Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYargic, Alper
dc.contributor.authorBilge, Alper
dc.date.accessioned2019-10-19T11:17:29Z
dc.date.available2019-10-19T11:17:29Z
dc.date.issued2019
dc.identifier.issn0306-4573
dc.identifier.issn1873-5371
dc.identifier.urihttps://dx.doi.org/10.1016/j.ipm.2019.02.009
dc.identifier.urihttps://hdl.handle.net/11421/11705
dc.descriptionWOS: 000463126500037en_US
dc.description.abstractPrivacy-preserving collaborative filtering schemes focus on eliminating the privacy threats inherent in single preference values, and the privacy risks in the multi-criteria preference domain are disregarded. In this work, we introduce randomized perturbation-based privacy-preserving approaches for multi-criteria collaborative filtering systems. Initially, the privacy protection methods efficiently used in traditional single-criterion systems are adapted onto multi-criteria ratings. However, these systems require intelligent protection mechanisms that are flexible and adapting to the structure of each sub-criterion. To achieve such a goal, we introduce a novel privacy-preserving protocol by adapting an entropy-based randomness determination procedure that can recover accuracy losses. The proposed protocol adjusts privacy-controlling parameters concerning the information inherent in each criterion. We experimentally evaluate the proposed schemes on three subsets of Yahoo!Movies multi-criteria preference dataset to demonstrate the effects of the proposed privacy-preserving schemes on both user privacy levels and prediction accuracy for differing sparsity rates. According to the obtained experimental outcomes, the proposed entropy-based privacy-preserving scheme can produce significantly more accurate predictions while maintaining an identical level of privacy provided by the traditional privacy protection scenario. The experimental results also confirm that the novel entropy-based privacy-preserving scheme maintains the confidentiality of personal preferences without severely compromising prediction accuracy.en_US
dc.description.sponsorshipScientific and Technical Research Council of Turkey (TUBITAK) [215E335]en_US
dc.description.sponsorshipThis work was supported in part by the Scientific and Technical Research Council of Turkey (TUBITAK) under grant number 215E335.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci LTDen_US
dc.relation.isversionof10.1016/j.ipm.2019.02.009en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCollaborative Filteringen_US
dc.subjectEntropyen_US
dc.subjectMulti-Criteriaen_US
dc.subjectRecommender Systemsen_US
dc.subjectPrivacyen_US
dc.titlePrivacy-preserving multi-criteria collaborative filteringen_US
dc.typearticleen_US
dc.relation.journalInformation Processing & Managementen_US
dc.contributor.departmentAnadolu Üniversitesi, Bilgisayar Araştırma ve Uygulama Merkezien_US
dc.identifier.volume56en_US
dc.identifier.issue3en_US
dc.identifier.startpage994en_US
dc.identifier.endpage1009en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorBilge, Alper


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster