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Özgür Taşdemir∗† and Fatih Karabacak‡

Abstract

We say an R-module M has the generalized summand intersection
property (briefly GSIP ), if the intersection of any two direct summands
is isomorphic to a direct summand. This is a generalization of SIP
modules. In this note, the characterization of this property over rings
and modules is investigated and some useful propositions obtained in
SIP modules are generalized to GSIP modules.
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1. INTRODUCTION

Throughout this paper all rings are associative with unity and R always de-
notes such a ring. Modules are unital and for an Abelian group M , we use MR to
denote a right R-module. For any terminology, the definition of which is not given
please see [2, 6, 13]. An R-module M has the summand intersection property
(briefly SIP ) if the intersection of any two direct summands is again a direct
summand. The definition of SIP was first given by Wilson [17] and this definition
together with its generalizations were later studied by many authors [1, 3, 12]. M
is said to have the strong summand intersection property (briefly SSIP ) if the
intersection of any number of direct summands is again a direct summand. A ring
R is called a right V -ring if every simple right R-module is injective. For any
R-module M , E(MR), End(MR) and r(X) (resp. r(x)) will denote the injective
hull of M , the ring of R-endomorphisms of M , and the right annihilator of a subset
X (resp. single element) of M in R, respectively. For any nonempty subset N
of M , N ≤ M , N ≤e M and N ≤d M will denote N is a submodule of M , N
is an essential submodule of M and N is a direct summand of M , respectively.
M ∼= N means that M is isomorphic to N . Recall that in a commutative ring
R, the ideal I is prime if ab ∈ I implies a ∈ I or b ∈ I [11, p.1]. A module M
is called a CS (or (C1)) module if every submodule of M is essential in a direct
summand of M . Recall that a module M satisfies (C11) if every submodule of
M has a complement which is a direct summand [14]. A submodule N of M is
fully invariant, if for every ϕ ∈ EndR(M), ϕ(N) ⊆ N . Recall that a module
M is called a (weak) duo module provided every (direct summand) submodule of
M is fully invariant. Fuchs [7] defines a module M to have the absolute direct
summand property (briefly ADS), if for every decomposition M = A ⊕ B of M
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and every relative complement C of A in M we have M = A ⊕ C. A module M
satisfies (C2) if a submodule A of M is isomorphic to a direct summand of M ,
then A is the direct summand of M . A module M satisfies (C3) if for any direct
summands A and B of M with A ∩ B = 0, A ⊕ B is a direct summand of M . A
module M is called a quasi-continuous module if M satisfies both (C1) and (C3),
and a continuous module if M satisfies both (C1) and (C2).

In this paper, we say a module M has the generalized summand intersection
property (briefly GSIP ), if the intersection of any two direct summands is iso-
morphic to a direct summand. A characterization of GSIP modules are provided
in Theorem 2.2 which state that an R-module M has the GSIP if and only if for
every pair of direct summands K and L with π : M −→ K, the projection map,
the kernel of the restricted map π|L is isomorphic to a direct summand. Another
characterization of GSIP modules is given in Theorem 2.3 which state that an
R-module M has the GSIP if and only if for every decomposition M = A ⊕ B
and every R-homomorphism φ from A to B, the kernel of φ is isomorphic to a
direct summand. Example 2.4 demonstrates that there is a Z-module which has
the GSIP but does not have the SIP. Example 2.5 shows that there is a module
family which has the GSIP but does not have the SIP. Two necessary conditions
for the equivalence of SIP and GSIP conditions are given in Proposition 2.7 and
Proposition 2.15 that if a module M is quasi-continuous or satisfies (C2), then
M has the SIP if and only if M has the GSIP. Naturally it is of interest to ex-
amine whether or not an algebraic notion is inherited by direct summands and
direct sums. It is shown in Example 2.16 that a direct sum of two modules having
the GSIP, may not have the GSIP. As an answer to this question, it is proved in
Proposition 2.18 that if A and B being two R-modules having the GSIP with the
property r(A) + r(B) = R, A⊕B has the GSIP. Also, it is proved that assuming
M = ⊕i∈IMi is a direct sum of fully invariant submodules Mi of M , then each Mi

has the GSIP if and only if the module M has the GSIP. It is proved in Proposition
2.15 that if M is a quasi-continuous module, then M has the GSIP if and only if
E(M) has the GSIP. A characterization of semisimple rings is given in Corollary
2.9 that a ring R is semisimple if and only if all R-modules have the GSIP if and
only if all injective R-modules have the GSIP. Furthermore, a characterization of
V-ring is provided in Theorem 2.21 that a ring R is a right V-ring if and only
if every finitely cogenerated R-module has the GSIP if and only if every finitely
copresented R-module has the GSIP. It is proved in Corollary 2.12 that over a
commutative Noetherian domain R, an injective R-module M is torsion-free if
and only if M ⊕M has the GSIP. At the end of the paper, in Example 2.24, it is
shown that the GSIP is not Morita invariant.

2. GSIP MODULES

2.1. Definition. An R-module M has the generalized summand intersection
property (briefly GSIP ) if the intersection of every pair of direct summands of M
is isomorphic to a direct summand of M . We say a ring R has the right GSIP if
the module RR has the GSIP i.e., for every pair of idempotents c, d in R there
exists e2 = e ∈ R such that cR ∩ dR ∼= eR.
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Clearly semisimple, indecomposable and uniform modules have the SIP. It is
well known that a module is weak duo if and only if its endomorphism ring is
Abelian. Moreover any module with an Abelian endomorphism has the SIP. Thus
(weak) duo modules have the SIP. Recall that, if a module M is CS and a polyform
module, then M has the SIP by [1, Lemma 11], and if M is injective and a prime
R-module, then M has the SIP from [8, Proposition 2.1], and if M is a projective
module over a hereditary ring, then M has the SIP by [17, Proposition 3(a)], and
if F is a free module over a principle ideal domain (PID), then F has the SIP by
[10]. It is obvious from the definitions of SIP and GSIP that if a module has the
SIP, then it has the GSIP. Thus, the above mentioned module families have the
GSIP.

2.2. Theorem. An R-module M has the GSIP if and only if for every pair of
direct summands K and L with π : M −→ K the projection map, the kernel of the
restricted map π|L is isomorphic to a direct summand of M .

Proof. Assume M is an R-module with the GSIP. Let π : M −→ K be the
projection map. For K ′ = Ker π, we get M = K ⊕K ′. Thus, Ker π|L = L ∩K ′

is isomorphic to a direct summand. Conversely, suppose that M has the stated
property. Let K, L be the direct summands of M . Then there exists a submodule
K ′ of M such that M = K ⊕K ′, and let ρ : M −→ K ′ be the projection map. It
follows that K ∩ L = Ker ρ|L is isomorphic to a direct summand. �

2.3. Theorem. An R-module M has the GSIP if and only if for every decompo-
sition M = A⊕B and every R-homomorphism φ from A to B, the kernel of φ is
isomorphic to a direct summand of M .

Proof. Assume M is an R-module with the GSIP. Let M = A ⊕ B and φ be an
R-homomorphism from A to B. Let C = {a + φ(a) | a ∈ A}. We want to show
that M = C ⊕ B. Let x ∈ M , then x = a + b where a ∈ A and b ∈ B. Now,
x = a+ φ(a)− φ(a) + b. But a+ φ(a) ∈ C and −φ(a) + b ∈ B. So, M = C + B.
Let us choose x ∈ C ∩ B. We can write x = a + φ(a) where a ∈ A and hence
a = x−φ(a) ∈ A∩B = 0. Therefore φ(a) = 0 which gives x = 0. So, M = C⊕B.
Since M has the GSIP, C ∩ A is isomorphic to a direct summand of M . It is a
straightforward matter to show that C ∩A = Ker φ. Hence, Ker φ is isomorphic
to a direct summand of M . To prove the converse, suppose that M = A⊕B has
the stated property. Let M = X ⊕ X1, M = Y ⊕ Y1 and let πX1

: M −→ X1

and πY : M −→ Y be the natural epimorphisms. Define σ = (πX1
oπY )|X . Notice

that σ acts from X to X1. Thus, there is a direct summand P of M such that
Ker σ ∼= P . It is easy to check that Ker σ = (X ∩ Y ) ⊕ (X ∩ Y1). Since X ∩ Y
is a direct summand of Ker σ, and Ker σ ∼= P , X ∩ Y is isomorphic to a direct
summand of P . Then, X ∩ Y is isomorphic to a direct summand of M . Thus, M
has the GSIP. �

The following two examples illustrate modules having the GSIP but not the
SIP.

2.4. Example. Let p be a prime number. Consider M = Zp⊕Zp2 as a Z-module.
It is clear that 0, M , 〈(0̄, 1̄)〉, 〈(1̄, 1̄)〉, 〈(1̄, 0̄)〉 and 〈(1̄, p̄)〉 are direct summands
of M . Only one of the intersections, namely 〈(0̄, 1̄)〉 ∩ 〈(1̄, 1̄)〉 = 〈(0̄, p̄)〉 is not a
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direct summand of M . Thus, MZ does not have the SIP. But this intersection is
isomorphic to direct summand 〈(1̄, 0̄)〉 of M . So, M has the GSIP.

2.5. Example. Let A be a commutative PID and R =

[
A A/xA
0 A

]
. Then the

following are true:

(i) if x = 0 then RR has the SIP.
(ii) if x 6= 0 and x 6= 1 then RR has the GSIP but not the SIP.

If x = 0 then R =

[
A A
0 A

]
. Routine calculations show that idempotents are[

0 0
0 0

]
,

[
1 0
0 1

]
,

[
0 r
0 1

]
and

[
1 r
0 0

]
, for all r ∈ A. Therefore, direct

summands are R, [0],

[
A A
0 0

]
and

[
0 rA

|
0 A

]
=

{[
0 ry
0 y

]
: y ∈ A

}
. It can

easily be checked that RR has the SIP.

Now, if x 6= 0 and x 6= 1 then idempotents are

[
0 0
0 0

]
,

[
1 0
0 1

]
,

[
0 r
0 1

]
and[

1 r
0 1

]
, for all r ∈ A/xA. Thus, the direct summands are R, [0],

[
A A/xA
0 0

]
and

[
0 rA

|
0 A

]
. Let r1, r2 ∈ A/xA and r1 6= r2. Only one of the intersections,

namely

[
0 r1A

|
0 A

]
∩

[
0 r2A

|
0 A

]
=

[
0 0
0 rA

]
is not a direct summand but it is

isomorphic to direct summand

[
0 0
0 1

]
.R =

[
0 0
0 A

]
. Hence RR has the GSIP

but not the SIP.

The next proposition is a consequence of [15, Lemma 5], but we will present a
proof below.

2.6. Proposition. A module M having the GSIP has the SIP if and only if for any
two direct summands A1 and A2 of M , with an R-isomorphism σ : A1 ∩A2 −→ P
such that P be a direct summand of M , then σ extends to some θ ∈ End(M).

Proof. Assume that a module M having the GSIP has the SIP. Let A1 and A2

be two direct summands of M and σ : A1 ∩ A2 −→ P be an R-isomorphism
where P be a direct summand of M . By assumption, M has the SIP. So, A1 ∩A2

is a direct summand of M . Then there exists a submodule B of M such that
M = (A1 ∩ A2) ⊕ B. Now, define θ : M −→ M by θ(a + b) = σ(a) where
a ∈ A1 ∩A2 and b ∈ B. Clearly, θ(a) = σ(a) for all a ∈ A1 ∩A2. So, θ|A1∩A2

= σ.
Conversely, M has the stated property. Let A1 and A2 be direct summands of
M . Since M has the GSIP, there exist a monomorphism σ : A1 ∩ A2 −→ M
such that σ(A1 ∩ A2) is a direct summand of M . By hypothesis, σ can be lifted
to a homomorphism θ : M −→ M . Let π : M −→ σ(A1 ∩ A2) denote the
canonical projection. Then ψ = πθ : M −→ σ(A1∩A2) is a homomorphism. Note
that ψ(x) = πθ(x) = πσ(x) = σ(x) for all x ∈ A1 ∩ A2. Let m ∈ M . Then
ψ(m) = σ(n) = ψ(n) for some n ∈ A1 ∩ A2 since σ is an isomorphism of A1 ∩ A2
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onto M . Then m− n ∈ Ker ψ. It follows that M = Ker ψ+ (A1 ∩A2). Now, let
z ∈ Ker ψ ∩ (A1 ∩A2). Then z ∈ A1 ∩A2 and σ(z) = ψ(z) = 0, so z = 0. Hence
M = Ker ψ ⊕ (A1 ∩ A2). Thus, A1 ∩ A2 is a direct summand of M . So, M has
the SIP. �

2.7. Proposition. If an R-module M satisfies (C2), then M has the SIP if and
only if M has the GSIP.

Proof. The necessity is clear. The inverse follows immediately from the definition
of the (C2) property. �

2.8. Corollary. Let M be an R-module. Then the following are equivalent:

(a) E(M) has the GSIP.
(b) For submodules A and B of M , the following equality holds:

E(A ∩B) = E(A) ∩ E(B).

Proof. Immediate by Proposition 2.7 and [16, Theorem 4.13]. �

2.9. Corollary. The following are equivalent for a ring R:

(a) R is semisimple.
(b) All R-modules have the GSIP.
(c) All injective R-modules have the GSIP.

Proof. Immediate by Proposition 2.7 and [17, Propoisition 3(b)]. �

2.10. Corollary. Let R be a commutative Noetherian ring. Then an injective
R-module M has the SSIP if and only if M has the GSIP.

Proof. Immediate by Proposition 2.7 and [17, Proposition 4]. �

2.11. Corollary. Let R be a commutative Noetherian domain. Then the following
are equivalent for an injective R-module M :

(a) M has the SSIP.
(b) M has the SIP.
(c) M has the GSIP.
(d) either (i) M is torsion-free.

or (ii) M is torsion and for any two distinct, indecomposable direct
summands A and B of M , Hom(A,B) = 0.

Proof. Equivalence of (a), (b) and (d) are proved in [17, Proposition 6]. (b)⇒ (c)
is clear. (c)⇒ (b) is a direct consequence of Proposition 2.7 since injective modules
satisfy (C2). �

2.12. Corollary. Let R be a commutative Noetherian domain and M be an in-
jective R-module. Then the following are equivalent:

(a) M is torsion-free.
(b) M ⊕M has the GSIP.
(c)

⊕
Λ

M has the GSIP for any index set Λ.

Proof. Immediate by Proposition 2.7 and [8, Theorem 3.8]. �
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2.13. Corollary. Let M be a module with S = End(M).
If M satisfies (C2), then M ⊕M has the GSIP if and only if S is a regular ring.

Proof. Immediate by Proposition 2.7 and [1, Theorem 29]. �

The following proposition generalizes [17, Lemma 2].

2.14. Proposition. Let R be a commutative Noetherian ring and M = M1⊕M2

with indecomposable submodules M1 and M2. Assume that M has the GSIP and
satisfies (C2), then either

(a) Hom(M1,M2) = 0 or
(b) M1 is isomorphic to M2 and there is some prime ideal A of R with

r(x) = A for every nonzero x ∈M1.

Proof. Assume that M has the stated property and let 0 6= α ∈ Hom(M1,M2).
Since M has the GSIP and satisfies (C2), M has the SIP from Proposition 2.7.
Then by [9, Proposition 1.4], Ker α is a direct summand of M1. Since M1 is an
indecomposable submodule and α 6= 0, we have Ker α = 0. So, α is a monomor-
phism. By [1, Lemma 19(1)], M = M1⊕M2 has the SSP . Thus, α(M1) is a direct
summand of M2 from [1, Theorem 8]. Since M2 is an indecomposable submodule,
α is onto and therefore M1 is isomorphic to M2.

It remains to show the condition on annihilators. Let x, y ∈M be nonzero and
suppose that there is some a ∈ r(x) with a 6∈ r(y). Define β : M1 −→ M2 by
β(m) = α(am) for m ∈M1. We see that x ∈ Ker β, so β is not a monomorphism.
Also y 6∈ Ker β, so β 6= 0. Since M1 ⊕ M2 has the GSIP and satisfies (C2),
M1⊕M2 has the SIP from Proposition 2.7. Thus, Ker β is not a direct summand,
contradicting [9, Proposition 1.4]. Thus, r(x) = r(y) for all nonzero x, y ∈ M1.
Then r(x) is a prime ideal follows immediately from [11, Theorem 6]. �

2.15. Proposition. Let M be a quasi-continuous module (or satisfies (C11) and
ADS property). Then the following are equivalent:

(a) M has the SIP.
(b) E(M) has the SIP.
(c) M has the SSIP.
(d) E(M) has the SSIP.
(e) M has the GSIP.
(f) E(M) has the GSIP.
(g) M is UC-module.
(h) E(M) is UC-module.

Proof. Equivalence of (a), (b), (c) and (d) are proved in [1, Proposition 18]. (a)⇔
(g) and (b)⇔ (h) are a result of [1, Lemma 17]. (a)⇒ (e) and (b)⇒ (f) are clear.
(f)⇒ (b) is a consequence of Proposition 2.7 since injective modules satisfy (C2).
(e) ⇒ (b) Assume M has the GSIP and let A and B be direct summands of
E(M). Then E(M) = A ⊕ A′, E(M) = B ⊕ B′ for some A′, B′ ≤ E(M) and
A = E(A) and B = E(B). By [13, Theorem 2.8], A ∩M and B ∩M are direct
summands of M . By assumption A∩B ∩M is isomorphic to a direct summand T
of M . By [13, Corollary 2.32], isomorphic submodules have isomorphic closures.
Closure of T is T and let the closure of A ∩B ∩M be N such that N ∼= T . Since
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A∩B∩M ≤e N , E(A∩B∩M) = E(N). Since M satisfies (C1), then N is direct
summand of M . Hence there exist an L submodule of M such that M = N ⊕ L.
Therefore E(M) = E(N) ⊕ E(L) = E(A ∩ B ∩M) ⊕ E(L). Since A ∩M ≤e A
and B ∩M ≤e B, A ∩ B ∩M ≤e A ∩ B. Hence E(M) = E(A ∩ B) ⊕ E(L).
Since A = E(A ∩ B) ⊕ (E(L) ∩ A) and B = E(A ∩ B) ⊕ (E(L) ∩ B), then
E(A ∩ B) ≤ A ∩ B ≤ E(A ∩ B) implies A ∩ B = E(A ∩ B) is a direct summand
of E(M). So, E(M) has the SIP.

Proof of the proposition is again routine in the case that M satisfies (C11) and
ADS property. Instead of giving a long proof of the proposition, we state that the
proof follows straightforwardly from [5, Proposition 1.3(2)]. �

The following example shows that direct sum of two modules having the GSIP,
may not have the GSIP.

2.16. Example. Consider Z4 as a Z-module. It is clear that Z4 is indecomposable
and hence, has the GSIP. Define f : Z4 −→ Z4 by f(x̄) = 2x̄. Then Ker f = 2Z4

is not isomorphic to a direct summand. Therefore by Theorem 2.3, (Z4 ⊕ Z4)Z
does not have the GSIP.

2.17. Proposition. [8, Proposition 3.9] Let M = M1 ⊕M2 be an R-module. If
r(M1)+r(M2) = R, then every submodule N of M can be written as N = N1⊕N2,
where N1 ≤M1 and N2 ≤M2.

Proposition 2.18 presents the condition under which the direct sum of modules
having the GSIP has the GSIP.

2.18. Proposition. If A and B are two R-modules having the GSIP such that
r(A) + r(B) = R, then A⊕B has the GSIP.

Proof. Let X and Y be two direct summands of A ⊕ B. By Proposition 2.17,
X = A1 ⊕ B1 and Y = A2 ⊕ B2, where A1 and A2 are submodules of A, B1 and
B2 are submodules of B. It is easy to show that A1 and A2 are direct summands
of A, B1 and B2 are direct summands of B. If A and B have the GSIP, then
A1 ∩ A2 is isomorphic to a direct summand of A and B1 ∩ B2 is isomorphic to a
direct summand of B. Therefore, (A1 ∩A2)⊕ (B1 ∩B2) is isomorphic to a direct
summand of A⊕B. Now (A1∩A2)⊕ (B1∩B2) = (A1⊕B1)∩ (A2⊕B2) = X ∩Y .
Thus X ∩ Y is isomorphic to a direct summand of A ⊕ B and hence, A ⊕ B has
the GSIP. �

To the best of authors’ knowledge, it is not yet known whether a direct summand
of a module having GSIP has the GSIP. Theorem 2.19 shows that a fully invariant
direct summand of a module having the GSIP inherits the property and this result
gives conditions under which the direct sum of modules having the GSIP has the
GSIP.

2.19. Theorem. Let M =
⊕

i∈I Mi be a direct sum of fully invariant submodules
Mi of M where I is an index set. Then Mi (∀i ∈ I) has the GSIP if and only if
M has the GSIP.

Proof. Assume that Mi has the GSIP. Let S be any direct summand of M . Since
Mi are fully invariant submodules of M , thus by [4, Lemma 1.1(3)] S =

⊕
(S∩Mi).
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Now let S, T be direct summands of M . So S ∩ T =
⊕

[(S ∩Mi) ∩ (T ∩Mi)].
Since each Mi has the GSIP, S ∩ T is isomorphic to a direct summand of M . To
prove the converse, suppose that M has the GSIP. Let A, B be direct summands
of Mi. Then A and B are direct summands of M . Since M has the GSIP, there
exists a direct summand K of M such that A ∩ B ∼= K. If we show K is a
direct summand of Mi, then the proof is complete. Let f : A ∩ B −→ K and
g : K −→ A ∩ B denote the isomorphisms. πK : M −→ K denote the canonical
projection and let iK : K −→ M denote inclusion. Then h = iK o f o g o πK is
an endomorphism of M . Because Mi is fully invariant in M , h(Mi) ⊆Mi, so that
f(A ∩ B) = K ⊆ Mi. Now, it is easy to see that K is a direct summand of Mi.
Thus Mi has the GSIP. �

2.20. Proposition. If M has the GSIP and f : M −→ N is an isomorphism,
then N has the GSIP.

Proof. Let K and L be direct summands of N . So there exist A and B which are
direct summands of M such that f(A) = K, f(B) = L. Since M has the GSIP,
A ∩B is isomorphic to some T which is a direct summand of M .

f(T ) ∼= f(A ∩B) = f(A) ∩ f(B) = K ∩ L
Since K ∩L ∼= f(T ) and f(T ) is a direct summand of N , it follows that N has the
GSIP. �

Let R be a ring. An R-module M is finitely cogenerated if and only if Soc(M)
is finitely generated and essential in M [18, 21.3(1)]. An R-module X is called a
finitely copresented module if (i) X is finitely cogenerated and (ii) in every exact
sequence 0 → X → L → N → 0 in Mod-R with L finitely cogenerated, N is also
finitely cogenerated. R is a right V -ring if and only if every finitely cogenerated R-
module is semisimple [18, 23.1] if and only if every finitely copresented R-module
is injective [18, 31.7].

2.21. Theorem. The following are equivalent for a ring R:

(a) R is a right V-ring.
(b) Every finitely cogenerated R-module has the GSIP.
(c) Every finitely copresented R-module has the GSIP.

Proof. (a)⇒ (b)⇒ (c) These are clear by [18, 23.1] and the definitions.
(c) ⇒ (a) Let M be a finitely copresented R-module. By [18, 30.1], E(M)
and E(M)/M are finitely cogenerated. Since E(M)/M is finitely cogenerated,
E(E(M)/M) is finitely cogenerated. Since any finitely cogenerated injective mod-
ule is finitely copresented, by (c) and [18, 21.4], E(M) ⊕ E(E(M)/M) has the
GSIP. Let f be a canonical epimorphism E(M) to E(M)/M and i be the inclu-
sion homomorphism from E(M)/M to E(E(M)/M). Since E(M)⊕E(E(M)/M)
has the GSIP, then Ker (iof) = Ker f = M isomorphic to a direct summand of
E(M)⊕ E(E(M)/M) from Theorem 2.3. Since a direct summand of an injective
module is an injective module, M is isomorphic to an injective module. Then M
is an injective module. By [18, 31.7], R is a right V-ring. �

2.22. Proposition. If a ring R satisfies the condition “Any direct sum of R-
modules having the GSIP has the GSIP”, then R is a right V -ring.
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Proof. Let M be a finitely cogenerated R-module. Then M is a direct sum of
indecomposable R-modules by [18, 21.3]. Since indecomposable modules have the
GSIP, then M has the GSIP by hypothesis. Then by Theorem 2.21, R is a right
V-ring. �

It is well known that a ring R is right Noetherian if and only if every direct
sum of injective right R-modules is injective [2, Proposition 18.13].

2.23. Proposition. The following are equivalent for a ring R:

(a) R is a right Noetherian ring with the property “Any direct sum of R-
modules having the GSIP has the GSIP”.

(b) R is semisimple.

Proof. (a) ⇒ (b) Let M be an injective R-module. Since R is a right Noetherian
ring, M is a direct sum of indecomposable modules. Since indecomposable modules
have the GSIP , M has the GSIP. By Corollary 2.9, R is semisimple.
(b) ⇒ (a) If R is semisimple, then every R-module is injective by [18, 20.7]. And
also every R-module has the GSIP by Corollary 2.9. Hence, (a) holds. �

The following example shows that right GSIP modules cannot be Morita in-
variant.

2.24. Example. Let us consider the ring Z4. Although Z4 has the GSIP, the ring

of 2×2 matrices over Z4 does not have GSIP. Let R =

[
Z4 Z4

Z4 Z4

]
, e =

[
0 2
0 1

]
,

and f =

[
0 0
0 1

]
. Then eR ∩ fR =

[
0 0
0 2

]
R, which is a nil right ideal. Since

R is a quasi-Frobenius ring, it satisfies (C2). Hence eR∩fR cannot be isomorphic
to an idempotent generated right ideal (i.e., a direct summand). Therefore the
right R-module R does not have the GSIP, so GSIP is not a Morita invariant.
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