Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKızılören, Tevfik
dc.contributor.authorGermen, Emin
dc.date.accessioned2019-10-19T11:17:29Z
dc.date.available2019-10-19T11:17:29Z
dc.date.issued2007
dc.identifier.isbn1424413648 -- 9781424413645
dc.identifier.urihttps://dx.doi.org/10.1109/ISCIS.2007.4456852
dc.identifier.urihttps://hdl.handle.net/11421/11708
dc.descriptionMiddle East Technical University;The Scientific and Technological Research Council of Turkey;IEEE, Turkey Sectionen_US
dc.description22nd International Symposium on Computer and Information Sciences, ISCIS 2007 -- 7 November 2007 through 9 November 2007 -- Ankara -- 72942en_US
dc.description.abstractAnomaly detection in network traffic is one of the most challenging topics in the study of computer science and networking. This paper introduces a classification method for analyzing network traffic behavior. In order to distinguish the normal traffic with well-known anomalies such as port scanning and DOS attacks, Self Organizing Maps (SOMs), one of the well-known artificial neural network architecture, is used. The measurement of traffic is performed by using Simple Network Management Protocol (SNMP). In this work, it is proposed a SOM-based classifier to discriminate three types of network traffic as port scanning, heavy-download and the rests. It is worth to mention that impressively satisfactory results have been obtained. The method has also been enhanced to obtain better results by trying to find trajectories on the map with sliding the input vectors in time and developed an alarm mechanism. Here it is possible to detect whether consecutive trajectories are hit by one of the classes or not. The success rate of the system is approximate to certainen_US
dc.language.isoengen_US
dc.relation.isversionof10.1109/ISCIS.2007.4456852en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnomaly Detectionen_US
dc.subjectClassificationen_US
dc.subjectComponenten_US
dc.subjectNetwork Trafficen_US
dc.subjectIntrusion Detectionen_US
dc.subjectNeural Networksen_US
dc.subjectSelf Organizing Mapsen_US
dc.subjectSnmpen_US
dc.subjectSomen_US
dc.titleNetwork traffic classification with self organizing mapsen_US
dc.typeconferenceObjecten_US
dc.relation.journal22nd International Symposium on Computer and Information Sciences, ISCIS 2007 - Proceedingsen_US
dc.contributor.departmentAnadolu Üniversitesi, Bilgisayar Araştırma ve Uygulama Merkezien_US
dc.identifier.startpage147en_US
dc.identifier.endpage151en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorGermen, Emin


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster