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ABSTRACT 
 
In this study, a simple and multiple logistic regression model forms, several of their key features and model 

building procedures are concerned. Maximum likelihood procedures are used to estimate the model parameters of a 
logistic model. Interpretation of the coefficients is explained by using odds ratio values.  

 
When the model includes more variables than needed, the greater estimated standard errors become. For this 

reason, there are some methods to find the best fitting through variables for the model. The final model equations 
of these methods can be different from each others. Here, the aim is to determine the “best” model.  

 
A logistic regression model is developed by using a database of 1200 patients with lung cancer in İzmir. In 

order to obtain a solution, univariate analysis, forward selection and backward elimination methods are applied to 
cancer data. The SPSS software package is used and results are evaluated. 

 
 
Keywords : Binary variable, Stepwise logistic regression, Odds ratio, Likelihood ratio Test (G), Lung cancer. 

 
AKCİĞER KANSERİ VERİLERİ İLE İLGİLİ OLARAK LOJİSTİK REGRESYON 

MODELLERİNDE MODEL KURMA 
 

ÖZ 
 
Bu çalışmada, basit ve çoklu lojistik regresyon model yapıları, onların bazı anahtar özellikleri ve model kurma 

yöntemleri ile ilgilenilmektedir. En çok olabilirlik yöntemleri lojistik modelin parametrelerini tahmin etmek için 
kullanılır. Katsayıların yorumu odds oran değerleri kullanılarak yapılmaktadır.  

 
Model gereğinden fazla değişken içerdiği zaman, daha büyük standart hatalar elde edilmektedir. Bu nedenle, 

değişkenler arasındaki en iyi modeli bulmak için bazı yöntemler kullanılmaktadır. Bu yöntemlerin son model 
denklemleri birbirinden farklılık gösterebilmektedir. Burada amaç “en iyi” modeli bulabilmektir. 

 
Çalışmada lojistik regresyon modeli, İzmir ilindeki akciğer kanserli 1200 hastaya ilişkin veriler kullanarak 

geliştirilmi ştir. Çalışmada tek değişkenli lojistik regresyon çözümlemesi, ileriye doğru seçim ve geriye doğru eleme 
yöntemleri uygulanmıştır. Çözümlemeler SPSS paket programı kullanılarak yapılmış ve elde edilen sonuçlar 
tartışılmıştır. 

 
Anahtar Kelimeler : İkili değişken, Adımsal lojistik regresyon, Odds oranı, Olabilirlik oran testi (G), Akciğer 

kanseri. 
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1. INTRODUCTION 
 
The logistic regression is used when the response 

variable is measured on a nominal scale. In other 
words, logistic regression analysis is used to study the 
association between a qualitative variable Y and a 
quantitative or qualitative variables X  (Rao, 1984). In 
logistic regression, the odds ratio values of variables 
are examined to interpret of the coefficients. In 
addition, there are three statistical methods that are 
often employed in determining which variables to 
include in a model: the univariate method, the stepwise 
logistic regression method and the best subsets logistic 
regression method. The stepwise logistic regression 
method contains two analyses: the forward selection 
and the backward elimination. In this study, the 
minimum logit chi-square method (the likelihood ratio 
chi-square test) is used. So, the final model with 
appropriate variables is stated for lung cancer patients. 
After fitting the model, Hosmer-Lemeshow test is used 
to determine the fit of the model for lung cancer 
patients. 

 
2. REGRESSION MODELS WITH BINARY 

RESPONSE VARIABLE 
 
The response variable has only two possible 

outcomes, and it can be represented by a binary 
indicator variable taking on values 0 and 1. These 
response variables are measured on a binary scale. For 
example, the responses may be alive or dead, or 
present or absent (Freund and Wilson, 1996). 

 
The simple linear regression model is written as: 

iii XY εββ ++= 10 , ni ,,2,1 K= . The expected 
response, { }iYE , has a special meaning in this case. 
Since { } 0=iE ε , it is written as: { } ii XYE 10 ββ += . 
When iY  is a Bernoulli random variable, there are two 
probabilities. iπ  is the probability that iY =1 and 

)1( iπ−  is the probability that iY =0. The expected 
value of a Bernoulli random variable is 

{ } iiiiYE πππ =−+= )1(0)(1 . So, { }iYE  is written as 
{ } iii XYE πββ =+= 10 . 

 
2.1 Meaning of Response Function When 

Response Variable is Binary 
 
The error terms in linear regression model are 

assumed to have a normal distribution with a constant 
variance for all levels of X . However, when the 
response variable is 0 or 1 indicator variable, error 
terms are not only distributed normal but also they 
don’t have constant variance. The error term 

)( 10 iii XY ββε +−=  can take on only two values. If 

iY =1, then the error term takes the value as 

iii Xx 101)(1 ββπε −−=−=  with the probability 
)( ixπ . If iY =0 , then the error term takes the value as 

iii Xx 10)( ββπε −−=−=  with probability )(1 ixπ− . 

Thus, the assumption of normality does not hold for 
this model. It is not appropriate (Neter and Kutner, 
1996). Another problem with the error terms (iε ) is 
that they do not have equal variances. The variance of 

iY  for the simple linear regression model can be 
determined as follows: (Neter and Kutner, 1996) 

 
)1()1()0()1())(()( 222

iiiiiiiii YEYEYV ππππππ −=−−+−=−=        (2.1) 
 
Also, the variance of the error terms (iε ) is the 

same as that of iY , because iε  is equal to )( iiY π−  
and iπ  is a constant. The last problem is related with 
constraints on response function. Since the response 
function represents probabilities, the mean responses 
should be constrained as follows: 1)(0 ≤=≤ iiYE π   

 
3. THE MODEL 

The conditional mean, )( ixπ , is expressed as 
follows: 
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This specific form is called logistic response 

function. A transformation of )( ixπ  is the logit 
transformation. This transformation is expressed as 
follows: 
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The importance of this transformation is that 
)( ixg  has many of the desirable properties of a linear 

regression model. The logit transformation is linear in 
its parameters and it may be continuous. In addition, 
the logit may have range from ∞−  to ∞ , depending 
on the range of ix  (Hosmer and Lemeshow, 1989). 

 
4. FITTING OF SIMPLE AND MULTIPLE 

LOGISTIC REGRESSIOIN MODELS 
 

4.1 Fitting Of Simple Logistic Regression 
Model 
 
The general methods of estimation in logistic 

regression model are investigated in three main 
concepts. These are the Maximum Likelihood Method, 
Iteratively Reweighted Least Squares Method and the 
Minimum Logit Chi-Square Method. 

 
4.1.1 Likelihood Function 

 
Likelihood function express the probability of the 

observed data as a function of the unknown 
parameters. For pairs ),( ii yx , since 1=iy , the 
contribution to the likelihood function is )( ixπ . Since 

0=iy , the contribution to the likelihood function is 
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)(1 ixπ− . Since iY ’s have a Bernoulli distribution, the 
probability density function can be defined as follows:  

 
ii y

i
y

iiii xxyfyYP −−=== 1))(1()()()( ππ               (4.1)  
 
Where 0=iy  or 1=iy  for ni ,,2,1 K= . Since 

the observations iY  are assumed to be independent, the 
likelihood function can be defined as follows:  
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In order to maximize this function, the derivative 

must be taken with respect to each of the parameters. 
Then, the resulting equations which are called 
likelihood equations would be set equal to zero and 
solved simultaneously. This process can be simplified 
by performing the same analysis on the natural log of 
the likelihood function (Kleinbaum, 1994). Obtaining 
the log-likelihood function is expressed as: 
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Likelihood equations are not linear, solving these 

equations simultaneously requires an iterative 
procedure that is normally left to a software package. 

 
4.1.2 Maximum Likelihood Estimation Method  

 
The maximum likelihood estimation method 

(MLE) is used to calculate the logit coefficients. This 
method yields values for the unknown parameters 
which maximize the probability of obtaining the 
observed set of data. In order to apply this method, the 
likelihood function is constructed. This method uses 
the logistic function and an assumed distribution of y  
to obtain estimates for the coefficients that are most 
consistent with the sample data.  

 
The sum of the observed values of iy  is equal to 

the sum of the expected values. Fitted simple logistic 
response function for the ith case is follows:  
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MLE is a iterative algorithm and this procedure is 

complex and usually requires numerical search 
methods. Hence MLE of the logistic regression is done 
on a computer. 

 
 
 

4.1.3 Testing For The Significance of the 
Coefficients 

 
After estimating the coefficients, an assessment of 

significance of the variable in the fitted model is 
concerned. The approach in testing for the significance 
of the coefficient of a variable in the model is related 
with the following question. Does the model which 
includes the variable in question tell us more 
informations about the response variable than does a 
model which does not include that variable? This 
question is answered by comparing the observed 
values of the response variable to those predicted by 
each of two models. The comparison is based on the 
log-likelihood. In logistic regression model, there are 
three commonly used tests for hypothesis testing. 
These are likelihood ratio test, wald test and score test. 

 
i) Likelihood Ratio Test 
 
The comparison of observed to predicted values is 

based on the log likelihood function defined in 
equation (4.3). To better understand this comparison, it 
is helpful conceptually to think that an observed value 
of the response variable as also being a predicted value 
resulting from a saturaed model. A saturated model is 
one that contains as many parameters as there are data 
points. This comparison is obtained as follows: 





−=

model saturated  theof likelihood

modelcurrent   theof likelihood
ln2D          (4.5) 

 
This expression is called the deviance (D). The 

deviance for logistic regression model plays the same 
role as SSE in linear regression. Using minus twice its 
log is necessary to obtain a quantity whose distribution 
is known. Also, this procedure can be used for 
hypothesis testing purposes. This test is called 
likelihood ratio test. In order to determine whether the 
parameter is significant to the model or not, the 
deviance of the model containing the independent 
variable is compared with the deviance of the model 
without the independent variable. This change in D is 
called G statistic. This statistic in logistic regression 
plays the same role as the numerator of the partial F 
test in linear regression. The test statistic is expressed 
as follows:  

 

)(
)(
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 variablehe without tmodel for the

D
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−
=                 (4.6) 

 





−=

 variable with thelikelihood

 variablehe without tlikelihood
ln2G          (4.7) 

 
In checking the significance of the coefficient, the 

following null and alternative hypotheses are written 
as 0: 10 =βH    0: 11 ≠βH . The statistic G has a chi-
square distribution with 1 degrees of freedom under 

0: 10 =βH . The p-value associated with this test is 

)( 2
)1( GP df >=χ . If this p-value is less than given α -

level, then the null hypothesis is rejected. This is a 
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statement of the statistical evidence for the 
independent variable.  

 
ii) Wald Test 
 
Wald test is based on the comparision between 

maximum likelihood estimate of the slope parameter 

1β̂  and an estimate of its standard error. Standard error 

of 1β̂  is provided by the square root of the 
corresponding daigonal element of the covariance 
matrix )ˆ(βV . This test for the logistic regression 
model is as follows:  
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W =                      (4.8) 

Under the hypothesis that 01 =β , W is a standard 
normal distribution. This test also can be written in an 
alternative manner. Because the squaring a normal 
random variable will result in a chi-square random 
variable with 1 degrees of freedom. So, the Wald test 
statistic is written as follows:  
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Where 2W ∼ 2

)1,1( αχ − . In accordance with this 
equation, the decision rule must be adjusted such that 
the null hypothesis is rejected when p-value that is 

evaluated by )( 22 WP >χ  is less than given α -

value. 
 
iii) Score Test 
 
The score test is based on the conditional 

distribution theory of the derivatives of the likelihood 
equations. The test statistic for the score test (ST) is 
calculated as follows:  
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Under the hypothesis that 1β  is equal to zero, the 

two tailed p-value is evaluated by α<> )( STZP -
level and this test statistic has a standard normal 
distribution. 

 
4.2 Fitting Of Multiple Logistic Regression 

Model 
 
In this setting, the vector ),,,(~

21 pxxxx K=  

represents the collection of p  independent variables 
for this model. The equations for the probability and 
the logit transformation can be expressed as follows: 
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ppxxxxg ββββ ++++= K22110)~(                   (4.12) 
 
There is a sample of n independent observations 

and it is expressed as ),~( ii yx . The maximum 
likelihood estimates of the parameters are used and it 
is shown as: ),,,(

~
10 pββββ K= . The likelihood 

function for the multiple logistic regression model is 
expressed as: 
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In this case, there are p+1 likelihood equations 

which are obtained by differentiating the log-
likelihood function with respect to the p+1 
coefficients. As in the univariate model, the solution of 
the likelihood equations requires special package 
programs. Maximum likelihood estimates of the 
parameters can be found in many packages (SPSS, 
Minitab, SAS). 

 
The method of estimating the variances and 

covariances of the estimated coefficients follows from 
theory of maximum likelihood estimation. This theory 
states which estimators are obtained from the matrix of 
second partial derivatives of the log-likelihood 
functions. The estimated variance and the confidence 
interval of the estimated coefficients are denoted as 
follows:  

[ ] 11)
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(
−

= VXXVar β  )
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21 jj SEZ ββ α−±  






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4.2.1 Design Variable 
 
If some of the independent variables are discreate, 

ordinal or nominal scaled variable (categorical 
variable) with more than two levels, then the model 
differs from general formula in lojit transformation. 
For example, race, sex, regions of Turkey, number of 
treatment groups and so on... If the number of variable 
categories is equal to k, then k-1 design variables must 
be created. The notation to indicate design variables is 
more different than the logistic regression model. 
Suppose that the jth independent variable jx  has jk  

levels. The 1−jk  design variables are needed and 

they are denoted as jmD . In addition, the coefficients 

for these design variables are denoted as jmβ , 

1,,2,1 −= jkm K . The logit for a model with p  
independent variables and the jth independent variable 
being discrete is expressed as: 
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4.2.2 Testing For The Significance Of The 

Model 
 
i) Likelihood Ratio Test 
 
The parameters in the multiple setting are once 

again determined through MLE method, because Y  is 
still a Bernoulli random variable with the same 
probability distribution. The derivation of the 
maximum likelihood estimators remains the same, 
with the expection of the inclusion of more parameters. 
The log-likelihood equation takes the form as follows: 
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In the same manner as before, the equations 

resulting from taking the derivative of the log-
likelihood equation with respect to each of the 
parameters and then setting each derivative equal to 
zero are solved simultaneously in order to obtain the 
estimates. The likelihood ratio test is used for overall 
significance of the p-coefficients for the independent 
variables in the model. The test is based on the G 
statistic. In order to determine whether the model is 
significant or not, the log-likelihood of the model 
without the variable(s) must be compared with the log-
likelihood of the model with the variable(s) (Hosmer 
and Lemeshow, 1989). The test statistic, G, is 
calculated as follows:  

 









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(s)  variable with thelikelihood

(s)  variablehe without tlikelihood
ln2G        (4.17) 

In checking the significance of the model, the 
following null and alternative hypotheses are written 
as 0: 210 ==== pH βββ K   :1H at least one of the 

0≠pβ . The statistic G has a chi-square distribution 

with ( )12 νν −  degrees of freedom. Here, 2ν  equals to 
the number of variables in the full model +1 and 1ν  
equals to the number of variables in the reduced model 
+1. For this test, the decision rule requires that p-value 
is ( )( )

{ } P G
df

>
−=−

2

12,1 ννα
χ . If this p-value is less than α -

value, 0H  is rejected. This means that the model 
would be deemed significant. if p-value is greater than 
α -value, then the reduced model is as good as the full 
model and the null hypothesis (0H ) is failed to reject.  

 
5. INTERPRETATION OF THE 

COEFFICIENTS 
 
The estimated coefficients for the independent 

variables give the slope or rate of change of a function 
of the dependent variable per unit of change in the 

independent variable. The function of the dependent 
variable yields a linear function of the independent 
variables. This is called a link function. In linear 
regression model, it is the identity function. In logistic 
regression model, the link function is the logit. 

 
In linear regression model, the slope coefficient, 

1β , is equal to the difference between the value of the 
dependent variable at 1+x  and the dependent variable 
at x . It is expressed as follows:  

 
)()1(1 xxyxxy =−+==β          (5.1) 

 
In logistic regression model it is expressed as 

follows: 
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Here, the logit difference is equal to 1β  and 

evaluated as follows: 
 

( ) 110 )()1()()1( βββ =−−+=−+ xxgxgxg   (5.3) 
 
i) Dichotomous Independent Variable 
 
In this case, independent variable (x) can take only 

two values and it is coded as 0, 1. In logistic regression 
model, there are two values of )(xπ  and two values of 

)(1 xπ− . The odds of the outcome being present 
among individuals with 1=x  and 0=x  are expressed 
respectively 
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The logit is defined to be the logarithm (natural 

exponential) of the odds. They are defined by )1(g  
and )0(g  for dichotomous independent variable. The 
“odds ratio” is defined as the ratio of the odds for 

1=x  to the odds for 0=x  and it is expressed as 
follows: 

 

))0(1(
)0(

))1(1(
)1(

π
π

π
π

−

−=OR                 (5.5) 

 
[ ] ( )( )[ ]

[ ] [ ] )exp(
))exp(1(1))exp(1()exp(

exp1))exp(1(1))exp(1()exp(
1

1000

001010 β
ββββ

ββββββ
=

+++
+++++

=OR
 

                     (5.6) 
 
The log of the odds ratio is called logit difference 

(log odds ratio) and it is expressed as 
( )[ ] ( )[ ] 1)0()1()0(1)0(ln)1(1)1(ln)ln( βππππ =−=−−−= ggOR . 

OR can take any value between 0  and ∞ . The odds 
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ratio gives us the effect of a one-unit change in X on 
the probability that 1=Y . If the odds ratio equals 1, 
the effect is estimated to equal 0. If the odds ratio is 
greater than 1, for example RO ˆ  equals 1.3, a one-unit 
increase in X raises the probability of 1=Y  by 0.3, or 
30%. On the other hand, If the odds ratio is less than 1, 
for example RO ˆ  equals 0.7, the effect of X on Y is 
negative: a one-unit increase in x leads to a 30% 
reduction in the probability of 1=Y . 

 
The variance is evaluated by 

[ ])/1()/1()/1()/1()ˆ( 1 dcbaVar +++=β . Where 
a,b,c,d are cell frequencies in the 22×  table of XY × . 
The distribution of the estimate of OR tends to be 
skewed to the right. Thus, confidence interval is 
usually based on 1β̂  which is closer to being normally 

distributed. 1β̂ ~ ))ˆ(,( 11 ββ VarN  The confidence 

interval for the odds ratio is { })ˆ(ˆexp 1211 ββ α SEZ −± . 
 
ii) Polytomous Independent Variable 
 
In this case, if the independent variable takes three 

or more levels, then, it is called polytomous 
independent variable. For example, nominal scale 
variable X is coded at 4 levels. Thus, (4-1) =3 design 
variables are created.  

 
iii) Continuous Independent Variable 
 
In this case, when there is an independent 

continuous variable in the model, the unit of this 
variable should be defined. Most often the value of “1” 
is not biologically very interesting. For example, 
increased risk for 1 additional year of age or mmHg in 
systolic blood pressure or mg/100 ml of cholesterol are 
not very interesting. But, A change of 10 years or 5 
mmHg or 25 mg/100 ml may be more meaningful. The 
log odds ratio for a change of c  units in X, odds ratio 
and variance of the variable are expressed respectively 
as follows:  

 

1)()( βcxgcxgx =−+= , 1),( βcexcxOR =+ , 

{ } )ˆ)),(ˆln( 1
2 βVarcxcxROVar =+                            (5.7) 

 
100% confidence interval is evaluated as:  
 

))ˆ(ˆexp())ˆ(ˆexp( 12111211 ββββ αα SEcZcORSEcZc −− +≤≤−   
                                 (5.8) 

 
6. MODEL BUILDING PROCEDURE 

 
If there are more variables included in the model, 

then estimates of standard errors become greater. 
While there are many independent variables in the 
model, model building and devoloping include more 
complex situations. For this reason, to select less 
variables is very important. There are different ways 
used for variable selection in logistic regression model. 
These are the univariate analysis and the multivariate 

analysis. Multivariate analysis consists on two 
methods. These are stepwise logistic regression 
methods (Forward Selection, Backward Elimination) 
and best subset logistic regression method. 

 
It is so clear that modeling is a useful process both 

for prediction of future observables and for describing 
the relationship between variables. Large models 
reproduce the data on which they were fitted better 
than smaller models. The saturated model provides a 
perfect fit of the data. However, smaller models have 
more powerful interpretations and are often better 
predictive tools than large models. Often, the main 
goal is to find the smallest model that fits the data 
(Cristensen, 1997). 

 
6.1 The Univariate Analysis 

 
The variable selection process begins with 

univariate analysis of each variable. If a cell contains 
no observation, this cell is called “the zero cell” and 
this situation should be paid extra attention. The zero 
cell yields a univariate point estimate for one of the 
odds ratios of either zero or infinity. The observations 
should be designed before making a univariate 
analysis.  

 
The variables are selected for the multivariate 

analysis after fitting the univariate analysis. Any 
variable whose univariate test has a p-value 25.0≤  is 
considered as candidate for the multivariate model 
along with all variables of known clinical importance. 
Otherwise, if any variable’s p-value is greater than 
0.25, then this variable is excluded from the model 
(Ryan and Thomas, 1997). Why is the p-value less 
than 0.25? If we set the threshold too low, we often fail 
to identify variable known to be important. If we set 
the threshold too high, then the model consists of 
variables that are of questionable importance.  

 
The importance of each variable included in the 

multivariate logistic regression model should be 
verified. Variables that do not contribute to the model 
are eliminated from the model and the new model is 
constructed. The new model are compared to the old 
model through the likelihood ratio test. Variables 
whose coefficients have changed markedly in 
magnitude are concerned. Thus, the value of these 
statistics may give us an indication of which variables 
in the model may or may not be significant. In this 
case, the likelihood ratio test (G) is used. Using this 
notation, the p-value associated with this test is 

05.0)( 2 <> GP νχ , thus there is a strong evidence that 
the investigated variable is a significant variable in 
predicting Y. This is the statistical evidence for this 
variable. 

 
The question of the appropriate categories for 

discrete variables should have been addressed at the 
univariate stage. The linearity in the logit for 
continuous scalled variables should has been checked. 
How will we do this check procedure? It is checked 
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with dummy (design) variable method. The stages of 
the dummy variable method are as follows: 1. Obtain 
the quartiles of the designed variable, 2. Create a 
categorical variable with 4 levels using the 3 quartile 
values as the cutt-off points, 3. Create 3 design 
variables with the lowest quartile serving as the 
reference group, 4. Fit the multiple logistic regression 
using the dummy variables, 5. Plot the odds ratio 
values of the estimated coefficients according to 
groups. If there is no linear relationship that can be 
increasing or decreasing between them, then dummy 
variable method is used. 

 
6.2 The Stepwise Logistic Regression Method 
 

Stepwise logistic regression is an extremely 
popular method for model building. Stepwise logistic 
regression is used when the outcome being studied is 
relatively new (AIDS, some cancer types…) and the 
important covariates may not be known and 
associations with the outcome not well understood. In 
these situations, most studies collect many possible 
covariates and determine them for significant 
associations. For this reason, stepwise procedures 
provide a useful, fast and effective means to determine 
a large number of variables and fit a number of logistic 
regression equations (Hosmer and Lemeshow, 1989). 

 
Stepwise procedures assume an initial model and 

then use rules for adding or delating terms to arrive at 
a final model (Cristensen, 1997). There are two 
procedures for model building in the stepwise logistic 
regression method. The forward selection process adds 
variables sequentially to the model until further 
additions do not improve the fit. At each stage, the 
variable giving the greatest improvement in the fit is 
selected. The maximum p-value for the final model is 
a sensible criterion. A stepwise variation of this 
procedure retests, at each stage, variables added at 
previous stages to see if they are still needed. The 
backward elimination process begins with a complex 
model and sequentially removes variables. At each 
stage, the variable with least damaging effect on the 
model is removed. The process stops when any further 
deletion leads to a significantly poorer-fitting model. 

 
In logistic regression the errors are assumed to 

follow a Binomial distribution, and significance is 
assessed with respect to the likelihood ratio (chi-
square) test. So, the variable that produces the greatest 
change in the log-likelihood at any step in the 
procedure will be most important variable in statistical 
terms. There are k-1 design variables for discrete 
variables with k levels. The importance of G depends 
on its degrees of freedom.  

 
For likelihood ratio (chi-square) test accepted α -

level such as 0.05 or 0.10 is chosen as the critical value 
for the entry of variables into the model. For this 
model building process, this cutoff value for the entry 
or removal of a variable can be increased to around 
0.20. This will help in avoiding possibly significant 
variables from being overlooked or removed 

unnecesssarily from the model. This method will be 
described by considering the statistical computations 
that the computer must perform at each step of the 
procedure (Vupa, 2004). Before starting a procedure, it 
is necessary to give some informations and 
abbreviations where possible. 

 

Ep : The probability value for enter to a model, 

Rp : The probability value for removal from a model, 
j   : The number of independent variables. 

pj ,,2,1 K=  
 
Step (0): 
 
1) Fit a model with intercept only and evaluate the 

value of its log-likelihood, 0L . 
2) Fit each of the p  possible univariate logistic 

regression models, denote the log-likelihood value by 
( )0
jL  for pj ,,2,1 K=  and compare their respective 

log-likelihoods. 
L  : Log-likelihood statistic, ( )0

jL  : The subscript 

j  refers to that variable which has been added to the 
model and the subscript 0  refers to the step. 

3) Evaluate the value of likelihood ratio statistic 
for the model containing jx  versus the intercept only, 
denote the likelihood ratio statistic by 

)(2 0
)0()0( LLG jj −=  and compute the p-value by 

)Pr( )0(2)0(
jj Gp >= νχ . 

G  : Likelihood ratio statistic, ( )0
jG : The 

subscript j  refers to that variable which has been 
added to the model and the subscript 0  refers to the 
step. 

a)ν =1 if jx  is continuous. 

b) 1−= kν  if jx  is a categorical variable with 

k  levels. 
4) Find the variable with smallest p-value, 

denote this variable by 
1e

x  and find minimum p -value 

by )min( )0()0(

1 je pp = . 

The subscript 1e  is used to denote that the variable 
is a candidate for entry at Step 1. For example, if 
variable 3x  had the smallest p-value, then 

)min( )0()0(
3 jpp =  and 1e =3. 

5) Determine whether this variable will enter or 
not into the model, compare )0(

jep  with a pre-specified 

significance level Ep . 

a)If Ee pp
j

<)0( , move on the next step. 

b) If Ee pp
j

≥)0( , stop the procedure. 

It is different from the hypothesis test where the 
pre-specified significance level is commonly selected 
as 0.05, 0.10 or 0.15.  
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Step (1) 
 
Fit the logistic regression model containing the 

variable 
1e

x , denote the log-likelihood of this model 

by ( )1

1e
L . 

1) Determine whether any of the remaining p-1 
variables are important once the variable 

1e
x  is in the 

model. Fit p-1 logistic regression models which 
contain only the 

1e
x  and one other variable jx , 

pj ,,2,1 K=  and 1ej ≠ . Denote the corresponding 

log-likelihood value by )1(
,1 jeL . Compute the likelihood 

ratio statistic by )(2 )0()1(
,

)1(

11 ejej LLG −=  and its 

corresponding p-value by )Pr( )1(2)1(
jj Gp >= νχ . 

2) Let 
2ex  corresponds )min( )1()1(

2 je pp = . 

a)If Ee pp <)1(

2
, grow the model by including 

2ex  

and move on the next step. 
b) Otherwise, stop the procedure. 

 
Step (2) 
 
Backward elimination and forward variable 

selection. 
1) Fit a model containing both 

1e
x and 

2ex .  

2) Remove variable 
jex  from the model just 

established in Step 2, 2,1=j  and denote the log-

likelihood value for the reduced model by )2(

jeL−  and 

evaluate the corresponding log-likelihood ratio statistic 
by )(2 )2()1(

,
)2(

21 jj eeee LLG −− −= . 

3) Calculate p -value by )Pr( )2(2)2(

jj ee Gp −− >= νχ  

and select the variable 
2r

x  with 

),max( )2()2()2(

212 eer ppp −−= . 

The subscript 2r  is used to denote that the variable 
is a candidate for removal at Step 2. For example, if 
variable 3x  had the largest p-value, then 

),max( )2()2()2(
3 21 ee ppp −−=  and 32 =r . 

4) For a pre-specified significance level Rp , if 

Rr pp >
2

, the variable 
2r

x  should be removed from 
the model against the situation that the variable just 
being added is possibly eliminated, ER pp >  should 
be selected. If excluding any variables once they have 
entered is not required, then 90.0=Rp  is chosen. 

5) Fit 2−p  logistic regression models containing 

21
, ee xx  and jx  for pj ,,2,1 K= , 21, eej ≠ . 
6) Evaluate the likelihood ratio statistic and its 

corresponding p-value by )(2 )1(
,

)2(
,,

)2(

2121 eejeej LLG −= , 

and )Pr( )2(2)2(
jj Gp >= νχ  for pj ,,2,1 K= , 

21,eej ≠ . 

7) Denote )min( )2()2(

3 je pp = .  

a)If Ee pp <)2(

3
, enter variable 

3ex  into the model.  

b) Otherwise, stop the procedure. 
 

Step (3) 
 
Continue the cycle backward elimination followed 

by forward selection identical to the procedure in Step 
2 until the last step. 

Step (F) 
 
There are possibly a few scenarios. 
a)All variables have entered the model. 
b) All variables in the model have p-values that 

are less than Rp  to remove, and the variables not 
included in the model have p-values that are larger 
than Ep  to enter. 

 
The variables at the Step F are only important 

relative to criterias of Ep  and Rp . The final model 
may or may not the best model. It depends on the 
researcher and the status of data. 

 
Disadvantege of this procedure is that the 

maximum likelihood estimates for the coefficients of 
all variables not in the model must be calculated at 
each step. For large data sets, this is quite costly both 
in terms of time and money (Hosmer and Lemeshow, 
1989). 

 
6.3 Goodness of Fit Test 

 
After fitting the logistic regression model, it is 

useful to test its effectiveness by using goodness of fit 
tests. Here, the null hypothesis is that the model of 
interest fits well. The observed values of the outcome 
variable in vector form is denoted as y  where 

),,,( 21
*

nyyyy K=  and the fitted values of the 
outcome variable in vector form as ŷ  where 

)ˆ,,ˆ,ˆ(ˆ 21
*

nyyyy K= . )ˆ( yyi −  is defined to be 
residual and its value must be small ),,2,1( ni K= .  

 
6.3.1 The Hosmer-Lemeshow Test 
 

The aim of the Hosmer-Lemeshow test is to make 
a group of the values of the estimated probabilities. 10 
groups are created )10( =g . The first group contains 

10*
1 nn =  subjects having the smallest estimated 

probabilities. The last group contains 10*
10 nn =  

subjects having the largest estimated probabilities. The 
each group’s *

kn  equals to 10n  )10,,2,1( K=k . For 
the 1=y  row, the estimates of the expected values are 
found by summing the estimated probabilities over all 
subjects in a group. For 0=y  row, the estimates of 
the expected values are found by subtracting from 1 
(1-the estimated probabilities over all subjects in a 
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group). The Hosmer-Lemeshow goodness of fit 
statistic is denoted by Ĉ  and it is evaluated as follows: 

 

∑
= −

−
=

g

k kkk

kkk

n

no
C

1
*

2*

)1(

)(ˆ
ππ

π
 where *

kn  is the number of 

covariate patterns in the kth group. ∑
=

=
*

1

kn

j
jk yo  where 

ko  is the number of responses among *
kn  covariate 

patterns. In addition, kπ  is the average estimated 

probability and it is calculated as ∑
=

=
*

1
*

ˆkn

j k

jj
k

n

m π
π . The 

distribution of the statistic Ĉ  is well approximated by 
the chi-square distribution with 2−g  degrees of 
freedom,  

 
7. APPLICATION 

 
This study contains 1200 patients and these data 

include the statement of the absence or presence of 
lung cancer. Response variable is observed into two 
categories. The number of patients who have lung 
cancer (Ca) is 600. The reference group is the control 
group (Co) that patients in this group do not have lung 
cancer. The data set was obtained from Ege University 
Faculty of Medicine Department of Chest Diseases in 
İzmir. There are seven independent variables. These 
are sex (SEX), education (EDU), age (AGE), years of 
smoking (YOS), age of initial smoking (AOIS), 
number of packages per year (NOPPY) and duration of 
giving up smoking (DOGUS), respectively. They are 
illustrated in Table 1 in Appendix. 

 
7.1 The Univariate Analysis 

 
The application of the logistic regression model is 

started with a univariate analysis of each variable by 
using SPSS. This analysis will be used for setting 
multivariate models after finding candidates with 
univariate analysis. The candidate variables with using 
these informations are decided easily. If the p-value of 
the variable is less than 0.25, then this variable is 
found to be significant. Otherwise, this variable is not 
significant and it is excluded from the model. This 
situation is not seen in these data. For this reason, all 
of the variables are found to be significant. This is 
shown in Table 2 in Appendix. 

 
Under the null hypothesis, the slope coefficients 

are zero. If we select the p-value as 0.10, then the 
variable SEX is excluded from the model. The 
multivariate logistic regression analysis will be done 
by using the variables found to be significant in the 
univariate case. The results of fitting this model are 
given in Table 3 in Appendix. 

 
On the basis of the output displayed in Table 3 in 

Appendix, it appears that all of the variables except for 
AOIS and DOGUS demonstrate considerable 

importance in the multivariate model. Here, p-values 
of both of them are greater than 0.05. These p-values 
are denoted by 0.177 and 0.524. For this reason, these 
variables should be investigated. If the Wald statistic 
values are greater than 2, then the variable is 
significant. Here, the Wald statistic values of both of 
them are less than 2. They are denoted by 1.822 and 
0.406. For this reason, they are not found significant. 
First of all, a first model which does not contain the 
variable AOIS is fitted and the secod model which 
does not contain the variable DOGUS is fitted. We can 
see that they are significant according to G statistic. 
The likelihood ratio test for the variable AOIS yields a 
value of [ ] 836.8142.1252978.1260 =−=G and the 
likelihood ratio test for the variable DOGUS yields a 
value of [ ] 343.30142.1252485.1282 =−=G . 
Comparing these values to a chi-square distribution 
with 3 degrees of freedom 
( 31619)( =−=− reducedfull νν ) yields a value of 7.81 

)81.7( 2
95.0,3 =χ . Here, these values are greater than 

7.81. For this reason they are found significant. 
 
After the model is complicated, the examination 

of the variable AGE that has been modeled as 
continuous to obtain the correct scale in the logit will 
be needed. To examine this situation, three design 
variables based on the quartiles of AGE are formed 
and they are replaced as variable AGE (continuous) in 
the model. If the variable AGE is as linear in the logit, 
then it is expected to show either a linear incresing or 
decreasing trend in the estimated coefficient. But, the 
statistical evidence of linearity for variable AGE is not 
obtained. For this reason, the statement that the 
variable AGE is not linear in the logit is supported. 
This variable is used as continuous.  

 
After these processes, the final model is accepted 

in Table 3 in Appendix. The logit function of this 
model is expressed as follows: 

 
4343424241413323232222212111110)(ˆ DDDxDDDDxg βββββββββ ++++++++=  

+
71716363626261615353525251514444 DDDDDDDD ββββββββ +++++++  

+ 73737272 DD ββ +  
 

41323222111 605.2060.0576.1660.1557.1892.1960.7)(ˆ DxDDDDxg ++++++−=   
             

535251444342 289.0437.0711.0857.1237.2054.3 DDDDDD ++++++  
             

737271636261 246.0059.1374.1524,1805.1907.1 DDDDDD +++−−−  
For example, we can calculate the probability of 

being Ca of any person with respect to his 
characteristic features. Some special features are 
shown as follows: SEX: woman, EDU: primary, AGE: 
50 years old, YOS: 25 years, AOIS: 25 years old, 
NOPPY: 35 packages, DOGUS: smoker. According to 
these features, logit function and logistic regression 
function are evaluated as follows: 

 
( )

504.1
1*374.11*805.11*289.01*054.3

50*060.01*660.1892.1960.7ˆ

=
+−++

+++−=xg
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82.0
))(ˆexp(1

))(ˆexp(
)(ˆ =

+
=

xg

xg
xπ  

 
If logistic regression function value is greater than 

0.50, then we conclude that patient is being lung 
cancer. 

 
According to odds ratio values, being a female has 

6.631 times more risk factor than being a male. 
Illiterates, people graduated from primary school and 
people graduated from secondary school have 
respectively 4.747 times, 5.258 times, 4.834 times 
more risk of being lung cancer with respect to 
reference group. For AGE variable, a one unit increase 
in age raises the probability of having lung cancer by 
0.06 or 6%. For YOS variable, one unit increase in 
year of smoking rises risk of having lung cancer with 
respect to non-smokers. But this rise is more until 30 
years of smoking (in categories 1 and 2) and less after 
30 years of smoking (in categories 3 and 4). For AOIS 
variable, an increase in age of initial smoking 
decreases the risk of having lung cancer. In other 
words, smokers, who are less than 11 age of initial 
smoking, in category 1 have more risk of having lung 
cancer with respect to smokers in category 2 and 3. 
This situation can be seen from decrease of odds ratio 
from 2.037 to 1.335. For NOPPY variable, it can not 
be determined that the increase in number of packages 
per year rises risk of having lung cancer with respect to 
non-smokers. This can be shown in odds ratio values 
of being very similar related to each other. For 
DOGUS variable, smokers have more risk of having 
lung cancer with respect to non-smokers.  

 
7.2 The Stepwise Analysis 

 
Most of the statistical software packages contain 

of the stepwise analysis method. In this study, SPSS 
statistical software will be used to build a model. Here, 
two sub-methods will be used. One of them is the 
forward selection and the other is the backward 
elimination. Finally, these two methods will be 

compared. Ep : The probability value for enter to a 
model, Rp : The probability value for removal from a 
model, j : The number of independent variables. 

pj ,,2,1 K= . 
 

7.2.1 The Forward Selection 
 
Forward selection procedure is applied to the data. 

The results of this process are explained in section 3.2. 
The program is run by using 15.0=Ep  and 

20.0=Rp . The final model is represented in Table 4 
in Appendix. The logit function of this model is 
expressed as follows: 

 
4343424241413323232222212111110)(ˆ DDDxDDDDxg βββββββββ ++++++++=  

+ 5353525251514444 DDDD ββββ +++  
 

41323222111 955.0039.0595.1663.1597.1852.1659.6)(ˆ DxDDDDxg ++++++−=  

             
535251444342 004.0710.0998.0686.2738.1028.1 DDDDDD ++++++  

 
For example, we can calculate the probability of 

being Ca of any person with respect to his 
characteristic features. Some special features are 
shown as follows: SEX: woman, EDU: primary, AGE: 
50 years old, NOPPY: 35 packages, DOGUS: smoker. 
According to these features, logit function and logistic 
regression function are evaluated as follows: 

 
49.21*998.01*686.250*039.01*663.11*852.1659.6)(ˆ =+++++−=xg  

92.0
))(ˆexp(1

))(ˆexp(
)(ˆ =

+
=

xg

xg
xπ  

 
The probability of having lung cancer is so high 

according to these features. Because 0.92 value is 
greater than 0.50 value. 

 
SEX is the important risk factor for patients with 

lung Ca. For SEX variable, being a female has 6.372 
times more risk factor than being a male. Illiterates, 
people graduated from primary school and people 
graduated from secondary school have respectively 
4.940 times, 5.383 times and 4.928 times more risk of 
having cancer with respect to reference group. For 
AGE variable, a one unit increase in age raises the 
probability of having lung cancer by 0.04 or 4%. For 
NOPPY variable, when the number of packages of 
cigarattes consumption per year increases, the risk of 
having lung cancer also increases with respect to non-
smokers. For DOGUS variable, smokers have more 
risk of having lung cancer. Smokers have 2.713 times 
more risk of having lung cancer with respect to non-
smokers.  

 
7.2.2 The Backward Elimination 

 
The result of the backward elimination method is 

the same as the univariate analysis.  
 

7.3 Goodness of Fit Test 
 
The values of the Hosmer-Lemeshow goodness of 

fit test statistic computed from the frequencies in 
Tables 5 and 6 in Appendix are 13.590 and 15.769 and 
the corresponding p-values computed from the chi-
square distribution with 8 degrees of freedom are 
0.093 and 0.046, respectively. These calculation are 
evaluated in below respectively. This indicates that the 
model obtained from forward selection method seems 
better than the model obtained from backward 
elimination method. Here, any computation is made to 
form risk group that contains 10 subjects. This 
computation is expressed as 120101200 = . But, the 
values in Tables are different from the value of 120. 
Because, predicted probability values for each subject 
is listed to ascending from descending order.  

 
For forward selection method; 
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590.13
865.19

)865.1930(

582.4

)582.45(ˆ
22

=−++−= LC , 

507.15590.13ˆ 2
05.0,8 =<= χC . 

The final model obtained from forward selection 
method fits data. 

 
For backward elimination method; 
 

769.15
380.17

)380.1728(

683.3

)683.35(ˆ
22

=−++−= LC , 

507.15769.15ˆ 2
05.0,8 =>= χC  

For this reason, the final model obtained from 
backward elimination method does not fit data. 

 
8. CONCLUSION 

 
There are many statistical approaches to predictive 

probability modeling. In this study, a logistic 
regression model was investigated. To find “best” 
model is very important. At the same time, this “best” 
model should explain the relationship between 
response and independent variables. This “best” model 
is found by using variable selection methods. 

 
To describe the application of logistic regression 

method, it was studied on clinical data to determine 
important risk factors of being lung cancer. Stepwise 
logistic regression method was applied to these data 
with this aim. Some results between forward selection 
method and backward elimination method varied. For 
example, being a female has more risk factor than 
being a male for every two methods. Their risk are 
almost the same. The value of 6.631 obtained from 
backward elimination method is greater than the value 
of 6.372 obtained from forward selection method. The 
risk of being lung cancer according to education status 
obtained from forward selection method is almost the 
same risk of being lung cancer according to education 
status obtained from backward elimination method. 
For AGE variable, a one unit increase in age raises the 
probability of being lung cancerby 0.06 or 6% in 
backward elimination method. This risk decreases to 
4% from 6% in forward selection method. In this 
phase, forward selection method can be better than 
backward elimination method. For NOPPY variable, 
when the number of packets of cigarettes consumption 
per year increases, there is no evidence the risk about 
being lung cancer in backward elimination method. 
But the risk of being lung cancer increases with respect 
to non-smokers in forward selection method. The 
values of odds ratio for backward elimination are 
denoted by 0.149, 0.164, 0.218. The values of odds 
ratio for forward selection are denoted by 2.598, 2.796, 
5.687 and 14.675. Here, forward selection method can 
be better than backward elimination method. In 
addition, the number of variables in backward 
elimination method are more than forward selection 
method. The logistic regression model obtained from 
forward selection method does not include YOS and 
AOIS variables. Duration of giving up smoking for 
patients is important. Giving up smoking early is more 

advantageous with respect to smokers. This situation is 
valid for every two methods. Forward selection 
method is better than backward elimination method 
with respect to goodness of fit tests.  

 
Finally, the final model of forward selection 

method is biologically acceptable, this model can be 
used for determining risk factors. For this reason, the 
model obtained from forward selection method is 
called “best” model. Nowadays, the differences 
between final model and best model are accepted by 
researchers. Model fitting is based on science, 
experimentations and statistical methods. They can not 
be separated from each other. 
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Appendix 
 

Table 1. Categorical Variable Coding 

  1 2 3 4 
Male (0) 0.000    

SEX 
Female (1) 1.000    

Illiterate(1) 1.000 0.000 0.000  

Primary (2) 0.000 1.000 0.000  
Secondary (3) 0.000 0.000 1.000  

EDU 

High+Unv. (0) 0.000 0.000 0.000  
Non-Smoker (0) 0.000 0.000 0.000 0.000 

<=20 (1) 1.000 0.000 0.000 0.000 
21-30 (2) 0.000 1.000 0.000 0.000 
31-40 (3) 0.000 0.000 1.000 0.000 

YOS 

>40 (4) 0.000 0.000 0.000 1.000 
Non-Smoker (0) 0.000 0.000 0.000 0.000 

<=10 (1) 1.000 0.000 0.000 0.000 
11-15 (2) 0.000 1.000 0.000 0.000 
16-19 (3) 0.000 0.000 1.000 0.000 

AOIS 

=>20 (4) 0.000 0.000 0.000 1.000 
Non-Smoker (0) 0.000 0.000 0.000 0.000 

01-10 (1) 1.000 0.000 0.000 0.000 
11-20 (2) 0.000 1.000 0.000 0.000 
21-30 (3) 0.000 0.000 1.000 0.000 

NOPPY 

>30 (4) 0.000 0.000 0.000 1.000 
Smoker (1) 1.000 0.000 0.000 0.000 
01-05 (2) 0.000 1.000 0.000 0.000 
06-11 (3) 0.000 0.000 1.000 0.000 
=>11 (4) 0.000 0.000 0.000 1.000 

DOGUS 

Non-Smoker (0) 0.000 0.000 0.000 0.000 
 

Table 2. Univariate Logistic Regression Models for Case to Have or Don’t Have Ca 

 Wald df p-value 
Exp

)ˆ(β  CI for  Exp )ˆ(β  G p-value 
Variable β̂  

 
   Lower Upper   

SEX (1) -0.334 .275 1.480 1 0.224 * 0.716 0.418 1.227 1.498 0.221  
EDU   37.420 3 0.000 * 8.958   53.819 0.000  
1 2.193 0.391 31.477 1 0.000 8.127 4.165 19.270   
2 2.095 0.384 29.746 1 0.001 4.448 3.828 17.256   
3 1.492 0.444 11.302 1 0.000 1.050 1.863 10.617   
AGE 0.049 0.006 59.434 1 0.000 * 1.050 1.037 1.063 65.135 0.000  
YOS   196.073 4 0.000 *    273.580 0.000  
1 0.789 0.357 4.879 1 0.027 2.201 1.093 4.432   
2 1.876 0.261 51.600 1 0.000 6.527 3.912 10.888   
3 2.657 0.250 112.588 1 0.000 14.258 8.727 23.293   
4 3.001 0.247 147.959 1 0.000 20.110 12.399 32.616   
AOIS   134.226 4 0.000 *    202.272 0.000  
1 3.043 0.300 103.108 1 0.000 20.978 11.658 37.748   
2 2.666 0.248 115.263 1 0.000 14.375 8.831 23.385   
3 2.405 0.267 81.264 1 0.000 11.081 6.568 18.693   
4 2.167 0.245 78.261 1 0.000 8.731 5.402 14.111   
NOPPY   231.148 4 0.000 *    312.626 0.000  
1 0.914 0.408 5.016 1 0.025 2.495 1.121 5.552   
2 0.890 0.347 6.588 1 0.010 2.436 1.234 4.808   
3 1.780 0.266 44.721 1 0.000 5.928 3.519 9.987   
4 2.989 0.236 160.060 1 0.000 19.861 12.500 31.556   
DOGUS   138.993 4 0.000 *    206.137 0.000  
1 2.635 0.234 126.814 1 0.000 13.943 8.814 22.056   
2 2.499 0.286 76.389 1 0.000 12.176 6.951 21.326   
3 1.951 0.346 31.895 1 0.000 7.038 3.576 13.853   
4 1.689 0.300 92.992 1 0.000 5.414 3.009 9.740   
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Table 3. Multivariate Model Containing Variables Identified in the Univariate Analysis 

CI forExp )ˆ(β  Variable β̂  SE Wald df p-value Exp )ˆ(β  
Lower Upper 

G p-
value 

SEX(1) 1.892 0.407 21.568 1 0.000 6.631 2.984 14.735 411.411 0.000  
EDU   15.255 3 0.002      
1 1.557 0.439 12.566 1 0.000 4.747 2.006 11.230   
2 1.660 0.426 15.194 1 0.000 5.258 2.282 12.112   
3 1.576 0.500 9.926 1 0.000 4.834 1.814 12.882   
AGE 0.060 0.11 29.223 1 0.000 1.062 1.039 1.086   
YOS    4 0.000      
1 2.605 0.567 21.071 1 0.000 13.527 4.448 41.132   
2 3.054 0.471 41.979 1 0.000 21.203 8.417 53.413   
3 2.237 0.421 28.232 1 0.000 9.367 4.104 21.378   
4 1.857 0.465 15.918 1 0.000 6.402 2.572 15.939   
AOIS   8.755 3 0.033      
1 0.711 0.272 6.864 1 0.009 2.037 1.196 3.469   
2 0.437 0.187 5.464 1 0.019 1.549 1.073 2.235   
3 0.289 0.214 1.822 * 1 0.177 * 1.335 0.877 2.032   
NOPPY   39.350 3 0.000      
1 -1.907 0.492 15.028 1 0.000 0.149 0.057 0.390   
2 -1.805 0.366 24.382 1 0.000 0.164 0.080 0.337   
3 -1.524 0.301 25.609 1 0.000 0.218 0.121 0.393   
DOGUS   29.468 3 0.000      
1 1.374 0.293 21.918 1 0.000 3.949 2.222 7.019   
2 1.059 0.331 10.273 1 0.000 2.884 1.509 5.513   
3 0.246 0.386 0.406 * 1 0.524 * 1.279 0.600 2.723   
Constant -7.960 0.853 87.070 1 0.000 0.000     
-2LL=1252.142 

 
 
 

 
 

Table 4. Variables in the Model (Constant, NOPPY, SEX, EDU, AGE, DOGUS) 

CI for Exp )ˆ(β  Variables β̂  S.E. Wald df p-value Exp )ˆ(β  
Lower Upper 

SEX (1) 1.852 0.405 20.903 1 0.000 6.372 2.881 14.095 
EDU   15.814 3 0.001    
1 1.597 0.436 13.429 1 0.000 4.940 2.102 11.607 
2 1.663 0.423 15.801 1 0.000 5.383 2.347 12.344 
3 1.595 0.499 10.228 1 0.001 4.928 1.854 13.098 
AGE 0.039 0.039 21.177 1 0.000 1.040 1.023 1.058 
NOPPY   83.099 4 0.000    
1 0.955 0.489 3.808 1 0.051 2.598 0.996 6.776 
2 1.028 0.459 5.009 1 0.025 2.796 1.136 6.878 
3 1.738 0.397 19.127 1 0.000 5.687 2.610 12.392 
4 2.686 0.392 47.056 1 0.000 14.675 6.812 31.614 
DOGUS   22.771 3 0.000    
1 0.998 0.255 15.271 1 0.000 2.713 1.644 4.474 
2 0.710 0.305 5.438 1 0.020 2.034 1.120 3.695 
3 0.004 0.372 0.000 1 0.992 1.004 0.484 2.081 
Constant -6.659 0.715 86.624 1 0.000 0.001   
-2LL= 1268.458 
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Table 5.Observed and Estimated Expected   
Frequencies (Forward Selection) 

Y  1 2 3 4 5 6 7 8 9 10 
T
ot
al 

O
bs 5 11 32 46 69 76 83 10

1 96 81 
Y
=1 E

xp 
4.5
82 

13.
405 

32.
44
5 

47.
02
7 

63.
93
5 

77.
60
6 

86.
56
2 

90.
11
8 

93.
19
5 

91.
13
5 

60
0 

O
bs 115 109 88 75 51 44 41 22 25 30 

Y
=0 E

xp 

115
.41

8 

106
.59

7 

87.
55
5 

73.
97
3 

56.
06
5 

42.
39
4 

37.
43
8 

32.
88
2 

27.
80
5 

19.
86
5 

60
0 

Total 120 120 12
0 

12
1 

12
0 

12
0 

12
4 

12
3 

12
1 

11
1 

12
00 

 
 

Table 6. Observed and Estimated Expected Frequencies (Backward Elimination) 

Y  1 2 3 4 5 6 7 8 9 10 Total 
Obs 5 9 33 47 62 75 87 96 100 86 Y=1 Exp 3.683 13.282 31.712 47.370 64.467 78.636 82.614 88.191 93.437 96.620 600 

Obs 115 111 87 75 58 47 33 25 21 28 Y=0 
Exp 116.317 106.718 88.288 74.630 55.533 43.364 37.386 32.809 27.563 17.380 

600 

Total 120 120 120 122 120 122 120 121 121 114 1200 
 


