Integrable G_{2} Structures on 7-dimensional 3-Sasakian Manifolds

Nülifer ÖZDEMİR ${ }^{* 1}$, Şirin AKTAY ${ }^{1}$
${ }^{1}$ Anadolu Üniversitesi, Fen Fakültesi, Matematik Bölümü, 26470, Eskişehir

(Alınış / Received: 14.10.2016, Kabul / Accepted: 30.01.2017, Online Yayınlanma / Published Online: 18.02.2017)

Keywords

G_{2} group,
G_{2} structure,
3-Sasakian structure

Abstract

It is known that there exist canonical and nearly parallel G_{2} structures on 7-dimensional 3-Sasakian manifolds. In this paper, we investigate the existence of G_{2} structures which are neither canonical nor nearly parallel. We obtain eight new G_{2} structures on 7-dimensional 3-Sasakian manifolds which are of general type according to the classification of G_{2} structures by Fernandez and Gray. Then by deforming the metric determined by the G_{2} structure, we give integrable G_{2} structures. On a manifold with integrable G_{2} structure, there exists a uniquely determined metric covariant derivative with anti-symetric torsion. We write torsion tensors corresponding to metric covariant derivatives with skew-symmetric torsion. In addition, we investigate some properties of torsion tensors.

7 Boyutlu 3-Sasaki Manifoldları Üzerinde İntegrallenebilir G_{2} Yapılar

Anahtar Kelimeler

G_{2} grubu,
G_{2} yapı,
3-Sasaki yapı

Abstract

Özet: 7-boyutlu 3-Sasaki manifoldlar üzerinde kanonik ve hemen-hemen paralel G_{2} yapıların varlığı bilinmektedir. Bu çalışmada kanonik veya hemen-hemen paralel olmayan G_{2} yapıların varlığı incelenmiştir. 7-boyutlu 3- Sasaki manifoldları üzerinde, Fernandez ve Gray'in G_{2} yapı sınıflandırmasına göre en geniş sınıfta yer alan sekiz tane yeni G_{2} yapı elde edilmiştir. Daha sonra ise, elde edilen G_{2} yapıların ürettikleri metrikler deforme edilerek, integrallenebilir G_{2} yapılar bulunmuştur. İntegrallenebilir G_{2} yapısına sahip bir manifold üzerinde torsiyonu anti-simetrik olan tek türlü belirli bir metrik kovaryant türev vardır. Her bir integrallenebilir G_{2} yapı için, bu kovaryant türevin torsiyonu yazılmış ve buna ek olarak, torsiyonun bazı özellikleri incelenmiştir.

1. Introduction

Let $\left\{e_{1}, \ldots, e_{7}\right\}$ be the standard basis of the real vector space \mathbb{R}^{7} with dual basis $\left\{e^{1}, \ldots, e^{7}\right\}$. Consider the 3 -form

$$
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$. φ_{0} is called the fundamental 3 -form on \mathbb{R}^{7}. The group G_{2} is defined as

$$
G_{2}:=\left\{f \in G L(7, \mathbb{R}) \mid f^{*} \varphi_{0}=\varphi_{0}\right\}
$$

and is a compact, simple and simply connected 14dimensional Lie subgroup of $G L(7, \mathbb{R})$ [1].
A 7-dimensional smooth manifold M is called a manifold with G_{2} structure if there exists a 3-form φ on M which can be locally written as φ_{0}. The 3-form φ determines a Riemannian metric g, a volume form $d_{v o l}$ and a 2 -fold vector cross product P on M by

$$
\begin{gather*}
(x\lrcorner \varphi) \wedge(y\lrcorner \varphi) \wedge \varphi=6 g(x, y) d_{v o l} \tag{1}\\
\varphi(x, y, z)=g(P(x, y), z) \tag{2}
\end{gather*}
$$

for any $x, y, z \in \Gamma(T M)[1]$.

Let (M, g) be a manifold with G_{2} structure φ. Fernández and Gray showed in [2] that for all $m \in M$, the Levi-Civita covariant derivative $\nabla \varphi$ is in the space

$$
\begin{aligned}
& W=\left\{\alpha \in T_{m} M^{*} \otimes \Lambda^{3}\left(T_{m} M\right)^{*} \quad \mid \quad \alpha(u, x, y, P(x, y))=0,\right. \\
&\left.\forall u, x, y, z \in T_{m} M\right\} .
\end{aligned}
$$

This space is written as a direct sum of four G_{2}-irreducible subspaces W_{1}, W_{2}, W_{3} and W_{4} with corresponding dimensions $1,14,27$ and 7 as

$$
W=W_{1} \oplus W_{2} \oplus W_{3} \oplus W_{4} .
$$

A manifold with G_{2} structure is said to be of type $\mathscr{P}, \mathscr{W}_{i}$, $\mathscr{W}_{i} \oplus \mathscr{W}_{j}, \mathscr{W}_{i} \oplus \mathscr{W}_{j} \oplus \mathscr{W}_{k}$ or \mathscr{W}, if $\nabla \varphi$ is in $\{0\}, W_{i}, W_{i} \oplus W_{j}$, $W_{i} \oplus W_{j} \oplus W_{k}$ or W, respectively, for $i, j, k=1,2,3,4$. The defining relations of all 16 classes are given by Fernández and Gray [2] and an equivalent characterization is done by Cabrera using $d \varphi$ and $d * \varphi$ in [3]. This characterization is illustrated in the following table.
Let (M, g) be a Riemannian manifold with Levi-Civita covariant derivative ∇ of $g .(M, g)$ is called Sasakian if there exists a Killing vector field ξ of unit length on M so

\mathscr{P}	$d \varphi=0$ and $d * \varphi=0$
\mathscr{W}_{1}	$d \varphi=k * \varphi$ and $d * \varphi=0$
\mathscr{W}_{2}	$d \varphi=0$
\mathscr{W}_{3}	$d * \varphi=0$ and $d \varphi \wedge \varphi=0$
\mathscr{W}_{4}	$d \varphi=\alpha \wedge \varphi$ and $d * \varphi=\beta \wedge * \varphi$
$\mathscr{W}_{1} \oplus \mathscr{W}_{2}$	$d \varphi=k * \varphi$ and $* d * \varphi \wedge * \varphi=0$
$\mathscr{W}_{1} \oplus \mathscr{W}_{3}$	$d * \varphi=0$
$\mathscr{W}_{2} \oplus \mathscr{W}_{3}$	$d \varphi \wedge \varphi=0$ and $* d \varphi \wedge \varphi=0$
$\mathscr{W}_{1} \oplus \mathscr{W}_{4}$	$d \varphi=\alpha \wedge \varphi+f * \varphi$ and $d * \varphi=\beta \wedge * \varphi$
$\mathscr{W}_{2} \oplus \mathscr{W}_{4}$	$d \varphi=\alpha \wedge \varphi$
$\mathscr{W}_{3} \oplus \mathscr{W}_{4}$	$d \varphi \wedge \varphi=0$ and $d * \varphi=\beta \wedge * \varphi$
$\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \mathscr{W}_{3}$	$* d \varphi \wedge \varphi=0$ or $* d * \varphi \wedge * \varphi=0$
$\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \mathscr{W}_{4}$	$d \varphi=\alpha \wedge \varphi+f * \varphi$
$\mathscr{W}_{1} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$	$d * \varphi=\beta \wedge * \varphi$
$\mathscr{W}_{2} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$	$d \varphi \wedge \varphi=0$
\mathscr{W}^{2}	$\operatorname{no~relation~}$

Table 1. Defining relations for classes of G_{2} structures
that the tensor field Φ of type (1,1), defined by $\Phi(x)=\nabla_{x} \xi$, satisfies the condition

$$
\left(\nabla_{x} \Phi\right)(y)=g(\xi, y) x-g(x, y) \xi
$$

for all $x, y \in \Gamma(T M)$. The triple (ξ, η, Φ), where η is the metric dual of ξ, is said to be a Sasakian structure on (M, g) [4].
(M, g) is called 3-Sasakian if there exist three Sasakian structures $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$ on (M, g) with properties

$$
g\left(\xi_{i}, \xi_{j}\right)=\delta_{i j}
$$

for $i, j=1,2,3$ and

$$
\left[\xi_{1}, \xi_{2}\right]=2 \xi_{3},\left[\xi_{2}, \xi_{3}\right]=2 \xi_{1},\left[\xi_{3}, \xi_{1}\right]=2 \xi_{2}
$$

$\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$ is called a 3-Sasakian structure on (M, g) [4].
It is known that the vertical subbundle $T^{v} \subset T M$ is spanned by $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. The subbundle T^{v} and its complement, the horizontal subbundle T^{h}, are both invariant under Φ_{1}, Φ_{2}, Φ_{3} [5].
Let (M, g) be a 7-dimensional, compact, simply-connected 3-Sasakian manifold with Sasakian structure $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)$ for $i \in\{1,2,3\}$. Then there exists a local orthonormal frame $\left\{e_{1}, \cdots, e_{7}\right\}$ such that $e_{1}=\xi_{1}, e_{2}=\xi_{2}, e_{3}=\xi_{3}$ and Φ_{i} act on $T^{h}:=\operatorname{span}\left\{e_{4}, \cdots, e_{7}\right\}$ by matrices given in [5]. Denote the corresponding co-frame by $\left\{\eta_{1}, \cdots, \eta_{7}\right\}$. The differentials of 1-forms η_{1}, η_{2} and η_{3} are computed in [5] according to this frame.
A 7-dimensional 3-Sasakian manifold admits three nearly parallel (of type \mathscr{W}_{1}) G_{2} structures $\varphi_{i}, i=1,2,3$, given in [5, 6].
Consider also the 3-form φ defined globally on M by

$$
\varphi:=F_{1}+F_{2},
$$

where

$$
F_{1}:=\eta_{1} \wedge \eta_{2} \wedge \eta_{3}
$$

$F_{2}:=\frac{1}{2}\left(\eta_{1} \wedge d \eta_{1}+\eta_{2} \wedge d \eta_{2}+\eta_{3} \wedge d \eta_{3}\right)+3 \eta_{1} \wedge \eta_{2} \wedge \eta_{3}$.
It is proved in [5] that φ gives a G_{2} structure on M of type $\mathscr{W}_{1} \oplus \mathscr{W}_{3}$ such that $d * \varphi=0$ and $d \varphi=12 * F_{1}+4 * F_{2}$. This
is called the canonical G_{2} structure of the 7-dimensional 3-Sasakian manifold.
The canonical G_{2} structure φ is deformed in $[5,6]$ to get a nearly parallel G_{2} structure in the following way:
Let $s>0$ and consider the Riemannian metric g^{s} defined by

$$
g^{s}(x, y):=\left\{\begin{array}{lr}
g(x, y) & \text { if } x(\text { or } y) \in T^{h} \\
s^{2} g(x, y) & \text { if } x \text { and } y \in T^{v}
\end{array}\right.
$$

The set $\left\{\xi_{1} / s, \xi_{2} / s, \xi_{3} / s, e_{4}, e_{5}, e_{6}, e_{7}\right\} \quad$ is a $\quad g^{s}$ orthonormal frame and the corresponding co-frame is $\left\{s \eta_{1}, s \eta_{2}, s \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}, \eta_{7}\right\}$.
Define the 3 -form

$$
\varphi^{s}:=F_{1}^{s}+F_{2}^{s},
$$

where

$$
F_{1}^{s}:=s^{3} F_{1}, \quad F_{2}^{s}:=s F_{2}
$$

It is shown in $[5,6]$ that the 3 -form φ^{s} gives a G_{2} structure on $\left(M, g^{s}\right)$ and this structure is nearly parallel iff $s=1 / \sqrt{5}$.

2. Canonical and Nearly Parallel G_{2} Structures

Let (M, g) be a 7-dimensional 3-Sasakian manifold with the 3 -Sasakian structure $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$. Consider the 3-form

$$
\begin{align*}
\omega= & a \eta_{1} \wedge d \eta_{1}+b \eta_{2} \wedge d \eta_{2}+c \eta_{3} \wedge d \eta_{3} \tag{3}\\
& +f \eta_{1} \wedge \eta_{2} \wedge \eta_{3}
\end{align*}
$$

where a, b, c, f are arbitrary constants. This 3-form gives a G_{2} structure on M iff the equation (1) holds. Choose the orthonormal frame given in [5]. Then following relations are obtained among coefficients of the 3-form (3):

$$
\begin{aligned}
a^{2}(-2(a+b+c)+f) & =\frac{1}{4} \\
b^{2}(-2(a+b+c)+f) & =\frac{1}{4} \\
c^{2}(-2(a+b+c)+f) & =\frac{1}{4} \\
a b c & =\frac{1}{8} .
\end{aligned}
$$

Solutions of the system above are

1. $a=1 / 2, b=1 / 2, c=1 / 2, f=4$,
2. $a=1 / 2, b=-1 / 2, c=-1 / 2, f=0$,
3. $a=-1 / 2, b=1 / 2, c=-1 / 2, f=0$,
4. $a=-1 / 2, b=-1 / 2, c=1 / 2, f=0$.

Hence we express the fundamental 3-forms on M corresponding to the same metric g :

$$
\begin{gathered}
\omega_{1}=\frac{1}{2} \eta_{1} \wedge d \eta_{1}+\frac{1}{2} \eta_{2} \wedge d \eta_{2}+\frac{1}{2} \eta_{3} \wedge d \eta_{3}+4 \eta_{1} \wedge \eta_{2} \wedge \eta_{3}, \\
\omega_{2}=\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3}, \\
\omega_{3}=-\frac{1}{2} \eta_{1} \wedge d \eta_{1}+\frac{1}{2} \eta_{2} \wedge d \eta_{2}-\frac{1}{2} \eta_{3} \wedge d \eta_{3},
\end{gathered}
$$

$$
\omega_{4}=-\frac{1}{2} \eta_{1} \wedge d \eta_{1}-\frac{1}{2} \eta_{2} \wedge d \eta_{2}+\frac{1}{2} \eta_{3} \wedge d \eta_{3} .
$$

The 3-form ω_{1} is called the canonical G_{2} structure on M and is cocalibrated [5] (i.e. of type $\mathscr{W}_{1} \oplus \mathscr{W}_{3}$, [2]). Other 3 -forms are nearly parallel (i.e. of type \mathscr{W}_{1}) and are constructed in [5]. To sum up, there is no G_{2} structure on M of the form (3) except the ones constructed in [5].

3. New G_{2} Structures

Consider a 7-dimensional 3-Sasakian manifold (M, g) whose 3-Sasakian structure is $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$. Take the linear combination

$$
\begin{aligned}
\varphi= & a d \eta_{1} \wedge \eta_{2}+b \eta_{1} \wedge d \eta_{2}+c d \eta_{1} \wedge \eta_{3} \\
& +d \eta_{1} \wedge d \eta_{3}+e d \eta_{2} \wedge \eta_{3}+f \eta_{2} \wedge d \eta_{3}+h \eta_{123}
\end{aligned}
$$

for $a, b, c, d, e, f, h \in \mathbb{R}$. To get a G_{2} structure on M, equations below should be satisfied:

$$
\begin{aligned}
h\left(b^{2}+d^{2}\right) & =\frac{1}{4} \\
h\left(a^{2}+f^{2}\right) & =\frac{1}{4} \\
h\left(c^{2}+e^{2}\right) & =\frac{1}{4} \\
d f h & =0 \\
b e h & =0 \\
a c h & =0 \\
a d e+b c f & =\frac{1}{8}
\end{aligned}
$$

Following G_{2} structures are obtained:

1. $a=d=e=0, h=1$
(a) $b=1 / 2, c=1 / 2, f=1 / 2$,
$\varphi_{1}=\frac{1}{2} \eta_{1} \wedge d \eta_{2}+\frac{1}{2} d \eta_{1} \wedge \eta_{3}+\frac{1}{2} \eta_{2} \wedge d \eta_{3}+$ η_{123}
(b) $b=-1 / 2, c=-1 / 2, f=1 / 2$,
$\varphi_{2}=-\frac{1}{2} \eta_{1} \wedge d \eta_{2}-\frac{1}{2} d \eta_{1} \wedge \eta_{3}+\frac{1}{2} \eta_{2} \wedge d \eta_{3}+$ η_{123}
(c) $b=-1 / 2, c=1 / 2, f=-1 / 2$,
$b=-1 / 2, c=1 / 2, f=-1 / 2$,
$\varphi_{3}=-\frac{1}{2} \eta_{1} \wedge d \eta_{2}+\frac{1}{2} d \eta_{1} \wedge \eta_{3}-\frac{1}{2} \eta_{2} \wedge d \eta_{3}+$ η_{123}
(d) $b=1 / 2, c=-1 / 2, f=-1 / 2$,
$\varphi_{4}=\frac{1}{2} \eta_{1} \wedge d \eta_{2}-\frac{1}{2} d \eta_{1} \wedge \eta_{3}-\frac{1}{2} \eta_{2} \wedge d \eta_{3}+$ η_{123}
2. $b=c=f=0, h=1$
(a) $a=1 / 2, d=1 / 2, e=1 / 2$,
$\varphi_{5}=\frac{1}{2} d \eta_{1} \wedge \eta_{2}+\frac{1}{2} \eta_{1} \wedge d \eta_{3}+\frac{1}{2} d \eta_{2} \wedge \eta_{3}+$ η_{123}
(b) $a=-1 / 2, d=-1 / 2, e=1 / 2$,
$\varphi_{6}=-\frac{1}{2} d \eta_{1} \wedge \eta_{2}-\frac{1}{2} \eta_{1} \wedge d \eta_{3}+\frac{1}{2} d \eta_{2} \wedge \eta_{3}+$
η_{123}
(c) $a=-1 / 2, d=1 / 2, e=-1 / 2$,
$\varphi_{7}=-\frac{1}{2} d \eta_{1} \wedge \eta_{2}+\frac{1}{2} \eta_{1} \wedge d \eta_{3}-\frac{1}{2} d \eta_{2} \wedge \eta_{3}+$ η_{123}
(d) $a=1 / 2, d=-1 / 2, e=-1 / 2$,
$\varphi_{8}=\frac{1}{2} d \eta_{1} \wedge \eta_{2}-\frac{1}{2} \eta_{1} \wedge d \eta_{3}-\frac{1}{2} d \eta_{2} \wedge \eta_{3}+$ η_{123}.
Now we determine the class of G_{2} structures $\varphi_{i}, i=$ $1, \ldots, 8$.

Theorem 3.1. The eight G_{2} structures φ_{i}, obtained above, are of type \mathscr{W}.

Proof. We write the proof for φ_{1} in details and computations for other G_{2} structures are similar.
The exterior derivative $d \varphi_{1}$ of the 3-form

$$
\varphi_{1}=\frac{1}{2} \eta_{1} \wedge d \eta_{2}+\frac{1}{2} d \eta_{1} \wedge \eta_{3}+\frac{1}{2} \eta_{2} \wedge d \eta_{3}+\eta_{123}
$$

is

$$
\begin{aligned}
d \varphi_{1}= & \frac{1}{2} d \eta_{1} \wedge d \eta_{2}+\frac{1}{2} d \eta_{1} \wedge d \eta_{3}+\frac{1}{2} d \eta_{2} \wedge d \eta_{3} \\
& +d \eta_{1} \wedge \eta_{23}-\eta_{13} \wedge d \eta_{2}+\eta_{12} \wedge d \eta_{3}
\end{aligned}
$$

In local coordinates,

$$
\begin{aligned}
d \varphi_{1}= & 2\left\{\eta_{1245}+\eta_{1246}-\eta_{1247}-\eta_{1256}-\eta_{1257}+\eta_{1267}\right. \\
& -\eta_{1345}+\eta_{1346}-\eta_{1347}-\eta_{1356}-\eta_{1357}-\eta_{1367} \\
& \left.-\eta_{2345}+\eta_{2346}+\eta_{2347}+\eta_{2356}-\eta_{2357}-\eta_{2367}\right\}
\end{aligned}
$$

Since $d \varphi_{1} \neq 0$ locally, we have $d \varphi_{1} \neq 0$ on M. Thus $\varphi_{1} \notin \mathscr{W}_{2}$ and $\varphi_{1} \notin \mathscr{P}$.
φ_{1} is locally written as

$$
\varphi_{1}=\eta_{123}-\eta_{146}+\eta_{157}-\eta_{247}-\eta_{256}-\eta_{345}-\eta_{367}
$$

The Hodge-star of φ_{1} is

$$
* \varphi_{1}=\frac{1}{2} \eta_{12} \wedge d \eta_{1}-\frac{1}{2} \eta_{13} \wedge d \eta_{3}+\frac{1}{2} \eta_{23} \wedge d \eta_{2}+* \eta_{123}
$$

Comparing $d \varphi_{1}$ and $* \varphi_{1}$, we see that there is no constant k with the property that $d \varphi_{1}=k * \varphi_{1}$. Then φ_{1} can not be an element of $\mathscr{W}_{1}, \mathscr{W}_{1} \oplus \mathscr{W}_{2}$.
Let α be a 1-form on M such that $d \varphi_{1}=\alpha \wedge \varphi_{1}$. Then α can locally be written as $\alpha=\sum \alpha_{i} \eta_{i}$, where α_{i} are smooth functions on M. The coefficient of η_{1245} in $d \varphi_{1}$ is 2 , while that of $\alpha \wedge \varphi_{1}$ is 0 . Thus there does not exist such a 1 -form α on M. This implies $\varphi_{1} \notin \mathscr{W}_{4}$ and $\varphi_{1} \notin \mathscr{W}_{2} \oplus \mathscr{W}_{4}$.
In addition, $d \varphi_{1} \wedge \varphi_{1}=-12 \eta_{1234567}=-12 d_{\text {vol }} \neq 0$. As a result φ_{1} is not in $\mathscr{W}_{3}, \mathscr{W}_{2} \oplus \mathscr{W}_{3}, \mathscr{W}_{3} \oplus \mathscr{W}_{4}$ or $\mathscr{W}_{2} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$.

$$
\begin{aligned}
2 d * \varphi_{1}= & \eta_{2} \wedge d \eta_{1} \wedge d \eta_{1}-\eta_{1} \wedge d \eta_{1} \wedge d \eta_{2} \\
& -\eta_{3} \wedge d \eta_{1} \wedge d \eta_{3}+\eta_{1} \wedge d \eta_{3} \wedge d \eta_{3} \\
& +\eta_{3} \wedge d \eta_{2} \wedge d \eta_{2}-\eta_{2} \wedge d \eta_{2} \wedge d \eta_{3}
\end{aligned}
$$

or in local coordinates,

$$
\begin{aligned}
d * \varphi_{1}= & 2\left\{-\eta_{12345}-\eta_{12346}-\eta_{12347}\right. \\
& \left.-\eta_{12356}+\eta_{12357}-\eta_{12367}\right\} \\
& +4\left\{\eta_{14567}+\eta_{24567}+\eta_{34567}\right\} .
\end{aligned}
$$

Thus $d * \varphi_{1} \neq 0$ and $\varphi_{1} \notin \mathscr{W}_{1} \oplus \mathscr{W}_{3}$.
Assume that there exists a 1 -form β on M satisfying $d * \varphi_{1}=\beta \wedge * \varphi_{1}$. Writing β locally as $\beta=\sum \beta_{i} \eta_{i}$ and
comparing coefficients of η_{12357} and η_{14567} in $d * \varphi_{1}$ and $\beta \wedge * \varphi_{1}$ yield $\beta_{1}=2$ and $\beta_{1}=4$. Therefore such β does not exist. This yields that φ_{1} is not in $\mathscr{W}_{1} \oplus \mathscr{W}_{4}$ or $\mathscr{W}_{1} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$.
Let α be a 1 -form and f be a smooth function on M such that $d \varphi_{1}=\alpha \wedge \varphi_{1}+f * \varphi_{1}$. The coefficients of η_{1245} and η_{4567} in local expressions of $d \varphi_{1}$ and $\alpha \wedge \varphi_{1}+f * \varphi_{1}$ imply that

$$
f=-2 \text { and } f=0,
$$

a contradiction. Hence $\varphi_{1} \notin \mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \mathscr{W}_{4}$.
We also have

$$
* d \varphi_{1} \wedge \varphi_{1}=8\left\{-\eta_{124567}+\eta_{134567}-\eta_{234567}\right\} \neq 0
$$

This gives that φ_{1} can not be an element of $\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \mathscr{W}_{3}$. Since the 3-form φ_{1} does not satisfy any of defining relations of G_{2} structures, it is in the widest class \mathscr{W}.

4. Deformations of New G_{2} Structures

In this section, we deform G_{2} structures obtained in Section 3 and get new G_{2} structures of type $\mathscr{W}_{1} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$. Manifolds which are elements of the class $\mathscr{W}_{1} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$ are called integrable G_{2} manifolds or G_{2} manifolds with anti-symmetric torsion [7, 8]. A manifold with G_{2} structure has a uniquely determined metric covariant derivative preserving the G_{2} structure and having anti-symmetric torsion if and only if it is an integrable manifold [7].
Let (M, g) be a 7-dimensional 3-Sasakian manifold with the 3-Sasakian structure $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$. Consider the Riemannian metric g^{s} on M given by

$$
g^{s}(x, y):= \begin{cases}g(x, y) & x(\text { or } y) \in T^{h} \\ s^{2} g(x, y) & x \text { and } y \in T^{v},\end{cases}
$$

where $s>0$ and the G_{2} structures

$$
\varphi_{i}=a \eta_{1} \wedge d \eta_{2}+b d \eta_{1} \wedge \eta_{3}+c \eta_{2} \wedge d \eta_{3}+\eta_{123}
$$

obtained in Section 3, where $a, b, c= \pm \frac{1}{2}$ and $i=1, \ldots, 8$. Let
$F_{1}=\eta_{123}$ and $F_{2}=a \eta_{1} \wedge d \eta_{2}+b d \eta_{1} \wedge \eta_{3}+c \eta_{2} \wedge d \eta_{3}$ and define the 3-forms φ_{i}^{s} by

$$
\varphi_{i}^{s}:=F_{1}^{s}+F_{2}^{s}
$$

where

$$
F_{1}^{s}:=s^{3} F_{1}, \quad F_{2}^{s}:=s F_{2} .
$$

Theorem 4.1. The 3-forms φ_{i}^{s} are G_{2} structures on $M^{s}:=$ $\left(M, g^{s}\right)$. These 3-forms are of type $\mathscr{W}_{1} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$ iff $s=\frac{1}{\sqrt{2}}$ and are in the widest class \mathscr{W} iff $s \neq \frac{1}{\sqrt{2}}$.

Proof. Take the g-orthonormal frame $\left\{e_{1}, \cdots, e_{7}\right\}$ given in [5] such that $e_{1}=\xi_{1}, e_{2}=\xi_{2}$ and $e_{3}=\xi_{3}$. Then

$$
\left\{\xi_{1} / s, \xi_{2} / s, \xi_{3} / s, e_{4}, e_{5}, e_{6}, e_{7}\right\}
$$

is a g^{s}-orthonormal frame with the corresponding coframe

$$
\left\{s \eta_{1}, s \eta_{2}, s \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}, \eta_{7}\right\} .
$$

Denote $\quad\left\{\xi_{1} / s, \xi_{2} / s, \xi_{3} / s, e_{4}, e_{5}, e_{6}, e_{7}\right\} \quad$ and $\left\{s \eta_{1}, s \eta_{2}, s \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}, \eta_{7}\right\} \quad$ both \quad by $\quad\left\{Z_{1}, \cdots, Z_{7}\right\}$ with the notation in [6].
We give the proof for φ_{1}^{s}, other proofs are similar. To give a G_{2} structure on $\left(M, g^{s}\right)$, the 3 -form φ_{1}^{s} should satisfy

$$
\begin{equation*}
\left.\left.(x\lrcorner \varphi_{1}^{s}\right) \wedge(y\lrcorner \varphi_{1}^{s}\right) \wedge \varphi_{1}^{s}=6 g^{s}(x, y) d_{v o l}^{S} \tag{5}
\end{equation*}
$$

for $x, y \in \Gamma(T M)$. Choose the g^{s}-orthonormal frame $\left\{Z_{1}, \cdots, Z_{7}\right\}$. Then since

$$
\begin{aligned}
& \left.Z_{1}\right\lrcorner \varphi_{1}^{s}=s^{2} \eta_{23}-\eta_{46}+\eta_{57}, \\
& \left.Z_{2}\right\lrcorner \varphi_{1}^{s}=-s^{2} \eta_{13}-\eta_{47}-\eta_{56}, \\
& \left.Z_{3}\right\lrcorner \varphi_{1}^{s}=s^{2} \eta_{12}-\eta_{45}-\eta_{67}, \\
& \left.Z_{4}\right\lrcorner \varphi_{1}^{s}=s \eta_{16}+s \eta_{27}+s \eta_{35}, \\
& \left.Z_{5}\right\lrcorner \varphi_{1}^{s}=-s \eta_{17}+s \eta_{26}-s \eta_{34}, \\
& \left.Z_{6}\right\lrcorner \varphi_{1}^{s}=-s \eta_{14}-s \eta_{25}+s \eta_{37}, \\
& \left.Z_{7}\right\lrcorner \varphi_{1}^{s}=s \eta_{15}-s \eta_{24}-s \eta_{36},
\end{aligned}
$$

we have

$$
\left.\left.\left(Z_{i}\right\lrcorner \varphi_{1}^{S}\right) \wedge\left(Z_{i}\right\lrcorner \varphi_{1}^{S}\right) \wedge \varphi_{1}^{S}=6 g^{s}\left(Z_{i}, Z_{i}\right) d_{v o l}^{S}=6 s^{3} g\left(e_{i}, e_{i}\right) d_{v o l}
$$

and

$$
\left.\left.\left(Z_{i}\right\lrcorner \varphi_{1}^{s}\right) \wedge\left(Z_{j}\right\lrcorner \varphi_{1}^{s}\right) \wedge \varphi_{1}^{s}=0
$$

for $i \neq j$ and thus φ_{1}^{s} gives a G_{2} structure on M^{s}.
The exterior derivative of the 3-form

$$
\varphi_{1}^{s}=+s^{3} \eta_{123}+\frac{s}{2} \eta_{1} \wedge d \eta_{2}+\frac{s}{2} d \eta_{1} \wedge \eta_{3}+\frac{s}{2} \eta_{2} \wedge d \eta_{3}
$$

is

$$
\begin{aligned}
d \varphi_{1}^{s}= & s^{3} d \eta_{1} \wedge \eta_{23}-s^{3} \eta_{13} \wedge d \eta_{2}+s^{3} \eta_{12} \wedge d \eta_{3} \\
& +\frac{s}{2} d \eta_{1} \wedge d \eta_{2}+\frac{s}{2} d \eta_{1} \wedge d \eta_{3}+\frac{s}{2} d \eta_{2} \wedge d \eta_{3}
\end{aligned}
$$

Since

$$
\begin{aligned}
d \varphi_{1}^{s}= & 2 s\left\{\eta_{1245}+\eta_{1246}-s^{2} \eta_{1247}-s^{2} \eta_{1256}-\eta_{1257}\right. \\
& +\eta_{1267}-\eta_{1345}+s^{2} \eta_{1346}-\eta_{1347}-\eta_{1356} \\
& -s^{2} \eta_{1357}-\eta_{1367}-s^{2} \eta_{2345}+\eta_{2346}+\eta_{2347} \\
& \left.+\eta_{2356}-\eta_{2357}-s^{2} \eta_{2367}\right\}
\end{aligned}
$$

locally, $d \varphi_{1}^{s} \neq 0$ for all $s>0$. Thus φ_{1}^{s} is never of type \mathscr{P} or \mathscr{W}_{2}.
Assume that α is a 1 -form on M such that $d \varphi_{1}^{s}=\alpha \wedge \varphi_{1}^{s}$.
This 1-form may be written as

$$
\begin{aligned}
\alpha=\sum \alpha_{i} Z_{i}= & s \alpha_{1} \eta_{1}+s \alpha_{2} \eta_{2}+s \alpha_{3} \eta_{3}+\alpha_{4} \eta_{4} \\
& +\alpha_{5} \eta_{5}+\alpha_{6} \eta_{6}+\alpha_{7} \eta_{7} .
\end{aligned}
$$

In addition, since
$\varphi_{1}^{s}=s^{3} \eta_{123}-s \eta_{146}+s \eta_{157}-s \eta_{247}-s \eta_{256}-s \eta_{345}-s \eta_{367}$,
we have

$$
\begin{aligned}
\alpha \wedge \varphi_{1}^{s}= & -s^{3} \alpha_{4} \eta_{1234}-s^{3} \alpha_{5} \eta_{1235}-s^{3} \alpha_{6} \eta_{1236} \\
& -s^{3} \alpha_{7} \eta_{1237}+s^{2} \alpha_{2} \eta_{1246}-s^{2} \alpha_{1} \eta_{1247} \\
& -s^{2} \alpha_{1} \eta_{1256}-s^{2} \alpha_{2} \eta_{1257}-s^{2} \alpha_{1} \eta_{1345} \\
& +s^{2} \alpha_{3} \eta_{1346}-s^{2} \alpha_{3} \eta_{1357}-s^{2} \alpha_{1} \eta_{1367} \\
& -s \alpha_{5} \eta_{1456}-s \alpha_{4} \eta_{1457}+s \alpha_{7} \eta_{1467} \\
& +s \alpha_{6} \eta_{1567}-s^{2} \alpha_{2} \eta_{2345}+s^{2} \alpha_{3} \eta_{2347} \\
& +s^{2} \alpha_{3} \eta_{2356}-s^{2} \alpha_{2} \eta_{2367}+s \alpha_{4} \eta_{2456} \\
& -s \alpha_{5} \eta_{2457}-s \alpha_{6} \eta_{2467}+s \alpha_{7} \eta_{2567} \\
& +s \alpha_{6} \eta_{3456}+s \alpha_{7} \eta_{3457}+s \alpha_{4} \eta_{3467} \\
& +s \alpha_{5} \eta_{3567} .
\end{aligned}
$$

Comparing the coefficients of η_{1245} in $d \varphi_{1}^{s}$ and $\alpha \wedge \varphi_{1}^{s}$ implies $2 s=0$. That is, there is not such 1 -form and thus $M^{s} \notin \mathscr{W}_{4}$ and $M^{S} \notin \mathscr{W}_{2} \oplus \mathscr{W}_{4}$.
Since $d \varphi_{1}^{s} \wedge \varphi_{1}^{s}=-12 s^{2} \eta_{1234567}$, we get $d \varphi_{1}^{s} \wedge \varphi_{1}^{s} \neq 0$ for all positive s and classes $\mathscr{W}_{3}, \mathscr{W}_{2} \oplus \mathscr{W}_{3}, \mathscr{W}_{3} \oplus \mathscr{W}_{4}$ and $\mathscr{W}_{2} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$ are eliminated.
The Hodge-star $*_{s} \varphi_{1}^{s}$ of the 3-form φ_{1}^{s} is

$$
\begin{aligned}
*_{s} \varphi_{1}^{s}= & -Z_{1245}-Z_{1267}+Z_{1347}+Z_{1356} \\
& -Z_{2346}+Z_{2357}+Z_{4567} \\
= & * \eta_{123}-s^{2} \eta_{1245}-s^{2} \eta_{1267}+s^{2} \eta_{1347} \\
& +s^{2} \eta_{1356}-s^{2} \eta_{2346}+s^{2} \eta_{2357},
\end{aligned}
$$

which is globally
$*_{s} \varphi_{1}^{s}=* F_{1}+\frac{s^{2}}{2} \eta_{23} \wedge d \eta_{2}-\frac{s^{2}}{2} \eta_{13} \wedge d \eta_{3}+\frac{s^{2}}{2} \eta_{12} \wedge d \eta_{1}$.
The coefficient of η_{4567} in $d \varphi_{1}^{s}$ is 0 , while in $*_{s} \varphi_{1}^{s}$ it is 1 , so there is no constant k with the property that $d \varphi_{1}^{s}=$ $k *_{s} \varphi_{1}^{s}$. Therefore the G_{2} structure can not belong to \mathscr{W}_{1} and $\mathscr{W}_{1} \oplus \mathscr{W}_{2}$.

$$
\begin{aligned}
d *_{s} \varphi_{1}^{s}= & \frac{s^{2}}{2}\left\{\eta_{2} \wedge d \eta_{1} \wedge d \eta_{1}-\eta_{1} \wedge d \eta_{1} \wedge d \eta_{2}\right. \\
& -\eta_{3} \wedge d \eta_{1} \wedge d \eta_{3}+\eta_{1} \wedge d \eta_{3} \wedge d \eta_{3} \\
& \left.+\eta_{3} \wedge d \eta_{2} \wedge d \eta_{2}-\eta_{2} \wedge d \eta_{2} \wedge d \eta_{3}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
d *_{s} \varphi_{1}^{s}= & 2 s^{2}\left\{-\eta_{12345}-\eta_{12346}-\eta_{12347}\right. \\
& \left.-\eta_{12356}+\eta_{12357}-\eta_{12367}\right\} \\
& +4 s^{2}\left\{\eta_{14567}+\eta_{24567}+\eta_{34567}\right\}
\end{aligned}
$$

give $d *_{s} \varphi_{1}^{s} \neq 0$, and $M^{s} \notin \mathscr{W}_{1} \oplus \mathscr{W}_{3}$.
Let α be a 1-form and f be a smooth function on M satisfying $d \varphi_{1}^{s}=\alpha \wedge \varphi_{1}^{s}+f *_{s} \varphi_{1}^{s}$. Comparing coefficients of η_{1245} and η_{4567} in $d \varphi_{1}^{s}$ and $\alpha \wedge \varphi_{1}^{s}+f *_{s} \varphi_{1}^{S}$ respectively, we conclude that

$$
f=-2 / s \text { and } f=0
$$

Thus $\mathscr{W}_{1} \oplus \mathscr{W}_{4}$ and $\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \mathscr{W}_{4}$ are also eliminated.

In addition, in local coordinates,

$$
\begin{aligned}
*_{s} d \varphi_{1}^{s}= & -2 s Z_{145}+\frac{2}{s} Z_{146}+\frac{2}{s} Z_{147}+\frac{2}{s} Z_{156} \\
& -\frac{2}{s} Z_{157}-2 s Z_{167}+\frac{2}{s} Z_{245}-2 s Z_{246} \\
& +\frac{2}{s} Z_{247}+\frac{2}{s} Z_{256}+2 s Z_{257}+\frac{2}{s} Z_{267} \\
& +\frac{2}{s} Z_{345}+\frac{2}{s} Z_{346}-2 s Z_{347}-2 s Z_{356} \\
& -\frac{2}{s} Z_{357}+\frac{2}{s} Z_{367} \\
= & -2 s^{2} \eta_{145}+2 \eta_{146}+2 \eta_{147}+2 \eta_{156}-2 \eta_{157} \\
& -2 s^{2} \eta_{167}+2 \eta_{245}-2 s^{2} \eta_{246}+2 \eta_{247}+2 \eta_{256} \\
& +2 s^{2} \eta_{257}+2 \eta_{267}+2 \eta_{345}+2 \eta_{346}-2 s^{2} \eta_{347} \\
& -2 s^{2} \eta_{356}-2 \eta_{357}+2 \eta_{367}
\end{aligned}
$$

and

$$
\left(*_{s} d \varphi_{1}^{s}\right) \wedge \varphi^{s}=4 s\left(1+s^{2}\right)\left\{\eta_{134567}-\eta_{124567}-\eta_{234567}\right\} .
$$

Thus $\left(*_{s} d \varphi_{1}^{s}\right) \wedge \varphi_{1}^{s}$ is non-zero. The 3-form φ_{1}^{s} is not in $\mathscr{W}_{1} \oplus \mathscr{W}_{2} \oplus \mathscr{W}_{3}$.
Let β be a 1 -form on M such that $d *_{s} \varphi_{1}^{s}=\beta \wedge *_{s} \varphi_{1}^{s}$. Then β can be locally written as

$$
\begin{aligned}
\beta=\sum \beta_{i} Z_{i}= & s \beta_{1} \eta_{1}+s \beta_{2} \eta_{2}+s \beta_{3} \eta_{3}+\beta_{4} \eta_{4} \\
& +\beta_{5} \eta_{5}+\beta_{6} \eta_{6}+\beta_{7} \eta_{7}
\end{aligned}
$$

for $\beta_{i} \in C^{\infty}(M)$. Since

$$
\begin{aligned}
\beta \wedge *_{s} \varphi_{1}^{s}= & -s^{3} \beta_{3} \eta_{12345}-s^{3} \beta_{1} \eta_{12346}-s^{3} \beta_{2} \eta_{12347} \\
& -s^{3} \beta_{2} \eta_{12356}+s^{3} \beta_{1} \eta_{12357}-s^{3} \beta_{3} \eta_{12367} \\
& -s^{2} \beta_{6} \eta_{12456}-s^{2} \beta_{7} \eta_{12457}-s^{2} \beta_{4} \eta_{12467} \\
& -s^{2} \beta_{5} \eta_{12567}+s^{2} \beta_{4} \eta_{13456}-s^{2} \beta_{5} \eta_{13457} \\
& -s^{2} \beta_{6} \eta_{13467}+s^{2} \beta_{7} \eta_{13567}+s \beta_{1} \eta_{14567} \\
& +s^{2} \beta_{5} \eta_{23456}+s^{2} \beta_{4} \eta_{23457}-s^{2} \beta_{7} \eta_{23467} \\
& -s^{2} \beta_{6} \eta_{23567}+s \beta_{2} \eta_{24567}+s \beta_{3} \eta_{34567},
\end{aligned}
$$

$d *_{s} \varphi_{1}^{s}=\beta \wedge *_{s} \varphi_{1}^{s}$ holds if and only if $\frac{2}{s}=4 s, \beta_{1}=\beta_{2}=$ $\beta_{3}=4 s$ and $\beta_{4}=\beta_{5}=\beta_{6}=\beta_{7}=0$. The identity $\frac{2}{s}=4 s$ gives $s=\frac{1}{\sqrt{2}}$. For $s=\frac{1}{\sqrt{2}}$ and $\beta=2\left(\eta_{1}+\eta_{2}+\eta_{3}\right)$, the equation $d *_{s} \varphi_{1}^{s}=\beta \wedge *_{s} \varphi_{1}^{s}$ holds globally. As a result, the G_{2} structure φ_{1}^{s} is of type $\mathscr{W}_{1} \oplus \mathscr{W}_{3} \oplus \mathscr{W}_{4}$ iff $s=\frac{1}{\sqrt{2}}$. If $s \neq \frac{1}{\sqrt{2}}$, then φ_{1}^{s} is in the widest class \mathscr{W}.
For G_{2} structures φ_{i}^{s}, where $i=2, \ldots, 8$, we only write 1 -forms β_{i} such that $d *_{s} \varphi_{i}^{s}=\beta_{i} \wedge *_{s} \varphi_{i}^{s}$. These 1-forms are

$$
\begin{gathered}
\beta_{2}=2 \eta_{1}-2 \eta_{2}-2 \eta_{3}, \quad \beta_{3}=-2 \eta_{1}+2 \eta_{2}-2 \eta_{3} \\
\beta_{4}=-2 \eta_{1}-2 \eta_{2}+2 \eta_{3}, \quad \beta_{5}=-2 \eta_{1}-2 \eta_{2}-2 \eta_{3} \\
\beta_{6}=-2 \eta_{1}+2 \eta_{2}+2 \eta_{3}, \quad \beta_{7}=2 \eta_{1}-2 \eta_{2}+2 \eta_{3} \\
\beta_{8}=2 \eta_{1}+2 \eta_{2}-2 \eta_{3} .
\end{gathered}
$$

Let $s=\frac{1}{\sqrt{2}}$. Then G_{2} structures φ_{i}^{s} are in the class $\mathscr{W}_{1} \oplus$ $\mathscr{W}_{3} \oplus \mathscr{W}_{4}$. Thus there exists a uniquely determined metric covariant derivative ∇_{i} with anti-symmetric torsion tensor
T_{i} on each $\left(M, g^{s}, \varphi_{i}^{S}\right)$ preserving the G_{2} structure and T_{i} are given in [7] by the formula

$$
T_{i}=\frac{1}{6} g^{s}\left(d \varphi_{i}^{s}, *_{s} \varphi_{i}^{S}\right) \varphi_{i}^{s}-*_{s} d \varphi_{i}^{s}+*_{s}\left(\beta \wedge \varphi_{i}^{S}\right) .
$$

We directly compute T_{i} for each i and obtain the same anti-symmetric torsion tensor for each covariant derivative ∇_{i} :
For each $i \in\{1, \ldots, 8\}$, we have

$$
T_{i}=\frac{1}{2} \eta_{1} \wedge d \eta_{1}+\frac{1}{2} \eta_{2} \wedge d \eta_{2}+\frac{1}{2} \eta_{3} \wedge d \eta_{3}+2 \eta_{123}
$$

Now we introduce some properties of T.

1. The torsion tensor T is not ∇-parallel:

Choose the g^{s}-orthonormal frame $\left\{Z_{1}, \cdots, Z_{7}\right\}$ on an open subset of M. By the Kozsul formula we write the Levi-Civita covariant derivative ∇^{g} in local coordinates. Since $\nabla=\nabla^{g^{s}}+T / 2$ and

$$
\begin{aligned}
T= & \frac{1}{2 s^{2}} Z_{1} \wedge d Z_{1}+\frac{1}{2 s^{2}} Z_{2} \wedge d Z_{2} \\
& +\frac{1}{2 s^{2}} Z_{3} \wedge d Z_{3}+\frac{2}{s^{3}} Z_{123} \\
= & -\frac{1}{s^{3}} Z_{123}-\frac{1}{s} Z_{145}-\frac{1}{s} Z_{167}-\frac{1}{s} Z_{246} \\
& +\frac{1}{s} Z_{257}-\frac{1}{s} Z_{347}-\frac{1}{s} Z_{356}
\end{aligned}
$$

we compute ∇ locally and we obtain

$$
\nabla_{Z_{1}} T\left(Z_{2}, Z_{4}, Z_{7}\right)=4 \neq 0
$$

2. The torsion tensor is not closed:

$$
\left.\left.d T=\sum\left(Z_{i}\right\lrcorner T\right) \wedge\left(Z_{i}\right\lrcorner T\right)=12 *_{s} Z_{123}=12 * \eta_{123} .
$$

Note: Take a 7-dimensional 3-Sasakian manifold (M, g) with the 3 -Sasakian structure $\left(\xi_{i}, \eta_{i}, \Phi_{i}\right)_{i=1,2,3}$. Consider the 3 -form

$$
\begin{align*}
\varphi= & a \eta_{1} \wedge d \eta_{1}+b \eta_{2} \wedge d \eta_{2}+c \eta_{3} \wedge d \eta_{3} \tag{6}\\
& +d \eta_{1} \wedge \eta_{2} \wedge \eta_{3}+e \eta_{1} \wedge d \eta_{2}+f \eta_{1} \wedge d \eta_{3} \\
& +g \eta_{2} \wedge d \eta_{1}+h \eta_{2} \wedge d \eta_{3}+k \eta_{3} \wedge d \eta_{1} \\
& +l \eta_{3} \wedge d \eta_{2}
\end{align*}
$$

for $a, b, c, d, e, f, g, h, k, l \in \mathbb{R}$. To get a G_{2} structure on M determined by φ, following equations should be satisfied:

$$
\begin{align*}
\left(a^{2}+e^{2}+f^{2}\right)(-2(a+b+c)+d) & =\frac{1}{4} \tag{7}\\
\left(c^{2}+k^{2}+l^{2}\right)(-2(a+b+c)+d) & =\frac{1}{4} \tag{8}\\
\left(b^{2}+h^{2}+g^{2}\right)(-2(a+b+c)+d) & =\frac{1}{4} \tag{9}\\
(-2(a+b+c)+d)(e b+a g+h f) & =0 \tag{10}\\
(-2(a+b+c)+d)(c f+e l+a k) & =0 \tag{11}\\
(-2(a+b+c)+d)(h c+k g+b l) & =0 \tag{12}\\
a b c-c e g-b f k-a h l+f g l+h e k & =\frac{1}{8} \tag{13}
\end{align*}
$$

This system has infinitely many solutions. Now we will determine under which conditions G_{2} structures obtained are closed or co-closed.

$$
\begin{aligned}
d \varphi= & a d \eta_{1} \wedge d \eta_{1}+b d \eta_{2} \wedge d \eta_{2}+c d \eta_{3} \wedge d \eta_{3} \\
& +d\left(d \eta_{1} \wedge \eta_{23}-d \eta_{2} \wedge \eta_{13}+d \eta_{3} \wedge \eta_{12}\right) \\
& +(e+g) d \eta_{1} \wedge d \eta_{2}+(f+k) d \eta_{1} \wedge d \eta_{3} \\
& +(h+l) d \eta_{2} \wedge d \eta_{3} .
\end{aligned}
$$

If φ is closed, then it is closed according to the local frame chosen. Thus

$$
\begin{aligned}
d \varphi= & (8 a-2 d)\left\{\eta_{2345}+\eta_{2367}\right\} \\
& +(8 b-2 d)\left\{\eta_{1357}-\eta_{1346}\right\} \\
& +(8 c-2 d)\left\{\eta_{1247}+\eta_{1256}\right\}+8(a+b+c) \eta_{4567} \\
& +4(e+g)\left\{\eta_{2346}-\eta_{2357}-\eta_{1345}-\eta_{1367}\right\} \\
& +4(f+k)\left\{\eta_{2347}+\eta_{2356}+\eta_{1245}+\eta_{1267}\right\} \\
& +4(h+l)\left\{-\eta_{1347}-\eta_{1356}+\eta_{1246}-\eta_{1257}\right\} \\
= & 0
\end{aligned}
$$

All coefficients should be zero. First we get

$$
d=4 a=4 b=4 c
$$

Since $a=b=c$ and $a+b+c=0$, this gives

$$
a=b=c=d=0
$$

In addition,

$$
f=-k, e=-g, h=-l
$$

imply

$$
a b c-c e g-b f k-a h l+f g l+h e k=0 .
$$

This can not hold, since for a G_{2} structure we have (13). As a result, there is no closed G_{2} structure φ on a 7 dimensional 3-Sasakian manifold of the form (6).
Now we investigate the existence of co-closed G_{2} structures. We have

$$
\begin{aligned}
d * \varphi= & e \eta_{3} \wedge d \eta_{2} \wedge d \eta_{2}-e \eta_{2} \wedge d \eta_{2} \wedge d \eta_{3} \\
& +f \eta_{3} \wedge d \eta_{2} \wedge d \eta_{3}-f \eta_{2} \wedge d \eta_{3} \wedge d \eta_{3-}- \\
& g \eta_{3} \wedge d \eta_{1} \wedge d \eta_{1}+g \eta_{1} \wedge d \eta_{1} \wedge d \eta_{3} \\
& -h \eta_{3} \wedge d \eta_{1} \wedge d \eta_{3}+h \eta_{1} \wedge d \eta_{3} \wedge d \eta_{3}
\end{aligned}
$$

or, in local coordinates,

$$
\begin{aligned}
d * \varphi= & -4 h \eta_{12345}+4 f \eta_{12346}+4(g-e) \eta_{12347} \\
& +4(g-e) \eta_{12356}-4 f \eta_{12357}+4 h \eta_{12367} \\
& +8 h \eta_{14567}-8 f \eta_{24567}+8(e-g) \eta_{34567}
\end{aligned}
$$

To get a co-closed G_{2} structure, equations (7)-(13) together with

$$
e=g, f=h=0
$$

should be satisfied. Only G_{2} structures with these properties are the cocalibrated G_{2} structure and three nearly parallel G_{2} structures all given in [5].

References

[1] Bryant, R. L., Metrics with Exceptional Holonomy, Ann. of Math., 126 (1987), 525-586.
[2] Fernández, M. and Gray, A., Riemannian Manifolds with Structure Group G_{2}, Ann. Mat. Pura Appl. (4) 132 (1982) 19-25.
[3] Cabrera, F. M., On Riemannian Manifolds with $G_{2}-$ Structure, Bolletino U.M.I (7) 10-A (1996) 99-112.
[4] Boyer, C.P and Galicki, K., 3-Sasakian Manifolds, Surveys Diff. Geom., 7, (1999) 123-184, arXiv:hep-th/ 9810250.
[5] Agricola, I. and Friedrich, T., 3-Sasakian Manifolds in Dimension Seven, Their Spinors and G_{2} Structures, Journal of Geometry and Physics 60 (2010) 326-332.
[6] Friedrich, T., Kath, I., Moroianu, A. and Semmelmann, U., On Nearly Parallel G_{2} Structures, J. Geom. Phys., 23 (1997) 256-286.
[7] Friedrich, T. and Ivanov, S., Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory, Asian Jour. Math., 6 (2002) 303-336.
[8] Agricola, I., The Srni Lectures on Non-Integrable Geometries with Torsion, Math. Ann., 328 (2004) 711748.

