fully connected layers: an input layer and a Kohonen layer.

The number of neurons in the input layer matches the number of attributes of

the objects. Each neuron in the input layer has a feed-forward connection to

each neuron in the Kohonen layer. The neuron in the Kohonen layer with the

biggest input will become the winning neuron. The algorithm forms the SOM

by first initializing the weights in the network by assigning them small random

values (Gan, 2007). It then follows three essential procedures: competition,

cooperation, and adaptation.

Aforementioned clustering algorithms can be employed as a preprocess-

ing to group similar users in the same cluster and dissimilar ones in diverse

clusters off-line in order to enhance online performance or scalability of CF

schemes. After collecting users’ preferences, the server constructs an n ×m
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user-item matrix U . Then, it groups users into c clusters using different clus-

tering approaches off-line. When an active user a requests a prediction for a

target item q, she sends her known ratings and a query to the server during an

online interaction. The server determines a’s similarity to each cluster center

using PCC (Eq. 2.1). Once a’s cluster is determined, the similarities between

a and all her cluster members are calculated via PCC, similarly. Notice that

after clustering, the server estimates n/c similarities instead of n similarities

online. The nearest k users in that cluster are chosen as neighbors. Finally,

a prediction is produced as a weighted average of those neighbors having a

rating on q using Eq. 2.2.

6.3 Privacy-preserving Clustering-based Recommenda-

tion Schemes

To achieve individual users’ privacy, RPTs are applied, as explained in Sec-

tion 2.2. Estimating users’ FBPs, performing clustering on masked data, and

producing predictions online on clustering are explained in the following.

6.3.1 Estimating feature-based profiles

Similarity weights between cluster centers and user profiles must be estimated

in order to cluster users. Calculating the similarity weights in CF relies on

comparing commonly rated fields, as seen from Eq. 2.1. However, number of

items increases constantly and provided ratings on whole product range re-

mains a very small fraction of them leading the sparsity problem. Difficulty

of computing similarities accurately is even more amplified due to the spar-

sity. Even if there are commonly rated items, since the number of common

ratings will be very few, similarity calculation cannot be accurate and thereof

clustering algorithms cannot perform well. Although individual ratings are in-

dependent, items correlate among themselves as they have common features,

where number of features are naturally very much less than number of items.
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In order to overcome such shortcomings, instead of employing collected

rating/preference profiles of users in clustering stage, it is proposed to gener-

ate additional profiles on categories of items of which a preference exists (Bilge

and Polat, 2011). Individual ratings are independent, but somehow they are

correlated due to common features. The objective here is to reduce typically

sparse and large rating-based vectors into smaller and dense FBPs. Hence, it

becomes possible to compute similarities even if there are no or very few com-

mon ratings. Moreover, since such FBPs are more compact and fixed in size,

amount of time to calculate similarities becomes stabilized. To generate FBPs,

it is first needed to resolve the categories of the product scale. Therefore, if

such categories are determined, then histograms of absolute frequencies can be

produced by giving a weight to corresponding features of a rated item. Those

weights can be simply equal to each other or can also reflect rankings between

preferences. Two approaches are proposed to generate FBPs, as explained in

the following:

Purchase-based profiles (PBPs). PBPs are generated by checking whether

an item is rated or not; and if it is rated (means previously purchased), then

corresponding feature categories of that item are incremented by 1. In other

words, if the user purchased an item, each category that item belongs to is

increased by 1. Note that this profiling approach focuses on market basket

data rather than individual opinions of users’ on items.

Rating-based profiles (RBPs). RBPs are generated by checking whether

an item is rated or not again; and if it is rated (means an opinion is provided on

item), then regarding feature categories of that item are augmented by match-

ing rating value. In other words, each rated item’s categories are increased by

as much as their matching rating values. RBP scheme focuses on how much

users like or dislike certain types of item categories.
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Table 6.1: A sample user-item matrix

i1 i2 i3 i4 i5

Alice 2 � 3 � 1
Bob � 2 � 4 �

Table 6.2: Genre features of movies

Comedy Drama Romance Action Fantasy

i1 1 1 1 0 0
i2 0 1 0 0 0
i3 1 0 1 0 0
i4 0 0 0 1 1
i5 0 1 0 0 1

To understand FBP producing procedure, it is better to examine a small

user-item matrix, given in Table 6.1, including ratings for movies in a 5-star

scale, where � indicates an unrated item. Suppose that genre features of movies

are also provided as having at least one from the set [Comedy, Drama, Ro-

mance, Action, Fantasy] in Table 6.2. FBPs (RBPs and PBPs) are generated

and depicted in Fig. 6.1 according to the example given in Tables 6.1 and 6.2.
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1 11
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Figure 6.1: Feature-based profiles for Alice and Bob

As seen from Fig. 6.1, Alice’s PBP is [2, 2, 2, 0, 1] because there are two

items, i1 and i3, whose genre includes Comedy and she rated both items; hence,

corresponding PBP value is 2; similarly, there are two items, i4 and i5, whose

genre includes Fantasy and she rated one of them only; hence, corresponding

PBP value is 1, and so on. Similarly, Bob’s PBP can be obtained as [0,
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1, 0, 1, 1]. For the same genres, as seen from Fig. 6.1, Alice’s and Bob’s

RBPs are [5, 3, 5, 0, 1] and [0, 2, 0, 4, 4], respectively. Since there are two

items, i1 and i3, whose genre is Romance and Alice rated both items as 2

and 3, respectively, the corresponding RBP value is 2 + 3 = 5. Similarly,

since there is only one item (i4) whose genre is Action and Bob rated it as 4,

the corresponding RBP value is 4 for that genre. Moreover, obtained FBPs

should be normalized because in real-world data sets, every user rates different

number of items. Similarly, number of features might be different for various

items, as i1 has three features while i2 having only one in this example. Due

to these reasons, produced FBPs might fluctuate. In order to smooth such

effects, FBPs are normalized by dividing each profile value by the sum of

profile. Therefore, PBPs are updated as [27 ,
2
7 ,

2
7 ,0,

1
7] and [0, 13 ,0,

1
3 ,

1
3] for Alice

and Bob, respectively. Similarly, RBPs are normalized as [ 5
14 ,

3
14 ,

5
14 ,0,

1
14] and

[0, 2
10 ,0,

4
10 ,

4
10] for Alice and Bob, respectively. Note that similarity between

these two users cannot be calculated over rating profiles as they do not have

any co-rated items; however, it can be calculated over their FBPs and such

circumstances are not rare on real-world data sets.

6.3.2 Performing clustering on perturbed data

After estimating FBPs corresponding to collected disguised user vectors, the

server runs a clustering algorithm to group users relying on their FBPs. Given

U , it is an easy task to group users; however, it is a challenge to cluster users

when the server holds the disguised user-item matrix U ′. Thus, it can cluster

U ′ using aforementioned clustering methods, as follows:

KMC on perturbed data. The KMC algorithm can be considered in two

distinct phases: (i) initialization phase in which the algorithm randomly as-

signs the users into c pre-defined clusters and (ii) iteration phase, where the

distance (or similarity) between each user and each cluster center is computed
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and the user is assigned to the nearest cluster. The cluster centers of any

changed clusters is recomputed as the average of members of each cluster.

In the initialization phase, the server uniformly randomly assigns the

users into c pre-defined clusters. It then estimates the cluster centers by taking

the average of members of each cluster. Given n disguised data items, x′i for

i = 1,2, . . . , n, where x′i = xi + ri, their average can be estimated, as follows:

x′i =
∑ni=1(x′i)

n
= ∑

n
i=1(xi + ri)

n
= ∑

n
i=1(xi)
n

+ ∑
n
i=1(ri)
n

≈ ∑
n
i=1(xi)
n

. (6.2)

Since the random numbers are drawn from a distribution with zero mean,

the expected value of their mean is zero. With increasing n values, their

averages will converge to zero.

In the second step, the server needs to find out similarities between users

and cluster centers and updates cluster centers. PCC is employed as the dis-

crimination criterion among users; and it can also be used to find out similarity

between an individual user and a cluster center based on perturbed data, as

formulated in Eq. 2.4. After estimating similarity weights, each user is as-

signed to the closest cluster. The server then updates clusters centers, as

explained previously, using Eq. 6.3, as follows:

Ci =
∑
NCi
j=1 z

′
uk

NCi

=
∑
NCi
j=1 (zuk + ruk

NCi

=
∑
NCi
j=1 zuk
NCi

+
∑
NCi
j=1 ruk
NCi

≈
∑
NCi
j=1 zuk
NCi

, i = 1,2, . . . , c (6.3)

in which Ci represents cluster center of ith cluster, NCi
stands for the number

of users in regarding cluster and c is the number of clusters. As a result, the

server can compute the similarities between users and calculate cluster centers

from perturbed data; hence, it performs KMC with adequate precision.
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FCM on perturbed data. FCM is an extension of KMC for fuzzy clustering

and it can be roughly performed in three steps: (i) initialization step similar

to KMC to choose initial c centroids for clusters, (ii) computing a membership

matrix holding relationship levels of users to clusters, which is calculated as

a function of similarity degrees of each user to cluster centroids, and (iii)

updating each cluster centroid as weighted averages of each users’ membership

to each cluster centroid. It repeats steps (ii) and (iii) until a termination

criterion is reached.

The only difference between FCM and KCM is that a user can belong to

more than one cluster in FCM and cluster centers are estimated as weighted

averages in FCM. Basically, the same estimations are conducted in FCM. Thus,

the first step is easily achievable. Also, since similarity values appear in the

second step and a weighted average of contributions of each member is com-

puted in the third step of the algorithm, FCM can certainly be performed on

U ′, relying on the equivalences expressed in Eqs. 2.4 and 6.3, respectively.

SOM on perturbed data. SOM includes three essential processes after the

initialization procedure (Gan, 2007): (i) a competitive process to determine the

winning neuron, (ii) a cooperative process to define a topological neighborhood

for locating the center for cooperating neurons, and (iii) an adaptive process,

where weight vectors are updated according to the input vectors. Let u =

(z′u1 , z′u1 , . . . , z′ud)T be a user in U ′ selected randomly, where d is the dimension

of FBPs and the weight vector of neuron n in the Kohonen layer be wn =

(wn1 ,wn2 , . . . ,wnN
)T , where n = 1,2, . . . ,N and N is the number of neurons in

the Kohonen layer. To find the best match of user u with the weight vectors

w1,w2, . . . ,wN , inner products wT∗u is computed and the largest is chosen.
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The calculations can be approximately done on U ′, as shown in Eq. 6.4.

wT
∗u = wT

∗ z
′
u∗ = wT

∗ (zu∗ + ru∗) = w∗1(zu1 + ru1) +⋯ +w∗N(zud + rud)

= w∗1zu1 +w∗1ru1 +⋯ +w∗Nzud +w∗Nrud

≈ w∗1zu1 +⋯ +w∗Nzud (6.4)

in which ru∗ terms are generated from a distribution with zero mean; hence,

their multiplications with w∗ terms converge to zero and the equation holds.

In the second step, the topological neighborhood (hjt) is calculated, which

is a unimodal function calculated over the distance between winning neuron t

and excited neuron j. It can be calculated as the simple Euclidean distance.

However, since this function is computed employing none of the elements of U ′,

but two neurons, t and j, it can easily be found unaffectedly of RPTs process.

In the last step, the adaptation process, the weight vector wj of neuron j

changes due to user u. Given the weight vector w
(s)
j of neuron j at iteration

s, the new weight vector w
(s+1)
j is calculated, as given in Eq. 6.5

w
(s+1)
j = w

(s)
j + η(s)hj,i(u)(s)(u −w

(s)
j ), (6.5)

where η(s) is the learning parameter and is a constant; and hj,i(u)(s) is the

neighborhood function defined in the previous step. Therefore, it is necessary

to focus on u − w
(s)
j differences. Since u comprises of random values added

upon z-score values, the effect of random values will converge to zero in such

a difference computation as they are generated from a distribution with zero

mean. As these three steps of SOM clustering can be performed without

greatly affected from disguising procedure, it can be concluded that SOM

clustering can be performed precisely on U ′, without jeopardizing individuals’

confidentiality.
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6.3.3 Producing online recommendations privately

Typical CF-based recommendation estimation can be considered as a three-

step process: (i) calculating similarities between a and train users, (ii) locating

the nearest neighbors, and (iii) estimating a weighted prediction relying on the

most similar users’ rating on q.

After determining a’s cluster, similarities are calculated between a and

each user in her cluster using Eq. 2.4 based on perturbed data. After finding

similarities, the most similar k users are selected as neighbors to contribute

to the prediction process. Those users whose similarity weights satisfy a pre-

defined threshold can be chosen as neighbors. Alternatively, after sorting the

users decreasingly according to similarities, the first k users are selected as

neighbors. After forming the neighborhood, paq can be estimated using Eq.

2.5 and Eq. 2.6.

6.4 Overhead Costs Analysis

It is imperative to analyze the proposed FBP scheme, applied clustering algo-

rithms, and privacy preservation structure in terms of both off-line and online

costs to define their effects on overall performance of offered PPCF schemes.

Storage cost of traditional CF schemes is in the order of O(nm). Em-

ployed clustering algorithms and privacy preservation schemes do not introduce

any extra storage costs. However, producing PBPs and/or RBPs requires an

additional space in the order of O(nd) to record such FBPs, where d is the

constant number of item features.

Supplementary communication costs can be considered in two aspects:

(i) the number of communications and (ii) the amount of transferred data.

Communication costs with respect to these two aspects do not change in off-

line and online phases of the proposed clustering-based PPCF schemes.
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Additional computation costs are also expected. Off-line phase includes

two stages: (i) generating FBPs and (ii) obtaining a model through cluster-

ing. FBPs are generated in the order of O(nm) because it checks all items of

each users in the matrix. Running times of KMC, FCM, and SOM clustering

methods are in the order of O(ndc+1 logn), O(ndc2), and O(n2), respectively.

Actual performance of a recommender system is defined by its response time

to queries, which is determined by online computation load. In the proposed

scheme, the server estimates a prediction in an identical manner to the one it

does with non-private approach, which has an online running time in the order

of O(n2m). However, due to clustering efforts, number of neighbors to calcu-

late similarities between them reduces significantly. Defined clustering-based

PPCF approach requires three steps to produce an online prediction. First,

when a sends her data with a query, corresponding FBP of a is generated by

the server in the order of O(m) time because there are m items. Second, after

obtaining FBP, the cluster, which a belongs to is determined by calculating

similarity between a and all cluster centers. Having c clusters, calculating such

similarities via dot product is performed in the order of O(mc) time. Finally,

since users are grouped into distinct clusters, it might be assumed that there

are approximately n/c users in each cluster. Actually, this might not be the

case for FCM since users may be included in more than one cluster. Therefore,

it might be assumed that there are at most n/2 users in each cluster for FCM.

In such scenario, online running time of the proposed approach is in the order

of O(n2m/c2). As can be seen from this complexity expression, the higher the

number of clusters, the lesser the online running time is.

6.5 Experimental Evaluation

Experiments are conducted to investigate how explained three clustering al-

gorithms perform along with FBP method in terms of accuracy and efficiency
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on PPCF schemes. Evaluations are performed on MLP data set in which

movies contain at least one of 18 predefined genre categories. Experiments

are realized using a five-fold cross-validation experimentation methodology in

which the data set (U or U ′) is uniformly randomly divided into five subsets.

One of the subsets (Ui or U ′
i ) is used as the test set and the remaining four

subsets are used as the train set in each iteration i, where i = 1,2, . . . ,5. Af-

ter train and test users are uniformly randomly obtained, five rated items’

votes for each test (active) user are withheld, replaced their entries with null,

tried to be predicted, and compared against actual ratings. Experiments in

privacy-preserving framework are repeated 100 times due to randomization

and averages of results are presented. Trials are performed in MATLAB 7.9.0

environment using a computer with an Intel Xeon 2.8 GHz processor and 6

GB RAM. For clustering operations, MATLAB’s built-in functions are utilized

with default options except choosing ‘correlation’ distance measure (utilizes

PCC) for KMC, ‘Q’ as 2 for FCM, and one-dimensional feature-map through

500 epochs for SOM.

First, three clustering algorithms are employed along with the proposed

profiling scheme in CF framework in order to show how they affect perfor-

mance and accuracy without considering privacy issues. Then, such approach

is employed in privacy-preserving framework in the same manner. In both

frameworks, clusters are formed relying on FBPs of users via all three cluster-

ing algorithms, then original rating-based user-item matrix is utilized, either

U or U ′, and a prediction is estimated after calculating similarities based on

rating profiles.

6.5.1 Results and discussion

The parameters to test for CF and PPCF schemes throughout the experiments

are number of neighbors in recommendation process (k), pre-defined number
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of clusters (c) for clustering algorithms, and σmax. Detailed procedures and

results of conducted experiments are explained in the following.

Number of neighbors (k). First, trials are performed by varying the num-

ber of neighbors contributing to the recommendation estimation process in

both traditional CF and PPCF frameworks without employing clustering al-

gorithms. Optimum k values are searched, where k is varied from 3 to 100.

For PPCF scheme, βmax is kept at 25 and σmax at 1. MAEs are estimated and

displayed in Fig. 6.2.
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Figure 6.2: MAEs for varying number of neighbors (k)

Accuracy improves with increasing number of neighbors joining to the

recommendation estimation process, as seen from Fig. 6.2. However, while the

improvement is significant while k moves from 3 to 60, it becomes stable around

100 neighbors for both CF and PPCF schemes. On the other hand, employing

more than 100 neighbors might negatively affect the scalability problems, as

stated in (Herlocker et al., 2004). Thus, k parameter is fixed at 100 neighbors

to contribute the prediction estimation process in the rest of the experiments.

Number of clusters (c). Next trials are conducted to investigate effects of

varying c values on performance and accuracy while running clustering algo-

rithms. Obviously, as c increases, online time T spent on producing predictions

declines. However, increasing c may also cause losses in accuracy. Therefore,
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the behavior of clustering algorithms is investigated and an optimum value is

tried to be found by varying c from 1 to 10 in both CF and PPCF schemes.

Note that evaluating c=1 means there is no clustering at all, which constitutes

a baseline to compare the performance of clustering approaches. Other pa-

rameters are kept constant at k=100 for both schemes, βmax=25 and σmax=1

in PPCF scheme. Accuracy results are displayed in Table 6.3 and Table 6.4

including both profiling schemes for CF and PPCF frameworks, respectively.

Note that since both profiling schemes (PBP and RBP) show very similar

trends for the overall averages of T values, results are depicted for PBP scheme

only in Fig. 6.3 for CF and PPCF schemes.

Table 6.3: Comparing PBP and RBP for varying number of clusters for CF

c

1 2 3 5 7 10

PBP
KMC 0.7519 0.7561 0.7635 0.7732 0.7881 0.8054
FCM 0.7519 0.7543 0.7586 0.7595 0.7588 0.7620
SOM 0.7519 0.7549 0.7668 0.7800 0.7886 0.8103

RBP
KMC 0.7519 0.7604 0.7708 0.7837 0.8114 0.8293
FCM 0.7519 0.7603 0.7634 0.7706 0.7774 0.7803
SOM 0.7519 0.7604 0.7748 0.8050 0.8151 0.8379
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(a) Non-private scheme
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(b) Privacy-preserving scheme

Figure 6.3: Online time T (in seconds) for varying number of clusters

As can be followed from Table 6.3, when all three clustering algorithms

are employed along with both proposed profiling schemes without preserv-

ing privacy, all algorithms produce similar MAE values, where FCM performs
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slightly better than KMC and SOM, which are depicted in bold. There is

a slight decrease (from 0.7519 to 0.7543) in accuracy for c=2 while T almost

halves in FCM. Furthermore, it can be seen that MAE values for both profiling

schemes show similar trends, where PBP performs insignificantly better than

RBP. Likewise, it can be followed from Fig. 6.3(a) that, as c increases, online

time T spent on producing predictions reduces because number of users for

whom it is needed to calculate similarity weights decreases. FCM produces

predictions around 100 seconds for all values of c >1. Therefore, it can be con-

cluded that c=2 is the best option for FCM because MAE value corresponding

to two clusters is the smallest, which is about 0.7543.

Table 6.4: Comparing PBP and RBP for varying number of clusters for PPCF

c

1 2 3 5 7 10

PBP
KMC 0.7976 0.7956 0.8010 0.8170 0.8328 0.8580
FCM 0.7977 0.7943 0.7930 0.7957 0.7941 0.7944
SOM 0.7977 0.7946 0.7979 0.8128 0.8321 0.8661

RBP
KMC 0.7980 0.8033 0.8164 0.8488 0.8529 0.8630
FCM 0.7973 0.8734 0.9005 0.9027 0.9029 0.9047
SOM 0.7967 0.9157 0.9139 0.9153 0.9154 0.9167

When privacy measures are employed, clustering algorithms perform even

better results compared to no cluster approach. As shown in Table 6.4, all three

algorithms show very close MAE values to original PPCF approach with PBP

scheme, where FCM is the best among all (depicted in bold). When c=3, FCM

performs the smallest MAE, which is slightly better than the base approach

(0.7977 for base and 0.7930 for FCM). Moreover, KMC and SOM produce

similar outcomes in terms of MAE values with high accuracy. However, RBP

scheme is not able to produce accurate referrals. The reason for this conse-

quence is that RBP is affected much from privacy protection protocol. Within

the protocol, each rating is disguised with random numbers and additionally

fake random ratings are forged into the profiles. Although each existing rat-
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ing, whether it is genuine or fake, reflects as an increment by 1 to PBPs; they

affect RBPs proportional to their values. However, such values are perturbed

and they distort RBPs much more than they do PBPs. Online time T needed

to produce predictions shows similar trends while it does without preserving

confidentiality, as seen in Fig. 6.3(b). KMC and SOM produce predictions in

a logarithmically decaying time scale for increasing c; on the other hand, FCM

again shows a non-improving behavior in terms of T due to fuzzy clustering.

In short, while producing predictions with privacy concerns, it can be followed

that PBP scheme performs better than RBP and while FCM performs bet-

ter for all levels of c in terms accuracy, but it can only improve T by twice.

Thus, it might be useful to employ KMC or SOM if scalability concerns thwart

accuracy.

Overall performance by varying σmax. Final set of experiments are con-

ducted to show varying effects of data distortion level for all clustering algo-

rithms in PPCF framework. Choosing σmax totally depends on individuals’

demand on required privacy levels. Therefore, for this search, σmax parameter

is not fixed; but, it is varied to see all opportunities. However, k is set at 100,

c at 2, and βmax at 25 for all algorithms and PBP scheme is employed. Results

are presented in Table 6.5, where also MAE and T values are included for tra-

ditional CF algorithm (mentioned as Base) to form a comparison opportunity

to the reader.

Table 6.5: Overall performance with varying σmax values.

σmax Base KMC FCM SOM

MAE
0.5 0.7519 0.7884 0.7853 0.7868
1 0.7519 0.7935 0.7915 0.7918
2 0.7519 0.8135 0.8080 0.8108
3 0.7519 0.8622 0.8519 0.8562
4 0.7519 0.9143 0.9079 0.9055

T (s) 199 116 91 104
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As seen from Table 6.5, the quality of the predictions naturally gets worse

due to privacy concerns. However, although there are accuracy losses due to

privacy protection scheme, such losses are not vast. It is still possible to provide

recommendations with pretty good accuracy employing the proposed FBP

scheme and a clustering approach. Among examined clustering approaches,

FCM performs the best in terms of both accuracy and online performance.

Compared to the base algorithm, it produces 4,715 predictions in 91 seconds

compared to 199 seconds, which means a 45.7% enhancement in online time

T . Significance of obtained MAE values are presented by statistical t-tests for

all clustering algorithms. Significance tests are performed by comparing the

five-fold MAE results mutually between traditional CF algorithm and one of

KMC, FCM, and SOM clustering algorithms. One-tailed t-tests are performed

for all σmax values of 0.5, 1, 2, 3, and 4. It is hypothesized that the difference

between traditional CF algorithm’s and each clustering algorithms’ accuracy

values are not significantly diverse. Significance test results are presented in

Table 6.6.

Table 6.6: Statistical significance of the differences

σmax KMC FCM SOM

0.5 t=1.34* t=1.24* t=1.27*
1 t=1.48* t=1.43* t=1.42*
2 t=2.29** t=2.03* t=2.16**
3 t=4.06 t=3.48 t=3.84
4 t=6.27 t=6.04 t=6.09

For σmax values of 0.5 and 1, t statistics indicates that the difference

between traditional algorithm’s and each clustering algorithms’ accuracy is

not significantly different with a confidence level of 90% (indicated with *), as

seen from Table 6.6. Also, when σmax is increased to 2, the results are still

not significantly different with a confidence level of 95% (indicated with **).

However, for σmax values of 3 and 4, the differences between MAE values seem

to be significant, which is expected due to level of randomization. Since input
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vectors are disguised with random numbers distributing in a considerably large

range, privacy enhances with the cost of much accuracy loss. Bearing the trade-

off in mind, a σmax value of 2 seems harmonizing between privacy requirements

and accuracy losses. In conclusion, profiling and privacy protection schemes

along with clustering algorithms achieve confidentiality while sacrificing little

on accuracy but bringing a lot in scalability.

6.6 Conclusions

Clustering-based CF schemes’ privacy problem is relieved using RPTs. As ex-

pected, accuracy becomes worse due to privacy measures. However, compared

to the non-private scheme, relative errors due to privacy are not major as shown

with significance tests. Since accuracy and privacy are conflicting goals, such

losses are inevitable and can be considered acceptable. Thus, the proposed

scheme is able to protect confidentiality without jeopardizing on accuracy. At

least as important as accuracy and privacy, performance is also among the

goals that should be accomplished in CF. Applied clustering algorithms serve

well for scaling PPCF systems reducing online running time. Especially the

fuzzy approach offers a low cost solution for producing qualified referrals and

enhances robustness of PPCF systems by its approximation-based model.

An FBP approach is proposed to overcome sparsity related similarity

calculation problems in CF systems. By taking advantage of common features

among items, it is possible to produce much smaller and dense feature-based

profiles to be utilized in clustering processes. Although the proposed two

distinct approaches of producing feature-based profiles perform very well in

non-private CF approach, RBP scheme is affected much from data disguising

and not able to produce predictions with high accuracy. However, PBP scheme

performs well in PPCF schemes along with clustering. Additionally, due to

off-line computations, they do not cause any extra online costs.
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7. A SCALABLE PRIVACY-PRESERVING RECOM-

MENDATION SCHEME VIA BISECTING k-MEANS

CLUSTERING

In this chapter, a novel PPCF scheme based on bisecting k-means clustering

is proposed in which two preprocessing methods are applied. The first prepro-

cessing scheme deals with scalability problem by constructing a binary decision

tree through a bisecting k-means clustering approach while the second pro-

duces clones of users by inserting pseudo-self-predictions (PSPs) into original

user profiles to boost accuracy of scalability-enhanced framework. Sparse na-

ture of collections is handled by transforming ratings into item features-based

profiles. Empirical outcomes verify that combined effects of the proposed pre-

processing schemes relieve scalability and augment accuracy significantly.

7.1 Introduction

CF and PPCF schemes are classified as (i) memory-based, (ii) model-based, or

(iii) hybrid approaches (Breese et al., 1998; Al-Shamri and Bharadwaj, 2008;

Herlocker et al., 2004). Also, such methods might take product contents into

account. Bisecting k-means clustering is attracting attention mostly in the

fields of where lots of data present to be distinguished and analyzed, such as

object tracking (Dubuisson and Fabrizio, 2009), image processing (Thilaga-

mani, 2011), and document clustering (Steinbach et al., 2000). In those fields,

traditional clustering approaches fall short to process lots of data fast; thus, re-

searchers propose clustering objects recursively to process images for tracking

movement or graphical representations.

In this chapter, novel PPCF framework is proposed aiming at alleviat-

ing scalability and accuracy problems of state-of-the-art k -nearest neighbor-
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based methods by applying a two-level preprocessing scheme. Initially, effects

of sparseness on neighborhood formation is aimed to be relieved by a trans-

formation of rating data into item features-based profiles (FBPs) relying on

purchase data. Since number of item features is constant and extremely less

than number of items, such FBPs function as a dimension reduction mod-

ule. First preprocessing method focuses mainly on scalability issue and it is

at the heart of the proposed framework. In such preprocessing, a binary de-

cision tree (BDT) is constructed by recursively clustering FBPs via bisecting

k-means algorithm to locate the nearest neighbors in a significantly rapid and

robust manner. Second preprocessing method is motivated to boost accuracy

of scalability-enhanced scheme by enhancing discrimination skills of bisect-

ing k-means clustering approach. For this purpose, clones of original users

are reproduced by inserting PSPs into user profiles. Proposed preprocessing

framework is evaluated in both CF and PPCF frameworks. Empirical results

demonstrate that prediction accuracy of the proposed solution is significantly

higher compared to the k -nearest neighbor-based CF and PPCF methods.

7.2 Bisecting k-means Clustering

Clustering algorithms take n objects and assemble them into c clusters so that

the members of a cluster are close to each other in terms of discrimination

measure and the members of different clusters are diverse. To overcome scal-

ability challenges, clustering has been employed as an off-line preprocessing

tool to narrow search space in CF applications. Although traditional one-level

clustering helps finding neighbors fast; however, it creates a trade-off for ac-

curacy as number of clusters increases due to loss wisdom of the crowd. On

the other hand, small number of clusters does not facilitate well for scalabil-

ity. Even if number of entities raises drastically, there is a reasonable limit to

increase number of clusters to provide predictions with reasonable accuracy.
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k-means clustering is a well-known center-based clustering algorithm in which

each cluster has a center called the mean (Gan, 2007). Number of clusters

is preset and an error function is defined as the change in cluster centers or

membership of data items between two consecutive epochs. Initially, k random

objects are chosen as centers, one for each cluster. It proceeds by calculating

similarities between all entities and each seed, assigns them to the nearest clus-

ter, and recalculates cluster centers. This process is repeated until the error

function does not change significantly or the membership of the clusters no

longer changes.

Bisecting k-means algorithm is a divisive hierarchical clustering (Stein-

bach et al., 2000), which starts with a single cluster and splits it into two

sub-clusters using k-means algorithm (bisecting step). It repeats this process

recursively for either a desired number of times or a certain criterion is met.

Note that it has a time complexity of linear with the number of entities. If the

number of clusters is large, then bisecting k-means is even more efficient than

the regular k-means algorithm (Steinbach et al., 2000).

7.3 A Novel Scalable PPCF Scheme

This section defines the proposed novel scheme based on two preprocessing

methods, where users are supposed to interact with the CF system by explic-

itly submitting preferences on their ratings because implicit mechanisms are

often less accurate and tractable (Adomavicius and Tuzhilin, 2005). It is first

explained how a BDT is formed by applying a bisecting k-means clustering.

Then, it is studied how to produce clone profiles to recover accuracy losses due

to the first scheme. It is also shown that applied clustering method can be run

on privately collected data.
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7.3.1 Forming a BDT via bisecting k-means clustering

As a model-based CF technique, clustering-based CF is a valuable approach.

Yet, it needs to be utilized in a more profound manner rather than one level

application to alleviate its shortcomings. While clustering algorithms are very

useful in discriminating entities relying onto a criterion, they best perform

while dividing a set into two halves because it is more unlikely to happen very

close membership values in case of two clusters, which intensify the algorithm’s

sensitivity. However, forming two clusters only would not relieve scalability

issues much. Thus, applying a multi-level clustering is proposed by recursively

bisecting input data into clusters and forming a BDT according to clustering

results. Hence, it is aimed to produce tiny clusters containing very similar

users at the leaf nodes of BDT and find the nearest neighbors of a newcomer

by simply traversing down the tree.

Suppose that an optimal value of number of neighbors (N) to be utilized

in prediction production process in a PPCF system is known. A BDT with at

most N users in the leaf nodes can be constructed to efficiently form neigh-

borhoods, as described in Algorithm 5. Given Un×m, the server first estimates

FBPs of users (Fn×d), where d is the dimension of features. Then, bisecting

k-means clustering is employed and FBPs are divided into two distinct clus-

ters at each level. Cluster centers are indexed to be used as a forwarding tool

for each corresponding level, as well. If the number of profiles in any cluster

exceeds N , then recursive bisecting continues to divide those clusters using the

same approach and indexes cluster centers of each clustering process. This pro-

cedure continues repeatedly until leaves having at most N profiles are reached;

thus, N can be thought as a stopping criterion. Finally, a BDT having indexed

cluster centers as branch nodes and grouped similar profiles at leaf nodes is

obtained. Related rating profiles-based tree structure can be formed easily.
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During an online transaction with a, the PPCF server first generates

FBP of a (Fa) and determines the leaf, which Fa belongs to by traversing

down the tree. While traversing, two similarity calculations are performed at

each level to find relationships to both cluster centers and higher resemblance

decides the next hope, which is stored in IDX variable in Algorithm 5.

Algorithm 5 BDT formation via bisecting k-means clustering

1: function BKM(F,N) ▷ bisecting k-means cluster
Initialize:

2: IDX(n)← 0 ▷ to record forwarding paths as either ’left’ or ’right’
3: BDT.centers2×d ← null ▷ to hold cluster centers
4: BDT.left← null ▷ to hold left sub-tree elements
5: BDT.right← null ▷ to hold right sub-tree elements
6: BDT.LST ∶ a new BDT ▷ Left sub-tree
7: BDT.RST ∶ a new BDT ▷ Right sub-tree

Cluster:
8: [IDX,BDT.centers] = k-means(F,2) ▷ divide into two clusters
9: for all ui in F (i← 1 to n) do

10: if IDX(ui) = ”left” then
11: append ui into BDT.left
12: else
13: append ui into BDT.right
14: end if
15: end for
16: if size(BDT.left) > N then
17: BDT.LST = BKM(BDT.left,N)
18: end if
19: if size(BDT.right) > N then
20: BDT.RST = BKM(BDT.right,N)
21: end if
22: return BDT
23: end function

Locating exact leaf of Fa requires at most 2× (h−1) similarity computa-

tions, where h is the height of the BDT. The leaf, Fa goes into, can reference to

at most N users; however, this amount might be fewer. Therefore, the server

treats all references in that particular leaf and its sibling as potential neigh-

bors, calculates exact similarities with all such users, and eventually, marks

the nearest N of them as neighbors, which requires at most 2N additional
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similarity computations. Although h is dependent to the value of n in the sys-

tem, intuitively, both h and N are much less than n in systems suffering from

scalability. Hence, once the tree is formed, at most 2 × (h − 1 +N) similarity

computations are done instead of n to form the neighborhood. In other words,

number of computations performed to find similarities significantly reduces.
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Figure 7.1: An example binary decision tree

An example BDT produced via bisecting k-means clustering can be seen

in Fig. 7.1. Suppose that there are initially 200 users and N is chosen as 30 in

this example. Users are divided into two clusters with 120 and 80 users at the

first level. Corresponding cluster centers are indexed at the root of the tree as

CL
1 and CR

1 , where superscripts indicate for which sub-tree the cluster center

forwards (either left or right) and subscripts indicating the height of BDT so

far, which is one for the case of root. Similarly, in the left sub-tree of root,

120 users are clustered into two groups of 75 and 45 users with branch node

containing cluster centers CL
2 and CR

2 . Note that subscripts are incremented

by 1 and superscripts show again the forwarding paths as left or right. Each

branch node is repeatedly divided into two sub-clusters unless they contain

N or fewer users. Finally, the BDT is completed with two cluster centers at

each branch node to facilitate forwarding and tiny but very similar user groups

at leaf nodes to enable forming accurate neighborhoods. For this specific ex-

ample, locating neighbors of a new user requires at most 2(5 − 1 + 30) = 68
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similarity computations instead of 200, reducing the number of computations

approximately three times. Since the time consuming part in CF algorithms is

neighborhood formation, the effect of this preprocessing scheme on scalability

can be seen more clearly as the number of users in the system increases.

7.3.2 Cloning users by producing PSPs

Considering the discrimination mechanism of k-means clustering over levels,

correlations between users are utilized as distance criterion and they must be

calculated precisely to construct accurate clusters. Such correlations are calcu-

lated over FBPs of users, which project rating preferences onto a feature-based

dimension. Therefore, two users having similar tastes cannot be caught by the

system unless they rate on items having the same features. Finding similar

users relying on past preferences may not always result accurate findings due to

sparseness. Consequently, discriminations over levels of BDT can be performed

with limited accuracy. Although the first preprocessing scheme deals with scal-

ability issues well, accuracy of recommendations cannot be jeopardized greatly.

Hence, a second scheme is proposed to alleviate effects of sparseness and boost

accuracy in CF systems.

Regarding similarity between users in terms of PCC, two users are sim-

ilar if their preferences to co-rated items show concordance no matter what

their uncommon ratings are. Even FBPs are utilized in similarity calculation,

two users are required to rate on the same kind of items. The idea of this

preprocessing scheme is to produce identical clones of an original user’s rating

profile in terms of PCC (having exact same ratings with the original user) and

also having some additional ratings to unrated cells. Then, such clones’ FBPs

will also be included in the BDT formation process. Hence, if the system falls

short to determine a high correlation between a’s and an existing user’s FBP,

it can figure it out through one of its replicas. Since clones will have more
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ratings, consequently, they will have more meaningful FBPs. Moreover, since

each clone is identical to its parent in terms of PCC, it can be assumed that

if a is similar to any clone profile, she also most likely be similar to the parent

of which that clone is created. Although this process naturally increases the

number of users in the system, the first scheme reduces the search space loga-

rithmically. Therefore, while one scheme enhances discrimination capabilities

of clustering approach, the other can still cover overheads caused by it.

The outline of the proposed cloning scheme is given as a pseudo-code

layout in Algorithm 6. According to the algorithm, each produced clone in-

cludes all true ratings of the original user and additional PSPs to randomly

chosen unrated cells. Such PSPs are estimated from the input-matrix itself us-

ing the traditional PPCF prediction method, i.e., the nearest neighbors of an

existing user in U are determined through calculating PCC and predictions to

unrated cells are estimated via Eq. 2.5. Also, each clone has PSPs to distinct

random empty cells. Therefore, the correlation among a user and all of its

replicas show the highest resemblance because their co-rated items are all the

same. However, additional PSPs will change corresponding FBPs, which will

help revealing uncovered relations between original users. To provide a base

for tuning, it is offered to produce clones by inserting PSPs into the original

profiles proportional to the number of existing ratings of each user. Such pa-

rameter is named as the density. Suppose that an original user has 100 ratings

in her profile and five clones is required to be created through increasing the

density by 50%, which means that 50 extra ratings per clone are added. Since

five clones will be created, a total of 250 PSPs are estimated and then each

replica will have initial 100 ratings along with additional 50 PSPs to distinct

empty cells. After creating clones, FBPs of such clones are also generated and

BDT is formed. Supposedly an original user and her clones will fall into the

same leaf. However, while the BDT is created, clones will affect cluster cen-
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ters, which will facilitate forwarding a new user to her neighbors. Note that

the number of clones to produce and how much to increase density in clones

are to be determined experimentally.

Algorithm 6 Generating clones of a user by PSPs

Input: User-item matrix (Un×m), User-id (id),
Clone Count (ω), Density (ρ)

1: Initialize: Clonesω×m ← 0 ▷ clones matrix
2: for i← 1 to ω do
3: Clones(i) = U(id) ▷ create identical clones
4: end for
5: nr ← # of ratings in U(id)
6: iec ← index of empty cells in U(id)
7: rec ← RandomPermutation(iec) ▷ random index of empty cells
8: nec ← nr × ρ ▷ # of empty cells to be filled

Calculate and sort similarities:
9: for all ui in U (i← 1 to n) do

10: similarities(i) = pcc(U(i), U(id))
11: end for
12: sorted sim = sort(similarities, descending) ▷ to be used by PSP

production
Produce PSPs for each clone:

13: for i← 1 to ω do
14: for j ← 1 to nec do
15: idx = (i − 1) × nec + j
16: target item = iec(rec(idx))
17: Clones(i, target item)← PSP(sorted sim, target item) ▷

estimated using Eq. 2.5
18: end for
19: end for

7.3.3 Bisecting k-means clustering on perturbed data

After estimating FBPs of the collected disguised user vectors, the server forms a

BDT by running Algorithm 5, where bisecting k-means clustering is performed

through FBPs to cluster users. However, in a privacy-preserving environment,

such profiles can only be estimated through disguised user vectors. Given a

user-item matrix U , it is an easy task to cluster users; however, the server holds

the disguised user-item matrix U ′ for privacy reasons. Bisecting k-means algo-

rithm performs two different calculations using FBPs, i.e., estimating cluster
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centers by taking average of members of clusters and calculating similarities

between user profiles and cluster centers. Thus, how precise the server can

cluster U ′ is analyzed.

Considering the FBP generation process for purchase-based profiles ex-

plained in Section 6.3.1, the server simply increments each vote’s corresponding

feature value by 1 and normalizes the vector at the end. Estimation of FBPs

on perturbed data must be analyzed under two circumstances. As explained in

Procedure 1, to protect their privacy, users (i) disguise their individual ratings

and (ii) insert fake ones into their profiles. Indeed, disguising actual ratings

does not affect the estimation of an FBP, because the server increments corre-

sponding feature values by 1 no matters the related rating values are disguised.

Hence, an original ratings vector and its disguised version shall produce the

same FBP.

Remember that users forge additional ratings to hide their truly rated

items. Nevertheless, due to normalization procedure of profiles, effects of those

artificial ratings are diminished. Given mg disguised genuine ratings for user

u (ui for i = 1,2, . . . ,mg), each element of Fu is estimated by incrementing the

related feature values of ui’s, normalized by the ∑mg

j=1 dj, where dj is the number

of features for item j. Then, random artificial ratings are inserted into profile

by β% of mg and as mg grows, expected value of increase in each element of Fu

is also β%. Also, as mg increases, it can be assumed that∑mg

j=1 dj ≈mg×δ, where

δ is the average number of features per item. Due to the proportional increase

in elements of FBP and normalization coefficient, negligible differences occur in

estimated FBPs. While calculating cluster centers, average of those FBPs will

be taken, which will further diminish such difference. In addition, when clones

of users are included in the process, number of users will increase drastically

and effects of random filling procedure will become further insignificant.
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7.4 Overhead Costs Analysis

It is imperative to analyze the proposed schemes with respect to both off-line

and online costs like storage, communication, and computation costs. Al-

though off-line costs do not have acute effects on performance compared to

online ones, they are still needed to be analyzed to provide a report on off-line

overloads.

Compared to the traditional k -nearest neighbor-based CF approaches,

neither of the proposed preprocessing schemes causes any extra communication

costs in terms of both number of communications and amount of transferred

data. Thus, such costs remain the same in online and off-line phases.

Traditional CF schemes require a storage cost in the order of O(nm) to

collect n users’ data for m items. Additionally, FBPs of users are utilized,

which requires an extra storage cost in the order of O(nd), where note that d

is the constant number of features and d ≪ m. Due to the BDT generation

process, there will be two 1-by-d vectors being the cluster centers to be recorded

after each recursive call. Therefore, at each level, there will be at most 2k such

vectors, where k = 1,2, . . . , h − 1 and h is the height of BDT. Also notice that

h≪ n in systems suffering from scalability. Moreover, the second preprocessing

scheme increases number of users by producing clones; however, the upsurge is

linear; and thus, the storage cost is linear, as well. Consequently, total storage

costs of both schemes are in the order of O(nm).

Additional computation costs can be analyzed, as follows. Off-line phase

includes three stages: (i) estimating FBPs, (ii) generating clones, and (iii)

building a model through bisecting k-means clustering. FBPs are estimated in

O(nm) time because every item of every user is checked through. Then, the

server creates clones of all n original users by predicting PSPs in an identical

manner it produces actual recommendations, which has an online running
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time in the order of O(n2m). Thus, total cost of producing clones is in the

order of O(n3m). Finally, it constructs a BDT by applying bisecting k-means

clustering, which runs in the order of O(n3 logn) for each iteration. At each

level for BDT, at most 2k clustering operations (k = 0,1, . . . , h − 1) will be

performed yielding a total computation cost in the order of O(2hn3 logn) to

form a BDT.

Actual performance of a recommender system is determined by its re-

sponse time to queries. After forming neighborhood, data disguising schemes

allow PPCF systems to produce predictions identical to traditional CF schemes.

Unlike the PPCF approach, the proposed scheme constructs neighborhood by

traversing the BDT. For this purpose, during an online transaction, FBPa of

a new user is estimated initially, which requires O(m) time. While traversing

the tree, PCC is calculated between cluster centers and Fa, where each calcu-

lation requires O(d) time. After locating user’s neighbors, exact similarities

between rating profiles are determined. Therefore, online predictions can be

estimated in the order of O(Nm) because h and d are small constants, where

typically N ≪ n in systems suffering from scalability.

7.5 Experimental Evaluation

Experiments are conducted on benchmark data sets collected for CF purposes

to investigate how proposed schemes perform with respect to accuracy and

efficiency on both CF and PPCF schemes. First, BDT produced by bisecting k-

means approach is evaluated solely against state-of-the-art k -nearest neighbor-

based CF method to see its effects on scalability clearly. Then, the second

preprocessing scheme is built on scalability enhanced structure to determine

its impact on accuracy. Finally, combined effects of the proposed schemes are

evaluated on PPCF architecture and obtained enhancements are analyzed in

terms of their significance.
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Trials are performed on MLP and MLM data sets, which contain prefer-

ences for movies in a 5-star rating scale and each movie in the sets contain at

least one or more genre features from predefined 18 categories. Data sets are

suitable to show effects of preprocessing schemes as they both are extremely

sparse and especially MLM is very large. Experiments are realized using a

10-fold cross-validation experimentation methodology. The original data set

(U or U
′

) is uniformly randomly divided into ten subgroups and at each iter-

ation i (i = 1,2, . . . ,10), corresponding subset (Ui or U
′

i ) is considered as the

test users and the remaining ones are as the training users. After training

and test sets are constructed, five rated items’ actual votes are withheld for

each test (active) user. Such entries are replaced with null, their values are

tried to be predicted, and estimations are compared with actual values. Trials

are done in MATLAB 7.9.0 environment using a computer with an Intel Xeon

2.8 GHz processor and 6 GB RAM. For k-means clustering operations, MAT-

LAB’s built-in function is used with parameters to take head k user vectors in

the input matrix as initial centers and utilizes ‘correlation’ as the distance

measure based on PCC.

Several trials are performed to assess the effects of preprocessing schemes

with different parameters. The proposed schemes are evaluated in non-private

and private environments separately. Mainly, distinct performances of schemes

are assessed in non-private architecture and optimized configuration of both

preprocessing methods is evaluated through varying privacy parameters in

privacy-preserving architecture. Details of experimental procedures and re-

sults of conducted tests are explained in the following.

7.5.1 Evaluating non-private schemes

In order to examine improvements with respect to scalability, first, predictions

are produced relying on the BDT constructed by bisecting k-means clustering
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approach and empirical outcomes are compared against the traditional CF

scheme, where these schemes will hereafter be referred to as BKM and CF

methods, respectively. Then, the second preprocessing method is employed

onto the first one, denoted as BKM+, by accompanying clones into user-item

matrix and its effects on accuracy and online performance are demonstrated.

BKM Model. BKM model is experimented to examine its effects on accuracy

and online performance. For all folds, FBPs are initially produced, training

sets are recursively clustered, as described in Section 7.3.1, and corresponding

BDTs are constructed. Then, belonged leaf of each test user is located by

forwarding them in relation to cluster centers and the nearest neighbors are

determined by calculating similarities to the users in that particular leaf node

and its sibling. Next, predictions are produced for withheld items, MAEs are

estimated, and T for whole online process is measured. Trials are repeated

by varying N from 20 to 100 because employing more than 100 neighbors

might have adverse effects on scalability, as stated in (Herlocker et al., 2004).

Outcomes are displayed in Table 7.1 for both data sets.

Table 7.1: MAE and T values by varying N for CF and BKM

N 20 40 60 80 100

MLP
CF

MAE 0.790 0.773 0.772 0.773 0.774
T 149s 150s 150s 150s 151s

BKM
MAE 0.831 0.793 0.779 0.758 0.758
T 6s 11s 14s 18s 25s

MLM
CF

MAE 0.766 0.754 0.749 0.747 0.747
T 1,516s 1,520s 1,523s 1,526s 1,531s

BKM
MAE 0.819 0.781 0.762 0.749 0.742
T 68s 108s 147s 233s 311s

According to Table 7.1, CF scheme obtains its best accuracy values for

MLP and MLM as 0.772 and 0.747 with N values of 60 and 80, respectively.

BKM scheme achieves 0.758 and 0.742 MAE values with N values of 80 and

100, respectively. It can be concluded that there is not a significant improve-

ment in accuracy for MLM and a slight progress for MLP. However, there is a
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significant improvement in T . Through overall trials, five predictions are pro-

duced for each test user, which yields a total of 4,715 and 30,200 predictions

for MLP and MLM, respectively. Compared to CF scheme, BKM model pro-

duces such predictions in 18 seconds instead of 150 for MLP and 311 seconds

instead of 1,526 for MLM, which means an enhancement of approximately 88%

and 80% on the online performance, respectively. Moreover, since BKM model

operates by simply traversing over the BDT, which is constructed off-line, as

the number of users in the system increases linearly, such online performance

enhancements will be much greater due to logarithmic grow of height of the

tree. This phenomenon can be observed better in the next set of experiments,

where the number of users in the system increases dramatically due to addi-

tional clone profiles injected into the system.

BKM+ Model. BKM model proves that it can handle scalability issues

well; however, it is not very successful at boosting accuracy. BKM+ model

is proposed as reinforcement onto BKM model to improve precision of pre-

dictions, which are restricted due to information losses caused by narrowing

down search space through a BDT. However, BKM+ model must be studied

in terms of its controlling parameters to get the most possible gain of accuracy.

Such parameters are experimentally analyzed in the following.

Number of clones (ω): It is hypothesized that cloning original user profiles

shall improve determination skills of BDT and hence, accuracy of the sys-

tem. However, ω must be fine-tuned because it can influence scalability of the

system. While producing clones, 100 nearest neighbors are located to each

train user in the system and PSPs are produced to uniformly randomly chosen

empty cells using such neighbors’ data. While ω is varied from 1 to 5, other

parameters are held at N = 80 and ρ = 1, i.e., each clone has twice as much

ratings as the original user. After estimating FBPs of original and clone users,

clones-added profiles are recursively clustered and corresponding BDTs are
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produced. In order to avoid U to converge to itself and lose personalization,

predictions are produced through original user profiles only. Due to the ran-

domness while inserting PSPs, those experiments are repeated 100 times and

average results are computed to obtain more dependable outcomes. Estimated

MAEs and measured T values for both data sets are given in Table 7.2.

Table 7.2: MAE and T values for varying ω

ω 1 2 3 4 5

MLP
MAE 0.735 0.730 0.726 0.724 0.722
T 18s 18s 19s 20s 20s

MLM
MAE 0.730 0.728 0.725 0.724 0.723
T 237s 239s 243s 246s 249s

As can be followed from Table 7.2, adding more clones has positive effects

on accuracy; however, enhancements are getting smaller as ω grows. The

highest accuracy values are obtained at ω=5 for both data sets, being around

0.720. Also note that even if there are five times more users in the system,

online performance is negligibly affected, i.e., T increases by approximately

11% (from 18s to 20s) and 7% (from 233s to 249s) in this sample case for

MLP and MLM, respectively. These outcomes present the robustness of the

proposed BKM model in terms of scalability.

Density coefficient (ρ): Cloning process aims to boost accuracy of the system.

Thus, it is imperative to define effects of PSP amount to be inserted into

replicated profiles. PSPs are produced like before and other parameters are

held at N = 80 and ω = 1 while ρ is varied from 0.5 to 4, which created one clone

per user with ρ times much ratings. After cloning users, FBPs are produced

and preprocessing steps are applied. Experiments are repeated 100 times due

to randomness, as before. Estimated MAE values are given in Table 7.3.

Inserting as much PSPs as existing ratings into clone profiles helps boost-

ing accuracy; however, further insertions cause losing personalization and de-

crease accuracy. Online performance evaluation is not given in Table 7.3. Since
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Table 7.3: MAE values for varying ρ

ρ 0.5 1 2 4

MLP 0.737 0.726 0.742 0.748

MLM 0.730 0.729 0.729 0.729

ω = 1, for all values of ρ, the models require approximately 18 and 240 seconds

for MLP and MLM, respectively. As displayed in Table 7.3, ρ = 1 maximizes

accuracy. Note that the reached maximum accuracy values of about 0.73 are

higher than both CF and BKM models’ accuracy, which concludes that by

combining two preprocessing methods, both more precise predictions can be

produced and a significant enhancement in online performance can be achieved.

Overall comparison: After experimenting how accuracy and efficiency changes

by utilizing the proposed schemes, another experiment is conducted to present

a clear picture of comparison among CF, BKM, and BKM+ in terms of accu-

racy. Thus, joint effects of controlling parameters are demonstrated. All three

models are ran while varying N from 20 to 100. For BKM+ model, ω = 5 and

ρ = 1 are set for both data sets because those values are verified to maximize

accuracy. MAE values are presented in Figure 7.2.
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Figure 7.2: Accuracy with varying N values for CF, BKM, and BKM+ schemes

As can be seen from Fig. 7.2, for both data sets and all N values, BKM+

clearly outperforms CF scheme in terms of accuracy. Statistical significance t-

tests are performed to compare the results of CF and BKM+ schemes. Overall
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MAE results are handled by taking average of 10-fold experimental accuracy

values. A series of paired t-tests are done for varying N values and statistics

are displayed in Table 7.4. The results of one-tailed hypotheses show that all

of the differences appear to be statistically significant at 99% confidence level

except for N = 40 in MLP, which is also significant at 95% confidence level.

Table 7.4: Statistical significance tests for CF and BKM+ schemes

MLP MLM

N CF vs. BKM+ CF vs. BKM+

20
t = 2.900 t = 3.439
p = 0.004∗∗ p = 0.001∗∗

40
t = 2.332 t = 3.792
p = 0.016∗ p = 0.000∗∗

60
t = 2.618 t = 4.762
p = 0.009∗∗ p = 0.000∗∗

80
t = 2.918 t = 5.335
p = 0.005∗∗ p = 0.000∗∗

100
t = 3.231 t = 5.031
p = 0.002∗∗ p = 0.000∗∗

Degree of freedom = 18
* For significance at 95%
** For significance at 99%

7.5.2 Evaluating privacy-preserving schemes

After examining the effects of the preprocessing schemes in non-private CF

schemes and determining optimum values of parameters (ω = 5 and ρ = 1), ex-

periments are performed in privacy-preserving environment. Since prediction

production process in a privacy-preserving architecture is the same with non-

private schemes, BDT generation step achieves the same improvements in on-

line performance. Therefore, T values are not presented for those experiments,

as they are similar with non-private experimental outcomes. Also, experiments

are proceeded only with BKM+ scheme in privacy-preserving parts because

distinct effects of preprocessing are investigated in previous section. Privacy-

preserving form of the proposed scheme (P2BKM+) is examined against the

PPCF method (P2CF) in terms of accuracy. For disguising schemes, σmax is
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kept constant at 2 in the experiments as it is appropriate to see effects of data

perturbation and still provides pretty sufficient level of privacy. Nevertheless,

effects of varying forgery rates (βmax) are studied.

Maximum forgery rate (βmax). Data disguising protocol proposes users to

choose β value uniformly randomly over (0, βmax] to perturb genuine ratings.

Effects of different βmax levels on privacy and accuracy are studied in Sections

3.1.1 and 3.2. Now, effects of this parameter is examined on cloning- and

FBP-based schemes’ accuracy. In the experiments, N is set at 80 for both

data sets while βmax is varied from 5 to 100. Due to randomized selection of β

and cells to insert PSPs by each user, the experiments are repeated 100 times

and average of outcomes are demonstrated in Table 7.5.

Table 7.5: MAE values by varying βmax for P2CF and P2BKM+

βmax 5% 10% 20% 50% 100%

MLP
P2CF 0.850 0.850 0.848 0.853 0.869
P2BKM+ 0.737 0.739 0.747 0.752 0.775

MLM
P2CF 0.798 0.800 0.810 0.840 0.882
P2BKM+ 0.774 0.776 0.781 0.811 0.843

Although forged ratings deteriorate accuracy with P2CF model especially

for MLP, losses are not that much for the proposed P2BKM+ scheme. Even

for βmax value of 100, accuracy losses are approximately 0.06 for MLP and 0.12

for MLM. Thus, it can be inferred that P2BKM+ scheme is more resistant to

changes in βmax compared to the P2CF method. Considering provided privacy

levels due to maximum forgery rate discussed before, choosing a βmax value of

20 for both data sets seems optimal because it balances the trade-off between

conflicting goals of accuracy and privacy for this case.

Overall comparison. The last experiment is conducted to demonstrate a

clear comparison among CF, P2CF, and P2BKM+ schemes in terms of ac-

curacy, like the one in non-private scheme. For this purpose, βmax is set at

20 and P2CF and P2BKM+ models are ran while varying N from 20 to 100.
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Combined outcomes in terms of MAE values are presented in Figure 7.3.
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Figure 7.3: Accuracy with varying N values for CF, P2CF, and P2BKM+ schemes

As seen from Fig. 7.3, P2BKM+ scheme performs significantly better

than P2CF for both data sets. Paired t-tests are done to compare the accu-

racy of P2CF and P2BKM+ schemes and statistics are presented for varying

N values in Table 7.6. The results of one-tailed hypotheses claim that all

enhancements appear to be statistically significant at 99% confidence level.

Table 7.6: Statistical significance tests for P2CF and P2BKM+ schemes

MLP MLM

N P2CF vs. P2BKM+ P2CF vs. P2BKM+

20
t = 9.918 t = 18.718
p = 0.000∗ p = 0.000∗

40
t = 7.071 t = 12.442
p = 0.000∗ p = 0.000∗

60
t = 5.588 t = 10.770
p = 0.000∗ p = 0.000∗

80
t = 5.334 t = 7.654
p = 0.000∗ p = 0.000∗

100
t = 5.017 t = 5.830
p = 0.000∗ p = 0.001∗

Degree of freedom = 18
* For significance at 99%

In fact, P2BKM+ performs even better than non-private CF scheme for

MLP as seen from Fig. 7.3(a); however, these differences are not significant.

Also, it can be seen from Fig. 7.3(b) that P2BKM+ performs slightly worse

than CF scheme while providing privacy measures to individuals. Thus, it can

95



be concluded that the combined effects of the proposed preprocessing schemes

allow providing accurate private referrals in considerably less amount of time.

7.6 Conclusions

A novel CF scheme is proposed based on two off-line preprocessing methods

to improve online performance and accuracy. In the first approach, applying a

bisecting k-means clustering algorithm is offered on item category-based his-

tograms of users to construct a BDT and it is utilized to determine neighbors

of new users, which significantly improves scalability. The second preprocess-

ing scheme focuses on enhancing the accuracy of the predictions produced by

the first scheme by alleviating effects of sparseness. Replication of original

user profiles is proposed and their density is increased by inserting PSPs into

some randomly chosen empty cells. Privacy concerns of schemes are solved

by utilizing RPTs. Empirical outcomes show that employing the proposed

preprocessing schemes significantly outperforms the state-of-the-art k -nearest

neighbor-based PPCF scheme in terms of online performance and accuracy, as

demonstrated by significance tests. However, relative errors due to randomiza-

tion are not significant and the proposed privacy-preserving scheme is able to

produce predictions with comparable accuracy to original non-private scheme.

Moreover, the proposed bisecting k-means clustering approach promises much

better relative improvements on online performance as input matrix gets larger,

which is vital to scale CF systems.

In this chapter, it is essentially tried to provide a different perspective

on data configuration and prediction production process. More important

than the observed empirical achievements, it can be claimed that the proposed

preprocessing ideas are modular, easy to manipulate, and effective. They can

be easily integrated into real life deployments by adjusting them to particular

needs.
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8. IMPROVING NBC-BASED PRIVATE RECOMMEN-

DATION SCHEME

In this chapter, improving both efficiency and accuracy of NBC-based private

recommendation scheme is studied by utilizing two preprocessing techniques.

Masked data is preprocessed by constructing the best similar item sets for

each item in the set. Also, some of the unrated items’ cells are filled by self

predictions to improve density. Experimental results show that efficiency and

accuracy improves due to preprocessing.

8.1 Introduction

It might be crucial to determine the likelihood of a user will either like or

dislike an item rather than estimating the exact rating. This approach may

either facilitate to filter out possible items, which will be disliked by user or

indicate items, which user will possibly tend to purchase. Thus, the crucial

point is to determine whether a user will like or dislike an item, which requires

transforming the numerical votes into binary ones. NBC is a simple yet very

effective classifier to determine class labels of recommendation items. Miyahara

and Pazzani (2000) propose a CF approach using NBC to offer binary ratings-

based referrals.

Kaleli and Polat (2007) propose a privacy-preserving scheme to offer bi-

nary ratings-based predictions while achieving privacy. Although their method

achieves privacy and is able to produce referrals with decent accuracy, efficiency

significantly degrades with increasing number of users and number of groups.

By selecting the most similar items to each item by preprocessing the masked

data off-line, online performance is more likely to improve because amount

of data involved in CF process decreases. Due to privacy concerns, accuracy
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losses are inevitable. Although such losses are expected and could be said that

acceptable, it is hypothesized that the quality of referrals might be improved

by filling some of the unrated items’ cells before applying CF process.

In this chapter, it is aimed to enhance performance of PPNBC proposed

by (Kaleli and Polat, 2007) without greatly compromising (or sometimes even

increasing) accuracy by preprocessing the masked data so that prediction pro-

cesses can be completed in a reasonable amount of time for online applications.

In order to achieve such goal, NBC-based CF algorithm’s ability to estimate

predictions from a small amount of training data is utilized.

8.2 NBC-based Prediction Schemes

In the proposed framework, referrals are offered using NBC-based approach

during online interactions. Despite its simplicity, NBC has the ability to often

outperform more sophisticated classification methods. Miyahara and Pazzani

(2000) utilize NBC by classifying ratings to two class labels, i.e., like or dislike.

An active user for whom the prediction will be produced is having ratings

utilized as class labels and U holds ratings from other users corresponding

to the feature values, where other users are treated as features. Relying on

the näıve assumption that features are independent given the class labels, the

conditional probability that an item belongs to classj, where j ∈ {like, dislike}

given its n feature values, is formulated as in Eq. 8.1:

p(classj ∣f1, f2, . . . , fn)∝ p(classj)
n

∏
i

p(fi∣classj), (8.1)

where fi is the feature of target item (q) for user i and p(classj) and p(fi∣classj)

can be determined from training data. The conditional probabilities of both

classes are calculated and q is assigned to the class with the highest probability.

Kaleli and Polat (2007) propose PPNBC to offer NBC-based predictions with
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preserving individual privacy, where their protocol of data masking is explained

in Section 2.2.2. Authors propose feasible parameters as three groups with a

perturbation level of 0.7 (M=3 and θ=0.7). Although their scheme preserves

confidentiality, its performance decreases considerably with privacy concerns.

8.3 Improving NBC-based Private Prediction Scheme

Due to privacy-preserving measures, extra costs, especially online computa-

tion costs, are inevitable. Although PPNBC scheme proposed by (Kaleli and

Polat, 2007) provides accurate referrals while preserving privacy, efficiency

significantly decreases. Moreover, accuracy diminishes due to data masking

schemes. It is hypothesized that online performance and even accuracy of

PPNBC can be improved by applying off-line preprocessing to masked data.

If only a subset of items are used in the recommendation generation

process, (i) recommendation accuracy would enhance with most information

providing items and (ii) performance of the algorithm would increase consid-

erably due to reduced number of elements utilized in online process. Two

preprocessing methods are applied: In the first method, referred to as item ex-

traction, the most similar items to any corresponding item is determined using

a binary similarity measure. In the second method, which is called densifying,

some of the randomly chosen empty cells in the masked user-item matrix (U ′)

is filled with PSPs estimated by PPNBC. The overall procedure can basically

be described, as follows: The vendor first forms U ′ by collecting perturbed

ratings from its customers. It then applies densifying preprocessing scheme to

U ′. It finally applies item extraction preprocessing to each item. After con-

ducting preprocessing steps off-line, the data owner starts offering predictions

online using the preprocessed U ′, referred to as U ′
p. To provide truthful and

dependable referrals, number of commonly rated items between a and those

users who rated q is also imperative. To increase such items, it is also proposed
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to fill some of a’s unrated items’ cells with a’s mean vote. The details of such

preprocessing methods are given in the following.

8.3.1 Item extraction

In order to improve online performance, amount of data involved in CF process

should be decreased. Extracted items list for each item in U is determined

by selecting the most similar ones. The size of extraction is imperative for

overall performance. Similarly, an item’s extraction list significantly influences

accuracy. Extraction size (e) is determined by locating the most e similar items

to any related item and note that the optimum value of e can be determined

experimentally, where e is a constant and e≪m. To determine such neighbors,

Tanimoto coefficient similarity measure is preferred due to its given importance

to commonly and concordantly rated items (Bilge et al., 2010).

Let Sij be the number of occurrences of commonly rated items with i

in the first pattern and j in the second pattern, where i, j ∈ {0,1}. Given

two binary feature vectors X and Y , T (X,Y ) denotes Tanimoto coefficient

between X and Y (similarly, between two items’ ratings vectors) and it is

calculated as given in Eq. 8.2:

T (X,Y ) = (S11 + S00) − (S10 + S01)
S11 + S00 + S10 + S01

, (8.2)

where S11 is the number of users rated both items as “1”, S10 represents the

number of users rated item i as “1” and item j as “0”, S01 is the number of

users rated item i as “0” and item j as “1”, and S00 shows the number of users

rated both items as “0”.

Tanimoto similarity measure computes the similarity between two binary

vectors; however, U representing true users’ ratings, does not present. Without

privacy concerns, it is trivial to estimate similarities between binary vectors.
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Due to underlying data masking methods described in Procedure 2, it becomes

a challenge to estimate the same similarities from perturbed data. U ′ is ob-

tained after collecting data from many users. Therefore, actual rates cannot

be determined exactly, but according to masking protocol (number of groups,

M and disguising rate, θ), an inference can be made to calculate similarities

between features. If it is assumed that Sij be the occurrence of commonly

rated items for two items’ ratings vector, Si′j′ represents the exact opposite of

the ratings, where i′, j′ ∈ {0,1}. Thus, corresponding variable, Sij, cannot be

simply incremented due to masking procedure. All the values are correct with

a probability of θ in U ′. Thus, to estimate Sij values, all possible combinations

of the match should be considered, as explained in Eq. 8.3:

Si,j = Si,j + (θ × θ) = Si,j + θ2

Si′,j = Si′,j + ((1 − θ) × θ) = Si′,j + θ − θ2

Si,j′ = Si,j′ + (θ × (1 − θ)) = Si,j′ + θ − θ2

Si′,j′ = Si′,j′ + (1 − θ) × (1 − θ) = Si′,j′ + (1 − θ2) (8.3)

After estimating Sij values from masked data, similarity weights between

two items can be estimated using Eq. 8.2. For each item j, the similar-

ities between j and the remaining m-1 items should be estimated. Since

T (X,Y ) = T (Y,X), [(m−1)× (m−2)/2] number of T (X,Y ) similarity values

are estimated. For each item j, m-1 similarity weights are sorted decreasingly,

and the first e items are appended into extraction list. Likewise, extraction

lists for all items are formed. Since all of these computations are conducted off-

line, they are not critical for online efficiency. When an a asks for a prediction

on q, rather than using entire items’ ratings, only corresponding e items’ rates

are used for recommendation generation. The quantity of data used in rec-

ommendation processes decreases; thus, online performance enhances. Since
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T (X,Y ) values are estimated from perturbed data and U ′ is usually a sparse

set, it might not be possible to improve accuracy. In order to prevent accuracy

losses, densifying preprocessing method is proposed.

8.3.2 Densifying

To be able to find a meaningful correlation between two users or items, there

should be sufficient amount of common ratings. It is hypothesized that it

might be possible to enhance accuracy of scalability-enhanced PPNBC scheme

if sparsity is relieved by filling some of the randomly chosen unrated items’

cells via PSPs. There are basically two ways to obtain PSPs. Estimating non-

personalized ratings or calculating personalized votes from masked data off-

line. User, item, or overall mean votes are considered non-personalized ratings;

and they can be used to fill unrated items’ cells for densifying. Although it

is trivial to estimate such non-personalized ratings from U or even from U ′,

they might not reflect users’ true preferences. Thus, accuracy might become

worse. Unlike non-personalized votes, personalized ratings are more likely to

represent customers’ proper preferences. Therefore, it is proposed to employ

personalized votes estimated from U ′ using PPNBC, as outlined as a pseudo-

code layout in Algorithm 7.

According to Algorithm 7, a densification rate (d) is determined by the

server. Note that such d value, which happens to give the optimum results for

the data holder, can be determined experimentally and should be associated

with the density of U ′. Then, for each user in the database, the server uniformly

randomly chooses ρ over the range (0, d] and uniformly randomly selects ρ%

of the unrated items’ cells of corresponding user. It estimates personalized

predictions for those chosen unrated items’ cells using PPNBC scheme, as

explained in (Kaleli and Polat, 2007) and fills such cells with corresponding

personalized ratings.
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Algorithm 7 Densifying U ′ by PSPs

Input: User-item matrix (U ′
n×m), Densification rate (d)

Initialize:
1: DU = U ′ ▷ create a backup of U ′ to be densified
2: for all ui in U ′ (i← 1 to n) do
3: Define densifying parameter: ρ← rnd(0, d)

Locate empty cells to be filled:
4: nr ← # of ratings in U(ui)
5: iec ← index of empty cells in U(ui)
6: rec ← RandomPermutation(iec) ▷ random index of empty cells
7: nec ← nr × ρ ▷ # of empty cells to be filled

Produce PSPs for chosen cells:
8: for j ← 1 to nec do
9: target item = iec(rec(j))

10: DU(ui, target item)← PSP(target item) ▷ by PPNBC
11: end for
12: end for
13: return DU

8.4 Overhead Costs Analysis

Due to preprocessing methods, supplementary storage costs are in the order

of O(me) because for each item, index of the most similar e items are stored

in a database. The proposed schemes do not change communication costs in

terms of number of communications and amount of data to be transmitted.

Computation costs must be analyzed for off-line and online steps, sepa-

rately. Densifying preprocessing introduces predicting PSPs to at most d ×m

items of any existing user in the database. Considering that time complexity

of PPNBC algorithm is O(km), where k is the number of nonzero elements

in n-dimensional input features vector and generally k ≪ n, the total com-

putation cost for densifying preprocessing is in the order of O(dk2m2). In

addition, item extraction preprocessing requires computing item similarities

among all items. Estimating Tanimoto coefficient requires n comparisons, so

total off-line computation cost for item extraction preprocessing is in the order

of O(nm2). However, online performance, which is critical for recommender

103



systems, is improved by in the order of O(m/e), where e≪m, due to reduced

number of items utilized in recommendation process.

8.5 Experiments

Experiments are performed on Jester and MLP in order to demonstrate per-

formance of the proposed schemes on partially dense and mostly sparse data

sets. Numerical ratings in the data sets are converted into two labels (Miya-

hara and Pazzani, 2000). Ratings are labeled as “1” if its numerical value is

greater than 3 for MLP and 2.0 for Jester, as “0” otherwise. Test users are

sampled as 243 and 500 users from MLP and Jester, respectively. Number of

train users utilized in experiments are determined based on the experimental

settings. For each active user, five rated items’ ratings are withheld, their en-

tries replaced with null, tried to be predicted, and estimations are compared

against true ratings. Trials are performed using MATLAB 7.6.0 environment

on a computer with Intel Core2Duo, 2.2 GHz processor, and 2 GB RAM.

8.5.1 Effects of item extraction

First, experiments are performed to investigate the effects of varying e values

on accuracy and efficiency. Uniformly randomly chosen 250 users are formed

as test sets for Jester and MLP. During experiments, e is varied from 10 to

1,682 for MLP and from 10 to 100 for Jester. Note that results for e being

1,682 and 100 for MLP and Jester, respectively, corresponds to outcomes with-

out preprocessing. Since the results for values of e greater than 250 are not

promising in terms of accuracy and especially online performance, only the

outcomes up to e being 250 are demonstrated. Estimated CA and F1 values

are presented in Fig. 8.1.

As seen from Fig. 8.1, optimum values of e are 20 and 60 for MLP and

Jester, respectively. When all items are utilized in MLP, i.e., e=1,682, F1 and

CA values are 61.04% and 59.34%, respectively. However, when preprocessing
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Figure 8.1: Quality of recommendations by varying e values
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Figure 8.2: Elapsed time (in seconds) by varying e values

is applied, F1 increases to 72.95% and CA stays at 59.42%. In other words,

preprocessing significantly improves F1 while CA slightly enhances. For Jester,

the results for e being 60 are approximately the same compared to the non-

preprocessed scheme, where F1 enhances from 67.33% to 67.77% and CA from

68.60% to 69.72%. On the other hand, effects of item extraction method on

online performance is significant. During the experiments, 1,215 and 2,500

predictions are produced for MLP and Jester, respectively. Estimated online

times in seconds required to offer such of referrals are displayed in Fig. 8.2.

As seen from Fig. 8.2, gains on efficiency due to preprocessing linearly

increases as explained in Section 8.4 and they are significantly high for both

data sets. For MLP, results up to 250 items are displayed. When all items are

utilized in MLP, T is 5,135 seconds. T values increase with increasing e and
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they finally reach their peaks when e =m. For optimum e values, T decreases

from 5,135 seconds to 104 seconds for MLP, while it decreases from 773 seconds

to 498 seconds for Jester. Due to preprocessing, online performance enhances

by 49.37 and 1.55 times for Jester and MLP, respectively. The reason for

improvements being relatively small for Jester is that there already exists very

few number of items in the data set.

8.5.2 Effects of densifying

In order to demonstrate the effects of densifying preprocessing method, only

MLP is utilized because Jester is already a very dense data set. During the

trials, d is varied from 0 to 12 and e is set to previously determined optimal

value 20. Note that d is associated with the density of MLP, which is about

6%. Estimated F1 and CA values are presented in Fig. 8.3. As shown in Fig.

8.3, increasing d from 0 to 3 significantly improves CA. For values of d larger

than 3, CA enhances slightly. On the other hand, this preprocessing reduces

obtained improvements in F1 slightly with increasing d values. However, note

that they are still better than the results of non-preprocessed scheme which

is around 70%. When d is 3, CA increases from 59.42% to 62.05%, while F1

decreases from 72.95% to 72.37%. For the sake of gains in CA, losses in F1

are acceptable.
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It is also imperative to investigate the effects of densifying preprocessing

method on online performance. In order to show such effects, online perfor-

mance results for producing 1,215 predictions in MLP for varying d values are

presented in Table 8.1. As can be followed from Table 8.1, T faintly becomes

worse due to densification. When d is 3, which seems an optimal selection for

MLP, T gets worse only about 1 second. Thus, it can be concluded that den-

sification preprocessing scheme has negligible effects on online performance

and combined effects of item extraction and densification methods improve

scalability and accuracy of PPNBC algorithm.

Table 8.1: Online performance by varying d values

d 0 3 6 9 12

T 104.435s 105.122s 105.839s 106.458s 107.096s

8.6 Conclusions

Although PPNBC scheme offers truthful predictions with privacy, online per-

formance significantly degrades. Due to privacy concerns, accuracy losses are

also inevitable, even if they are small. Two preprocessing methods are pre-

sented to enhance efficiency and accuracy of PPNBC scheme. First method

extracts the most similar items to each one so that those items providing the

most useful information join in recommendation process. Since the most sim-

ilar items are utilized, efficiency definitely improves, even accuracy enhances.

In order to increase density so that similarity weights become more reliable

and truthful, a densifying preprocessing scheme is utilized. According to such

method, some of the empty cells are filled with personalized ratings. This

scheme helps binary ratings-based CF systems provide more truthful predic-

tions by sacrificing from online performance slightly.
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9. CONCLUDING REMARKS

This dissertation proposes various non-trivial solutions to overcome on-going

challenges of privacy-preserving collaborative filtering schemes like accuracy,

scalability, and accuracy. The proposed schemes alleviate at least one, some-

times even more than one challenge without jeopardizing individual privacy.

Besides privacy-preserving schemes, the proposed solutions are also employed

on traditional non-private collaborative filtering schemes to investigate their

extent. Preprocessing methods are analyzed in terms of privacy levels, over-

head costs, accuracy, and online performance. Performed real-data based ex-

periments demonstrate each preprocessing scheme’s success on targeted prob-

lem of privacy-preserving collaborative filtering. Main contributions of the

dissertation can be listed, as follows.

� In order to preserve confidentiality, randomized perturbation techniques

for numerical ratings-based data and randomized response techniques for

binary ratings-based data are utilized. Relying on the privacy preserva-

tion principles of randomization techniques, a novel privacy level quan-

tification method based on information theory is proposed. Such method

helps users better understand how applied random filling approach within

numerical ratings vector perturbation protocol aid concealing private in-

formation of individuals.

� Memory-based collaborative filtering and privacy-preserving collabora-

tive filtering methods are the most successful schemes in terms of accu-

racy. However, they deeply suffer from scalability issues since they oper-

ate on whole user-item matrix. An item reduction model is proposed to

alleviate scalability challenge for both non-private and privacy-preserving

memory-based collaborative filtering schemes which eliminates dissimi-
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lar items to each target item. It is shown that proposed preprocessing

method performs well in terms of online performance while not jeopar-

dizing accuracy.

� Discrete wavelet transformation is utilized in privacy-preserving colla-

borative filtering approach as a model-based approach. In addition to

dimension reduction facilities provided by such transformation, an item

ordering method is proposed to recover accuracy losses due to distortion

in input vectors for privacy preservation. It is shown that multiple item

ordering method performs well in recovering losses especially in large

scale data sets.

� Clustering algorithms are utilized in privacy preserving environment to

enhance scalability along with a novel user profiling method to deal with

sparsity issues. User profiling method projects large and sparse vectors

to a compact and dense form which is then given as an input to vari-

ous clustering algorithms. It is demonstrated that clustering algorithms

perform well up to 2-level clustering in terms of accuracy.

� Traditional clustering approach is concluded insufficient to relieve scal-

ability issues. Therefore, a recursive 2-level clustering approach is pro-

posed along with a novel user cloning technique. Such approach pro-

duces a binary decision tree to accelerate neighborhood formation pro-

cess after cloning users to discover hidden similarities among users. It

is both theoretically and experimentally shown that proposed bisect-

ing k -means clustering-based privacy-preserving collaborative filtering

scheme achieves comparable accuracy with non-private collaborative fil-

tering schemes.

� In addition to numerical ratings-based system, algorithms relying on bi-

nary collections is studied to be improved in scalability and sparsity
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perspective. Näıve Bayesian classifier based privacy-preserving collabo-

rative algorithm is enhanced by applying item extraction and data con-

densation preprocessing methods. Experimental outcomes confirm that

scalability problem of the algorithm is relieved without jeopardizing from

accuracy by applying both preprocessing schemes.

Although applied privacy measures distort preference information and

conflict with the goal of providing accurate referrals, the proposed prepro-

cessing schemes manage to relieve such losses significantly. Overall experimen-

tal outcomes demonstrate that each distinct accuracy-improving preprocessing

technique has specific effects relying on the data configuration of utilized col-

laborative filtering approach.

9.1 Recommendations for Future Research

The proposed item features-based user profiling scheme in Chapters 6 and 7

is effective in transforming rating profile dimensions. However, such features

might not always present distinctively in product range. Therefore, creation

and/or extraction of new features to transform user data remains an open

problem.

Although user cloning techniques proposed in Chapter 7 is effective ex-

tracting hidden concordances among users, different cloning methodologies

might be developed to obtain better quality of predictions. This subject war-

rants future work.

In this dissertation, scalability problem of privacy-preserving collabora-

tive filtering schemes is handled in general due to its negative effects to pro-

duced referrals’ quality. However, there remains work to handle other minor

challenges originating from sparse collections such as cold start problem and

coverage.
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