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ABSTRACT 
 

In this study, the differential transformation method is used for finding the numerical solution of a 
second-order Neumann problem. Numerical examples are included to demonstrate the efficiency and 
the accuracy of this method for the studied problem and a comparison is made with the existing 
results. The present method is easy to implement and yields very accurate results. 
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NEUMANN SINIR ŞARTLI İKİNCİ MERTEBEDEN BİR DİFERENSİYEL 
DENKLEMİN DİFERENSİYEL DÖNÜŞÜM METODU İLE YAKLAŞIK ÇÖZÜMÜ 

 
ÖZ 

 
Bu çalışmada, ikinci mertebeden bir Neumann probleminin yaklaşık çözümü için diferensiyel 

dönüşüm metodu kullanıldı. Çalışılan problem için bu metodun etkinliğini ve duyarlılığını gösteren 
sayısal örnekler verildi ve mevcut sonuçlar ile bir karşılaştırma yapıldı. Mevcut metodun uygulanması 
kolaydır ve çok duyarlı sonuçlar verir. 
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1. INTRODUCTION 
 
In this study, we consider the second-order Neumann boundary value problem of the form 
 

],1,0[)),(,()( ∈=′′− xxyxfxy                             (1.1) 
 

with the boundary conditions 
 

.)1(,)0( βyy =′α=′                               (1.2) 
 
In (Khan, 2005), the author studied  the existence of a solution to Eq. (1.1), including the 

approximation of solutions via the quasi-linearization method. An approach that is based on semi-
orthogonal B-spline wavelets is suggested in (Lakestani and Dehghan, 2006) for solving problem (1.1) 
and (1.2). The aim of the current study is to approximate the solution of the above problem by means 
of the differential transformation method. 
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The differential transformation method is based on the Taylor’s series expansion, and provides an 
effective numerical means of solving linear and non-linear initial value problems. The differential 
transformation method may be employed to solve both ordinary and partial differential equations. For 
example, In (Ertürk and Momani, 2007), the authors successfully applied the one-dimensional 
differential transformation method to the solution of a general fourth order boundary problem. The 
authors of (Kurnaz et. al, 2005) presented the generalization of the differential transformation method 
to n -dimensional case in order to solve partial differential equations.In (Jang et al, 2001), the authors 
applied the two dimensional differential transformation method to solve partial differential equations, 
too. Finally, the author of (Hassan, 2002) adopted the differential transformation method to solve 
some eigenvalue problems. 

 
In this paper, the differential transformation technique is applied to solve problem (1.1) and (1.2). 

The method can be used to evaluate the approximating solution by the finite Taylor series and by an 
iteration procedure described by the transformed equations obtained from the original equation using 
the operations of differential transformation. 

 
The sections of this paper are organized as follows. In the next section we describe the differential 

transformation method. In Section 3, numerical examples have been presented to illustrate the 
effectiveness of the present method and a comparison is made with the existing results. Section 4 ends 
this paper with a brief conclusion. Note that we have computed the numerical results by Matematica 
programming. 

 
2. DIFFERENTIAL TRANSFORMATION METHOD 

 
Let y(x) be an analytic function in a domain D and let ixx =  represent any point in D. The 

function y(x) is then represented by a power series whose center is located at ix . The Taylor series 
expansion function of y(x) is expressed as: 
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The particular case of Eq. (2.1) when 0=ix  is referred to as the Maclaurin series of y(x) , and is 

given by: 
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As shown by (Zhou, 1986), the differential transform of function y(x) is defined as: 
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where Y(k) represents the transformed function (commonly referred to as the T-function) and y(x) is 
the original function. The differential spectrum of Y(k) is confined within the interval ],0[ Hx∈ , 
where H is a constant. 

 
The differential inverse transform of Y (k) is defined as follows: 
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From the above, it is clear that the differential transformation technique is based upon the Taylor 
series expansion. Note that the original functions are denoted by lowercase letters, while their 
transformed functions (i.e. their T-functions) are indicated by the corresponding uppercase letters. 

 
The values of function Y(k) at specific values of the argument k are referred to as discretes, i.e. 

Y(0) is known as the zero discrete, Y(1) as the first discrete etc. The greater the number of discretes 
considered, the more precisely the unknown function can be restored. The function y(x) is expressed in 
terms of the T-function Y(k) , and its value is given by the sum of the T-function using ( )kHx  as its 
coefficient. 

 
Table 1 presents some important properties of the differential transformation method derived 

using the expressions presented in Eqs. (2.3) and (2.4) above. 
 
In real applications, it is found that the number of arguments required to restore the unknown 

function precisely can be reduced by specifying an appropriate value of the constant H. In other words, 
the function y(x) can be expressed in terms of a finite series and Eq. (2.3) can be written as 
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Eq. (2.5) implies that the value of ( ) )(
1

kYHx
k

nk∑∞

+=
 is negligible. 

 
Table 1. Specific functions, y(x) , and their corresponding differential transforms, Y (k) 

 
Original function Transformed function Y (k) 
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3. NUMERICAL EXAMPLES 

 
To demonstrate the accuracy of the present method, we consider the examples given in (Lakestani 

and Dehghan, 2006) in this section. Our method differs from the method presented in (Lakestani and 
Dehghan, 2006)  and thus these examples could be used as a basis for comparison. The results 
obtained by the present method are found to be in good agreement with the results obtained in 
(Lakestani and Dehghan, 2006). 

 
Example 3.1 Consider the following linear Neumann problem (Lakestani and Dehghan, 2006) 

 
2( ) (2 4 ) ( ), [0,1]y x x y x x′′− = − ∈                            (3.1) 

 
subject to the boundary conditions 

 
./2)1(,0)0( eyy −=′=′                                               (3.2) 
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The exact solution of this problem is 
 

.)(
2xexy −=                                  (3.3) 

 
Taking the differential transform of Eq.(3.1) with respect to time x gives: 
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where Y(k) is the differential transformation of function y(x). 
 
By using (2.3) and (2.2), the following transformed boundary conditions at 0=x  can be 

obtained: 
 

,0)1( =Y .2)(
0 e

kkY
n

k
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                             (3.5) 

 
Utilizing the recurrence relation in (3.4) and the first one of the transformed boundary conditions 

in (3.5), the following solution up to )( 24xO  is obtained: 

),(
399168003628800362880
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         (3.6) 

 
where, according to Eq.( 2.3), 

 
)0()0( Yya ==                                (3.7) 

 
The constant a is evaluated from the second one of the transformed boundary conditions in Eq. 

(3.5) as follows: 
1.=a                                 (3.8) 
 
Substituting a into (3.6), we get the following series solution 

 

).(1050521.21075573.2
1075573.20000248016.0

000198413.000138889.000833333.0
0416667.0166667.05.01)(

24228207
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xxxxxy
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In Table 2, we report the absolute value of the errors of the differential transform method for 
22=n  together with the results given in (Lakestani and Dehghan, 2006) and the exact solutions. 
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Table 2. Exact solution and absolute errors for y(x) for Example 3.1 
 

x Exact solution Method of (Lakestani and Dehghan, 2006) Present method 

0.0 1.00000000 7103.1 −×  
6100.6 −×  

0.1 0.99004983 6109.5 −×  0.0 

0.2 0.96078944 6106.5 −×  0.0 

0.3 0.91393119 6102.5 −×  
7100.1 −×  

0.4 0.85214379 6102.2 −×  
7100.1 −×  

0.5 0.77880078 7104.4 −×  
8100.5 −×  

0.6 0.69767633 7100.4 −×  
8100.5 −×  

0.7 0.61262639 6108.1 −×  0.0 

0.8 0.52729242 6101.1 −×  0.0 

0.9 0.44485807 6100.4 −×  
7100.1 −×  

1.0 0.36787944 6103.2 −×  0.0 

 
Example 3.2 Consider the following nonlinear Neumann problem (Lakestani and Dehghan, 2006) 
with the boundary conditions by Eqs. (3.11) and (3.12): 

 
],1,0[),(2)( 3 ∈−=′′− xxyxy                         (3.10) 

 
,1)0( −=′y                           (3.11) 

 
.4/1)1( −=′y                             (3.12) 

 
The exact solution of this problem is 
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Taking the differential transform of both sides of Eq. (3.10), we obtain the following recurrence 
relation: 
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The boundary conditions given in Eqs.(3.11) and (3.12) can be transformed at 10 =x  as 
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kkkY       (3.15) Utilizing the recurrence relation in (3.14) and the 

first one of the transformed boundary conditions in (3.15), the following solution up to )( 21xO  is 
obtained: 
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   (3.16) 

 
where 

 
)0()0( Yya ==                            (3.17) 

 
The constant a is evaluated from the second one of the transformed boundary conditions in Eq. (3.15) 
as follows: 

0.5000023.=a                             (3.18) 
 

Substituting a into (3.16), we have series solution as follows: 
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).()1(1076864.4)1(1053726.9
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In Table 3, we report the absolute value of the errors of the differential transform method for 20=n  
together with the results given in (Lakestani and Dehghan, 2006) and the exact solutions. 
 
Table 3. Exact solution and absolute errors for y(x) for Example 3.2 

 
x Exact solution Method of (Lakestani and Dehghan, 2006) Present method 

0.0 1.00000000 6106.5 −×  
6101.5 −×  

0.1 0.99004983 5106.2 −×  
6100.4 −×  

0.2 0.96078944 5107.1 −×  
6100.4 −×  

0.3 0.91393119 5106.1 −×  
6100.3 −×  

0.4 0.85214379 5104.1 −×  
6100.3 −×  

0.5 0.77880078 5102.1 −×  
6100.2 −×  

0.6 0.69767633 5100.1 −×  
6100.3 −×  

0.7 0.61262639 6102.7 −×  
6104.2 −×  

0.8 0.52729242 6103.5 −×  
6103.2 −×  

0.9 0.44485807 6105.5 −×  
6103.2 −×  

1.0 0.36787944 6106.1 −×  
6103.2 −×  

 
Example 3.3. Consider the following linear Neumann problem(Lakestani and Dehghan, 2006) 

 
],1,0[,2)(4)( ∈−=′′− xxyxy                         (3.20) 

 
subject to the boundary conditions 

 
0)0( =′y ,                            (3.21) 

 
)2sin()1( =′y                                         (3.22) 

 
The exact solution of this problem is 

 
).(sin)( 2 xxy =                                        (3.23) 
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Using the transformational operations in Table 1 and by taking differential transform for the both sides 
of (3.20), we have 

 

.
)2)(1(
)(4)(2)2(
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kYkkY                         (3.24) 

 
By using (2.3), the boundary condition (3.21) becomes 

 
.0)1( =Y                            (3.25) 

 
By using (2.2), the boundary condition (3.22)  
becomes 
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Utulizing the recurrence relation in (3.24) and the transformed boundary condition given in Eq. 
(3.15), the following series solution up to 16-term is obtained: 
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where, according to Eq.( 2.3), 

 
)0()0( Yya ==                           (3.28) 

 
The constant a is evaluated from the transformed boundary condition given in (3.26) as follows: 
 

.1000283.2 10−×−=a                       (3.29) 
 

Substituting a into (3.27), we get the following solution: 
 

).(1056614.1
1039683.9102755.400014109.0

0031746.00444444.0333333.01000283.2)(

18169

14812610

864210

xOx
xxx

xxxxxy

+×−

×+×−+

−+−+×−=

−

−−

−

         (3.30) 

 
In Table 4, we compare the absolute values of the errors of the differential transform method for 

16=n  together with the results given in  
(Lakestani and Dehghan, 2006) and the exact solutions. 
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Table 4. Exact solution and absolute errors for y(x) for Example 3.3 
 

x Exact solution Method of (Lakestani and Dehghan, 2006) Present method 

0.0 0.000000000 8102.1 −×  0.0 

0.2 0.039469503 6106.5 −×  0.0 

0.4 0.151646645 6101.3 −×  0.0 

0.6 0.318821123 7102.9 −×  0.0 

0.8 0.514599761 7105.4 −×  0.0 

1.0 0.708073418 8108.1 −×  0.0 

 
Example 3.4 Consider the linear Neumann problem (Lakestani and Dehghan, 2006) 

 
],1,0[),()( ∈−=′′− xxyxy                          (3.31) 

 
subject to the boundary conditions 

0)0( =′y ,                             (3.32) 
 

)1sinh()1( =′y .                            (3.33) 
 

The exact solution of this problem is 
 

).cosh()( xxy =                             (3.34) 
 

The differential transform of Eq. (3.31) yields to 
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kYkY                                   (3.35) 

The boundary conditions are transformed to be: 
 

,0)1( =Y                             (3.36) 
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kkY                       (3.37) 

 
Using Eqs. (3.35) and (3.36), )(kY  is obtained up to 12=n  and then using the inverse transformation 
rule in Eq. (2.4), the following series solution is obtained: 
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where, according to Eq.( 2.3), 

 
)0()0( Yya ==                           (3.39) 
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The constant a is evaluated from the transformed boundary condition given in (3.37) as follows: 
 

.1=a                                  (3.40) 
 

Substituting a into (3.38), we get the following solution: 
 

).(1008768.21075573.2
0000248016.000138889.00416667.05.01)(

14129107

8642

xOxx
xxxxxy

+×+×+

++++=
−−

          (3.41) 

 
Numerical results for 12=n  with comparison to (Lakestani and Dehghan, 2006) and the exact  
solution (3.34) are given in Table 5. 

 
Table 5. Exact solution and absolute errors for y(x) for Example 3.4 

 
x Exact solution Method of (Lakestani and Dehghan, 2006) Present method 

0.0 1.0000000000 9103.2 −×  
10100.1 −×  

0.2 1.0200667556 6104.3 −×  0.0 

0.4 1.0810723718 6108.3 −×  0.0 

0.6 1.1854652182 6102.4 −×  0.0 

0.8 1.3374349463 6104.4 −×  0.0 

1.0 1.5430806348 9106.4 −×  
10100.2 −×  

 
CONCULUSION 

 
The differential transform method is used to solve a second-order  Neumann problem. The present 

method is computationally attractive and applications are demonstrated through illustrative examples. 
The results obtained show that this method can solve the problem effectively. 
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