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ABSTRACT

WEILBULL AND LOG-NORMAL DISTRIBUTIONS IN RELIABILITY ANALYSIS
APPLICATIONS

Beldine Awuor OMONDI

Anadolu University
Department of Statistics

Graduate School of Sciences, August, 2017

Supervisor: Prof. Dr. Berna Yazıcı

�e life times of the components of an electrical device are o�en analyzed in
quality-control process. Likewise the Design of Experiment is used mainly to achieve
quality but its’ application to life times are less common. Life times always associate with
Reliability. In this study we focus on application of reliability analysis. �e main pur-
pose is to optimize the response by extending the lifetimes of a fan motor. An important
point is to determine the stress factors subjected to di�erent conditions which signi�-
cantly e�ects the life times. Simulation design of weibull and log-normal distributions
used to generate failure times and maximum likelihood (ML) applied in the estimation
of parameters. A two level factorial experimental design is used to identify the factors
that most in�uence the lifetimes.
Keywords: Reliability, Simulation, Weibull distribution, Log-normal distribution, Fac-
torial design.
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ÖZET

WEIBULL VE LOG-NORMAL GÜVENÏRÏLÏK ANALÏZÏ UYUGULAMALARÏ

Beldine Awuor OMONDI

Anadolu Üniversitesi
Istatistik Anabilim Dalı

Fen Bilimleri Enstitüsü, Agustos, 2017

Danışman: Prof Dr. Berna Yazıcı

Kalite kontrol süreçlerinde elektrikli cihazların ömür süreleri sıkça analiz edilmek-
tedir. Kalite süreçlerinin çalışılmasında Deney Tasarımı büyük yer tutmaktadır, ancak
yaşam sürelerin uygulaması daha azdır. Yaşam süreleri analizi her zaman güvenilirlik
ile ilişkilendirilmektedir. Bu çalışmada, güvenilirlik analizinin iki parametreli weibull
dağılımı ve log normal uygulamasına odaklanılmaktadır. Temel amaç, bir fan motorunun
yaşam süresinin uzatılarak, yanıt değerinin optimize edilmesidir. Buradaki önemli nokta,
zaman sürelerinin anlamlı biçimde etkileyen farklı koşulları göz önünde bulundurarak
stres faktörlerinin belirlenmesidir. Weibull dağılımı ve log normal dağılımı, simülasyon
tasarımı oluşturulması ve parametrelerin maximum likelihood (ML) tahminlerinin elde
edilmesinde kullanılmıştır. Yaşam sürelerini etkileyen en önemli faktörlerin belirlenmesi
amacıyla, 2 düzeyli faktöriyel deney tasarımı kullanılmıştır.
Anahtar Kelimeler: Güvenilirlik, Simülasyon ,Weibull dagılımları, Log-normal dagılımları.
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1. INTRODUCTION TO RELIABILITY

1.1 Introduction

Technology advancement, budget constrains and restrictive testing time has translated
to high reliability of products [10]. As a result manufactures strive to remain competitive
and completely relevant to the global market by meeting consumer’s demands in terms
of quality expectations. Like wise, the product lifetime is equally an increasingly im-
portant characteristic [11] and manufactures need to understand the expected life times
of their product under various operating conditions. As a result, manufacturing compa-
nies target new products to reduce the initial failures, minimize random failures and to
increase product reliability.

Lifetime of a product is not only a common concern to engineers but also to statis-
ticians and is a key characteristic of product quality and reliability. It characterizes the
time-span during which a product can be expected to operate safely under certain con-
ditions and meet speci�ed standards of performance.

A lot of e�orts have been made by researchers to develop new reliability models
[12]. [13] developed reliability model of a complicated product with multiple failure
modes under di�erent stress conditions, [14] developed a new lifetime cost optimiza-
tion model to predict product lifetime and [12] studied measures to re�ect interaction
between the reliability and performance characteristics of a product, [15] in the review
article described the distribution of lifetimes and how lifetimes depend on set experi-
mental (predictor) variables among others.

�is study aims at determining factors that a�ect the lifetimes of a product and also
increasing the lifetimes by conducting simulation with right censoring both for weibull
and log-normal distribution. Simulation model is developed based on these factor levels.
Maximum likelihood method is used to estimate the parameters of both weibull distribu-
tion and log-normal distribution. Finally we �nd that combination of input-factor values
that optimizes the response.
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1.2 What is Reliability?

Industrial statisticians plan experiments for a long period of time to improve product
quality and reliability. �is section explains what reliability is and why it is one of the
basic components of quality.

Reliability is a word with many di�erent implications. When applied on systems,
it is the ability of the system to perform certain tasks according to a speci�ed standards,
consequently it is applied to a piece of equipment or a component of a system to mean
the ability of that component or system to ful�ll what is required of it [5]. �e origin
use of term was purely qualitative [5]. For instance, aerospace engineers recognized the
desirability of having more than one engine on a plane without any precise measurement
of failure rate.

Benavides [16] de�nes reliability as a mathematical relationship that models it
when the stated conditions and the values of set parameters are given. �e value of set
parameter de�ne the stated conditions of the product at any �xed time. �e argument by
[16] puts it that engineers need to consider reliability, lifetime, design parameters and
operational parameter as an engineering design tool to relate stated parameters with
design and operational parameters that de�ne the stated conditions at a given time.

According to Khan and Islam [17] reliability is the percentage measure of degree
to which product/system is in an operable and commi�able state at the point in time
when it is needed. In other words, the availability of a product or a system.

As used today, reliability is more of a quantitative concept that conveys depend-
ability, successful operations or performance and the absence of failure. �e its quanti-
tative concept therefore suggests the need for methods of measuring reliability.Several
reasons are provided why reliability has to be quantitative. For instance; economic is
considered as the most important aspect in that to improve reliability costs money, and
this can only be justi�ed if the cost of unreliable components are measured. On the other
hand, di�erent standards of reliability are required in di�erent applications that is; rela-
tively high failure rates may be considered acceptable in unmanned satellite. Reliability
can be analyzed in two main headings, product reliability and system reliability. Product
reliability is the probability that a product will operate properly for a speci�ed period of
time [5]. In the probability context, satisfactory performance is directly associated with
the concept of failure and malfunctioning in that the equipment when in operation, is
either operating satisfactorily or has failed or malfunctioned [18]. �erefore satisfactory
performance is any other condition that is neither a failure nor malfunction.

Since reliability is an indicator of capability to perform within required limits of
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time when in operation, it normally involves a parameter which measures time. �is
may be any time unit which is preferable in cases where continuous operation is involved
[18].

In this study, the ability of an item to perform a required function under stated
environmental and operational conditions for a speci�ed period of time will be adopted
as the operational de�nition of reliability. �is de�nition is generally accepted and used
in [18], [5] and [3] Some of the key the key terminologies also used in this thesis are
de�ned below:

• Failure - �e termination of a component’s ability to perform a required function.

• Function - �e intended process for a component or a product that leads to a de-
tectable but not necessarily an acceptable performance.

• Parts of a component - the smallest replaceable unit in a system.

It is equally important to note that reliability and lifetimes are used interchange-
ably throughout the study.

1.3 Importance of Reliability

Reliability is very important in that product and brand reputations are made or destroyed
by their product reliability performance. Poor reliability (unreliability) causes adverse
consequences and therefore a number of products or systems are serious threat. Unre-
liability may have implications for: Safety, reputation, good will, delays, pro�t margins,
cost of repair and maintenance and competitiveness. Work to minimize failures, improve
maintenance e�ectiveness, shorten repair times and meet customer and organization ex-
pectation has numerous bene�ts. Reliability has broad and important impact across the
product life cycle. �erefore the cost of unreliability can damage a company’s image.

�e bene�ts of reliability analysis can be classi�ed in the following ways:

• Unexpected failures cost time for both customers and organization to resolve the
failures. Using reliability and availability concepts we can minimize failures and
avoid wasting time.

• Products work under environmental and use conditions imposed by the customer.
Creating a product that matches the expectations imposed by the customer permits
the product to work as expected. Understanding the conditions allows the design
to meet without over designing thus optimizing product cost and customer sat-
isfaction. Expectation of consumers may not be ful�lled unless higher reliability
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values are achieved because today consumers are conscious of how unreliability
is more costly. Otherwise companies are faced with the loss of goodwill.

• �roughput Downtime for any reason reduces the system’s throughput, downtime
can be minimized by applying predictive and preventative maintenance programs.

A well-maintained system minimizes operating expenses and maximizes through-
put.

• Distribution Fewer failures and optimized maintenance implies fewer spare parts
in the logistics system.

�is minimizes the distribution system costs for transportation, logistics, and stor-
age for spare parts. �is also minimizes service labor costs.

• Products that operate as expected without failure avoid being returned or serviced
under warranty. Calls to service support, troubleshooting, product returns, failure
analysis, and re-engineering all part of the cost of unreliability. �e warranty
provides customers insurance in case of failure and with reliability engineering
techniques the costs are minimized.

• Some product failure cause unintended or unsafe conditions leading to loss of life
or injury. Reliability engineering tools assist in identifying and minimizing safety
risks.

• Product failures can cause the loss of property. Minimizing failures and mitigat-
ing the damage caused by any failure minimizes the exposure to liability for the
property loss.

• Reliability studies reveal the types of failures experienced by components and sys-
tems and recommend design, research, and development e�orts to minimize these
failures. Enhancing the design team’s reliability engineering capabilities through
training and sta�ng of reliability professionals enables the entire team to make de-
cisions fully considering the impact on product reliability. �is reduces the need
for expensive redesign or rework costs to address reliability related design errors.

1.4 System Reliability

Reliability relationship between products or systems and their components can be demon-
strated through reliability block diagrams (RBD).

A system consists of components which determines whether it will function or
not. As products become more complex(have more components), the chances that they
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will not function increases depending on the method of their arrangements. �e method
of arranging components a�ects the reliability of entire system. �e RBD is used to de-
termine the system or subsystem reliability of a design. RBD based reliability evaluation
is useful when requirements dictate the level of design reliability or during component
selection when each component has a di�erent reliability [19]. For more complex sys-
tems these are useful as a usual tool to �nd out where failure occur. �ere are di�erent
ways of arranging components in a system or a product. Components can be arranged
in series, parallel or combination of both.

1.4.1. Series system

A system is called series system when all the system functions only if every one of
its components functions. In the same sense, a series circuit functions when there is an
unbroken path through the components that form the system. Components arrangement
in series system is shown in �gure 1.1. As more and more components are added to
the series, the system reliability decreases [18]. However, if the failure times of the
components are statistically independent, then the system reliability is the product of the
reliabilities of each components that comprises the system [2]. �at is, let R1, R2….Rn

denotes components of a system or product then reliability of this system Rsystem and
Ri denote the ith component reliability in the system.

R1 R2 R3 R4

Figure 1.1. A Series System Block Diagram with Four Components, adopted from [8]

�e system reliability will be determined by the equation 1.1 as follows:

Rsystem = R1 ∗R2 ∗ .......Rn =
n

∏
i=1
Ri (1.1)

�is shows that the reliability of a series system is always lower than that of the
least reliable component in the system.

Here is an example of a series system. Assuming that life of the i − th component
follows a weibull distribution with a given scale η and shape β parameters the system
reliability at time t becomes Rsystem(t) where ;

Rsystem(t) =
n

∏
i=1
exp[ − ( t

ηi
)
β

], (1.2)
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Which gives the equivalent scale parameter value and the mean [2] expressed in
equation1.3 and equation 1.4 respectively.

ηe = {
n

∑
i=1

1

ηβi
}
− 1
β

(1.3)

µ = ηβ1 = E(tsystem) = ηeβ1. (1.4)

suppose the life a certain component follows a weibull distribution with shape
parameter β = 2 η1 = 1000, η2 = 500 and η3 = 100, the system scale parameter is:

ηe = [ 1

10002
+ 1

5002
+ 1

1002
] = 97.6hrs (1.5)

the mean life of this series system is:

E(tsystem) = ηeΓ(1 + 1

β
) = 97.6 ∗ Γ(1 + 1

2
) = 86.5 (1.6)

In case we are able to double the life of a with the longest lifetime, the system’s
scale parameter value will become:

ηe = [ 1

20002
+ 1

5002
+ 1

1002
] = 97.9hrs (1.7)

On the other hand when the component with the shortest lifetime is doubled, the
result is as follows:

ηe = [ 1

10002
+ 1

5002
+ 1

2002
] = 182.6hrs (1.8)

�is means that manufacturers should devote resources and e�ort to improve the life-
time of component with the smallest scale parameter in order to realize the greatest
improvement in system life.

1.4.2. Parallel system

A system is referred to as parallel system when there are many parallel paths through
reliability block diagram and components as well. System will function as long as long
as at least one of its component function. �e reliability diagram in �gure 1.2 shows a
parallel system having four components. �e parallel systems have two advantages over
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the series system: �e system with more components is more reliable, the reliability
of a parallel system is greater than the reliability of the most reliable component(best
component) in the system [2]. �erefore the probability that a system will fail equals
the probability that all components fail. Reliability of a parallel system is calculated as:
1-Prob[system fails]:

Rsystem(t) = 1 −
n

∏
i=1

(1 −Ri). (1.9)

Such that;
Rsystem = 1 − (1 −R1)(1 −R2(1 −R3)(1 −R4) (1.10)

In �gure 1.2 suppose R1 =0.70, R2 =0.80 and R3 = R4 = 0.85 ,then the reliability
of the corresponding parallel system is:

Rsystem = 1-(0.30 ∗ 0.20 ∗ 0.15 ∗ 0.15) = 0.99865

It can be seen that the overall reliability is greater that the most powerful compo-
nent in the system, in this example R3 andR4. Alternatively, given reliability function
Rsystem(t), simulation via a spreadsheet can be used to determine the system life distri-
bution and its mean. In this case the system lifetime tsystem is the life of the longest live
component [2].

Figure 1.2. A parallel system block diagram with four components [2]
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1.4.3. Combination of series and parallel arrangement

A combination of series and parallel is another common con�guration of components.An
example of such system is shown in �gure 1.3. It consists of sub-systems that the com-
ponents are either parallel or series. In order to determine the reliability of the whole
system, the system is broken down into subsystems that are in parallel or in series. Sup-
pose R1,R2,…R9 represents reliability of components R1 toR9 respectively.

Given that, R1 = R2 = 0.65, R3 = R4 = R5 = 0.8, = R6,R7 = R8 = R9 = 0.73

R1,2= 1 − (1 − 0.65)2 = 0.8775

R3,4,5 = 1 − (1 − 0.8)3 = 0.992

R6,7,8,9 = 1 − (1 − 0.73)4 = 0.9947

R = R1,2 ∗R3,4,5 ∗R6,7,8,9 = 0.8659

Figure 1.3. A combination of series and parallel system. �e picture shows 9 components [2]

1.5 �esis Outline

�e thesis is organized as follows: Chapter one which is an introductory chapter that
initially describe reliability background information de�nition, importance of reliability
and reliability block diagrams. �is aims to explain the importance of reliability and the
e�ect of components arrangement on the reliability of a product. Chapter two presents
the concept of reliability and parameter estimations of lifetimes. �is is discussed as
the theory and implementation of maximum likelihood estimation, which is used as a
method of parameter estimation for lifetimes distribution. Chapter three introduces the
RSM as the methodology of the study. It describes the theory and implementation of
the reliability models that are used to model the lifetime distributions and the impact
of di�erent variables on the lifetime. Chapter four discusses the simulation results of
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the study. Chapters �ve concludes with a summary of the study, recommendation and
future research.
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2. RELIABILITY CONCEPTS

�is chapter discusses literature review about the main topic of the dissertation.

2.1 Reliability testing

Many manufactures have adopted reliability testing to meet and exceed the demands of
customers [20]. Considering the reliability de�nition by [5] as “probability of performing
without failure a speci�ed function under given conditions for a speci�ed period of time.”
�erefore reliability testing usually involves simulation of conditions under which the
item will be used during its lifespan.

Reliability does not compare the product to some prede�ned speci�cations, such
as the case with quality assurance, but rather investigates the performance over a pre-
de�ned period of time. For example, mobile phone devices can undergo an accelerated
life test. In this case, devices are exposed to events that simulate real life situations that
happen to mobile phones like drops, spills, or excessive heating. �e goal of this test is
to �nd out whether the produced items meet the speci�ed minimum reliability require-
ment.

To reduce the cost of reliability testing, manufacturers apply sampling schemes
to select items that represent all produced devices (population). As in any sampling, it
is assumed that appropriate inference about the true population characteristics can be
made based on rightfully selected samples.

Formulating reliability sampling in terms of testing a statistical hypothesis can be
as follows:

• H0: Mean lifetime is greater or equal to speci�ed time t.

• H1: Mean lifetime is less than speci�ed time

Rejecting H0 when it is true (type I error) would result to producer’s risk while
failing to reject H0 while it is false (type II error) would result to consumer’s risk. It can
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be seen that the concept of Producer’s risks and consumer’s risks are similar type I and
type II errors respectively.

�e producer’s risk can be de�ned as the the probability of failing satisfactory
products. In this case, It is associated with the level of reliability which has a high prob-
ability of acceptance, and, therefore, low fraction of non-conforming units. On the other
hand, consumer’s risk is the probability of passing faulty products.

When developing a sampling plan and method for reliability sampling, there is a
need to answer the following inquiries :

• Is the testing procedure representative of real life events?

• Does the criteria to pass/fail act in accordance with consumer and producer risks?

• What sample size should be drawn?

Besides that, it is important to decide a prior what constitutes a failure, what units
of measurement will be used, and when the test will be terminated.

In reliability testing, there are two types of tests that can be used [21]. Method of
a�ributes: Noting the presence (or absence) of some characteristic or a�ribute in each
of the items in the group under consideration and counting how many items do (or do
not) possess the a�ribute, or how many such events occur in the item, group, or area.

Method of variables: Measuring and recording the numerical magnitude of a char-
acteristic for each of the items in the group under consideration; this involves reference
to a continuous scale of some kind. When using the method of a�ributes, a reliability
engineer can specify the maximum number of non-conforming units that are allowable
in the sample. It should be noted that the manufacturer should not knowingly produce
any number of defective products and it is always be�er to have zero non-conforming
items. Variables sampling plans are more o�en used for reliability sampling. Time to
failure o�en described by Weibull distribution.

�e test speci�cation may be wri�en in terms of: Mean life hazard rate at(number
of items failing at time t), reliable life (some point of time beyond which prede�ned
proportion of items will survive).

2.2 Reliability function

Lifetime distributions are theoretical population models used to describe the lifetimes of
a product . For instance, if someone is interested in a particular type of a computer, then
the population is considered to be all the lifetimes obtainable from computers of this
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type. Alternatively, it may be restricted to computers from one particular manufacturer
made during a set period of time. �erefore, a lifetime distribution is the cumulative
distribution function (CDF) for the population [3]. Tobias and Trindade [3] gives two
useful interpretations of the CDF represented by F(t) as:

• F(t) is the probability that a random component selected from the population fails
by t.

• F(t) is the fraction of all components in the population that fail by t.

Figure 2.1. Cumulative distribution function [3]

Cumulative distribution function, F(t) can be plo�ed on time against the proba-
bility density function, f(t) as shown in �gure 2.1 which is the area under probability
density function, f(t) to the le� of time (t). F(t) (area of the shaded region ) is the prob-
ability that a new component will fail by time of operation t. the area de�ned by f(t)
between two vertical lines at time t1 and t2 equals to the probability of a new product
surviving to time t1 and the failing in the interval between t1 and t2. �e area can be
obtained by subtracting the area to the le� of t1 from the area to the le� of t2, F (t2) −
F (t1) which is the probability that a new unit survives to t1 but fails before time t2. �is
is also the fraction of the entire population that fails in that interval.

When the a�ention is on the un-failed components (survivors), then the reliability
function (survivor function) is de�ned by:

R(t) = 1 − F (t) (2.1)

F(t) could also be called unreliability function may be discussed in two ways as:

• �e probability a random unit selected from the population will still be operating
a�er time t

• �e fraction of all units in the population that will survive at least time t
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2.2.1. �e failure rate (Hazard function)

Distribution of lifetime data can be modeled with the help of probability density function
(PDF), cumulative density function (CDF), reliability function and failure (hazard) rate
function. PDF and CDF are very known terms since they are broadly used in statistical
manner but failure rate function has a particular property in reliability study and because
of this it is not widely known. PDF or f(t) stands for failure probability density function
in reliability. From statistics it is familiar that f(t) is the derivative of F(t) with respect
to t. It is the probability of failure in the interval t to t + dt in which δt is an instant of
time. Failure or hazard rate function is the instantaneous rate of failure for the survivors
to time t during the next instant of time Tobias and Trindade. Failure rate function is
expressed as units of failures per unit time. It is not a probability and can take values
greater than 1. Failure rate is denoted by either z(t) or h(t). To see how failure rate is
calculated, a li�le probability statistics must be used:

2.2.2. Average failure rate function

It is sometimes useful to de�ne average rate over an interval of time that averages the
failure rates in that interval. AFR (t1, t2) stands for the average failure rate between time
t1 to time t2. �e simplest way to specify AFR is to integrate the failure rate over the
internal and divide by duration of the interval.

P (failure in next δt∣survive to t) = F (t + δt) − F (t)
R(t) (2.2)

we divide the equation by δ t in order to covert it into rate as:

F (t + δt) − F (t)
R(t)δt (2.3)
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Figure 2.2. Relating F(t) and others

2.3 �e Phases of Bathtub Curve

Traditionally, the lifetime of a product can be demonstrated by three di�erent pa�erns
of failures over time. �ese pa�erns are combined to produce a bath-tab curve as shown
in Fig 2.3. �e curves not only represent reliability performance of components or non
repaired items but also observes the reliability performance of a large sample of homo-
geneous items entering the �eld at some start time (usually zero). If we observe the items
over their lifetime without replacement then we can observe three distinct pa�erns or
shapes.

�e three distinct pa�erns or periods are mathematically categorized as; a decreas-
ing rate of failure, a constant rate of failure and an increasing rate of failure which in
practice are known as infant mortality, useful life and wear out as shown in Fig. 2.3.
During the infant mortality phase, the weaker components are removed during man-
ufacturing process, pre-delivery testing or when an item comes into service. At the
useful phase, new component has an equal probability of failure as the old component.
Finally the wear out failure which has increasing failure rate caused by weariness, fa-
tigue and degradation [3]. As reliability (or part) of a product improves, cases of failed
parts becomes less frequent in the �eld [22]. When a new product is introduced, a com-
pany ensures that initial failure is minimized, random failures are reduced during the
expected working period of a product and �nally to extend the product’s lifetime.
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Figure 2.3. Bathtub curve showing di�erent types of failures. Time can be hours, months or years
[3]

Figure 2.4. �e Bathtub Curve and Straight Line with Slope β [3]
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2.4 Sources Reliability Data and Reliability Data Classi�cation

2.4.1. Sources of Reliability Data

�e components or product’s population history of failure statistics is the basis for re-
liability models [23]. Consequently, there are other sources that may be considered in
order to predict the product’s future behavior. Reliability analysis depends on historical
data [24]. Ruhi, [23] argues that the availability of actual usage conditions and valuable
information on the performance of any product makes the �eld data superior to exper-
iment, and is directly linked to the �nancial aspect of the product. Borgia, De Carlo,
Fanciullacci, and Tucci, [25] claims that the performance of a new product can only be
estimated both from experimental tests and historical analysis of the previous similar
products.

�ere are many sources of collecting �eld product reliability data [23]. Warranty
claim which may not contain adequate information related to reliability data since most
systems are designed to track �nances and not the product performance [23], sales and
forecasting which gives the population of units in the �eld being used at any given time
and is vital to perform reliability oriented calculation, �eld service data connects with
�eld services like repairing a failed product. However it is only powerful if the system
is in place to gather necessary information during the service call. Others are customer
support data and return parts or failure analysis data. �e di�erent sources mentioned
here are summarized as:

• Inspection records.

• Tests:�eld demonstration,environmental quali�cation and �eld installation.

• Failure reporting systems from customers

• Records generated during development phase

• Previous experiences with similar product

• Warranty claims

• Repair facility records

• Customers’ failure reporting systems

Censoring, data aggregation (pooled or combined) and data with small failure events
are some of the challenges in reliability data collection. Most cases, researchers are
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faced with several repairable similar products which may have di�erent performance
[24]. �is is because, units may be installed in di�erent environment and may operate
under di�erent conditions and maintained by di�erent policies. In other words, di�erent
operating conditions (temperature, humidity, pressure) may change the product’s failure
pa�erns.

2.4.2. Reliability data classi�cation

2.4.2.1 Complete data

Life data is referred to as complete data when all failure data are available at the end
of an experiment [4]. �at is, the failure data contain failure times of all components
in the sample. McCool [2] describes as one for which the exact value of the variable is
observed for each member of the sample.

Figure 2.5. complete data. [4]

2.4.2.2 Censored data

Generally, the data used in failure time analysis are censored. Censoring is common
in reliability experiments and occurs when it is impossible to observe failure times of
all components.In some cases, It is also impractical to wait for all units to fail. Many
products are designed to last longer period before failure, but manufactures are impatient
to wait that long to understand the lifetime distributions. Censoring occurs when the
experimenter does not observe the exact time of failure. Yan-Qiao and Shi-Liang [4]
describing it as failure times of failed units and running times of the units that have not
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failed by the end of experiment.

�ere are three ways in which reliability data can be censored: Right censoring
occurs when the test stops before all units fail. In type I right censoring, an experiment
terminates at a predetermined time. On the other hand, type II right censoring occurs
when the experiment stops a�er a pre-speci�ed number of failures. Experiments with
type I and type II censoring may also contain interval, and/or le� censoring. Le� cen-
soring occurs when the failure occurs before a known time (i.e. the unit failed before
the �rst inspection at week one).

Engineers o�en perform reliability experiments with censoring to determine how
di�erent factors a�ect product life. For instance, if engineers believe operating temper-
ature a�ects the life of a product they may design an experiment with di�erent temper-
ature levels and operate the products at each temperatures.

�e experimenters implement type II right censoring in order to complete the ex-
periment in a timely fashion, while ensuring a speci�c number of failures.In this case,
the researchers record the times at which a given number of products fail for each tem-
perature level. �e ones that have not failed by the end of speci�ed period are censored
observations. Interval censored data, units are found to have failed between two inspec-
tions. Interval censoring occurs when one knows a failure occurs between two times but
does not know the exact failure time. For example, a unit failed sometime a�er it was
inspected at ten weeks, but before it was inspected at eleven weeks.

An example, In a failure analysis test, let n be the number of units. During time
C , r failures are observed, where 0 <= r <= n. Since the times of failure for n − r units
are unknown, but it is known that these times to failure are larger than C , the data are
right censored. Another example that explains both the censored and complete data is
shown in �gure 2.6.

In reliability analysis it is commonly assumed that the variables C and T are inde-
pendent. �is is called non-informative censoring. �e distribution of survival times of
units that are censored at a particular time is no di�erent from that of units that are still
observed at this time. One common type of independent censoring is the simple type I
censoring, where all subjects in the study are censored at the same, �xed time.
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Figure 2.6. An illustration of complete and censored data. [5]

2.5 Lifetime Modeling and Parameter Estimation

�is section describes the models that can be used for lifetime modeling and reliability
estimation.

2.5.1. Lifetime modeling

Whenever design of experiment (DOE) is used for life testing, the response is life or fail-
ure time [26]. Failure time distribution is the most widely used measure for reliability
of a product. �is distribution is constructed based on failure time data of a product.
�e failure time or lifetime of a product is described as a continuous random variable
T. Its probability distribution function is characterized by cumulative density function,
probability density function, reliability function or hazard function. �e reliability func-
tion gives the probability of a product surviving up to time t while the hazard function
also known as the failure rate function describes the probability of failure at the smallest
interval (t, δ +t), given survival up to.

2.5.2. Distributions associated with lifetimes

Design and quality engineers considerably apply design of experiment (DOE) which is
a statistical technique. Consequently, these techniques cannot be used to test plan and
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analyze reliability experiment because the distribution of lifetimes is usually skewed to
the right(non-normal)[15]. As a result, the F tests from analysis of variance are not valid.
However, weibull distribution commonly used in reliability analysis does not belong to
the exponential family [27]. In addition, censoring may occur in lifetime data. When
censoring exists, DOE that based on least square method cannot be used to improve the
product reliability.

2.5.2.1 Weibull distribution

�e Weibull distribution invented by Waloddi Weibull is a generalization of the exponen-
tial distribution that is appropriate for modeling the lifetimes having constant, strictly
increasing and decreasing hazard functions [6].

It is the leading distribution in the world for ��ing and analyzing life data. Weibull
distribution has proved to be a successful model for many product failure mechanisms
because it is a �exible distribution with a wide variety of failure rate curve shapes. Hence
it is capable of describing various failure rate conditions by adjustment of parameters
and so di�erent models can be derived from Weibull distribution.

�e cumulative distribution function is given by:

F (t) = 1 − exp−ηtβ , t > 0, β > 0, η > 0 (2.4)

where β and η are both positive valued parameters. it is clear that β = 1 gives
the exponential with mean 1/β hence it is viewed as generalization of the exponential
distribution.

Abernethy[28] stated advantages of the distribution as follows:

• It has the ability to provide accurately reasonable failure analysis and forecast
failures with extremely small samples.�e Small samples thus allow the study to
be cost e�ective.

• It provides a simple and useful graphical plot of the failure data as the plot is
extremely important to managers and engineers.

• It exhibits wide range of distribution shapes which makes it the leading distribu-
tion.

Weibull distribution has either two or three parameters. �e two parameter Weibull
distribution consists of beta β and η. β is the shape or sometimes called Weibull gradient
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whereas η is the scale, feature or characteristic life parameter. Shape parameter controls
the shape of the distribution while scale parameter �xes one point of the cumulative
Distribution Function F(t), the 63.2 percentile or characteristic life point. 63.2 % of the
population fails by the characteristic life point, independent of the value of the shape
parameter. �is is expressed in hours, days, cycles, etc. In most cases it it assumed that
the value of the shape parameter (β) and the scale parameter (η) are unknown.

If it is known that an item will not fail until a speci�c time in service, then a
third parameter can be added to Weibull distribution. �is parameter is called location
parameter and is symbolized by gamma (γ). It should be noted that there are several ways
of symbolizing these parameters, here β, η and γ are used. Shape, scale, and location
parameters must be greater than zero and the distribution is de�ned for only positive
times.

�is is normally associated with the bathtub curve, shape parameter is the most
important issue because all the three distinct region of the bathtub curve can be modeled
with Weibull distribution. If shape parameter is wrongly estimated, the lifetime model
will be useless to �nd out the reliability or survival at one point of time.

�e parameter takes three di�erent types of values for the di�erent periods or
regions. �e infant mortality period of lifetime is modeled with a β < 1. Failure rate is
decreasing during infant mortality and Weibull distribution with a shape parameter of
β < 1 also indicates the same curve of the failure rate function.

In the same way Weibull distribution with a shape parameter of β = 1 is used
to model useful life period failures, because if β = 1, Weibull reduces to exponential
distribution with a constant failure rate. For modeling wear-out period, Weibull’s shape
parameter takes a value of β > 1 since the failure rate is increasing.

Wrong estimation of the shape parameter a�ects results of the Weibull model,
because wrong lifetime period of population could be taken up. �e actual values could
show di�erent periods but the model could point out values of di�erent period. �at is
why any reliability estimation at any time would be incorrect.

�e weibull distribution is a popular distribution for modeling the failure times of
a product because of its �exibility in being able to model the multiple types of failure
mechanisms. For a random variable T, denoting the failure time, the commonly used
parameterization of the two parameter weibull probability density function (PDF) is:

f( t
η
, β) = β

η
( t
η
)
(β−1)

exp( − ( t
η
)β), t > 0 (2.5)

and the cumulative distribution function (CDF), the probability that an item will
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fail before time t is:

F ( t
η
, β) = 1 − exp( − ( t

η
)β), η > 0, β > 0 (2.6)

η is the scale parameter and β is the shape parameter.

�e hazard function is :

h(t/η, β) = lim δt− > 0
P (failure in t, t + δt)/T > t

δt

= f(t)
1 − F (t) = β

η
( t
η
)
β−1

(2.7)

�e general assumption is that the value of the shape parameter is constant regardless
of the predictors (independent variables).

�e mean and the variance of the distribution are:

E(T ) = η Γ(1 + 1

β
) (2.8)

V ar(T ) = η2 Γ(1 + 2

β
) −E(T )2 (2.9)

respectively. where Γ is the gamma function. �e mean and the variance are
both functions of weibull parameters η and β . Another important function of the two
parameters is the weibull quantile function tp;

tp = η ( − log(1 − p))
1
β

(2.10)

�e lifetime quartile represents the time at which a speci�ed proportion p of the
population fails. For example if β = 1 and η = 50 then t.80 = 80.47 is the time at which
80% of the population will fail. Notice too, F (tp) = p and F (p̂) = tp.

�e censoring rate for the distribution is given by ;

pc = exp ( − (C
η
)β) (2.11)

Where C is the predetermined �xed time at which censoring occurs for any units
that have not failed.
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�e scale parameter η has the same units as T and determines the spread of the
distribution. It is sometimes referred to as the characteristic life because for any value
of β, η is the time by which 63% of the units are expected to fail. �e shape parameter
β is a unitless number that re�ects the speci�c failure mechanism.

�e Weibull distribution models early failures or infant mortality failures when β <
1. Products that follow this early failure distribution typically fail due to a design �aw or
a manufacturing defect. Infant mortality failures o�en arise with electronic components.

�e Weibull distribution models wear out failures when β > 1. A wear out failure
implies that a product’s failure rate increases with time, quite common for mechanical
systems. �e Weibull distribution closely resembles the normal distribution for β = 3.
One can also model random failures under the Weibull distribution using β = 1, which
corresponds to the exponential distribution. Random failures are independent of system
time and o�en due to external events. �e e�ect of β can be translated into various
modes of failure. �is has been summarized in table 2.1.

Table 2.1. Life characteristics for weibull distribution

β value Failure type Implication
β < 1 early failures high probability of failure at early stages(short life)
β = 1 random failures failures are independent of time

1 < β < 4 early wear out generic failure modes e.g. corrosion
β > 4 rapid wear out wear out

It is sometimes more convenient to use an alternative parameterization for the
Weibull distribution which is based on the relationship that exists between the Weibull
distribution and the smallest extreme value (SEV) distribution, a location-scale distribu-
tion. For the random variable Y , the SEV pdf and cdf are;

f(y/µ,σ) = 1

σ
φsev(y − µ

σ
), −∞ < µ <∞, 0 < σ, −∞ < y <∞, (2.12)

Φsev(y − µ
σ

); −1 < µ < 1; 0 < µ; −1 < y < 1; (2.13)

where Φsev(z) = exp [z − exp(z)], Φsev(z) = 1 − exp [− exp(z)] and z = y − σµ. If
T follows a Weibull(η;β) distribution, then the random variable Y = log(T ) follows the
sev(µ = log(η); σ = β1 ) distribution. �e alternative parameterization for the random
variable T having a Weibull distribution, is
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f(t/µ;β) = β
t

Φ(sev)(β( log(t) − µ)) = β
t

exp [z − exp(z)] (2.14)

F (t/µ,β)) = Φ(sev)β( log(t) − µ) = 1 − exp [− exp(z)]; t > 0 (2.15)

where, z = β(log(t) − µ) and µ = log(η). Under this parameterization the Weibull

quantile function is tp = exp [µ + Φ−p
(sev)

β ]

Figure 2.7. Probability Distribution Function of the Weibull Distribution [6]

Figure2.8 below shows the behavior of di�erent shape parameters β of o.6, 1 and
3 i.e failure rate functions of weibull distribution also known as the decreasing rate,
constant and increasing rates of failures respectively, with a scale parameter ηwith value
of 1000 and di�erent shape parameters
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Figure 2.8. Failure-rate Function with Scale Parameter η=1000 and Shape Parameters β [7]

Table 2.2. Summary of life characteristics for weibull distribution [1]

Life characteristic Equation

Proportion failing before time t F (t) = 1 − exp−( tη)
β

Reliability Rt = exp−(
t
η
)β

Mean life µ = ηΓ(1 + 1
β
)

Hazard rate h(t) = β
η( t

η)
β−1

Cumulative hazard H(t) = ( t
η
)β
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2.5.2.2 Exponential distribution

�e exponential distribution is the only distribution that exhibits the no aging property[6].
It has a probability density function (PDF)

f(t/θ) = 1

θ
exp( − t

θ
), t > 0 (2.16)

and the cumulative density function (CDF)

F (t/θ) = 1 − exp( − t

θ
), t > 0 (2.17)

where θ > 0. �e hazard function, the (limit of the) probability of failure in a small
interval divided by the length of the interval is constant thus having a constant failure
rate as a characteristic property of the exponential [3].

�e exponential distribution also has the memoryless property: the probability of
surviving an additional t time units is the same regardless of the age of the system. �e
constant hazard function, along with the memoryless property, makes the exponential
distribution rather unrealistic for most situations. �us, through regression models can
be developed for the exponential distribution, they are not particularly useful in prac-
tice. Exponential regression does, however, serve as a springboard to more complicated
models.

2.5.2.3 Log-normal distribution

Log- normal distribution is one of the distributions commonly used for modeling life-
times or reaction-times, cycles-to-failure in fatigue, material strengths and loading vari-
ables in probabilistic design and is particularly useful for modeling data which are pos-
itively skewed [29]. It has been extensively discussed by many authors including [30,
29, 8, 31] among others. �ere is a very close relationship between the normal and log-
normal distribution. If X = log(T ) is normally distributed with mean µ and standard
deviation σ , then the distribution of T becomes a two-parameter lognormal distribution
with parameter θ = (µ;σ). �e probability density function of such a two-parameter
lognormal distribution is given in equation 2.18.

When the natural logarithms of the times-to-failure are normally distributed, then
we say that the data follow the log-normal distribution. Both log-normal and weibull dis-
tributions sometimes may �t a speci�c set of data equally well. �ey are not in the same
mathematical family but they can be modeled to �t lifetime data with acceptable level
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of accuracy. It is argued that the log-normal distribution at earlier times predict lower
average rates of failure than that of weibull distribution. In equation 2.18 , parameter µ
can be interpreted as the mean of the random variable’s logarithm, while the parameter
σ may be interpreted as the standard deviation of the random variable’s logarithm.

In addition, µ is said to be a scale parameter, while σ is said to be a shape parame-
ter of the log-normal density function.Basak, Basak, and Balakrishnan [29] suggest that
it is more appropriate to use β=exp(σ2) and η=exp(µ) as the shape and scale param-
eters of the log-normal variable T respectively. Log-normal distribution is summarized
according to its probability density function (PDF).

�e PDF for the log-normal distribution is given by:

f(t/µ,σ2) = 1

σt
√

2π
exp(−( log t − µ)2

2σ2
), t > 0 (2.18)

Where σ is the shape parameter and µ= T50, median (scale) parameter.

Figure 2.9. Probability Density Function of log normal Distribution [8]
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Figure 2.10. Log-normal Probability Density Function for Di�erent Values of σ. [8]

Antle [32], stated that the multiplicative property is an important property of the
log-normal distribution. �e property states that if two independent random variables
X1 and X2 distributed as log-normal (µ1, σ2

1) and log-normal(µ2, σ2
2) respectively, the

the product of X1 and X2 is distributed as log-normal (µ1µ2,
√
σ2

1 + σ2
2).

Another important property of the log-normal distribution identi�ed by [32] is the
fact that for the very small values of σ (σ < 0.3), the log-normal is nearly not di�erent
from the normal distribution. However, unlike the normal distribution , the log-normal
does not possess a moment generating function.
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Figure 2.11. Plot of the Log-normal Cumulative Distribution Function with values of σ [6]

Table 2.3. Life Characteristics for Log-normal Distribution

Life characteristic Equation

Proportion failing before time t F (t) = Φ( lnt
t
T50

σ )

Reliability Rt = 1 − F (t)

Mean life E(t) = T50exp
σ2

2

Hazard rate h(t) = f(t)
R(t)

PDF f(t) 1
σt
√

2π
e−

( 1
2σ2

)(lnt−lnT50)2

Median lifetime of 50% failure point T50

�e two dimension α is used as the location parameter for the log-normal distri-
bution. �e table show comparison of weibull distribution and log-normal distribution
when the location parameter is included. �e table shows the comparison between the
two distributions though they do not represent same conditions. �is is because the scale
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parameter of the weibull distribution η represents the approximately 63% of components
or product failing at time t, while the scale parameter of the log-normal distribution α
represents 50% of the components expected to fail by time t. �e mean life is also known
as the mean time to failure for both weibull and log-normal distribution.

Table 2.4. Comparison of weibull and log-normal distribution with location parameter

Function Weibull Log-normal

Cumulative Density Function F(t) 1 − exp[ − ( t−t0η )
β

] Φ[ln( t−t0σ )
α

]

Cumulative hazard function H(t)
(t−t0)β

η ln(1 −Φ[in(t−t0)
σ ]

α

)

Probability density function β
η( t−t0η )

β−1

exp( − ( t−t0η ))
β

exp−

[ln( t
σ)

α

]
2

2√
2π(t−t0)

Reliability function R(t) exp( − ( t−t0η )
β

) 1 −Φln
(t−t0)α

σ

Median life t0 + η(ln2)
1
β

t0 + σ
mean life t0 + ηγ1 t0 + σ

√
w

variance η2(γ2 − γ2
1) σ(w2 −w)

2.5.3. Estimating parameters of lifetimes distribution

�ere are di�erent methods that can be used to estimate parameters of lifetimes data.
�ese methods are categorized as graphical and statistical methods.

�e graphical method of parameters estimate include the use of data transforma-
tion and plots of the transformed data to estimate the underlying model. �ese plots
and transformation depends on the assumed model. �e graphical method is simple and
easy to �nd comparatively good estimates of parameters. From the graphics, the model
�t can also be determined. Graphical method has been extensively discussed by several
researchers. [8] stated the advantage of graphical method as the ability to visually test
of the model i.e test data to the ��ed model thus, used for model check (how well the
points �t the model). In addition, the method is also considered to be useful in providing
an initial estimation as the starting point for statistical methods. Other advantages in-
clude, the plot making visual sense and calculations can be done with help of a so�ware
package. �e disadvantage of the graphical method is that the estimates obtained from
this method is not accurate compared to the one concluded from statistical methods, lack
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of minimum variance for large samples and �nally, parameters lack con�dence interval,
di�culty in dealing with model of the asymptotic properties.

From graphical plots, suitable models for analyzing the failure data can be di�eren-
tiated. Consequently, a more complex estimation method, such as maximum likelihood
estimation, one of the most frequently used statistical estimation methods, can be used
together to �nd the parameter estimates, and the asymptotically inferences of MLE base
on large sample theory can be applied to gain more insight of the failure data. �e
commonly used graphical methods include methods include: Weibull probability plot ,
Cumulative distribution Plot, Hazard rate plot [33] [34] [8] among others. A here is a
simple demonstration of using a graphic plot in parameter estimation. A weibull Prob-
ability Plo�ing is used for brief explanation. Weibull probability plot was developed in
the early 1970’s, is a graphical method by sorting and transforming the observed data. It
is a simple procedure for estimating parameters. �e �rst step is to transform the CDF
of the distribution in this case weibull distribution as;

Y = ln{−R(t)}, and x = ln(t) (2.19)

that will lead to an equation of a straight line from equation 2.19 thus, obtaining the
relationship:

Y = βx + βα (2.20)

y which is a function of F (xi) is plo�ed against X = (lnxi) using the following proce-
dure: Rank the data xi in ascending order, estimate F(x) of the ith rank and �nally plot Yi
against Xi If the outliers are not present in the model, the plo�ing points tend to form
a straight line. which means that the model well �ts the data. [8] provides a detailed
explanation of estimated value of β which is the slope of the line and estimated value of
α.

In contrast, statistical methods are based on the theory and inference of mathe-
matics and statistics. It is generally applicable to di�erent data types and various model
formulations. Below is a demonstration of how graphical method is used in parameter
estimation.

�e estimators obtained from statistical methods are considered to be more accu-
rate than graphical estimators, and the asymptotic properties of the estimators are well
developed. However, most of statistical methods equations that are di�cult and more
complex to solve. �erefore the knowledge of statistics is required. Fortunately, statis-
tical estimates could easily be obtained from various statistical so�wares and program-
ming tools. Methods of moments, Maximum likelihood estimation, interval estimation
among others are the some of the commonly used statistical methods of parameter es-
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timation. �eir properties enable one to identify which method would be suitable in a
particular data. In this study, maximum likelihood Estimation (MLE) technique is used.

2.5.3.1 Maximum likelihood estimation of lifetimes

In this section we discuss how to compute the MLEs of the model parameters based on
the both weibull and log-normal distributions discussed earlier in this section. Maximum
likelihood (ML) methods are commonly used for various types of data sets including
lifetimes data.�e MLE performs very well in every simulated parameter combination.
It is the most dependable among all the estimators. Some characteristics of maximum
likelihood estimation include asymptotically unbaised, that is the bias tends to zero as
the sample size n increases; asymptotically e�cient in that they achieve the Cramer-
Rao lower bound as n approaches in�nity and they are asymptotically normal among
others. Maximum likelihood method easily accounts for censored data and non-normal
data therefore it is are widely used to provide parameter estimates and other interesting
values such the con�dence interval (CI) of a lifetime models.

Maximum likelihood estimate (MLE) can be described as follows: Given the model
and its parameters, the MLE function is the probability (density) of a sample data seen
as a function of the model parameters. Estimates of the model parameters are obtained
by maximizing logarithm of the likelihood. Estimates are the values that maximizes
probability of the sample data. Its main aim is to �nd combination of parameters β and
η that maximize the probability of a given data. MLE estimates tend to predict long life
with small samples.

2.5.3.2 Maximum likelihood estimation for weibull distribution

To estimate parameters η and β, assume θ = (β, η). Let t1, t2,….tn such that ti is Weib(η,
β) be a random sample of size n drawn from f(t, θ) where θ is unknown.

f(η, β, (t)) = {β
η
( t
η
)
β−1

exp − ( t
η
)
β

}, t >= 0. (2.21)

L =
n

∏
i=1
fti(ti, θ) (2.22)

L(t1...tn, β, η) =
n

∏
i=1
f(η, βti) =

n

∏
i=1

β

η
(ti
η
)
β−1

exp − ( t
η
)
β

(2.23)

dlnL

dβ
= n
η
+

n

∑
i=1
lnti − 1

η

n

∑
i=1
tβlnti = 0 (2.24)
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dlnL

dη
= −n
η
+ 1

η2

n

∑
i=1
tβ = 0 (2.25)

Joint density function that would describe the likelihood function for weibull pa-
rameters for n failed items is given by:

Π(β
η
)
β−1

exp[ − ti
η
]
β

(2.26)

Suppose t1,t2,….tn are samples consisting of both censored and complete data, the
ML for weibull estimates will be:

L(η;β/t) = C
n

∏
i=1

[f(ti/η, β)]
ri

[1 − F (ti/η;β)]
1−ri

(2.27)

=
n

∏
i=1

[β
η
( t
η
)
β−1

exp( − ( t
η
)β)]

r

[exp( − ( t
η
)
β

)]
1−ri

(2.28)

Where ri= 1 means failure, ri= 0 is censored observation and C is constant inde-
pendent of the model parameters generally =1 �e simpli�ed likelihood equation is:

L(η;β/t) =
n

∑
i=1
rilog(β

η
(ti
η
)
β−1

) −
n

∑
i=1

(ti
η
)
β

(2.29)

∑ni=1 tβlog(ti)
∑ni=1 tβi

− 1

β
− 1

r

n

∑
i=1
rilog(ti) = 0 (2.30)

simplifying further;

ηβ − 1

r

n

∑
i=1
tβi = 0 (2.31)

η = (1

r

n

∑
i=1
tβi )

1
β

(2.32)

β must be known.

2.5.3.3 Likelihood ratio test

Likelihood ratio tests are widely applicable tests related to maximum likelihood esti-
mation. �e LRT is de�ned by a ratio of the likelihood under null hypothesis to the
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likelihood under the alternative hypothesis. �e test works by se�ing a cut-o� value for
the ratio between the two likelihoods. If the ratio is less than that cuto� then the test
rejects the null hypothesis.

It is de�ned as:

LR(effectk) = −2ln
L(effectk removed)

L(fullmodel) (2.33)

Where L() is the likelihood value. Likelihood ratio (LR) follows a chi-square dis-
tribution if the e�ect k is not signi�cant. Removing e�ect k from the model of equation
2.33 will not have e�ect on the likelihood value. A very large likelihood value means that
the e�ect of the parameter k is signi�cant [35]. A detailed explanation on the methods
of estimation, testing and function for these computation is explained by [35]

2.5.3.4 Maximum likelihood estimation for log-normal distribution

Assuming that the lifetimes of a product random variable T follows a log-normal distri-
bution with the PDF as shown in equation 2.34 , to compute the Maximum likelihood
estimators, we start with the likelihood function. �e likelihood function of the log-
normal distribution for: tis (i=1,2,3…n) is determined by taking the product of probabil-
ity density of individual lifetimes (time to fail) tis

f(t;µ;σ) = 1√
2πσt

exp − (logt − µ)2

2σ2
; t > 0;−∞ < µ <∞;σ > 0 (2.34)

Taking the natural logarithm ;

L(µ;σ/T ) =
n

∏
i=1

[f(Ti/µ,σ)]

=
n

∏
i=1

((2πσ2)−
1
2T −1

i exp[−(log(Ti) − µ)
2

2σ2
])

= ln((2πσ2)
−n
2

n

∏
i=1
T −1
i exp[

n

∑
i=1

−ln(Ti) − µ)2

2σ2
])

= −n
2
ln(2πσ2) −

n

∑
i=1
ln(Ti) − ∑

n
i=1 (In(Ti) − µ)2

2σ2

= −n
2
(2πσ2) −

n

∑
i=1
In(Ti) − ∑

n
i=1 [In(Ti)2 − 2In(Ti)µ + µ2]

2σ2
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= −n
2
In(2πσ2) −

n

∑
i=1
In(Ti) − ∑

n
i=1 In(Ti)2

2σ2
+ ∑

n
i=1 2In(Ti)µ

2σ2
− ∑

n
i=1 µ

2

2σ2

= −n
2
In(2πσ2) −

n

∑
i=1
In(Ti) − ∑

n
i=1 In(Ti)2

2σ2
+ ∑

n
i=1 In(Ti)µ

σ2
− nµ

2

2σ2
(2.35)

To �nd the values of parameters that maximizes L(µ;σ/T ), we take the derivative
of equation 2.35 with respect to µ and σ2 and set it equal to 0. �us the likelihood
estimators are:

µ∗ = ∑
n
i=1 In(Ti)

n
(2.36)

and

σ∗ = ∑
n
i=1 (In(Ti) − ∑

n
i=1 In(Xi)2

n
)

n
(2.37)

2.6 Fan motor of a refrigerator

Generally, household appliances have been the fastest growing end product markets for
electronic motor drives [36]. �e demand for such motor drives is expected to more
than double in the next �ve years. However, industries have desirable speci�cations
of products to improve the quality of its products and processes. Currently, manufac-
tures are favoring the use of speci�c motors for refrigerator because of their e�ciency,
low power density and low cost. Accurate prediction of parameters at the design stage
is clearly critical since inappropriate design may lead to excessive noise emission and
catastrophic failure. Recently, in addition to electric e�ciency, sound comfort has be-
come equally important to consumers. An acceptable noise level is becoming a major
marketing point for many products. �e main sources of noise of a household refrigera-
tor are compressors and fans. �e role of a fan is to blow the refrigerated air to a freezer
chamber and cool chamber of refrigerators.

In this section we discuss the general structure of a fan motor and main require-
ments it has to ful�ll in its selection.

2.6.1. Fan structure

A rotating fan and electric motor are the key elements of a fan as shown in �gure 2.12.
�e electric motor is composed of a stator situated in the fan housing and a rotor, while
the blades are a�ached on the rotor. �e structure when disassembled is shown in �gure
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2.13 and �gure 2.14. When the fan is in use, the magnet in the rotor interacts with force
generated by the stator causing the rotor to rotate [9].

Figure 2.12. �e General Structure of a Condenser Fan [9]

Figure 2.13. (a) Stator in a Fan Housing [9]
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Figure 2.14. (b) Rotor with Blades [9]

A fan motor is located next to the compressor. It moves air across the condenser
coils to help cool the hot refrigerant coming out the compressor. Refrigerator fans serve
several purposes: Cooling the compressor, circulate cold air from the evaporator to the
freezer and the cold chamber, and �nally making cakes of ice for the external ice dis-
penser [37].

Fan and motor breakdown contributes nearly 30% of refrigerator failure [4].
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3. EXPERIMENTS FOR LIFETIMES DATA

3.1 Transfer Function Identi�cation and Optimization Using Re-
sponse Surface Methodology

�e Response surface methodology (RSM) was introduced by Box and Wilson [38] to em-
phasize on the advantages associated with it’s sequential and immediacy nature. RSM is
a collection of statistical and mathematical techniques useful for developing, improving
and optimizing processes. �e methodology summarized by the combination of design
of experiment, ��ing the model and optimization processes. It also has important ap-
plications in the design, development and formulation of new products as well as in the
improvement of existing product design. �e method is extensively used in the indus-
trial sector especially when several input variables in�uence performance of a product
or process.

In a standard RSM, the important factors are studied with an aim of eliminating
unimportant factors to the response (screening process) in order to produce e�cient re-
sults with few runs. Method of steepest ascend is applied to �nd the optimum response.
Next, a second-order experiment is run to fully characterize the response surface. �e
use of sequential experimentation process lends it well to industrial applications which
focus on regression model (a response surface) as the center of analysis . �is sequen-
tial nature allows industrial researchers to take advantage of signi�cant cost savings,
especially when li�le is known about the nature of the response surface [39]. �e RSM
utilizes Taylor series approximations to �nd a parametric model for response prediction
over a �nite experimental region as its primary goal. A two factor levels and fractional
factorial designs are the most commonly used designs in the support of �rst-order model,
model including main e�ect and interaction.

�e relationship between the input variables ξ1, ξ2….ξk that a�ects the response y
of a product or a system of is as follows:

yi = f(ξ1, ξ2, .....ξk) + ε (3.1)

38



Where ε represents the error observed in the response y. �is also represents other
sources of variability not accountable for in the function. �us ξ accounts for e�ects of
measurement error on the response, other sources of variation that are inherent in the
process or system and the e�ect of other variables. Assuming ε is normally distributed
with mean zero, the expected response is denoted by E(y) = f(ξ1, ξ2, ...ξk) = η, then
surface represented by η is the response surface.

�e variables represented by ξ1, ξ2,….ξk are normally referred as natural variables
because they are expressed in the natural units of measurement [40].�ese natural vari-
ables are always converted into coded vaiablesX1,X2….Xk. When the response is mod-
eled by a linear function [41] of independent variables as shown in equation 3.2, then
the function is �rst-order model.

y = β0 + β1X1 + β2X2 + ......βkXk + ε (3.2)

3.2 Two Level Fractional Factorial Design for Variable Screening

A complete factorial designs can become large even at two levels of each factors [42].
An experiment with eight factors would require 25 = 32 runs. In the case of reliability
experiment, each run may be measured as in hours, days, months etc and may take
several thousand hours, which would be practically infeasible to conduct 32 runs. �us,
more e�cient methods of conducting experiments is needed.

Fractional factorial designs can reduce the number of runs signi�cantly by choos-
ing a subset or fraction of the complete factorial design. A 25−2 factorial design would
reduce the number of runs by 2−2 = 1/4 (25−2) to eight runs. Although this provides an
advantage of reducing the number of runs signi�cantly, the disadvantage is that many
of the e�ects are hidden or confounded by the main e�ect factors that the experimenter
deems the most important. �is assumes that many of the confounded e�ects are not
signi�cant and have very minimal e�ect or do not a�ect the response at all. Fractional
factorial designs are particularly useful if it can be estimated which main e�ects and
interactions are signi�cant so that the remaining e�ects can be confounded [42].

3.3 Experiments for Improving Lifetimes of a Product

Manufacturing industries have made signi�cant e�orts to consider reliability prediction
in early phases of a project. �e application of build-in reliability and design for reliabil-
ity have theoretically in�uenced the manufacturing industries to make signi�cant e�orts
to consider reliability prediction in the earlier phases of a project. For instance, Design-
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ers and engineers have extensively used computer simulation(Computer supported in-
formation generating method and analysis ). �e aim of reliability simulation is to help
the designer achieve the reliability equipment while minimizing the resources used.

�e lifetimes of a product could be a�ected by many potential parameters (factors).
However, some of these factors could be more important than others .i.e, they have
greater in�uence on the lifetimes of a product as their values are changed. Experiments
can be used to identify these important factors by deliberately changing their values
and examining the lifetime behavior of that particular product. Other than identifying
these important factors, the values of these important factors that yield lifetime gains
can be recommended. A well designed experiment provides a systematic and an e�cient
plan to achieve these goals. Several factors can be studied by using as few resources as
possible. Design of experiments have been used widely to improve quality characteristics
of products and therefore can be adopted for the lifetime improvement hence reliability.

Some terminology used to describe the plan will be helpful. �e plan of experimen-
tation is referred to as experimental design or design. �e design consist of a list of runs
where a run is a combinations of values (levels) at which factors in the experiment are
set. Run size is the number of runs in the experimental design. Treatment factors does
not suggest drugs as in medical experiment, it means items whose e�ect on the response
is to be studied. For example, this could be temperature, humidity or teaching method.
While levels are the speci�c amounts of treatment factors to be used in the experiment,
such as selected temperature se�ings in the range of interest. Experimental units are
the ”material” to which the levels of treatment factor(s) are applied [43]. For example, in
agriculture these would be di�erent plots of land. �ese units should be representative
of both the material and conditions to which the conclusions will be applied.

�e experiment involves se�ing units(fan motor) according to the speci�ed run
conditions by the design and these factors are observed until failure occurs. �e two
parameter β and η weibull were calculated using likelihood estimation method as the
most preferred method [25] for censored data and small sample size.

3.3.1. Choice of the factors

In service conditions, the failure process of an electrical component is driven by sev-
eral working conditions acting together such as dirt, moisture, temperature, aggressive
chemicals and radiation among others. In rotating machines, over-voltage occur at the
motor terminals and it an lead is not homogeneously distributed to the whole compo-
nent. �e reduction or over-voltage can lead to partial discharges occurring between the
components of the product. In this study only two parameters are chosen to determine
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their corresponding in�uence on the lifetimes, which are:

• Voltage (V)

• Temperature (C)

In this study these parameters will be called factors. �e factors will be studied in
levels of high and low.

3.3.2. Simulation assumptions

�e assumptions of the model are:

• Regression model (a response surface) as the basis of analysis

• �e experiment involves m treatment combinationsXi = (xa, xb, xc......Xm), each
combination has n items. the Xi’s are independent with speci�c probability dis-
tribution.

• failure time t follows both weilbull and log-normal distributions.

• εij are independent and identically distributed.

• Each component is assumed to have a lifetime Xi and a �xed censoring time C

For weibull distribution, scale parameter denoted by η is known as the ”life char-
acteristic” and β is the shape parameter. Generally the shape parameter of weibull
distribution is given as β. We have reserved β for the shape parameter as generally
known and used α for the parameters that relate the prdedictor variables to the expected
lifetime(α0, α1......αn).

For an L-level factor, it will have L-1 independent e�ect if the zero sum constant
is used. �e life characteristics can be treated as a function of these independent e�ects.
�e scale parameter which is the life characteristic is assumed to be a function of e�ects,
the link function between life and the two factors e�ect with interaction for weibull
distribution is expressed as:

1n(η) = α0 + α1Temperature + α2V oltage + α12(Temperature)(V oltage)

η = exp(α0 + α1Temperature + α2V oltage + α12(Temperature)(V oltage)) (3.3)
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we assume the �rst order model,

Ti/Xi =Weibull (η = exp(α0 + α1 + α2), β)

where temperature and voltage are the two independent e�ects of materials. �e model
that involve interaction is not be considered. If it is level 1, temperature = 1 and voltage
= 0; if it is level 2, temperature = 0 and voltage = 1; if it is level 3, temperature = -1 and
voltage =-1. �erefore, for each level, there is a di�erent life characteristic value. Using
this link function, the log likelihood function for the failure data at level i will be:

ln(LKVI) =
F

∑
j=1

[1nβ − βlnηi + (β − 1)1ntj − ( t
ηi

)β] −
S

∑
j=1

( tj
ηi

)β (3.4)

In this case F is the failure time and S is suspension time. �e overall likelihood function
will be:

Ln(LKV ) =
L

∑
i=1

1n(LKVi) (3.5)

Where tij are the life times,Xi = I(xa, xb, ...xn) the {Xi} are the corresponding
vector covariate values, β or of the parameter. ε is the vector of the parameters and σ
is the scale parameter. εij are iid (Independent and Identical distribution) whose sur-
vival (S.F) and PDF are exp(exp(−w)) and exp(w − (exp(w))) respectively. Lawless [8]
expressed the experimental factors as a linear function of the log lifetime.

3.3.3. Algorithm characterization

�e following notations are used in the characterization of the lifetime data.

�e exact failure time will be known if and only if X is less than or equal to C.
When X is greater than C, the units become suspensions with the lifetime data censored
at time C. �e simulation was replicated 2000 times.
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4. APPLICATION AND RESULTS

4.1 Simulation Study

In this section lifetimes of a component is modeled by simulation based on the two input
factors which includes environmental load such as temperature and product operational
load, voltage. Lifetime experiments can also be used to address the root cause of failure
and accelerating forces responsible for product failures [44]

4.1.1. Weibull simulation study

In order to establish the data matrix, a two levels (low=-1 and high=1 value) for each
factor is used in the study. �e levels are identi�ed with the real conditions as follows:
Voltage (105 , 120) and temperature (38 , 43) for the lower and higher ones respectively.
�e design supports the �rst order model with no interaction. To include censoring, the
values of �rst q failures per run resulting in failure or censoring are recorded. �e failure
times of each tests strand were simulated using a weibull distribution with an assumed
shape parameter β = 3 and model representing main e�ects, scale parameter as:

µ = log(ηi) = α0 + α1(Tempi) + α2(V olti) (4.1)

Where Tempi and V olti are the temperature and voltage respectively of 22 facto-
rial design.

In this study, two level, two factorial experiment design is adopted to evaluate the
e�ects of independent variables (temperature and voltage) on the response (lifetimes).
Equation 4.2, a quadratic (2nd- order) model used in order to optimize the response with
few experimental runs.

Y = α0 + α1XA + α2XB + α3XAXB + α4X
2
A + α5X

2
B (4.2)

where Y is the response; α0 to α5 are the regression coe�cients and temperature
and voltage are the factors. �is model is used to estimate the relationship between life-
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times Y , and the two independent factors temperature, and voltage,. �e values, α1 and
α2 coe�cients denote the main e�ect of factors temperature and voltage, respectively.
Besides, α3 denotes the interaction between factors temperature, voltage; Finally, α4 and
α5 denote the quadratic e�ect of factors temperature and voltage, respectively.

�e factor levels are coded for low and high se�ings as −1 and 1 respectively. Table
4.1 shows the coded values of main e�ect.

Table 4.1. Factors and factor levels used in the design

Factor Low (-1) High (1)

Temp 38 43

Volt 105 120

Table 4.2. Layout of 22 design matrix

Run I A B AB Response

1 1 + − − R1

2 1 − + − R2

3 1 + + + R3

4 1 − − + R4

In order to include the factor levels for temperature and voltage, a model that
represents main e�ects and interaction speci�ed in equation 4.1 is used. �e equivalence
of equation 4.1 above can be wri�en as:

R1 = α0 + α1(1) + α2(−1) + α3(1)(−1)
R2 = α0 + α1(−1) + α2(1) + α3(−1)(1)
R3 = α0 + α1(1) + α2(1) + α3(1)(1)
R4= α0 + α1(−1) + α2(−1) + α3(−1)(−1)

• Factor levels were used to determine scale parameters for weibull and log-normal
distributions.
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• Failure are generated using the modeled scale parameters and assumed shape pa-
rameter independently.

• Censoring is included in the generated time to fail.

• MLE applied to �nd the the estimates of the parameters.

• 2000 replications were carried out. �e assumed model contains temperature and
voltage with no interaction.

�e results from using survreg in the survival package of R statistical program
version 3.4.0 was used in the analysis. Table 4.3 and table 4.4 shows the simulation
results for weibull distribution and log-normal distributions respectively.

Table 4.3. Weibull distribution analysis results

Likelihood ratio test-table

Model E�ect DF Ln Likelihood P-Value

(Likelihood Value) Value

Reduced Temp 1 -1378.3 6.884 8E-06

Reduced Volt 1 -1281 - 6.4-E04

Full - 4 -1377

Estimate of Parameters

Predictor Coef S.d Error P-value

Intercept 4.8139 1.647 0.068

Temperature 0.0304 0.013 1.15E-02

Voltage -0.0466 0.257 7.17E-03
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4.1.2. Log-normal simulation study

Table 4.4. Log-normal distribution analysis results

Likelihood ratio test-table

Model E�ect DF Ln Likelihood P-Value

(Likelihood Value) Value

Reduced Temp 1 -1425 6.884 0

Reduced Volt 1 -1654 - 0.021

Full - 4 -2144

Estimate of Parameters

Predictor Coef S.d Error P-value

Intercept 5.0753 0.0432 6.71E-3

Temperature 0.0998 0.077 2.309E-02

Voltage -0.1006 0.0266 1.58E-04

4.2 Discussion

�e two factor, two levels factorial design was used to generate lifetime data by monte-
carlo simulation method. In reliability Design of experiment, �e scale parameter, η is
assumed to be a function of the factors which is expressed in this case as:

ln(ηi)=α0+α1(Tempi) +α2(V olti)

ηi= exp (α0+α1(Tempi) +α2(V olti))

Where α0 is the intercept, α1 is the e�ect coe�cient of temperature and α2 is the e�ect
coe�cient of voltage. Previous studies indicate that interaction does not a�ect the life of
products therefore it was not included in the model. �e simulated data is censored with
many failures. MLE was used to generate parameters of each distribution, However, it
is not suitable to apply ML method to estimate both the scale and the shape parameters
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[45]. �erefore an assumed shape parameter is suitable [46]. An assumed Shape param-
eter was used which was later estimated as β=1.85, indicating failure due to product
wear-out and therefore as β increases number of failure times also increases [1].

�e results from weibull distribution in table 4.3 show that temperature and voltage
are signi�cant at 0.05 level of signi�cance . From table 4.3 and table 4.4, both temper-
ature and voltage are signi�cant at 0.05 level of signi�cance. It is appropriate to apply
standard regression techniques to Lifetimes experiments where the exact failure times
are observed [47]. However, when some of the data are censored i.e all failure times are
not observed, application of regression technique is inadequate [35] [47]. In this case,
the likelihood based approach is considered. Unlike ANOVA whose P values are ob-
tained from F ratio test, in experiments involving lifetimes, the p values are based on the
likelihood ratio test [48]. �e ML estimates of the e�ect coe�cients corresponding to
temperature and voltage are 0.0304 and - 0.0466 for weibull distribution. Based on these
coe�cients, the appropriate se�ings for these e�ects to optimize the response are:

• To set temperature at a higher level of 1 since its coe�cient is positive.

• To set voltage at lower level -1 since its coe�cient is negative.

�is is suggested by Bajzer, �erneau, Sharp, and Prendergast [49] who also used
maximum likelihood method as a tool to determine failures. Using the ML method esti-
mate of coe�cients from the weibull distribution the scale parameter is predicted as;

ln η = 4.8139 + 0.0304(Temp) − 0.0466(V olt)
= 4.8139 + 0.0304(1) − 0.0466(−1)

lnη = 4.89, η = exp(4.89)
η = 133

let lifetimes be denoted by Time then,

Time ∼ Weibull (β = 1.85, η = 133 ).

In the log-normal distribution temperature and voltage also have the similar e�ect
on the lifetimes as that of weibull distribution. Table 4.4 shows the log-normal simulation
results. �e log-normal distribution is also considered as a useful and �exible model for
reliability analysis [3] like weibull distribution, log-normal also consist of scale (median
T50) parameter and shape parameter. �e results from table 4.4 shows that temperature
and voltage are signi�cant and therefore they are useful in the lifetimes of a component.
�e ML estimates of the coe�cients based on the simulation are 0.0998 for temperature
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and -0.1006 for voltage. Based on these results, temperature is set at a high level and
voltage at low level to optimize the response.

Log-normal distribution is considered to be successful in modeling failures due to
chemical reactions such as corrosion,material movement because of di�usion and it is
with this reason that it is considered as the most popular distribution [3].
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5. CONCLUSIONS

Instant results and sequentiality make agricultural experiments di�erent from indus-
trial experiments. For most industrial experiments results are always available instantly
(days, hours e.t.c) and the results from each group can be acted upon to be used in the
next experiments while in agricultural experiments, processes are always restricted dur-
ing growing seasons. In addition, normal distribution which characterizes most experi-
mental designs is not a logical distribution for lifetimes due to censoring.

Due to censoring, analysis of variance (ANOVA) and (least square method (LSM)
can not be used to improve reliability [27]. In this case, ANOVA method can only be
applicable if suspensions are treated as failures and midpoint of interval data used as
failure times. �is approximation give wrong results and lead to wrong conclusions
[50]. Consequently, the use of ANOVA method on lifetimes data violates the normal
distribution assumption among others [26].

In addition, the commonly used ML estimate approach is considered to have an
”estimablity” problem. Testing for important e�ects in the model cannot be done by
comparing the ML estimates with their corresponding standard errors because the ML
estimates may be in�nite see [47]. Consider an example given by [47] of a one factor
two levels experiment with censored observation and failure time data given according
to the factor levels. In this example it is observed that as the parameter tends toward
in�nity the likelihood function increase to the maximum and therefore concluded that
ML estimate for the main e�ect tends to be in�nite when the true factor e�ect is large.
Further explanation of the ML estimate can be found in [51]. �us, the use of Likelihood
ratio test is suggested by [52].

�e study aims at increasing the lifetimes of a product by simulation. �e impor-
tant factors are identi�ed through the screening process and a second order (quadratic)
response surface methodology used to determine the optimal values. Weibull and log-
normal models with an assumed scale parameter was used in the model simulation and
maximum likelihood estimation for the parameter estimation. Temperature and voltage
were found to be signi�cant and therefore they play an important role in the lifetimes
of a fan motor.
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From log-likelihood values, weibull distribution provides larger likelihood values
as compared to the log-normal. Once the researcher decides the value of shape param-
eter and estimate of the parameters, it is be�er to use weibull distribution to model
lifetimes. In the contrary, [3] argues that the choice of distribution to model lifetimes
depends greatly on the theoretical justi�cation of the model based on the failure pa�erns
or mechanisms under investigation.

In both weibul distribution and log-normal distribution, a constant scale parameter
was assumed but it was not tested whether it is constant or not. For future studies, the
assumption of constant scale parameter can also be tested and consequences of assuming
a constant scale parameter be investigated. In addition, a quadratic model(second order
model) can be used to optimize. �e median value of the weibull distribution can also be
used because reliability data is usually skewed. Other than 22 factorial design, it would
also be interesting to use more factors in the design formation since these are not the
only factors thats have in�uence the lifetimes of a fan motor.
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