Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYılmazel, Burcu
dc.contributor.authorBilge, Alper
dc.contributor.authorKaleli, Cihan
dc.date.accessioned2019-10-19T11:17:29Z
dc.date.available2019-10-19T11:17:29Z
dc.date.issued2019
dc.identifier.issn2169-3536
dc.identifier.urihttps://dx.doi.org/10.1109/ACCESS.2019.2902042
dc.identifier.urihttps://hdl.handle.net/11421/11704
dc.descriptionWOS: 000461869900001en_US
dc.description.abstractDue to the mutual advantage of small-scale online service providers, they need to collaborate to deliver recommendations based on arbitrarily distributed preference data without jeopardizing their confidentiality. Besides privacy issues, parties also have concerns regarding the vulnerability against recommendation manipulation attempts, referred to as shilling attacks. Although there are methods for detecting these injected malicious profiles in central server-based configurations, they are not readily suitable for employing arbitrarily distributed data. In this paper, we present a novel classification-based shilling attack detection protocol enabling the recognition of malicious profiles in arbitrarily distributed configurations without compromising the privacy of collaborating parties. The analysis of the proposed protocol regarding confidentiality of parties reveals that the process is bound to collaboration by design, which does not allow parties to achieve detection by themselves. Furthermore, empirical evaluations using real-world preference data demonstrate that the protocol can achieve significantly high detection rates facilitating privacy-aware data collaboration.en_US
dc.description.sponsorshipAnadolu University [1403F069]en_US
dc.description.sponsorshipThis work was supported by the Anadolu University under Grant 1403F069.en_US
dc.language.isoengen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers Incen_US
dc.relation.isversionof10.1109/ACCESS.2019.2902042en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCollaborative Filteringen_US
dc.subjectRobustnessen_US
dc.subjectShillingen_US
dc.subjectDetectionen_US
dc.subjectArbitraryen_US
dc.subjectPartitioned Dataen_US
dc.subjectPrivacyen_US
dc.titlePrivacy-Aware Detection of Shilling Profiles on Arbitrarily Distributed Recommender Systemsen_US
dc.typearticleen_US
dc.relation.journalIEEE Accessen_US
dc.contributor.departmentAnadolu Üniversitesi, Bilgisayar Araştırma ve Uygulama Merkezien_US
dc.identifier.volume7en_US
dc.identifier.startpage28863en_US
dc.identifier.endpage28885en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBilge, Alper
dc.contributor.institutionauthorKaleli, Cihan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster