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ABSTRACT

PhD Dissertation

NEW METHODS
FOR RADAR EMITTER IDENTIFICATION

Kenan GENCOL

Anadolu University
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Electrical and Electronics Engineering Program

Advisor: Asst. Prof. Dr. Nuray AT
Co-adyvisor: Assoc. Prof. Dr. Ali KARA
2015, 90 pages

In this thesis new methods are introduced for radar emitter identification.
Radar emitter identification is the process of identifying surrounding threat
emitters in electronic warfare environments.

A method is developed for deinterleaving of radar pulse sequences. For
this purpose, first clustering performances of two self-organizing neural
networks, namely SOM and Fuzzy ART are evaluated. Then, a pulse amplitude
tracking algorithm is proposed for dynamically varying signal environments
wherein radar parameters can change abruptly. Simulation results show that the
proposed algorithm can successfully deinterleave radar emitters that have agile
pulse parameters.

Another method is developed for the recognition of pulse repetition
interval modulation patterns. The method is based upon new features extracted
from multiresolution wavelet decompositions of different types of pulse
repetition interval modulation sequences. Simulation results show that
recognition performance of the proposed features outperform conventional
histogram based methods in both accuracy and computation time.

Keywords: Electronic Warfare, Electronic Support Measures, Pulse
Deinterleaving,  Pulse = Repetition  Interval = Modulation,
Multiresolution Wavelet Decomposition, Self-organizing Neural
Networks.



OZET
Doktora Tezi

RADAR VERICILERININ KIMLIKLENDIRIiLMESI
ICIN YENi METOTLAR

Kenan GENCOL

Anadolu Universitesi
Fen Bilimleri Enstitiisii
Elektrik-Elektronik Miihendisligi Anabilim Dah

Danisman: Yrd. Dog¢. Dr. Nuray AT
Es Damisman: Dog. Dr. Ali KARA
2015, 90 pages

Bu tezde radar vericilerinin kimliklendirilmesine yonelik yeni metotlar
gelistirilmistir. Radar verici kimliklendirme elektronik harp ortamlarinda etrafta
tehdit olusturan vericilerin kimliklendirilmesi siirecidir.

Gelistirilen metotlardan bir tanesi radar darbe dizilerinin ayristirilmasia
yonelik gelistirilmistir. Bu amag i¢in, dncelikle SOM ve Bulanik ART kendini
orgiitleyen sinir aglarinin kiimeleme performanslar1 degerlendirilmistir. Daha
sonra radar parametrelerinin ani olarak degisebildikleri dinamik degisken sinyal
ortamlar1 i¢cin bir darbe genligi izleme algoritmasi gelistirilmistir. Benzetim
sonuglar1 oOnerilen algoritmanin ¢evik darbe parametrelerine sahip radar
vericilerini basaril1 bir sekilde ayristirabildigini gostermektedir.

Bir diger metot darbe tekrarlama aralifi modiilasyon Oriintiilerinin
taninmas1 lizerinedir. Metot farkli tip darbe tekrarlama araligi modiilasyon
dizilerinin ¢oklu c¢oziiniirlikli dalgacik ayristirmasiyla c¢ikarilan  yeni
Ozniteliklere dayanmaktadir. Metot ¢ok genis bir araliktaki darbe tekrarlama
aralig1 modiilasyon parametreleriyle test edilmistir. Benzetim sonuglar1 6nerilen
Ozniteliklerin oldukca giirbiiz olduklarin1 ve geleneksel histogram tabanh
metotlart hem dogruluk hem de hesaplama siireleri yoniinden gectiklerini
gostermektedir.

Anahtar Kelimeler: Elektronik Harp, Elektronik Destek Sistemleri, Darbe
Ayristirma, Darbe Tekrarlama Araligi Modiilasyonu,
Coklu  ¢oziinurlikli ~ Dalgacik  Analizi, Kendini
Orgiitleyen Sinir Aglar1.
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To my parents

“Education is what remains after one has forgotten everything he learned in

school.”

Albert Einstein (may be misattributed)



1. INTRODUCTION

In dense electronic warfare environments, a large number of radar emitters can be
active simultaneously. Radar emitter identification is called the process of
identifying surrounding threat emitters in electronic warfare environments. This

process is generally carried out as follows:

A radar intercept receiver which is a passive receiver picks up an
interleaved stream of pulses in natural time of arrival order and extracts their
pulse parameters. These parameters are sent to a deinterleaving subsystem which
sorts them and forms pulse cells that each are assumed to belong to a specific
emitter. Then these grouped pulse parameters are sent to a pulse repetition
interval (PRI) modulation subsystem which recognizes the pulse repetition
interval modulation type of potential emitters. This recognition task is crucial for
identification of the emission source and its mission for possible counter
measures. Finally, potential emitters are identified according to emitters stored in

the threat library. A block diagram of the process is shown in Figure 1.1.

Identified

Pulse
parameters

PRI
Modulation
Recognition

Radar cells Radars

Deinterleaving

Antenna

Figure 1.1. Radar emitter identification



This thesis is devoted to two main phases of radar emitter identification:
deinterleaving and PRI modulation recognition. The rest of the thesis is organized

as follows:

In Chapter 2, some preliminary concepts about radar emitter identification
are discussed. The chapter begins with the definition of electronic warfare and
then describes the function of an electronic support measures system and general
characteristics of emitters accordingly. Some of the emitter characteristics such as
pulse frequency, pulse width, pulse amplitude and angle of arrival are discussed
in detail. Definitions of PRI modulation types which is basis for Chapter 4 are
also given here. The chapter finalizes with the problem of emitter identification
and some earlier methods in literature that have been proposed to solve this

problem.

In Chapter 3, the problem of deinterleaving is considered. Beyond the
conventional histogram and clustering techniques, clustering task is achieved by
employing self-organizing neural networks for this purpose. Clustering
performances of two self-organizing neural networks, namely Self Organizing
Maps (SOM) and Fuzzy-ART are evaluated in terms of clustering quality,
computation time, convergence time and algorithmic complexity in detail and the
results are presented. Then, a pulse amplitude tracking algorithm is developed to
improve deinterleaving capability in dynamically varying multi-function radar

environments.

In Chapter 4, the problem of recognizing different pulse repetition interval
modulation patterns is considered. For this purpose, features based on the multi-
resolution wavelet analysis of PRI modulation patterns are proposed. The
performance of the proposed feature set are evaluated in terms of accuracy and
computation time and the results are presented. The current version of this

chapter has been accepted for publication [44].

Finally, some concluding remarks about the thesis are presented in

Chapter 5.



2. BACKGROUND INFORMATION

2.1. Electronic Warfare

The concept of Electronic Warfare (EW) is to use electromagnetic spectrum to
determine enemy’s order of battle, intensions and capabilities or to prevent
hostile use of electromagnetic spectrum [1].

Basically EW systems include Electronic Intelligence (ELINT),
Electronic Support Measures (ESM), Radar Warning Receiver (RWR), and
Electronic Counter Measures (ECM) systems. The major difference between
ELINT and ESM systems is their response time. ELINT systems provide a form
of detailed measurement for signal analysis, whereas ESM systems provide a real
time projection of radar activity. RWRs indicate whether the platform is under
attack. RWR may be a part of an active system which applies ECM to a hostile
system [1].

2.2. Electronic Support Measures

Electronic support measures (ESM) system performs the functions of threat
detection and area surveillance to determine the identity of surrounding emitters.
Broadly speaking, an automated ESM system consists of three main
subsystems as shown in Figure 2.1. The receiver subsystem, which is a passive
radar receiver, picks up the pulses transmitted by various radars in the
environment and measures their individual parameters. Basically, these
parameters include angle of arrival (AOA), pulse frequency (PF), pulse width
(PW), pulse amplitude (PA), and time of arrival (TOA). The receiver is designed
to cover wide parameter ranges to ensure detection of all radars of interest. The
measured parameters of every successfully intercepted pulse are encoded in

digital format called pulse description word (PDV) [2].



The deinterleaver sorts the PDVs and forms pulse cells, each comprises a
set of PDVs assumed to belong to the same emitter. Then each pulse cell is
encoded as emitter description word (EDV) [2].

The main processor compares the estimated EDVs with stored data in
threat library of EW system in order to identify the intercepted radar type or
to update the emitters stored in the threat library. In some advanced EW
systems, the main processor can further determine the location of the
detected radar emitter from identified radar type, instantaneous position data
supplied from airborne navigator, angle of arrival information, Electronic Order
of Battle (EOB) stored in the threat library of the EW system. The output of
the ESM system is fed to an ECM resource manager system, which starts
an appropriate ECM action against the intercepted radar. Thus, if some of
the radar cells generated at the output of the deinterleaver are not related to
actual radars in the environment (false radars), this will lead to wasteful use of

military resources against these false radars [2].

-
] 1
E ESM Receiver :I
H *_ | Receiver Encoder
[} I
E Encoder I. Subsystem
e o o . e -
przsmemoes ; ________ -1 PDV
; Sorter !
I |
i * i Deinterleaver
E Pulse Cell | |
I I
¥

Main Processor

Figure 2.1. Basic layout of an ESM system [2]
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2.3. Emitter Characteristics

In order to determine the identity of surrounding emitters, some parameters of the
received radar pulses must be measured that is characterized by emitters (Figure

2.2). These parameters include the following:

* Pulse Frequency (PF)

* Pulse Width (PW)

* Pulse Amplitude (PA)

* Angle (direction) of Arrival (AOA) (DOA)



* Time of Arrival (TOA)

» Pulse Repetition Interval (PRI) (derived)
PRI Type

» Antenna Scan Type and Rate (derived)

» Lobe Duration (Beam Width) (derived)

2.3.1. Pulse frequency (PF)

In many of pulse parameter clustering applications, it is emphasized that the
carrier frequency is the next most important parameter after AOA. The major
advantage of frequency parameter is highlighted if we notice the fact that radars
physically near to each other cannot operate on the same frequency [4]. One of
the major problems in using carrier frequency data for deinterleaving is the
increasing use of frequency agility or frequency hopping by the modern emitters
[5]. Frequency agility usually refers to the radar’s ability to change the
transmitter frequency on a pulse-to-pulse basis randomly. The frequency of the
next pulse cannot generally be predicted from the frequency of the current pulse.
Frequency hopping is the capability to operate at a number of frequencies on a
pulse group-to-pulse group basis and to change frequencies in minimal time
periods (longer than a few PRIs) [6]. Modern emitters can randomly hop from
one frequency to another frequency within its frequency hop set, or randomly
change its frequency within a frequency bandwidth which is called agile
frequency. By doing this, emitters try to apply ECCM against jamming threats
directed to them [5].

2.3.2. Pulse width (PW)

Pulse width of the radar determines radar’s resolution. Radars rarely change their
pulse width to take precaution to be detected. But, radars can change their pulse

width in accordance with the PRI parameter to improve their search capability

[1].



Pulse width is accepted as a less effective clustering parameter due to the
fact that many RADARs are similar in this respect and also multipath situations
may cause variations in measured PW values [4]. In addition to this, the pulse
width measurement accuracy is related to pulse amplitude. For small pulse
amplitudes the pulse width may be incorrect due to low Signal-to-Noise Ratio

(SNR) [1].

2.3.3. Pulse amplitude (PA)

Majority of radars use directive antennas making a mechanical rotation, and
hence the pulse amplitude received from a radar changes in time. The pulse
amplitude will be high whenever the main beam of radar is directed to the
receiving system. When pulses from side or back lobe of radar are being
received, pulses may not be detectable or the pulse amplitude may be very low
[1].

At the first glance, PA can be seen an unreliable parameter for clustering
because of its variability within a pulse train due to antenna scanning. However,
the amplitude change from one pulse to the next in a pulse train is not so great. It
is almost certain that the adjacent pulses with a large amplitude difference do not
come from the same emitter [6]. In addition to this, its usage with Time of Arrival
(TOA) information can reveal the scan pattern of the RADAR which can identify
the threat type of the emitter.

Since PA is a strong function of distance to the emitter, it can easily

deinterleave signals coming from the emitters located far away from each other

[4].

2.3.4. Angle of arrival (AOA)

The azimuth angle of arrival is the direction in which the pulse is received.
Although it is possible for an emitter to vary its other parameters from pulse to
pulse, it would however have to move at enormous speeds to change its bearing

during that interval [5]. Even if RADAR or a receiving system is moving, this



movement will be very slow as compared to the pulse rate [1]. It is a fact that
even an airborne RADAR cannot change its location in a few milliseconds of the
PRI time, so the AOA measurement by an intercept receiver is considered as

relatively stable one [4].

2.3.5. Time of arrival (TOA)

A measured time of arrival parameter is related to pulse repetition interval (PRI)
parameter of radars. PRI is defined as the difference of time of arrival of
consecutive pulses. PRI determines radar’s maximum unambiguous range and
maximum unambiguous velocity [1, 6].

Radars can use more than one PRI and can change their PRI values in very
different types called PRI modulation. Radars may change their PRI modulation

to resolve ambiguities or to improve their ECCM capabilities [1, 6].

2.3.6. Common PRI modulation types

Common PRI modulation types are given below [7] and illustrated in Figure 2.3.

Constant (Stable) PRI

The radar has a nearly constant PRI if the peak variations are less than about 1%

of the mean PRI. Such variations are considered incidental in that they generally

serve no useful purpose.

Jittered PRI

Intentional PRI variations are used for a variety of radar purposes. The radar has

large variations — for example, up to about 30% of the average PRI.



Dwell and Switch PRI

The radar has bursts of pulses with several stable PRIs switched from one burst to

the next.

Stagger PRI

Stagger PRI is the use of two or more PRIs selected in a fixed sequence. The
sequence may contain more than one of the several intervals before it repeats.
The sequence is described by the number of ‘‘positions’” used to make up one

period of the sequence.

Sliding PRI

A sliding PRI is characterized by monotonic increases or decreases in the PRI

followed by a rapid switch upon reaching one extreme limit to return to the other

extreme limit.

Periodic PRI

Periodic PRI modulation is a nearly sinusoidal variation over a more limited

range than sliding PRI.
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Figure 2.3. Some examples of common PRI modulation types: (a) Constant (b) Stagger (c)

Jittered (d) Sliding (e) Dwell &Switch (f) Periodic (n and F(n) denote time index and PRI,
respectively) [8]

2.4. ESM Receiver

ESM systems are much more sophisticated than simple RWRs and are equipped
with many auxiliary circuits. A possible ESM configuration with blocks
characterizing various equipment modules is shown in Figure 2.4.

Since frequency measurement is a costly process, it is performed only in an
independent channel whose antenna is able to cover the whole area and all
frequency bands to be explored. The antenna is omnidirectional with a horizontal

360-degree beam; the beam is either a dedicated beam or is synthesized from the
direction-finding (DF) channels.

10



Omnidirectional

antenna
Frequency
channel
ey B
array |
i . entification | . an
[:>-—E— DF Sorting processing | control
{ | channels ~ panel

Figure 2.4. Block diagram of a typical ESM system [9]

Detection of signal activity, frequency measurements, and sometimes PWs are
generally derived from this antenna channel [9].

The DF receiver generally consists of n simple channels, each consists of
a directional antenna. Sometimes the gain of these antennas is exploited to avoid
costly amplification before the main receiver. Comparison of the amplitudes
received from different channels determines the direction of origin of a signal.
Pulse characteristics, translated into digital messages specifying TOA, PW,
frequency, DOA, and amplitude, are sent to the sorting system to be segregated
into trains [9].

A high-speed computer, or fast dedicated hardware, subdivides the pulses
into groups whose similar characteristics indicate that they probably come from
the same emitter (sorting or preprocessing). This computer performs a
preliminary analysis of the data. A second computer more slowly correlates the
different emitters detected by the sorter, determines the operational mode of each
emitter (scanning or tracking), computes the antenna scan periods (ASP), and
possibly identifies the emitter by comparing its parameters with those memorized

in the library. The data is then shown on a display [9].

11



2.4.1. The radar scan

The radar scan (to an EW receiver) is the time history of the received signal
strength. This is formed by the shape of the radar antenna beam and its angular
movement relative to the location of the EW receiver. Figure 2.5 shows the
antenna gain pattern of a radar antenna in polar coordinates (in one dimension).
The antenna beam is shown as rotating (in that dimension) relative to an EW
receiver location. Note that the main beam and side lobes all rotate past to the
EW receiver. Figure 2.6 shows the relative amplitude of the signal received by
the EW receiver as a function of time. The shape of this curve can be analyzed to
determine the beamwidth and scanning pattern of the radar [10].

The ground-based search radar antenna will typically rotate 360° in
azimuth (a circular scan). This causes an EW receiver to see evenly spaced main

beams as shown in Figure 2.7.

S
T Main Beam
EW Receiver

Side Lobes

Figure 2.5. The narrow radar beam moves past to the location of an EW receiver, illuminating it

with its main beam and its side lobes [10]

N Received Power
g E___.from Main Beam
0 %, Received Power
TC /frmm Side Lobes
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Figure 2.6. The EW receiver observes the rotating-antenna beam as a time history of the received

signal strength of the threat radar [10]
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Figure 2.7. In a circular scan, the time interval between two receptions of the main beam is equal

to the antenna-scan period [10]

The time between main beams is equal to the period of rotation [10]. The radar
typically has a narrow antenna beam which allows it to determine the azimuth
and elevation of a target. The more accurately the radar must know the location
of the target, the narrower the beam. The cross-range dimension of a radar’s
resolution cell is generally determined by the 3-dB antenna beamwidth as shown

in Figure 2.8 [10].
2.4.2. Radar antenna
The parabola, shown in Figure 2.9, works well as a reflector of electromagnetic

energy and has been the basis for many radar antennas. The parabolic surface is

illuminated by a source of radiated energy called the feed, which is placed at the

-

3dB

I
Y

Beam Duration

Received Signal Strength

v

Time

Figure 2.8. If the rotation rate of the antenna can be determined, the beamwidth can be derived

[10]
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Figure 2.9. Contour of a parabolic reflector antenna [11]

focus of the parabola. The parabola converts the spherical wave radiated from the

feed to a plane wave [11].
2.4.3. Antenna radiation pattern
At microwave frequencies, the most common feeds are rectangular, circular, or

corrugated horns. For a rectangular aperture, the radiation pattern simplifies into

two principal planes (azimuth and elevation in radar case) [12]:

sm(9) sm(qo) (2.1)
%

f6,9) =

where 6 and ¢ denote angle in azimuth and elevation planes, respectively.

Figure 2.10 shows the radiation pattern in one plane:
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Figure 2.10. Typical radiation pattern [12]

2.5. Emitter Identification

The problem of emitter identification is a rather longtime problem in EW
systems. Earlier methods use two main approaches to solve this problem:
Clustering, and TOA deinterleaving techniques. Also, there are some other
methods that solve emitter identification problem in general and deinterleaving
problem in particular. All these methods are discussed in the following

subsections.

2.5.1. Clustering techniques

Clustering is a method by which the parameters characterizing an object are so
grouped that objects in a group are more strongly related to each other than those
in different groups. Clustering techniques [13] are based on similarities and
differences of stationary emitter parameters like PF, PW, and AOA. In some
limited circumstances, PA can also be used. This gives us a chance to reveal

other parameters and thus identify the emitter [1].
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2.5.2. TOA deinterleaving techniques

TOA deinterleaving techniques are based on difference of time of arrival
(DTOA) histograms. All TOA deinterleaving algorithms make a coarse search
through histograms to find out PRIs.

All differences histogram (A-DIF)

This deinterleaving algorithm [7] is based on the DTOA histogram of all
consecutive pulses. This method is also known as Delta ¢ histogram. In this
method a block of TOA data is taken, and all possible differences are calculated.
Then the histogram of this all differences data is generated. However, in practice,

only the differences up to a certain level can be used [1].

Cumulative differences histogram (C-DIF)

This algorithm [14] is an improvement to the A-DIF algorithm. The distinction is
that the calculation of all differences at the beginning is not necessary. The
algorithm starts with the calculation of the first order differences. Then the
histogram of the first differences is formed. A hypothesis test similar to the one in
A-DIF algorithm is performed. For the detection of an emitter, two peaks are
required. The requirement of the second peak at double the PRI is for improving
the reliability of the detection. If no emitter is detected (in fact this will be the
case for using only the first order differences), the second order differences are
calculated. Then the histogram of the first and the second order differences is

obtained, and the algorithm continues in this fashion [1].

Sequential differences histogram (S-DIF)

An improvement to the C-DIF algorithm is the sequential differences histogram

algorithm [15]. The distinction is that only one level histogram is used at a time.

First of all the first order differences are calculated and a histogram is formed.

16



Then a hypothesis test is performed. The threshold used in this algorithm is
different from the previous ones. In the C-DIF algorithm threshold used was
proportional to 1/PRI, whereas it is proved that the optimum threshold for the

sequential differences histogram is proportional to e’R.

The second peak
required in the C-DIF algorithm is not used in this method, because only one

level difference is available [1].

2.5.3. Sequence search method

A “sequence search” is another method for deinterleaving [14]. The sequence
search algorithm assumes an initial PRI estimate. The algorithm starts from the
first pulse in the buffer (at #1), and then looks for another pulse at (#; + PRI). If a
pulse is not found, the algorithm restarts with the second pulse. If a pulse is
found, the algorithm continues with this pulse and looks for the next pulse. After
finding the third pulse, the algorithm continues with looking for following pulses

by allowing one missing pulse [1].

2.5.4. PRI transform

This method [16] utilizes an algorithm that is auto correlation-like integral which
leads to a kind of PRI spectrum, wherein the locations of the spectral peaks

indicate the PRI values. This is called PRI transform.

2.5.5. Other methods

One of the methods [17] is based on Kalman filtering theory. This method
formulates the pulse train deinterleaving problem as a stochastic discrete-time
dynamic linear model. The deinterleaving detection/estimation task is done by
using Kalman filter.

Another method [18] is based on neural networks where a vector neural
network (VNN), a supervised learning algorithm, is applied to emitter

identification problem.
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Also, there are some methods based on the spectrum estimation/detection
of pulse trains. One approach [19] is to search periodogram for pulse repetition
frequencies. Another approach [20] utilizes a continuous wavelet transform for

detecting characteristic period or scale, T of radar pulse sequences.
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3. DEINTERLEAVING

3.1. Introduction

The main purpose of Electronic Support (ES) systems is to intercept as many
electromagnetic emissions as it can, deinterleave them and thus identify the
surrounding threatening emitters in the environment. ES systems primarily rely
on algorithms based on PRI analysis to deinterleave received pulse sequences
[14-16, 21, 22]. But, due to incarnation of a broad range of complex PRI patterns
in evolving modern electronic warfare environments that spurred an increasing
complexity in these algorithms, it has become an indispensable task to assist this
deinterleaving process [24]. Thus, clustering algorithms that depend on individual
parameters of radar pulses such as pulse frequency, pulse width and angle of
arrival are needed. In literature, studies in this field are quite limited and in one of
them [23], a clustering algorithm is developed based only on intrinsic pulse shape
without making use of signal parameters mentioned above. In [24], authors
consider self-organizing neural networks for fast clustering of radar pulses. But in
this study, the employed radar data set is quite limited and gives a general idea
about performances of neural networks by utilizing some other well-known data

sets together.

ES systems generally encounter with a continuous stream of pulses
accompanied by many imperfections such as noisy signals, time of arrival
uncertainty, missing and spurious pulses.  Furthermore, to handle such
circumstances they should work in a real-time basis. Thus, clustering algorithms
that are suitable for ES systems should have the following requirements. First and
most important of all, they should not have prior knowledge about the number
and features of categories formed. Second, due to the high density of pulses
received, they should process them sequentially without storing in long terms.
Lastly, they should be implemented in hardware in a fast and parallelized
manner. For such requirements, self-organizing neural networks which lend
themselves to highly parallelized autonomous clustering seem very promising

[24].
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This study improves the work presented in [24]. The clustering
performances of two self-organizing neural networks, namely Self Organizing
Maps (SOM) and Fuzzy-ART are evaluated in terms of clustering quality,
computation time, convergence time and algorithmic complexity in detail and the
results are presented. Then, a pulse amplitude (PA) tracking algorithm is
proposed to assist deinterleaving of radar pulses in dynamically varying multi-

function signal environments where emitters have agile pulse parameters.

3.2. Performance Evaluation of Self-Organizing Neural Networks
3.2.1. Self-organizing maps (SOM) (Kohonen network)
The material presented here is based on [25, 26]:

The SOM consists of a regular, usually two-dimensional (2-D), grid of map units
(Figure 3.1). Each unit i is represented by a prototype vector, m; = [mi... mid]

where d is input vector dimension. The units are connected to adjacent ones by a

i TarTasTaTarT s
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Figure 3.1. SOM structure [26]



neighborhood relation. The number of map units, which typically varies from a
few dozen up to several thousand, determines the accuracy and generalization
capability of the SOM. During training, the SOM forms an elastic net that folds
onto the “cloud” formed by the input data. Data points lying near each other in
the input space are mapped onto nearby map units. Thus, the SOM can be
interpreted as a topology preserving mapping from input space onto the 2-D grid

of map units.

The SOM is trained iteratively. At each training step, a sample vector x is
randomly chosen from the input data set. Distances between x and all the
prototype vectors are computed. The best-matching unit (BMU), which is

denoted here by b, is the map unit with prototype closest to x.

llx —my |l = min,{[lx — m;||} (3.1

Next, the prototype vectors are updated. The BMU and its topological neighbors
are moved closer to the input vector in the input space. The update rule for the

prototype vector of unit 7 is

m;(t+1) = m;(0) + a(®)hp;(D)[x —m;(0)] (3.2)

where ¢ denotes time, a(f) represents adaptation coefficient, and /%(z) denotes

neighborhood kernel centered on the winner unit given by

hpi(t) = exp <——”rb ril ) (3-3)

202(t)

where r, and r; are positions of neurons b and i on the SOM grid, respectively.
Both a(#) and o(¢) decrease monotonically with time. There is also a batch version
of the algorithm where the adaptation coefficient is not used. In the case of a
discrete data set and fixed neighborhood kernel, the error function of SOM is

given by
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i=1j=1

where N is the number of training samples, and M is the number of map units.
Neighborhood kernel 7 is centered at unit b, which is the BMU of vector x;, and

evaluated for unit ;.
3.2.2. Fuzzy ART
The material presented here is based on [27]:

ART Field Activity Vectors: Fuzzy ART system includes a field Fy of nodes

that represent a current input vector; a field F; that receives both bottom-up input

Layer competition F2

Layer
comparison
Fi

Figure 3.2. Fuzzy ART Network [27]
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from Fy and top-down input from a field F> that represents the active code, or
category (Figure 3.2). The Fyactivity vector is denoted by I = (/... Ii) with each
component /; in the interval [0, 1], i = I... M. The F; activity vector is denoted by
x = (x7...xy) and the F> vector is denoted by y = (y;...y~). The number of nodes

in each field is arbitrary.

Weight vector: Associated with each F> category node j (j = ... N), there is a

vector w; = (wjs, ..., win ) of adaptive weights. Initially,

wj (0) = -+ =w;y (0) = 1; 3.5)
then each category is said to be uncommitted. After a category is selected for
coding it becomes committed. Each weight w;; is monotonically non-increasing

and hence converges to a limit. The Fuzzy ART weight vector w;subsumes both

the bottom-up and top-down weight vectors of ART.

Parameters: Fuzzy ART dynamics are determined by a choice parameter o > 0;

a learning rate parameter f € [0, 1]; and a vigilance parameter p €[0, 1].

Category choice: For each input I and category j, the choice function, 7}, is

defined by

 iAw] (3.6)

where the fuzzy AND [28] operator A is defined by

(x Ay); = min(x;,y;) (3.7)

and the /; norm |[.| is used:

(3.8)



For notational simplicity, 7;(I) in (3.6) is often written as 7; when the input 7 is

fixed. The category choice is indexed by J, where

T, =max{Tj:j=1..N} 3.9)
If more than one 7}is maximal, the category j with the smallest index is chosen.
In particular, nodes become committed in orderj (7, 2...N)

Resonance or reset: Resonance occurs if the match function of the chosen

category meets the vigilance criterion; that is, if

rAwl (3.10)

Learning then ensues. On the other hand, Mismatch reset occurs if

I1Aw)| (3.11)
T

The value of the choice function 7 is reset to -1 for the duration of the input
presentation to prevent its persistent selection during search. A new index J is
chosen according to (3.9). The search process continues until the chosen J

satisfies (3.10).

Learning: The weight vector w; is updated as follows

ld ld
W = (1A WD)+ (1= pwe (3.12)

Fast learning corresponds to setting = 1.

Fast-commit-slow-recode option: For efficient coding of noisy input sets, it is
useful to set # = 1 when J 1s an uncommitted node, and then take f <1 after the
category is committed. Then w; " = I is the first time category J becomes

active.
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Input normalization option: Proliferation of categories is avoided in Fuzzy

ART if inputs are normalized; that is, for some y > 0:

1l =y (3.13)

for all inputs I. Normalization can be achieved by preprocessing each incoming

vector a, 1.e. setting

a (3.14)

An alternative normalization rule, called complement coding, achieves
normalization while preserving amplitude information. Complement coding
represents both the on-response and the off-response to a. To define this
operation in its simplest form, let a represent the on-response. The complement

of a, denoted by a“, represents the off-response, where

af=1-aq; i=1,..,M (3.15)
The complement coded input 7 to the recognition system is the 2A/-dimensional
vector

I= (aa‘) = (ay..,ay,af,..,a5) (3.16)

Note that

M (3.17)
ai> =M
=1

1l = |(a,a)| = Zai+ (M—

i=1 i

so inputs preprocessed into complement coding form are automatically

normalized. In complement coding, the initial condition (3.5) is replaced by

le(o) == Wj,ZM(O) =1 (3.18)
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Figure 3.3. Synthetic mixed pulse generator

3.2.3. Simulations

Modeling environments consisting of multiple emitters is important for realistic
implementation of an ESM receiver that integrates radar pulses and processes
them. For this reason, a so-called synthetic mixed pulse generator (simulator) is
designed. A screen output of the designed simulator is given in Figure 3.3.

Detailed description of the simulator is presented in Appendix A.1.

Test Scenarios

Test scenarios presented here is based on [1, 5, and 6]. Three different scenarios
are tested to see the clustering quality, computation time, and convergence time
of two self-organizing neural networks. Scenarios are given in Table 3.1. There
are 10, 11 and 19 radars in each scenario, respectively. In each scenario, a
Gaussian noise of zero mean and 5% standard deviation, which is an extreme
case, is added to AOA, PF, and PW values to simulate the measurement errors.
Each scenario is simulated for one second, and a total number of 5260, 22690,
and 75050 pulses which is ordered in natural time of arrival are obtained,

respectively.
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Table 3.1. Radar Parameters of Test Scenarios

Radar Parameters

Scenario 1 Scenario 2 Scenario 3
S .| < § . E 2| o o < § . E 2| o B ? . § 2 5 oo
= o Z | & o Z | & o g &
P2z |=a8 23z |2 |22 |*E 8 = 2
=t A < A = &
! 80 7500 | 20 500 50 9375 3 1800 30 4500 7 215.0
2 300+6
75 4300 | 30 350 60 9000 2 5000 30 4300 3
(jittered)
3 70 2700 | 10 400 60 9350 2 2700 30 5300 7 475.0
4 85 1800 | 25 550 65 3100 2 800 40 4000 3 170.0
> 65 1300 | 12 750 70 3000 3 750 33 3000 15 800.0
6 220.0 =30
78 9000 | 40 | 1000 70 5000 2 2200 20 8400 1
(sinusoidal)
7 200.0 /450.0/
750.0/980.0
73 2200 | 35 650 75 9500 1 1500 4 3000 7
(dwell &
switch)
8 1100.0/
1115.0
60 3800 | 22 250 80 3250 1 3940 65 3000 7 /1150.0 /
1180.0
(staggered)
? 67 5500 | 15 300 90 3200 | 10 1000 > 3000 7 175.0
10 60 9300 | 50 350 100 | 9000 2 3000 4 3000 15 800.0
11 145.0+4.8
80 2700 5 160 > 4000 3
(jittered)
12 105+4.2
30 4000 3
(jittered)
13 100.0/250.0/
33 5100 1 550.0/550.0
(staggered)
14 200.0/450.0/
85 5100 11 750.0 /980.0
(dwell &
switch)
15 70 6800 80 440 to 580

27




(sliding)
16 70 8400 11 220.0 £30.0
(sinusoidal)
17 70 6600 20 335.0
18 35 8100 15 1050.0
19 30 9800 1 80.0

3.2.4. Results and Discussion

For each scenario, SOM and Fuzzy ART clustering results are given in Table 3.2
and Table 3.3, respectively. It is be observed that SOM algorithm can reach to
best and stable clustering accuracies, with 92.1%, 96.0% and 95.0% in each
scenario, respectively. The sacrifice for such good clustering accuracies is the
relatively more computation and longer convergence times (Table 3.2). SOM
networks, where map sizes obtained from Principal Component Analysis (PCA)
analysis are also given in the last rows of each scenario tab. The clustering
accuracies for this case are 83.3%, 94.7%, and 93.5% respectively, which are
quite close to best clustering quality scores. But, if the computation and
convergence times are compared, these PCA based SOM networks have very less
computation and fast convergence times compared to “best” SOM networks
counterparts as we call (SOM networks that have best accuracies - emphasized by
bold letters in each scenario tab). This is due to the fact that instead of selecting
SOM inputs in random manner, inputs are first selected among the samples that
lie on the principal axis obtained from PCA analysis. This selection criterion has
a significant impact on the computation and convergence times and gives the
optimum performance bounds of SOM networks. But, it also should not have
been forgotten that overall data is needed for PCA analysis, so it is rather
uncommon situation for online clustering of data which is the case for ESM

systems.
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Table 3.2. SOM Clustering Results

SOM Network Map Size Clustering Computation Convergence Topographic
For Scenarios (MxN) Quality (%) Time (sec) Time (epochs) Error [0,1)
Scenario 1 5x5 39.3 0.27 I<15 0.002
2>r0)>1, 6x6 56.6 0.61 1<20 0.000
0.05<a(t) < 8x8 79.0 1.20 I1<36 0.004
0.5) 10x10 80.1 1.89 <50 0.000
15x15 92.1 6.16 1<120 0.021
12x9 (PCA) 83.3 2.67 I<62 0.002
Scenario 2 4x4 38.9 1.14 <44 0.000
B=>1r0)>1, 5x5 59.1 1.23 <44 0.000
0.05<a(t) < 6x6 78.4 1.24 I<44 0.020
0.5) 10x10 89.6 2.47 <67 0.010
20x20 96.0 14.06 1<226 0.053
18x13 (PCA) 94.7 7.29 I<124 0.037
Scenario 3 5x5 55.4 4.48 I1<160 0.015
4>r0)>1, 10x10 823 6.50 I<178 0.072
0.05<a(t) < 15x15 91.2 11.80 1<242 0.070
0.5) 20x20 94.0 20.48 1<325 0.035
25x25 95.0 36.23 1<490 0.052
25x18 (PCA) 93.5 22.23 1<298 0.066
Table 3.3. Fuzzy ART Clustering Results
Fuzzy ART Vigilance Clustering Computation Weight Convergence
Network Number (p) Quality (%) Time (sec) (MxN) Time (epochs)
For Scenarios
Scenario 1 0.75 70.08 0.62 6x6 I<2
(B=1, a=0.001) 0.80 69.91 0.64 6x9 I<2
0.85 89.63 0.72 6x12 I<2
0.90 90.49 0.80 6x11 I<2
0.92 90.596 0.78 6x15 I<2
0.88 90.52 0.72 6x10 1<2
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Scenario 2 0.75 79.34 1.86 6x5 I<2
(B=1, a=0.001) 0.80 78.85 2.15 6x8 I<2
0.85 82.99 2.16 6x8 I<2

0.90 84.41 2.53 6x12 I<2

0.95 90.12 3.17 6x20 I<2

0.92 90.19 2.30 6x10 I1<2

Scenario 3 0.75 76.19 10.23 6x16 I<2
(B=1, a=0.001) 0.80 76.57 9.97 6x16 I<2
0.85 82.38 14.73 6x31 I<2

0.90 89.52 15.66 6x31 I1<2

0.82 80.65 13.03 6x24 I<2

0.92 87.58 19.25 6x44 I<2

On the other hand, Fuzzy ART networks have relatively low best
clustering accuracies which are about 90%, they have the best computation time
and convergence time scores (Table 3.3). For example, PCA based SOM
networks have computation time scores of 2.67, 7.29, and 22.23 seconds (Table
3.3) whereas Fuzzy ART networks that have best clustering accuracies in each
scenario have corresponding computation scores of 0.72, 2.30, and 15.66 seconds
(Table 3.3), respectively. In addition to this, all Fuzzy ART networks work in fast

learning mode and they have convergence time of just 2 epochs.

Although SOM networks have relatively high and stable clustering
accuracies, predefined map size, more computation and longer convergence
times, and difficulty in determining the category bounds can be considered the
major drawbacks of these networks. On the other hand, while Fuzzy ART
networks have less computation times and they converge fast, relatively low
clustering quality scores and proliferation of categories in high vigilance numbers
become their bottlenecks. In addition, both networks have the algorithmic
complexity of O(MN) where M is the number of samples and N is the number of
neurons. However, this N number which determines the number of clusters is

large in SOM networks compared to their Fuzzy ART counterparts.
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If clustering accuracy, computation time and convergence rate criteria are
considered altogether, Fuzzy ART networks seem more promising algorithm for

online clustering of interleaved radar data.

3.3. Methodology
3.3.1. Problem statement

Multi-function radars (MFRs) which can perform several tasks simultaneously by
changing the pulse frequency and pulse width are very common in today’s
modern electronic warfare environments. Radar’s capability to change the
frequency on a pulse-to-pulse basis is called frequency agility, and on a pulse
group-to-pulse group basis is called frequency hopping. Modern emitters can
randomly hop from one frequency to another frequency within its frequency hop
set, or randomly change its frequency within a frequency bandwidth which is

called agile frequency.

This multi-function operation leads to some heterogeneous clusters in
conventional pulse deinterleaving process where pulses belonging to a specific
emitter class are grouped within other emitter clusters. This misleading causes
incorrect clustering of radar data and directly affects the subsequent processing

performed on data.

For a specific emitter, the amplitude change from one pulse to the next in
a pulse train is not so great. It is almost certain that the adjacent pulses with a
large amplitude difference do not come from the same emitter. In addition to this,
its usage with Time of Arrival (TOA) information can reveal the scan pattern of

the RADAR which can identify the threat type of the emitter.
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3.3.2. Modeling of pulse amplitude values at the receiver side

Let e;, e2. .. en be the N emitters surrounding our ESM system. Let w; be the
circular scan rate of ith emitter. Then the principal angle (direction) of its main

beam (beam axis) at any time ¢ is given as:

0;(t) = w;t (mod 360 deg) (3.19)

If emitter antennas are assumed to have uniform rectangular apertures, the
strength of radiation in decibels (dB) emitted by an emitter is given in the

canonical form of

sinf (3.20)

P(6) = 20log 0

Then the magnitude of the pulse emitted from ith emitter at time ¢ and angle 8 is:

sin(8;(t)) (3.21)

P(t,8) = P(6,(t)) = 20log 5.0

If the emitter is positioned at distance R; from ESM receiver and emitting at

frequency f; the path loss associated by the emitter in free space is given as:

47TRi) (3.22)

Ly, = ZOlog( 7

where A; = ¢ /f;, and ¢ = 3x10® is the speed of light in free space in meters.

Then the magnitude of the pulse received from ith emitter at time ¢ is derived as:

= L = sin(6, ()| [ 47R, (3.23)
4,(O)=F(t,0) L,,,l.—zolog{‘ 00 ‘/ :

1
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In this formula, time 7 is a function of pulse repetition interval of the emitter. If
the emitter is assumed to have a simple PRI value, then time of arrival of nth

pulse received is

t=n.PRI (3.24)

3.3.3. PA tracking algorithm
1. Sort the TOA’s of the corresponding pulses in the cluster in ascending order.
2. Let
Ai: A1, A>... Ay denote the actual (received) PA values, and
AiA), A, ..., Avdenote the estimated PA values for each
Oest: nitial estimate of scan angle 6 = wt mod 2.

3. Recursively:

3.1. Calculate the estimated 4,’s by using Eq. (3.23),

3.2. Find Oex such that T, [|4; — A;||is minimized, i.e,

2

N
6 = min g0, Z”Ai — A (3.25)
i=1

This is a nonlinear least squares estimation problem which can be solved by using
Gauss-Newton method iteratively. Gauss-Newton method is a naive method that
best fits to model-based parameter estimation problems. By using Gauss-Newton
method, an estimation problem is reduced to calculation of Jacobians of the

residual function under consideration.
Here, the residual function is

SinB s [ = (3.26)
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and, the Jacobian matrix of »; ,

J = or  cosB.5  sinB,q
aoest oest oestz
Solve
aJ
J'r] = | T
aoest
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Find 8 that mimimize
Sum (zquare (4 - A:))

Converge

[ Eegroup by using fes ]

Figure 3.4. Flowchart of the proposed algorithm
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until the difference between two subsequent Oest, £9 converges to a choice value.

5. Regroup pulse cells by using present pulse parameters and new estimated

emitter parameter, the scan rate of the emitter.

The flowchart of the proposed algorithm is given in Figure 3.4.

3.3.4. lllustrative examples

Two illustrative examples are presented to describe in which situations the
proposed method works. In each example, a TOA noise of 1% is added to each

TOA values to simulate timing jitter.

The first example illustrates a situation where emitters have the same PRF
value but different scan rates. In this example, for simplicity, there are two
emitters with the same PRF value 2 KHz and scan rates 30 and 45 deg/s,
respectively. The normalized scan pattern of mixed emitters after simulation of

200 ms is illustrated in Figure 3.5.

1 M| T T T
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—© Emitter 2 []
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0 002 0.04 006 008 01 012 0.14 0.16 0.18 0.2
Time (ms)

Figure 3.5. Two emitters with the same PRF but different scan rates
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Figure 3.6. Two emitters with the same scan rate but different PRF values

The second example illustrates a situation where emitters have different PRF
values but the same scan rate. In this example, for simplicity, there are two
emitters with the same scan rate, 60 deg/s and PRF values 2 KHz and 3 KHz,
respectively. The normalized scan pattern of mixed emitters after simulation of

100 ms is illustrated in Figure 3.6.

3.3.5. Convergence of Gauss-Newton method to the proposed model and

some practical considerations

The Jacobian matrix of the model function has a pitfall. It is undefined at time
instants where the derivative of the function changes sign. If these points are
included in the calculation of the Jacobian matrix, the method converges very

slowly, or does not converge at all. Thus, only the local regions between two
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Table 3.4. Gauss-Newton estimation of scan angles of some emitters ranging from 45 deg/s to

180 deg/s
Actual angle Initial estimate Number of Estimated angle
iterations
45 120 5 93.09, 63.21, 47.20,
45.23,45.01

90 120 3 94.98,90.66,90.07
135 120 2 134.71,134.99
180 120 2 181.18, 179.99

consecutive extremes (regions between a maximum — a minimum and a minimum

— a maximum point) of the model function are considered.

Radar emitters in dynamically varying signal environments such as air-to-air
electronic warfare environments have typically scan rates of 8 to 30 rpm. This
corresponds approximately between 45 deg/s and 180 deg/s scan angles. Gauss-
Newton estimation of scan angles of some emitters ranging from 45 deg/s to 180
deg/s after each iteration is given in Table 3.4. It estimates the scan rate of the

emitters with a resolution of 0.1 deg/s by at most 5 iterations.

If we would apply bisection method to estimate scan rate of emitters between 45
and180 deg/s, it would take 2 iterations in the best case and 14 iterations in the

worst case to have a resolution of 1 deg/s.

3.3.6. Simulations

Monte Carlo simulations are performed with aircraft radars which have multi-
function operations. The radar data set is presented in Table 3.5. The radars
operate between 8-12 GHz bands and have scan rates ranging from 8 rpm to 30
rpm. These radars also have agile PRF and agile pulse width values. 22 emitters
are obtained by using the lower and upper bounds of PRF and PW values of each

radar mode.
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Table 3.5. The radar data set [11]

Radar Mode PRF (KHz) Pulse width (us)
Range-Gated High PRF 100-300 1-3
Medium PRF 6-20 1-20
Burst Ranging 3-20 2-60
Active Track 8-300 0.1-20
Raid Assessment 2-16 2-60
Non Coop. Target Rec. 2-20 1-200
HiPwr Jam 50-300 3-10
Cal/AGC 2-300 0.1-60
Air Data Link 10-300 1-20
Gun Ranging 10-20 0.1-0.5
Weather Avoidance 0.5-5 1-50

3.3.7. Results and Discussion

Number of emitter clusters formed and the clustering quality of each cluster after
100 runs for Fuzzy ART (FA) and the proposed Fuzzy ART plus PA tracking
(FA + PA) algorithms are given in Figure 3.7 and Figure 3.8, respectively. It is
shown in Figure 3.7 that in each run, the number of clusters formed by FA + PA
algorithm is closer to actual number of clusters, which is 22 than FA. Also, in
each run the clustering quality of FA + PA is higher than FA. The average
number of clusters formed and the average clustering quality of FA and FA + PA
algorithms are presented in Table 3.6. The average number of clusters formed by
FA is 15 with an average quality of 86.37%. On the other hand, FA + PA gives

18 clusters in average with an average clustering quality of 92.84%.
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Table 3.6. Average clustering results

Clustering Algorithm

Average number of

Average clustering

clusters formed quality (%)
FA 15 86.37
FA + PA 18 92.84

Simulation results for the case where emitters are positioned at the same direction
is presented in Table 3.7. In this case, FA has an average clustering quality of

75.90%, whereas FA + PA has an average clustering quality of 85.42%.

It can be inferred from simulation results that clustering quality is

improved when PA Tracking algorithm is employed.

Table 3.7. Average clustering results (emitters are positioned at the same direction)

Clustering Algorithm

Average clustering

quality (%)
FA 75.90
FA + PA 85.42
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4. PRI MODULATION RECOGNITION

4.1. Introduction

In dense signal environments where large number of (many) emitters can be
active simultaneously, a radar intercept system receives an interleaved stream of
pulses in natural time of arrival order. It is then the task of the intercept system to
deinterleave this mixed pulse sequence and thus to identify the source emissions.
For this identification task, various parameters such as pulse frequency (PF),
pulse width (PW), pulse amplitude (PA), angle of arrival (AOA), and time of
arrival (TOA) are measured and emission sources are classified accordingly.
Among these pulse parameters, TOA is of considerable interest since it leads to a
key derived parameter called Pulse Repetition Interval (PRI), which represents
the difference of sequential TOAs of received pulses. Any emission source either
intentionally or unintentionally varies (or modulates) this parameter for a specific
mission requirement. Thus, it is important to recognize PRI modulations for
identification of the emission source and its mission for possible counter
measures. Additionally, some emitters may vary even PRI modulation type
according to its mission. This makes estimation of PRI modulations more critical
from operational point of view. As the subject is sensitive, and may require
mostly classified data, it is not possible to see so many works toward resolving

this problem.

4.2. Literature Survey

In the literature, deinterleaving pulse trains has been in the focus of many
researches in the past years [14-22]. Several studies were performed on
estimation of PRI to construct better deinterleaving algorithms. Cumulative
Differences (C-DIF) and Sequential Differences (S-DIF) histogram techniques,
techniques based on TOA matrix characteristics, and a transformation called PRI

Transform leading to a kind of PRI spectrum were some amongst these
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algorithms that enabled new methodologies to estimate pulse repetition intervals
of pulse sequences and thus to deinterleave them [14-16,21]. But, as the signal
environments become more complex in electronic warfare due to evolving of
technology, the need for not only estimating pulse repetition interval of radar
pulses, but also recognizing the modulation patterns hidden inside them has
become an inevitable task. So, in recent years, studies have been focused on this
area and several methods have been proposed to recognize PRI modulation types
[29-36]. In Noone [29], an N dimensional feature vector is deduced by using the
second differences of the TOAs of a pulse train and PRI modulation types are
classified via a neural network. In Rong et al. [30], a two dimensional feature
vector is formed by extracting frequency and shape features from this N
dimensional vector which reduced the computation time greatly. In Ryoo et al.
[31] PRI modulation types are recognized based on the features extracted from
the autocorrelation of the PRI sequences for each PRI modulation type. In this
method, due to the sensitivity of the features against signal imperfections,
compensation of missing pulses and the removal of spurious pulses must be
performed as a preprocessing step. In Kauppi et al. [32] PRI modulation patterns
are classified hierarchically. First, six modulation patterns are first grouped into
three sub-patterns by using a neural network classifier and then they are binary
classified by using one-dimensional classifiers. Some proposed features in this
method are based on sequential difference (SDIF) histograms [15] and they need

to be calculated for several orders due to unknown signal parameters.

4.3. PRI Modulation

4.3.1. Definition

Let F be a function describing the PRI modulation type:

Xpn = Yne1— Yo =F(n) n=12,..,N—-1 (4.1)
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where y, 1s the time of arrival (TOA) of the nth pulse received in a pulse sequence

of length N and x;, is the difference of TOAs of two consecutive pulses.

4.3.2. PRI modulation types

In general, there are six common PRI modulation types: stable, jittered, stagger,
dwell & switch, sliding and periodic. Each modulation type serves for a specific
purpose, thus they represent some characteristics of emitters. Common PRI

modulation types are described below [7]:

Constant (Stable) PRI

The radar has a nearly constant PRI if the peak variations in PRI values are less
than about 1% of the mean PRI. Such variations are considered incidental in that

they generally serve no useful purpose. Constant PRI radar is defined by
Fn)=c¢, n=2,..,.N—1 4.2)

where ¢ denotes a constant real number.

Stagger PRI

Stagger PRI is the use of two or more PRIs selected in a fixed sequence. The

sequence may contain more than one of the several intervals before it repeats.

The sequence is described by the number of ‘‘positions’” used to make up one

period of the sequence. The stagger PRI is generally used to eliminate blind

speeds in MTI radar systems.

Let M denote the number of positions in one period and 7 is the number of

periods in the pulse sequence, then stagger PRI is defined as
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Fi+kM)=F@) i=1..M k=1,.,T (4.3)
Total number of pulses in the pulse sequence is MT.
Dwell and Switch PRI
The radar has bursts of pulses with several stable PRIs switched from one burst to
the next. The radar transmits pulses at a constant PRI for a dwell time and
switches its PRI for the next dwell time. This technique is used to resolve range

ambiguities in pulse Doppler radars.

Let M denote the number of stages in the pulse sequence and N;is the number of

pulses in the ith stage, then dwell and switch PRI is defined as

First stage:
F(Q)=FQ1) i=2,..,N, (4.4)
Other stages:
FO=F(1+N;) i=N;+2,..,Nyy j=0,..,M—1 (4.5)

Jittered PRI

Jittered PRI has large intentional PRI variations up to about 30% of the mean

PRI. Such variations are generally used for ECCM purposes. It is defined by

Fn) =T+ EGauss (4.6)

where T is the mean PRI and egauss 1S @ random variable which has a Gaussian

distribution with zero mean and ¢ standard deviation.
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Sliding PRI
A sliding PRI is characterized by monotonic increases or decreases in the PRI
followed by a rapid switch upon reaching one extreme limit to return to the other

extreme limit. This may be used to eliminate blind ranges.

Let M denote the number of pulses in one slide period, £ is the minimum PRI

value, and « is the slope of the modulation, then sliding PRI is defined as

Fn)= aln—1mod M) + 4.7)

Periodic PRI

Periodic PRI modulation is a nearly sinusoidal variation over a more limited

range than sliding PRI. It can serve to eliminate blind ranges. It is defined by
F(n) =T + Asin(wn + @) (4.8)

where T is the mean PRI, 4 is the modulation amplitude (generally up to 5% of

mean PRI), w is the modulation frequency (generally between 20-50 pulses per

period) and ¢ is the phase.

Common PRI modulation types and their parameterizations are summarized in

Table 4.1.
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Table 4.1. Common PRI modulation types and their parameterizations

Constant

F(n)=c¢ n=2,.,N-1

¢ :a constant real number.

Stagger

F(i+kM)=F(i)i=12,...M
k=12,..,T

M: the number of positions in
one period

T: the number of periods in
the pulse sequence.

Total number of pulses in the
pulse sequence is

N=MT

Dwell and Switch

First stage: F=F@)

i=2,... N,

Other stages: F(i)=F(1+N,)
Jj=01,., M -1

i=N,+2,..,N,

+1

M :the number of stages in the
pulse sequence

N; :the number of pulses in the
ith stage

The total number of pulses in
the pulse sequence is

M-
N=>N,
k=0

Jittered

Fn)=T+¢;,.

T :the mean PRI

€Gausss a random variable
which has a  Gaussian
distribution with zero mean
and o standard deviation.

Sliding

F(n)=a(n—1mod M)+

M :the number of pulses in
one slide period

B :the minimum PRI
(Min_pri) value

a = (Max_pri - Min_pri) / (M-
1), the slope of the
modulation.

Periodic

F(n)=T+ Asin(wn +¢)

T :the mean PRI

A: the modulation amplitude
(generally up to 5% of mean
PRI), w: the modulation
frequency (generally between
20-50 pulses per period)

¢ :the phase.
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4.4. A Brief Introduction to Wavelets

The aim of this short section is to give some basic information about wavelets
and how it is used in the multiresolution analysis of signals of interest rather than

describing their properties in detail for time-frequency analysis.

4.4.1. The Haar wavelet

The Haar wavelet is defined as [37]:

1, 0<t< 1
1 2 (4.9)
Y(@)=9-1, —<t<l1
(1) 5
0, elsewhere
and the whole set of basis functions is obtained by dilation and translation:
¥, (O=2"""¥ (2" t-n), m,neZ. (4.10)

We call m the scale factor, since . »(2) is of length 2, while » is called the shift
factor, and the shift is scale dependent (yu.(¢#) is shifted by 2mn). The

normalization factor 272 makes W,»(?) of unit norm.
A few of the basis functions are shown in Figure 4.1. It is easy to see that the set

is orthonormal. At a given scale, yu,(2) and ., (¢), the inner product amounts to

the average of the shorter one which is zero.

<‘Pm,n (t),‘Pm,,n,(t)>=5[m—m']é[n—n'] (4.11)

48



Figure 4.1. The Haar basis (a) A few of the Haar basis functions (b) Haar wavelets are

orthogonal [37]

4.4.2. Discrete wavelet transform
The continuous wavelet transform (CWT) is defined by [38]:

. (4.12)
W, (a,b)= [ W, (1) f(O)dt (¥, (1), £ (1))

in terms of dilations and translations of a prototype or mother function, w(t):

- 4.13
lI’ab (I)Z%\P(%) ( )

Let the m-by-n sampling lattice of (a,b) be (a¢™, nboao™):
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So that,
\Pmn (t):ao—m/Z\P(aO—mt_nbo) m,neZ (414)
Then the discrete wavelet transform coefficients ¢, , are expressed as:

Cpn =(P,, (), f(O))=a,"' 2[ (O (ao*mz —nb, )dt (4.15)

4.4.3. Fast wavelet transform (Multiresolution decomposition algorithm)

In 1988, Mallat proposed a fast wavelet decomposition and reconstruction
algorithm [39]. The Mallat’s algorithm leads to a multiresolution concept based
on a classical scheme known as multichannel filter banks. An easy way to
construct multichannel filter banks is to cascade two-channel banks appropriately.
One case can be seen in Figure 4.2, where frequency analysis is obtained by

simply iterating a two-channel division on the previous low pass channel [37].

TN TN
—{ 2 2 —e
Hy =2 Hy %
stage |
e
[ |
H(} el J o

L —
stage 2 ) H, _:/3) .
o YEE G

—1 Ho _@P'_’

i 4

stage J

Figure 4.2. An analysis filter bank implementation. Ho and H; filters correspond to lowpass and

highpass filters respectively [39]
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Consider the filter bank given in Figure 4.2. We see that the signal is split first via
a two-channel filter bank, then the lowpass filtered part is split again using the
same filter bank, and so on. At each stage, the highpass filter produces the detail
(or wavelet) information, while the low pass filter produces the approximation
coefficients. This structure implements a discrete-time bi-orthogonal wavelet
series (we assume here that the two-channel filter banks are perfect
reconstruction). If the two-channel filter bank is orthonormal, then it implements

an orthonormal discrete-time wavelet series [37].

4.5. Support Vector Machines (SVM)

In this section, we will review the method of support vector machines for linearly
separable binary classification problems. The material presented in this section is

based on [41].

4.5.1. The optimal hyperplane algorithm

The set of labeled patterns training patterns

v, x0), o, O x), v € {—1,1} (4.16)
is said to be linearly separable if there exists a vector w and a scalar b such that
the inequalities

wox+b =1 ify; =1,
le+b <-1 lfyl

I
I
P

(4.17)

are valid for all elements of the training set (4.16). We write the inequalities
above in the form
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yiw.x; +b) =1, i=1,..,1 (4.18)

The optimal hyperplane

Wo.X+ by =0 (4.19)

is the unique one which separates the training data with a maximal margin

determines the direction w / |w| where the distance between the projections of the

training vectors of two different classes is maximal (See Figure 4.3).

This distance p (w, b) is given

_ x.w x.w
p(w,b) = mm{x:y=1}m — MaXgy. =

_1}_
Iwl (4.20)

Figure 4.3. The optimal separating hyperplane and optimal margin. The support vectors, marked

with grey squares, define the margin of largest separation between the classes [41]
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The optimal hyperplane (wo, bo) is the arguments that maximize the distance

(4.20). It follows from (4.20) and (4.18) that

2 2 (4.21)

This means that the optimal hyperplane is the unique one that minimizes w .w
under the constraints (4.18). Vectors x; for which yi(w.xi+ b) is equal to 1 will be

termed support vectors.

4.5.2. Classification with support vector networks

Let
Wo.Z+ by =0 (4.22)

be the optimal hyperplane in feature space. The weights wo for the optimal
hyperplane in the feature space can be written as some linear combination of

support vectors

o = Z 0z, (4.23)

support
vectors

The linear decision function /(z) in the feature space will accordingly be of the

form:

1(z) = sign( Z a;z; .Z+ by)
support (4.24)

vectors

where z; . z is the dot product between support vectors z; and vector z in feature
space. The decision function can therefore be described as a two layer network

(Figure 4.4).
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Figure 4.4. Classification by a support-vector network of an unknown pattern [41]

4.6. Higher Order Statistics

In statistics, first and second order moments, the arithmetic mean and the
variance are considered to be lower order statistics. Lower order statistics
describe the nature of the normal distribution. On the other hand, third and fourth

order moments, the skewness and the kurtosis are the examples of higher order

statistics (HOS).

These statistics describe the deviation of a distribution from the normal

distribution. HOS are generally used to measure the shape parameters of
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distributions (i.e., how much their shape parameters deviate from the normal

distribution) and thus they are less robust than lower order statistics.

4.6.1. Skewness

Skewness is a measure of the asymmetry of the probability distribution of a real-

valued random variable about its mean. The sample skewness is defined as:

P [(X — H)3l _ % iy (o — ) (4.25)

7O -]

4.6.2. Kurtosis

Kurtosis is a measure of the peakedness of the probability distribution of a real-

valued random variable. The sample kurtosis is defined as:

E[(X — )% % i —w*

= YV 2 (4.26)
(E[X = w2 [%Z{;l(xi _ﬂ)z]

4.7. Methodology

It has been shown that multiresolution signal decomposition scheme proposed in
[39] can be applied to PRI estimation in intercept receivers. In doing this,
variation of wavelet coefficients are closely related with PRI modulation patterns
obtained from the time sequences of interleaved pulses. Classical multiresolution
concept based multichannel filter banks are adopted to PRI estimation in this

work.
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After detailed analysis of PRI modulation types via their wavelet
decompositions, it was observed that local extrema of the wavelet coefficients of
jittered type modulation patterns tend to have lower magnitudes compared to
stagger type modulation patterns. This is due to the fact that in staggered
sequences, PRI variation is done from pulse to pulse. The radar emitter staggers
from one position to another abruptly. These abrupt changes are more likely to be
reflected in magnitude to their detail coefficients in contrast to jittered sequences
where PRI variation is within a predefined limited range. Also, the median of the
wavelet coefficients of other PRI modulation patterns (stable, dwell & switch,
sliding, and periodic) tend to have lower values compared to jittered and stagger
type modulation patterns. Smooth variations of those type patterns cause most of
their detail coefficients tend to zero or to very low numbers in magnitude as
compared to jittered and stagger type patterns. These observations gave us a
chance to extract new features to distinguish between jittered, stagger and other

PRI modulation types.

Radar intercept systems may encounter with a continuous stream of
pulses accompanied by many imperfections, and they are required to work on
a real-time basis. Since the Haar wavelet is computationally efficient and can be

implemented in a transformation matrix form, it has been preferred in our study.

Feature analysis is performed on the second difference of TOAs by
utilizing discrete Haar wavelet. The Haar wavelet and the set of basis functions

are given in (4.9) and (4.10).
The discrete case of the wavelet can be expressed as:

g..,(mM)=2"""%g(2"n-k) k,neZ, jeN. (4.27)
J.k

where the wavelet filter g(n) plays the role of ().

The second difference of TOAs is defined by differentiating the modulation
function F according to Noone [29]:
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-x n=12,..,N-2 (4.28)

where z, 1s the second difference of the time of arrival of the nth pulse. Then the
detail coefficients of the wavelet decomposition of z, at scale 2/ can be expressed

as:

¢, (j,k)=) z,8,,(n) (4.29)

4.7.1. Analysis of jittered and stagger PRI modulation types

Two features are extracted from the wavelet decomposition of the vector of

second differences z,, of length M as follows:

Let E; be the square summable energy in the ith level or the ith subband of

wavelet decomposition of z, (d*TOA), i.e,

E=Y e =2 Ul =12 M2 (4.30)

where ¢'{j} denotes the jth detail coefficient of the ith level decomposition.

The first feature is defined as a vector of the energies in L levels:

f.=[E,E, .. E,] (4.31)

where L is the effective number of decomposition levels which is analyzed in the

next section.

The second feature is the magnitude of median of wavelet coefficients in the first

subband:

f, =abs (median {c{j}})  j=1,2,.,M /2 (4.32)
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M is assumed to be a multiple of 2 which allows fast wavelet decomposition of

the signal.

For classification task, we employ a cascaded form of a one dimensional binary
classifier and a Support Vector Machine (SVM) classifier. SVM are from class of

supervised learning algorithms that can be applied to classification or regression.

The SVM algorithm is based on the statistical learning theory developed by
Vladimir Vapnik [40]. It was originally designed to solve two-class problems
(binary classification), but can be easily extended to solve multi-class problems
with combinations of binary classifiers. The goal of the algorithm is to determine
the optimum hyperplane that separates two classes. More treatment of SVM
theory is beyond the scope of this thesis and can be found in [41]. For now, it
should be pointed out that major advantages of SVM are that different learning
machines can be constructed by utilizing different kernels and nonlinear
classification problems can be solved by linear classifiers via mapping to higher

dimensional spaces without explicitly modifying the kernels [42].

We first separate the jittered and stagger modulated patterns from others by using
a binary classifier. This is a one-dimensional classifier that classifies according to
the absolute value of median of the wavelet coefficients in the first subband.
Median of wavelet coefficients of PRI modulation types other than jittered and
stagger types tend to zero or to very small values. Then, a SVM classifier is used
to separate the jittered and stagger types. We use a linear kernel for evaluating the

performance of our SVM classifier.

4.7.2. Analysis of other PRI modulation types

The sample kurtosis of wavelet coefficients in the ith subband is given by:

YL _l(c r=u) 433)

(c'{jy-u)??

M /2" “H
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where ¢ is the wavelet coefficients and uc is the sample mean of the wavelet

coefficients in the ith subband, respectively.

Also, let the number of local extrema of wavelet coefficients in the first subband

be symbolized as local extrema (c!). Then the hybrid feature:

fz = [ Kurt(c) Kurt(c?) Kurt(c3®) localextrema(c?) ] (4.34)

is very efficient in separating dwell & switch, sliding and sinusoidal PRI
modulation types. For the sake of illustration of the separating capability of
proposed feature, three kurtosis components of this feature is depicted in the

simulations section.

A generalized block diagram of the proposed method is presented in Figure 4.5.

o s Jittersd
g Wavelet Binary Classifier
% Decomposition Classifier
= . Stagger
L ——
N . D&s
Clazsifi
o| S Sliding
Sinusoidal

Figure 4.5. A generalized block diagram of the proposed method
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4.8. Simulations

The data generation model proposed by Kauppi et al. [32] has a very high
flexibility in modulation parameters and quite adequate for the generation of
different PRI modulation sequences. The parameter limits used for data
generation is given in Table 4.2. We train our SVM classifier for a scenario of an
average missing and spurious pulses of 5%, TOA noise of 0.3% and with a very

broad range of training data where limits are presented in Table 4.2.

We have created the test sequence from a broad range of PRI modulation
parameters to test the separating capability of the feature set. Test sequence
consists of six different type PRI sequences and their subsequences. Table 4.3
shows parameters of each PRI sequence. For each PRI sequence, subsequences
are formed in such a way that they fully cover the limits of modulation
parameters to ensure an unbiased sample space as possible and to see the
robustness of the features against large variations of modulation parameters of

PRI types.

Table 4.2. The parameter limits for synthetic data generation

PRI Modulation Types Parameters Range
Jittered Jitter type Gaussian, uniform
Standard deviation 5% - 50%
Stagger Number of positions 2-64
Dwell & Switch Number of bursts 2-64
Length of one burst 8 -100
Sliding Max-min ratio 2-20
Number of periods 1-20
Periodic Amplitude deviation 4% - 50%
Number of periods 8 -100
Imperfections
Missing pulses 0% - 15%
Spurious pulses 0% - 15%
TOA uncertainty 0% - 0.4%
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Table 4.3. Test sequence

PRI Sequence

Subsequences

Constant 10 subsequences.

Jittered 46 subsequences of standard deviations 5%
to 50% and each subsequence has Gaussian
and uniform distributions.

Stagger 63 subsequences of stagger positions 2 to 64.

Sliding 19 subsequences of max:min ratios 2 to 20

and each subsequence with periods 1,5,10,20.

Dwell-Switch

15 subsequences of number of bursts 2 to 16

and each subsequence with burst lengths
8,20, 50,100.

Periodic 47 subsequences of amplitude deviations 4%
to 50% and each subsequence with periods 8,

20, 50, 100.

For the sake of illustration of separating capability of the feature set, we
simulated our training data where parameter limits are presented in Table 4.2.
The separating capabilities of the proposed features are illustrated in Figure 4.6

through Figure 4.8

0.18 -
E 016 = constant
s 7 = stagger
E 014 L = jittered
@ = D&S
= 7 L.
c 012t sliding
£ v 7 Sinusoid
2 01f 7
5 v VY
S 008 7 7
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= %
2 0.06F 7
b & v
£ s v
5 0.04F i v G o o
= @ V%,ﬁv% e
& 0.02f e
2 R

Energy in the 1st subband

Figure 4.6. Demonstrating separating capability of the median feature
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Tests are performed for four distinct circumstances: in case of no imperfections,
missing pulses case, spurious pulses case and in case of TOA noise. For missing
and spurious pulses cases, tests are performed ten times and in case of TOA
noise, the trials are increased to 100 to reflect the statistics of noise as much as
possible by varying pulse repetition interval of PRI modulation types and the
average recognition rate is calculated. Computation results are obtained on a
standard Pentium Dual Core 2 GHz PC with MATLAB R2013a version.

The selection of L (the number of decomposition levels in the first
feature) is crucial for the separating capability of the feature for jittered and
stagger modulated types. A comparison about the results of Haar and Daubechies
wavelets [43] for a typical scenario of an average missing and spurious pulses of
5% and TOA noise of 0.3% is given in Table 4.4. It is observed that average
recognition rates of jittered and stagger sequences are very similar for both

wavelets and the performance is greatly improved at two and three levels.

Table 4.4. A comparison about the results of Haar and Daubechies wavelets (M=128)

PRI Average Recognition Rate of PRI Modulation Patterns

Modulation Haar wavelet Daubechies wavelet ‘db2’
Patterns L=1 L=2 L=3 L=1 L=2 L=3
Jittered 72 83 85 70 82 84
Stagger 99 98 98 97 98 99
Computation | 1.904 2.563 2.959 2.075 2.686 3.206
time (ms)
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Table 4.5. Classification Results (L = 3)

PRI AVERAGE RECOGNITION RATES OF PRI MODULATION PATTERNS (%)
Modulation

No Missing pulses Spurious pulses TOA noise
Patterns

imperfections | (%) (%) (%)

5 10 15 5 10 15 02 03 04

Jittered 99.35 86.85 7239 60.43 | 96.30 91.96 8520 99.11 99.08 99.00
Stagger 99.21 99.52 99.37 99.21]99.53 99.50 99.36 | 98.95 98.90 98.22
Others 100 93 86 82 95 91 80 92 80 70

The average recognition rates of PRI modulation patterns are given in Table 4.5.
It can be inferred from the results that jittered and stagger PRI modulation types
have high recognition rates, usually around 95% except that recognition
performance of jittered type sequences decreases rapidly as the percentage of
missing pulses increases. They are not robust to missing pulses. This can be
considered the only major shortcoming of the proposed method. Also, other
modulation types have average recognition rates of 85%, except in the presence
of TOA noise of 0.3% and 0.4%, which they are 81% and 70% respectively.
Even if they decrease gradually, they still show good performance at tolerable
TOA noise rates. One of the major advantages of the proposed features is that
they are able to separate stagger type modulation sequences with an accuracy of
around 99%. Features show great robustness to real world imperfections such as
missing pulses, spurious pulses and TOA noise. This property is further analyzed

in the next subsections.

4.8.1. Comparison with histogram-based methods
In [32], jittered and stagger type PRI sequences are recognized by using
histogram-based features. The feature is extracted from higher order SDIF

histograms and is defined as the relative strength of a stable sum in the dth order

SDIF-histogram.
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Figure 4.10. Average recognition rate of histogram and wavelet-based features against spurious

pulses

The average recognition rates of jittered and stagger PRI modulation type
sequences against missing and spurious pulses are given in Figure 4.9 and Figure

4.10, respectively. It is observed from Figure 4.9 that for jittered type sequences,
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histogram-based features perform better than wavelet-based features. The average
recognition rate of jittered sequences based on histograms is above 80%, while
this rate decreases to 60% for the extreme case of 15% missing pulses when
wavelet features are employed. For stagger type sequences, wavelet-based
features outperform histogram-based features.

In spurious pulses case (Figure 4.10), for both jittered and stagger type
sequences wavelet-based features perform better than histogram-based features.
For jittered sequences, the average recognition rates of both methods is above
85%, while for stagger sequences the average recognition rate based on
histograms decrease very quickly. This is due to that the dynamic range of
histogram-based feature proposed in [32] for stagger type sequences rapidly
increases when the number of missing or spurious pulses increases.

Histogram-based features have also some bottlenecks. First, since the
number of positions of a stagger type sequence is generally unknown due to the
unknown signal parameters, the feature needs be calculated up to several orders
[15]. Second, the relative tolerance defining constant time interval in histogram
stabilization algorithm is a choice parameter which should be updated for
dynamically varying signal environments.

A comparison about the runtimes of proposed and histogram method is
presented in Table 4.6. With this comparison, a superior side of the proposed
method has been observed. Since the number of positions in Stagger PRI is
generally unknown, histogram based features are calculated according to the
highest expected number of positions in Stagger PRI [32]. A general staggered
PRI sequence can contain up to 64 positions as presented in Table 4.2. On the
other hand, wavelet based features do not depend on the number of positions in
Stagger PRI yielding much better run-time performances as seen from the Table

4.6.
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Table 4.6. A comparison about the runtime performance of proposed and histogram methods

Runtime performance proposed and histogram methods (ms) (M=128)

Number of | 2 4 8 16 32 64
stagger

positions

Histogram 8.686 9.250 9.544 10.535 11.764 12.970
Proposed 2.886 (does not depend on stagger positions)

4.8.2. Robustness criteria

One of the most important contributions of this work is that the wavelet features

proposed is very robust for stagger type sequences and distinguish very well as

shown in Table 4.5. Figure 4.11, Figure 4.12 and Figure 4.13 show the dynamic

range of the energy feature for stagger sequences with number of positions 2 to

64 against increasing number of missing pulse, spurious pulse and TOA noise

percentages, respectively. It is observed that the dynamic range of the energy

feature against signal imperfections does not change significantly and the

calculated energy feature values vary between 10 and 25. It should be

emphasized that energy feature values calculated for jittered sequences are low

and this explains the high recognition performance of stagger type sequences in

circumstances of missing and spurious pulses.
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68



ED T T T T T T

— Mo TOA noise
— 0.2 TOA noige
45 0.3 TOA noise |1
— 0.4 TOA noige
L 40r .
i
=
b
= DA .
m
By
==
2 a0r e
(a1}
=
o
=
3 2hr .
i
=S
o
S oo J -
15+ e
1|:| 1 1 1 1 1 1
] 10 20 30 40 a0 5] 70

Mumber of stagger positions

Figure 4.13. Robustness of energy feature against increasing TOA noise

It is observed from Table 4.5 that both jittered and stagger type PRI sequences
are highly robust to time of arrival (TOA) noise and have average recognition
rates of about 98% even in the extreme case of 0.4% noise. This is due to the fact
that the wavelet features are invariant to noise. This property is depicted in Figure
4.14 and Figure 4.15 for jittered and stagger sequences, respectively. For jittered
sequence, jittered sequence with jitter deviation of 20% is modeled. For stagger

sequence, a stagger sequence of 4 positions is modeled.
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It can be inferred from the figures (Figure 4.14 and Figure 4.15) that for both
jittered and stagger sequences, the dynamic range of the feature is nearly constant

against increasing time of arrival uncertainty.
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5. CONCLUDING REMARKS

In this thesis we developed new methods for radar emitter identification. The
thesis is devoted to two distinct phases of radar emitter identification: pulse

deinterleaving and pulse repetition interval modulation.

In Chapter 3, we developed a method for deinterleaving of radar pulse
sequences in dynamically varying signal environments. For clustering task, we
first evaluated the performances of two self-organizing neural networks, namely
SOM and Fuzzy ART in terms of clustering accuracy, computation time and
convergence. The main reason of employing self-organizing neural networks is
that those types of networks lend themselves to autonomous online clustering of
data which is very essential for ESM systems that have no prior knowledge about
the number and categories of received pulse sequences. The results show that
SOM networks can achieve better clustering scores. The sacrifice for such good
clustering accuracy is relatively more computation time and longer convergence
rates. On the other hand, although Fuzzy ART networks have relatively lower
clustering scores, they can achieve better computation time and convergence
rates. If clustering accuracy, computation time and convergence rate criteria are
considered altogether, Fuzzy ART networks seem more promising algorithm for
online clustering of interleaved radar data. Following the clustering task, we
proposed a pulse amplitude tracking algorithm to improve deinterleaving in
dynamically varying signal environments. For this purpose, we first model and
derive pulse amplitude values at the receiver side. Then, we estimate the scan rate
of emitters by using Gauss-Newton algorithm. It is shown that the proposed
algorithm improves deinterleaving of interleaved radar pulses and is promising

for such electronic warfare environments.

In Chapter 4, we developed a method for recognizing pulse repetition
interval modulation patterns. The method incorporates features based on the
multiresolution wavelet analysis of different types of pulse repetition interval
modulated sequences. Three wavelet features were found to be distinctive to

separate jittered, stagger and other modulation patterns. For classification task,
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we employ a cascaded form of one-dimensional binary classifier and SVM
classifier. We test our method for a broad range of PRI modulation parameters.
Simulation results show that jittered and stagger PRI modulation patterns have
high recognition rates in circumstances of missing pulses, spurious pulses, and
TOA noise. One of the most important contributions of this thesis is that the
proposed wavelet features is very robust for stagger type sequences and
outperform conventional histogram based methods. Besides, the computation
time of wavelet based features does not depend on stagger positions and yields
much better run-time performance compared to histogram-based features which
need to be calculated according to the highest expected number of positions in

Stagger PRI.

In future work, real time implementation of the proposed methods on

hardware is aimed.

73



APPENDIX

A.1. SCENARIO-BASED SYNTHETIC MIXED PULSE GENERATOR

Modeling environments consisting of multiple emitters is important for realistic
implementation of an ESM receiver that integrates radar pulses and processes
them. For this reason, a so-called synthetic mixed pulse generator (simulator) is

designed.

The simulator is capable of creating emitters with specified parameters of
PRI type, number of pulses, frequency, pulse width, angle of arrival, scan rate

(rotation period), and given distance.

The simulator supports various PRI Types including stable, stagger,

dwell& switch, jittered, sliding and sinusoidal types.

The simulator generates a Pulse Description Word (PDW) for each pulse. A
PDW consists of Time of Arrival (TOA), pulse frequency, pulse width, pulse
amplitude and angle of arrival (AOA) parameters. A measurement noise of
Gaussian type with zero mean and given variance is added to all parameters.

Then, it combines PDWs to form an Emitter Description Word (EDW).

The simulator interleaves all pulses in a natural time order and sorts them
according to their TOA values. To implement electronic timing noise (jitter),
which has a Gaussian distribution, a zero mean, independent Gaussian noise of

given variance is added to all TOA values.

The simulator can also simulate a rotating radar antenna. It derives pulse
amplitudes from a given antenna pattern, scan rate of the antenna (or rotation
period), and distance of the emitter to the ESM receiver. Distance is used to
calculate path loss for each emitter at specific frequencies. A zero mean,
independent Gaussian noise of given variance is added to pulse amplitude values

to implement measurement errors.
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The simulator also implements situations in which some of pulses are
missing from the pulse sequence or some spurious pulses are interfering to the
pulse sequence. In missing pulses case, a predetermined percent of pulses are
dropped from the pulse sequence randomly and a new Mixed Emitter Description
Word (EDW) is formed. In spurious pulses case, a predetermined percent of
random pulses (that may originate from other objects) are mixed with the pulse

sequence and a new Mixed Emitter Description Word (EDW) is formed.

Some screen snapshots of the designed simulator are presented in Figure

A.1 and Figure A.2.
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Figure A.1. Main GUI of the synthetic mixed pulse generator
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Figure A.2. Settings and emitter creation submenu

Simulation Examples

Two examples are presented to show the results of simulation of two radars and

the mixed signal obtained by the ESM receiver.
Example 1:

Radar Type: Navigation and Search

Model: APS-705

Frequency band: 8-10 GHz

Pulse width: 0.05 and 1.5 pus

PRF: 1,600 and 650 Hz

Antenna Rotation Period: 20 or 40 rpm (scan rate: 120 deg/s or 240 deg/s)
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PRI modulation pattern, scan pattern (Amplitude vs. TOA plot) and three
dimensional (RF, AOA, PW) plot of emitter characteristics regarding to this radar
are illustrated in Figure A.3, Figure A.4 and Figure A.5, respectively.
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Figure A.3. PRI Modulation pattern
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Figure A.4. Scan pattern (Amplitude vs. TOA plot)
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Example 2:

Radar Type: Surveillance

Model: AN/APS-128/-128

Frequency band: 9,375 MHz

Pulse width: 2.4 and 0.5 us

PRF: 400, 1200, 1600 Hz (stagger)

Antenna Rotation Period: 15 rpm (scan rate: 90 deg/s)

PRI modulation pattern, scan pattern (Amplitude vs. TOA plot) and three
dimensional (RF, AOA, PW) plot of emitter characteristics regarding to this radar
are illustrated in Figure A.6, Figure A.7 and Figure A.8, respectively.
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Figure A.6. PRI Modulation
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The scan pattern of the mixed emitters observed by the ESM receiver and the
resulting three-dimensional plot of mixed pulse sequence (RF, AOA, PW) are
presented in Figure A.9 and Figure A.10, respectively.
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Figure A.9. Amplitude vs. TOA plot of mixed emitters

Figure A.10. Three dimensional plot (PF, AOA, and PW) of mixed emitters
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A.2. MATLAB SCRIPTS OF COMMON PRI MODULATION TYPES

This appendix presents the MATLAB code scripts of common PRI modulation

types for quick reference.

Constant_ PRI _Generate.m

function pulse toa values = Constant PRI Generate(number of pulses, pri_s)

% This function generates a constant (stable) type PRI % modulation sequence.
% Inputs:

% number_of pulses - Number of pulses to be generated

% pri_s - stable PRI value

% Output: pulse toa values - PRI sequence

pulse toa values =[];
pulse toa values(1) =0;

for i=l:number_of pulses-1
pulse toa values(i+1) =pulse toa values(i) + pri_s;
end

DwellSwitch_PRI_Generate.m

function pulse toa values = DwellSwitch PRI Generate(number of pulses,
no_bursts, len_burst)

% This function generates a dwell&switch type PRI

% modulation sequence.

% Inputs:

% number_of pulses - Number of pulses to be generated
% no_bursts - number of bursts: between 2-16

% len burst - length of one burst: between 8-100

% Output: pulse toa values - PRI sequence

=1
for k=1:no_bursts
burst_pri=rand(1);

for count=1:len_burst
pri_s(j) = burst_pri;
j=ith

end

end
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pulse toa values =[];
pulse toa values(1) =0;

pri_index = 1;
for i=1:number_of pulses-1
pulse toa values(i+1) = pulse toa values(i) + pri_s(pri_index);
pri_index = pri_index + 1;
if pri_index > length(pri_s)
pri_index = 1;
end
end

Jittered PRI _Generate.m

function pulse toa values =
Jittered PRI Generate(number of pulses,mean pri_jitter,deviation pri_jitter,
distr_type jitter)

% This function generates a jittered type PRI

% modulation sequence.

% Inputs:

% number_of pulses - Number of pulses to be generated

% mean_pri_jitter - mean PRI

% deviation_pri_jitter - percentage of PRI deviation: between 5-50%
% distr_type jitter - distribution type 1:gaussian

2:uniform 3:discrete

% Output: pulse toa values - PRI sequence

if distr_type jitter == 1 %gaussian
std dev pri jitter = (mean_pri_jitter*deviation pri_jitter/100) / 3;
% 6-sigma rule. 99.7 percent of samples.
pri_s =normrnd(mean_pri_jitter, std_dev pri_jitter, 1, number of pulses);

elseif distr_type_jitter == 2 %uniform
min_pri_jitter = mean_pri_jitter*(1-deviation pri_jitter/100);
max_pri_jitter = mean_pri_jitter*(1+deviation pri_jitter/100);
pri_s = unifrnd(min_pri_jitter, max_pri_jitter, 1, number_ of pulses);

elseif distr_type _jitter == 3 %discrete
% number of discrete pris: between 32-64
no_dicrete pris = round(32 + (64-32) * rand(1));
discrete pri_set =rand(1, no_dicrete pris);
for k=1:number of pulses
% choose from discrete pri set
pri_s(k) = discrete pri_set(ceil( no_dicrete pris*rand(1) ));
end
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end

pulse toa values =[];
pulse toa values(1) =0;

for i=1:number_of pulses-1
pulse toa values(i+1) = pulse toa values(i) + pri_s(i);
end

Stagger PRI _Generate.m

function pulse toa values = Stagger PRI Generate(number of pulses,
no_stages, stagger pris)

% This function generates a staggered type PRI

% modulation sequence.

% Inputs:

% number_of pulses - Number of pulses to be generated

% no_stages - number of stagger positions in one period: between 2-64
% stagger pris - set of stagger PRI values (positions)

% Output: pulse toa values - PRI sequence

% number of periods: between 5-160 (RESERVED)
for k=1:no_stages

pri_s(k) = stagger pris(k);
end

pulse toa values =[];
pulse toa values(1) =0;

pri_index = 1;
for i=1:number_of pulses-1
pulse toa values(i+1) =pulse toa values(i) + pri_s(pri_index);
pri_index = pri_index + 1;
if pri_index > length(pri_s)
pri_index = 1;
end
end

Sliding_ PRI_Generate.m

function pulse toa values = Sliding PRI Generate(number of pulses,
max_min_ratio, max_sliding_pri, no_periods, sliding type)

% This function generates a sliding type PRI
% modulation sequence.
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% Inputs:

% number_of pulses - Number of pulses to be generated
% max_min_ratio - deviation ratio: max/min between 2:20
% max_sliding_pri - maximum PRI

% no_periods - number of periods: between 1-20

% sliding_type- Sliding type 1:increasing 2:decreasing

% Output: pulse toa values - PRI sequence

% minimum PRI

min_sliding pri = max_ sliding_pri/ max min_ratio;

% number of sliding pri values in each period

number of pri values = round(number of pulses / no periods);

if sliding_type ==

pri_s(1) = min_sliding_pri;
for i=2:number_of pri values-1

pri_s(i) = min_sliding pri+ (i-1)*(max_sliding_pri -

min_sliding pri)/(number_of pri values-1);
end

pri_s(number of pri values) = max_sliding pri;
end

if sliding_type ==

pri_s(1) = max_sliding_pri;
for i=2:number of pri values-1

pri_s(1) = max_sliding_pri - (i-1)*(max_sliding_pri -

min_sliding pri)/(number_of pri values-1);
end

pri_s(number of pri_values) = min_sliding pri;
end

pulse toa values =[];
pulse toa values(1) =0;

pri_index = 1;
for i=1:number_of pulses-1
pulse toa values(i+1) =pulse toa values(i) + pri_s(pri_index);
pri_index = pri_index + 1;
if pri_index > length(pri_s)
pri_index = 1;
end
end
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Periodic_PRI_Generate.m

function pulse toa values = Periodic PRI Generate(number of pulses,
mean_pri_periodic, periodic_ampl, no_periods)

% This function generates a periodic type PRI

% modulation sequence.

% Inputs:

% number_of pulses - Number of pulses to be generated

% mean_pri_periodic - mean PRI value

% no_periods - number of periods: between 1-20

% periodic_ampl - deviation from mean pri: between 4-50%
% Output: pulse toa values - PRI sequence

% frequency
periodic_freq = round(number of pulses / no periods);

for i=0:periodic_freq-1

pri_s(i+1) = mean pri periodic * (1 +
periodic_ampl/100*sin(2*pi*i/periodic_freq));
end

pulse toa values =[];
pulse toa values(1) =0;

pri_index = 1;
for i=1:number_of pulses-1
pulse toa values(i+1) = pulse toa values(1) + pri_s(pri_index);
pri_index = pri_index + 1;
if pri_index > length(pri_s)
pri_index = 1;
end
end
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