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Abstract: Vectorization is a technique that replaces a set-valued optimization problem with a vector optimization
problem. In this work, by using an extension of the Gerstewitz function, a vectorizing function is defined to replace a
given set-valued optimization problem with respect to the set less order relation. Some properties of this function are
studied. Moreover, relationships between a set-valued optimization problem and a vector optimization problem, derived
via vectorization of this set-valued optimization problem, are examined. Furthermore, necessary and sufficient optimality
conditions are presented without any convexity assumption.
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1. Introduction
Set-valued optimization, a generalization of vector optimization, has become a popular subject since it has
many applications in game theory, engineering, control theory, finance, etc. [2, 4, 8, 13, 14, 23, 25, 26]. Optimal
solutions of set-valued optimization problems can be given with a vector or set optimization approach. In the
vector approach, the solutions that give efficient (minimal or maximal) points of image set of the objective
set-valued map are looked for. Some studies related to the vector approach are [1, 3, 5, 9, 10, 13, 16, 18, 24, 27].
In the set optimization approach [9, 11, 13, 20, 22], the solutions that give efficient sets of the image family of
the objective set-valued map are looked for. We consider the set optimization approach in this work.

Kuroiwa et al. [22] presented six order relations for sets. Then the set optimization approach was
introduced by Kuroiwa [21]. Later, Jahn and Ha defined new order relations and examined some of their
properties [12].

Scalarization and vectorization are some basic tools for solving set-valued optimization problems with
respect to the set optimization approach. Recently, some scalarization techniques obtained via the Gerstewitz
function have been widely used [6, 7, 9, 13].

Hernández and Rodríguez-Marín examined relationships between solution concepts for the vector ap-
proach and the set optimization approach with respect to the lower set less order relation. Moreover, they
defined an extension of the Gerstewitz function and obtained a nonconvex scalarization and optimality con-
ditions for set-valued optimization problems with respect to the lower set less order relation [9]. Köbis and
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Köbis obtained nonconvex scalarizations with respect to several well-known set order relations [15]. Xu and
Li presented a scalarization via oriented distance function and obtained optimality conditions for set-valued
optimization problems with respect to the upper set less order relation [28].

Vectorization is a tool for solving set-valued optimization problems by using vector-valued functions. This
method replaces a set-valued optimization problem with a vector optimization problem that can be solved by
using known methods such as numerical methods and scalarization [1, 5, 10, 24]. Solutions obtained via these
methods are also solutions of the set-valued optimization problem.

Vectorization based on total ordering cones was first introduced by Küçük et al. [17, 19]. They
showed that a set-valued optimization problem can be represented as a vector-valued problem. They defined a
vectorizing function via existence and uniqueness of a minimal element of cone-closed and cone-bounded sets
with respect to a total ordering cone. The value of this function at a point is a unique minimal element of the
value of the set-valued map at this point with respect to the total ordering cone.

Another vectorization technique was given by Jahn [11]. Jahn used linear approximations to define a
vectorizing function for the set-valued optimization problem with respect to the set less order relation [11].
Under some convexity assumptions he gave optimality conditions for set-valued optimization problems with
respect to the set less order relation.

Hernández and Rodríguez-Marín [9] introduced the function Gℓ
e(·, ·) to scalarize set-valued optimization

problems with respect to the lower set-less order relation ⪯ℓ . By using this function, a scalarization can be
obtained for set-valued optimization problems with respect to the upper set-less order relation ⪯u since there
is a relation between upper set-less and lower set-less orders as A ⪯ℓ B ⇔ −B ⪯u −A . In the present study,
we define a vectorizing function we(·, ·) by means of Gℓ

e(·, ·) since we consider set-valued optimization problems
with respect to the set less order relation ⪯s that involves upper and lower set-less orders. The details are given
in Section 3. The main advantage of the vectorization we(·, ·) is that it is simple to compute; we demonstrate
this in Example 3.7. Using arguments parallel to those given in [9, Section 4] we present necessary and sufficient
optimality conditions for minimal and weak minimal solutions in terms of the vectorization we(·, ·) for set-valued
optimization problems with respect to set-less order. Similar to [9], given results on optimality conditions do
not require convexity assumptions. The single variable Gerstewitz function is used for the first time in our
study while the two variable Gerstewitz function was used in [9]. Furthermore, some examples for convex and
nonconvex cases are used to demonstrate the usage of Gerstewitz vectorization.

The paper is organized as follows. In section 2, we recall basic concepts of the theory of vector optimization
and set-valued optimization. In section 3, we introduce the Gerstewitz vectorizing function and examine some
properties of this function. Moreover, relationships between this function and the set less order relation are
studied. In the last section, some optimality conditions are presented via Gerstewitz vectorization.

2. Preliminaries

Throughout this paper, X is any nonempty set and Y denotes a real topological linear space ordered by a
convex, closed, and pointed cone C ⊂ Y with nonempty interior. P0(Y ) is the notation of the family of all
nonempty subsets of Y . Given any set A ∈ P0(Y ) , int(A) and cl(A) are topological interior and the closure
of A , respectively. R2 is partially ordered by cone R2

+ .
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It is known that the cone C induces the following ordering relations on Y for y, y′ ∈ Y :

y ≤C y′ ⇐⇒ y′ − y ∈ C
y <C y′ ⇐⇒ y′ − y ∈ int(C).

Let A ⊂ Y and a0 ∈ A . a0 is a minimal (maximal) point of A with respect to cone C if A ∩ (a0 −C) = {a0}
(A ∩ (a0 + C) = {a0}). The set of all minimal (maximal) points of A is denoted by minA (maxA).
Similarly, a0 is a weak minimal (weak maximal) point of A with respect to cone C if A ∩ (a0 − int(C)) = ∅
(A ∩ (a0 + int(C)) = ∅) and the set of all weak minimal (weak maximal) points of A is denoted by W minA

(W maxA).
A vector optimization problem is defined by

(V OP )

{
min(max)f(x)
s.t. x ∈ X,

where f : X → Y is a vector valued function.

Definition 2.1 [10] An element x̄ ∈ X is called a minimal (maximal) solution of (V OP ) with respect to cone
C iff there is not any x ∈ X such that

f(x) ≤C f(x̄) (f(x̄) ≤C f(x)) and f(x) ̸= f(x̄).

Definition 2.2 [10] An element x̄ ∈ X is called a minimal (maximal) strongly solution of (V OP ) with respect
to cone C iff

f(x̄) ≤C f(x) (f(x) ≤C f(x̄)) for all x ∈ X.

If x̄ ∈ X is a strongly minimal (maximal) solution of (V OP ) , it is also a minimal (maximal) solution of (V OP )

[10].
It is said that A is C -closed iff A + C is a closed set; C -bounded iff for each neighborhood U of zero

in Y , there exists a positive real number t such that A ⊂ tU + C ; C -compact iff any cover of the form
{Uα + C | Uα are open , α ∈ I} admits a finite subcover. Every C -compact set is C -closed and C -bounded
[24].

A is called ∓C -bounded if A ∈ P0(Y ) is C -bounded and −C -bounded in Y ; if A is C -closed and
−C -closed, A is called ∓C -closed; if A is C -compact and −C -compact, A is called ∓C -compact set. A set
A ∈ P0(Y ) is called C -proper iff A + C ̸= Y and we denote by P0C(Y ) the family of all C -proper subsets
of Y [9]. A set A ∈ P0(Y ) is called −C -proper iff A − C ̸= Y and we denote by P0−C(Y ) the family of all
−C -proper subsets of Y [28]. P0

∓C(Y ) denotes the family of C -proper and −C -proper subsets of Y , namely,
P0
∓C(Y ) := P0C(Y ) ∩ P0−C(Y ) .

Let F : X ⇒ Y be a set-valued map and ‘‘N” denotes some property of a set in Y . F is called N

valued on X if F (x) has the property ‘‘N” for every x ∈ X . For example, if F (x) is closed for all x ∈ X , we
say that F is closed valued on X .

Let F : X ⇒ Y be a set-valued map and F (x) ̸= ∅ for all x ∈ X . The set-valued optimization problem
is defined by

(SOP )

{
min(max)F (x)
s.t. x ∈ X.
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According to the vector approach, we are looking for efficient points of the set F (X) =
∪
x∈X

F (x) to solve

(SOP ) , that is, x0 ∈ X is a solution of the set-valued optimization problem if

F (x0) ∩ min
∪
x∈X

F (x) ̸= ∅
(
F (x0) ∩ max

∪
x∈X

F (x) ̸= ∅
)
.

When (SOP ) is considered according to the vector approach, we denote the problem by (v−SOP ) . Similarly,
x0 ∈ X is a weak solution of (v − SOP ) if

F (x0) ∩W min
∪
x∈X

F (x) ̸= ∅
(
F (x0) ∩W max

∪
x∈X

F (x) ̸= ∅
)
.

The set optimization approach is based on a comparison among the values of set-valued map [21]. That
is, we are looking for efficient sets of the family F(X) = {F (x) | x ∈ X} to solve (SOP ) .

Definition 2.3 [9, 12, 22, 28] Let A,B ∈ P0(Y ) .

(i) lower set less order relation (⪯ℓ ) is defined by

A ⪯ℓ B ⇐⇒ B ⊂ A+ C

(ii) strict lower set less order relation (≺ℓ ) is defined by

A ≺ℓ B ⇐⇒ B ⊂ A+ int(C)

(iii) upper set less order relation (⪯u ) is defined by

A ⪯u B ⇐⇒ A ⊂ B − C

(iv) strict upper set less order relation (≺u ) is defined by

A ≺u B ⇐⇒ A ⊂ B − int(C)

(v) set less order relation (⪯s ) is defined by

A ⪯s B ⇐⇒ A ⪯ℓ B and A ⪯u B

(vi) strict set less order relation (≺s ) is defined by

A ≺s B ⇐⇒ A ≺ℓ B and A ≺u B.

Note that ⪯ℓ , ⪯u , and ⪯s order relations are reflexive and transitive on P0(Y ) . There is a relationship between
⪯ℓ and ⪯u : Let A,B ∈ P0(Y ) and we have

A ⪯ℓ B ⇐⇒ −B ⪯u −A. (1)
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Let ♯ ∈ {ℓ, u, s} . ∼♯ relation defined by

A ∼♯ B ⇐⇒ A ⪯♯ B and B ⪯♯ A

is an equivalence relation on P0(Y ) . [A]♯ denotes the equivalence class of A with respect to ∼♯ , where
A ∈ P0(Y ) [9, 12].

Note that
A ∈ [B]ℓ ⇐⇒ −A ∈ [−B]u (2)

where A,B ∈ P0(Y ) .
Now we recall the minimal, maximal, weak minimal, and weak maximal set of a family with respect to

order relations ⪯ℓ , ⪯u , and ⪯s .

Definition 2.4 [9, 11] Let S ⊂ P0(Y ) , A ∈ S , and ♯ ∈ {ℓ, u, s} be given.

(i) A is said to be a ♯-minimal set of S iff for any B ∈ S such that B ⪯♯ A implies A ⪯♯ B . The family
of ♯-minimal sets of S is denoted by ♯− minS .

(ii) A is said to be a ♯-maximal set of S iff for any B ∈ S such that A ⪯♯ B implies B ⪯♯ A . The family
of ♯-maximal sets of S is denoted by ♯− maxS .

Definition 2.5 [9, 11] Let S ⊂ P0(Y ) , A ∈ S , and ♯ ∈ {ℓ, u, s} be given.

(i) A is called a weak ♯-minimal set of S iff for any B ∈ S such that B ≺♯ A implies A ≺♯ B . The family
of weak ♯-minimal sets of S is denoted by ♯−W minS .

(ii) A is called a weak ♯-maximal set of S iff for any B ∈ S such that A ≺♯ B implies B ≺♯ A . The family
of weak ♯-maximal sets of S is denoted by ♯−W maxS .

Let ♯ ∈ {ℓ, u, s} and (SOP ) be given. According to the set optimization approach, if F (x0) is a ♯ -minimal
(♯ -maximal) set of F(X) , then x0 is called a solution of (SOP ) with respect to ⪯♯ . When (SOP ) is considered
with respect to ⪯♯ , we denote it by (♯− SOP ) . Similarly, if F (x0) is a weak ♯ -minimal (weak ♯ -maximal) set
of F(X) , then x0 is called a weak solution of (♯− SOP ) .

Note that if F is a vector-valued function, solution(s) of (v − SOP ) coincides with solution(s) of
(♯− SOP ) .

The following definition is related tot he monotonicity of a real valued function defined on P0(Y ) .

Definition 2.6 [9, 28] Let ♯ ∈ {ℓ, u} and S ⊂ P0(Y ) . A function T : P0(Y ) → R is called

(i) ♯-decreasing (♯-increasing) on S if A,B ∈ S and A ⪯♯ B implies T (B) ≤ T (A) (T (A) ≤ T (B)) ,

(ii) strictly ♯-decreasing (strictly ♯-increasing) on S if A,B ∈ S and A ≺♯ B implies T (B) < T (A)

(T (A) < T (B)) .
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Hernández and Rodríguez-Marín generalized the Gerstewitz function as

Ge(A,B) = sup
b∈B

{ϕe,A(b)} (3)

where e ∈ −int(C) and ϕe,A(y) = inf{t ∈ R | y ∈ te+A+C} [9] and examined some properties of this function
and obtained scalarization and optimality conditions for (ℓ − SOP ) . Throughout this paper, we use notation
Gℓ

e(·, ·) instead of Ge(·, ·) .
If we consider the nonconvex scalarization function ϕu

e,A(y) = sup{t ∈ R | y ∈ te+A−C} , then one can
obtain optimality conditions for (u−SOP ) similar to the conditions given by Hernández and Rodríguez-Marín
in [9]. In this function taking A = {0} and k = −e the equality ϕu

−k,{0}(y) = −zC,k(y) is obtained, where zC,k

is used to present nonconvex scalarization and some optimality conditions with respect to ⪯u , ⪯ℓ , and ⪯s by
Köbis and Köbis in [15].

3. Gerstewitz vectorizing function

In this section, a vectorizing function is defined to replace a (s − SOP ) with (V OP ) using the generalized
Gerstewitz function (3). Some properties including the monotonicity of this function are studied. Furthermore,
relationships between this function and the set less order relation are examined.

Now we give definition of monotonicity of a function from P0
∓C(Y ) to R2 .

Definition 3.1 Let A ⊂ P0
∓C(Y ) . A function T : P0

∓C(Y ) → R2 is called

(i) s-increasing (s-decreasing) on A if A,B ∈ A and A ⪯s B implies T (A) ≤R2
+
T (B) (T (B) ≤R2

+
T (A)) ,

(ii) strictly s-increasing (strictly s-decreasing) on A if A,B ∈ A and A ≺s B implies T (A) <R2
+

T (B) (T (B) <R2
+
T (A)) .

Now we introduce a vectorizing function that is the main tool to present a new vectorization.

Definition 3.2 Let A,B ∈ P0
∓C(Y ) and e ∈ −int(C) . The vectorizing function we : P0

∓C(Y )×P0
∓C(Y ) → R2

defined by
we(A,B) =

(
−Gℓ

e(A,B),−Gℓ
e(−B,−A)

)
(4)

is called the Gerstewitz vectorizing function.

Throughout this paper, in order to emphasize that the scalarization is adapted for ⪯u we simply use the
notation Gu

e (B,A) instead of −Gℓ
e(−B,−A) where A,B ∈ P0

∓C(Y ) . Then

we(A,B) =
(
−Gℓ

e(A,B), Gu
e (B,A)

)
for all A,B ∈ P0

∓C(Y ) .
Here some properties of we(·, ·) are stated.

Theorem 3.3 Let A,B ∈ P0
∓C(Y ) . Then the following statements are true:
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(i) If A,B are ∓C -bounded, then we(A,B) ∈ R2 ,

(ii) If A ∈ [B]s , then we(A, ·) = we(B, ·) and we(·, A) = we(·, B) ,

(iii) If A ∈ [B]s , then we(A,B) = we(B,A) ,

(iv) we(·, A) is s-decreasing on P0
∓C(Y ) ,

(v) we(A, ·) is s-increasing on P0
∓C(Y ) .

Proof

(i) Since A and B are C -bounded and −C -bounded, we have −Gℓ
e(A,B) ∈ R and Gu

e (B,A) ∈ R from
Theorem 3.6 of [9]. Therefore, we obtain we(A,B) ∈ R2 .

(ii) Since A ∈ [B]ℓ and A ∈ [B]u , we have −Gℓ
e(A, ·) = −Gℓ

e(B, ·) and Gu
e (·, A) = Gu

e (·, B) from Theorem
3.8 (i) and (iii) of [9], respectively. Therefore, we obtain we(A, ·) = we(B, ·) . Similarly, we get we(·, A) =

we(·, B) by using Theorem 3.8 (i) and (iii) of [9].

(iii) Since A ∈ [B]ℓ and A ∈ [B]u , we have −Gℓ
e(A,B) = −Gℓ

e(B,A) and Gu
e (A,B) = Gu

e (B,A) from
Theorem 3.8 (iv) of [9], respectively. Then we obtain we(A,B) = we(B,A) .

(iv) Assume that B,D ∈ P0∓C(Y ) and B ⪯s D . Then B ⪯ℓ D and B ⪯u D . We have −Gℓ
e(D,A) ≤

−Gℓ
e(B,A) and Gu

e (A,D) ≤ Gu
e (A,B) from Theorem 3.8 (v) and (ii) of [9], respectively. Then we have

we(D,A) ≤R2
+
we(B,A) . Therefore we(·, A) is s -decreasing on P0

∓C(Y ) .

(v) Assume that B,D ∈ P0∓C(Y ) and B ⪯s D . Then B ⪯ℓ D and B ⪯u D . We have −Gℓ
e(A,B) ≤

−Gℓ
e(A,D) and Gu

e (B,A) ≤ Gu
e (D,A) from Theorem 3.8 (ii) and (v) of [9], respectively. Then we have

we(A,B) ≤R2
+
we(A,D) . Therefore, we(A, ·) is s -increasing on P0

∓C(Y ) .
2

Theorem 3.4 Let A ∈ P0
∓C(Y ) be a ∓C -compact set. Then the following statements are true:

(i) we(·, A) is strictly s-decreasing on the family of ∓C -compact sets,

(ii) we(A, ·) is strictly s-increasing on the family of ∓C -compact sets.

Proof

(i) Assume that B,D ∈ P0
∓C(Y ) are ∓C -compact sets and B ≺s D . Then B ≺ℓ D and B ≺u D . We have

−Gℓ
e(D,A) < −Gℓ

e(B,A) and Gu
e (A,D) < Gu

e (A,B) from Theorem 3.9 (ii) and (i) of [9], respectively.
Hence, we obtain we(D,A) <R2

+
we(B,A) . Therefore, we(·, A) is strictly s -decreasing on the family of

∓C -compact sets.

(ii) This statement can be proved similar to (i) by using Theorem 3.9 (i) and (ii) of [9].

2

Now we examine relationships between the set less order relation and Gerstewitz vectorizing function.
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Under different assumptions a necessary and sufficient condition similar to (iii) of Theorem 3.5 was given
by means of zC,k in [15]. These results are similar because if k = −e then Gℓ

e(A,B) = sup
b∈B

inf
a∈A

zC,k(a− b) .

Theorem 3.5 Let A ∈ P0
∓C(Y ) be a ∓C -closed set. Then the following statements are true:

(i) we(A,A) = (0, 0) ,

(ii) If A ∈ [B]s , then we(A,B) = we(B,A) = (0, 0) ,

(iii) A ⪯s B if and only if (0, 0) ≤R2
+
we(A,B) .

Proof

(i) From Theorem 3.10 (i) of [9] we have −Gℓ
e(A,A) = 0 and Gu

e (A,A) = 0 . Hence, we obtain

we(A,A) = (−Gℓ
e(A,A), Gu

e (A,A)) = (0, 0).

(ii) Since A ∈ [B]ℓ and A ∈ [B]u , we have −Gℓ
e(A,B) = −Gℓ

e(B,A) = 0 and Gu
e (A,B) = Gu

e (B,A) = 0 from
Theorem 3.10 (ii) of [9], respectively. Therefore, we(A,B) = we(B,A) = (−Gℓ

e(A,B), Gu
e (B,A)) = (0, 0) .

(iii) (=⇒) Let A ⪯s B . Then A ⪯ℓ B and A ⪯u B . Since A ⪯ℓ B and A ⪯u B , we have −Gℓ
e(A,B) ≥ 0

and Gu
e (B,A) ≥ 0 from Theorem 3.10 (iii) of [9], respectively. Thus, we obtain (0, 0) ≤R2

+
we(A,B) .

(⇐=) Let (0, 0) ≤R2
+
we(A,B) . Then we have Gℓ

e(A,B) ≤ 0 and Gu
e (B,A) ≥ 0 . Hence, A ⪯ℓ B and

A ⪯u B from Theorem 3.10 (iii) of [9], respectively. Therefore, A ⪯s B .

2

Theorem 3.6 Let A,B ∈ P0
∓C(Y ) be ∓C -compact sets. Then

(0, 0) <R2
+
we(A,B) ⇐⇒ A ≺s B.

Proof (=⇒) Let (0, 0) <R2
+

we(A,B) . Then Gℓ
e(A,B) < 0 and Gu

e (B,A) > 0 . Since Gℓ
e(A,B) < 0 and

Gu
e (B,A) > 0 , we have A ≺ℓ B and A ≺u B from Corollary 3.11 (i) of [9], respectively. Hence, A ≺s B .

(⇐=) Let A ≺s B . Then A ≺ℓ B and A ≺u B . As A ≺ℓ B and A ≺u B , we have Gℓ
e(A,B) < 0 and

Gu
e (B,A) > 0 from Corollary 3.11 (i) of [9], respectively. Therefore, we obtain (0, 0) <R2

+
we(A,B) . 2

We define a vectorizing function ve : P0
∓C(Y ) → R2 as

ve(A) := we({0}, A) =
(
−Gℓ

e({0}, A), Gu
e (A, {0})

)
,

where e ∈ −int(C) in order to use the advantage of computation of a single variable function.
It can be seen that ve(·) is s -increasing on P0

∓C(Y ) and strictly s -increasing on the family of ∓C -
compact sets. Let A,B ∈ P0

∓C(Y ) . If A ∈ [B]s , then ve(A) = ve(B) .
By taking [11, Example 3.1] we demonstrate the calculations of we(·, ·) and ve(·) .
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Example 3.7 Let Y = R2 , C = R2
+ , and F : [−1, 1] ⇒ Y be defined as

F (x) :=
{
(y1, y2) ∈ R2 | (y1 − 2x2)2 + (y2 − 2x2)2 ≤ (x2 + 1)2

}
for all x ∈ [−1, 1] (Figure 1).

1 2 3 4 5− 1
− 1

1

2

3

4

5

O
x

y

F (0)

F (1
2
) = F (− 1

2
)

F (1) = F (− 1)

Figure 1. Some image sets of F .

First, we choose e =
(
−

√
2
2 ,−

√
2
2

)
to find we(F (x), F (0)) , and ve(F (x)) for an arbitrary x ∈ [−1, 1] .

Thus, we have to calculate Gℓ
e(F (x), F (0)) , and Gu

e (F (0), F (x)) . To find the value of

Gℓ
e(F (x), F (0)) = min{t ∈ R | F (0) ⊂ te+ F (x) + C}

we should evaluate the smallest t that allows te+F (x) +C to cover F (0) . This value means how long at least
F (x) + C should move along the direction e to cover the set F (0) . We achieve this smallest value clearly by
subtracting the difference of radii of F (x) and F (0) from the distance between the centers of these balls as seen
in Figure 2. Hence we get Gℓ

e(F (x), F (0)) = 2
√
2x2 − x2 .

O
x

y

F (0)

F (x)

e

(2x2
, 2x2)

x
2 + 1

(a) F (0), F (x) and e

O
x

y y

F (0)

F (x) + C

2 √2x2 − x
2

F (x)

(b) F (0), F (x), F (x) + C

O
x

F (0)

F (x)

(c) F (0), F (x) and (2 √ 2x2 −x2)e+ F (x) + C

(2 √2x2 − x2)e+ F (x) + C

Figure 2. The calculation of Gℓ
e(F (x), F (0)) geometrically.
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In a similar manner, to find

Gu
e (F (0), F (x)) = max{t ∈ R | F (x) ⊂ te+ F (0)− C}

we calculate the largest value of t that allows F (x) to be covered by te+F (0)−C . This largest value is clearly
negative of the distance between the vectors (3x2 + 1, 3x2 + 1) and (1, 1) as seen in Figure 3. Thus, we have

Gu
e (F (0), F (x)) = −3

√
2x2.

Finally, we have

we(F (x), F (0)) =
(
−Gℓ

e(F (x), F (0)), Gu
e (F (0), F (x))

)
=
(
(1− 2

√
2)x2,−3

√
2x2
)
.

(5)

O
x

y

F (0)

F (x)

e

(2x2
, 2x2)

x
2 + 1

(a) F (0), F (x) and e

O
x

y
F (x)

F (0) − C

3 √2x2

F (0)

(1, 1)

(b) F (0), F (x), F (0) − C

O
x

y

3 √2x2e+ F (0) − C

F (x)F (0)

(c) F (0), F (x) and 3 √2x2e+ F (0) − C

Figure 3. The calculation of Gu
e (F (0), F (x)) geometrically.

Now we will find ve(F (x)) for all x ∈ [−1, 1] . We need to calculate Gℓ
e({0}, F (x)) and Gu

e (F (x), {0})
for all x ∈ [−1, 1] . If C is moved along the direction e until it covers F (x) , then we get the value of

Gℓ
e({0}, F (x)) = min{t ∈ R | F (x) ⊂ te+ C} =

√
2(1− x2)

by subtracting the distance between the center of F (x) and
(
−

√
2
2 ,−

√
2
2

)
, and the radius of F (x) . As seen in

Figure 4, we get Gℓ
e({0}, F (x)) =

√
2(1− x2) .

To calculate Gu
e (F (x), {0}) , we can use the formula

Gu
e (F (x), {0}) = max{t ∈ R | 0 ∈ te+ F (x)− C}.

As seen in Figure 5, this value can be found by adding distance between the origin and center of F (x) , and the
radius of F (x) . Hence, we get Gu

e (F (x), {0}) = 2
√
2x2 + x2 + 1 .

Finally, we have
ve(F (x)) =

(
−Gℓ

e({0}, F (x)), Gu
e (F (x), {0})

)
=
(√

2(x2 − 1), 2
√
2x2 + x2 + 1

)
.

(6)

Consequently, the above calculations point out that by choosing a suitable e ∈ −int(C) we obtained we and
ve easily. However, the vectorizing function in [11, Example 3.1] was obtained by considering all vectors of the
polar cone of C .
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O
x

y

F (x)

C

− √ 2

2

−
√

2

2

e

(2x2
, 2x2)

x
2 + 1

(a) F (x), C and e

O
x

y

F (x)

√2(1 − x
2)

(b) F (x)

O
x

y√2(1 − x2)e + C

F (x)

(c) F (x) and √2(1 − x2)e + C

Figure 4. The calculation of Gℓ
e({0}, F (x)) geometrically.

O
x

y

F (x)

C

−
√2
2

− √2
2

e

(2x2
, 2x2)

x
2 + 1

(a) F (x), C and e

O
x

y

F (x) − C

2 √2x2 + x
2 + 1

F (x)

(b) F (x) and F (x) − C

O
x

y

(2 √2x2 + x2 + 1)e+ F (x) − C

F (x)

(c) F (x) and (2 √2x2 + x2 +

1)e+ F (x) − C

Figure 5. The calculation of Gu
e (F (x), {0}) geometrically.

4. Gerstewitz vectorization and optimality conditions for (s− SOP )

(s−SOP ) can be replaced by a vector optimization problem using the Gerstewitz vectorizing function. In this
section, results of the previous section are employed to give optimality conditions for (s − SOP ) without any
convexity assumption and relationships between solutions of (s−SOP ) and (V OP ) derived by the Gerstewitz
vectorizing function.

Theorem 4.1 Let F : X ⇒ Y be ∓C -closed and ∓C -bounded valued on X . x0 ∈ X is an s-maximal
(s-minimal) solution of (s − SOP ) if and only if there exists an s-increasing (s-decreasing) function T :

P0
∓C(Y ) → R2 satisfying the following statements:

(i) If x ∈ X and F (x) ∈ [F (x0)]
s , then T (F (x)) = (0, 0) ,

(ii) If x ∈ X and F (x) ̸∈ [F (x0)]
s , then (0, 0) ̸≤R2

+
T (F (x)) ,

(iii) If A ∈ P0
∓C(Y ) and F (x0) ⪯s A (A ⪯s F (x0)), then (0, 0) ≤R2

+
T (A) .

Proof We give the proof for maximality.
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(=⇒) Suppose that x0 is an s -maximal solution of (s−SOP ) . Let us fix any e ∈ −int(C) and consider
the function T : P0

∓C(Y ) → R2 defined as T (·) = we(F (x0), ·) = (−Gℓ
e(F (x0), ·), Gu

e (·, F (x0))) . By Theorem
3.3 (v) T is s -increasing on P0

∓C(Y ) . Now we show that T satisfies conditions (i)–(iii).

(i) Since F (x) ∈ [F (x0)]
s , we have T (F (x)) = we(F (x0), F (x)) = (0, 0) from Theorem 3.5 (ii).

(ii) Let F (x) ̸∈ [F (x0)]
s . Since x0 is an s -maximal solution of (s − SOP ) , we have F (x0) ̸⪯s F (x) . Thus,

from Theorem 3.5 (iii) we obtain

(0, 0) ̸≤R2
+
we(F (x0), F (x)) = T (F (x)).

(iii) Assume that F (x0) ⪯s A . By Theorem 3.5 (iii) we get

(0, 0) ≤R2
+
we(F (x0), A) = T (A).

(⇐=) Let (i)-(iii) be satisfied for some T : P0
∓C(Y ) → R2 which is s -increasing on P0

∓C(Y ) . Assume the
contrary that x0 is not an s -maximal solution of (s−SOP ) . Then there exists x′ ∈ X such that F (x0) ⪯s F (x′)

and F (x′) ̸⪯s F (x0) . Hence, F (x′) ̸∈ [F (x0)]
s . From (ii) we have

(0, 0) ̸≤R2
+
T (F (x′)). (7)

Since F (x0) ⪯s F (x′) , by (iii) we have (0, 0) ≤R2
+

T (F (x′)) . This contradicts (7). Therefore, x0 is an

s -maximal solution of (s− SOP ) .
In order to prove the minimality of x0 , it is enough to take the function T (·) = we(·, F (x0)) . 2

Theorem 4.2 Let F : X ⇒ Y be ∓C -compact valued on X . x0 ∈ X is a weak s-maximal (weak s-
minimal) solution of (s−SOP ) if and only if there exists a strictly s-increasing (strictly s-decreasing) function
T : P0

∓C(Y ) → R2 satisfying the following statements:

(i) If x ∈ X and F (x) ∈ [F (x0)]
s , then T (F (x)) = (0, 0) ,

(ii) If x ∈ X and F (x) ̸∈ [F (x0)]
s , then (0, 0) ̸<R2

+
T (F (x)) ,

(iii) If A ∈ P0
∓C(Y ) is a ∓C -compact set and F (x0) ≺s A (A ≺s F (x0)), then (0, 0) <R2

+
T (A) .

Proof The proof is similar to the proof of Theorem 4.2. 2

Theorem 4.3 Let F : X ⇒ Y be ∓C -closed, ∓C -bounded valued on X , and e ∈ −int(C) . x0 ∈ X is an
s-maximal (s-minimal) solution of (s− SOP ) if and only if x0 is a solution of the problem

(V OP s
w)

{
maxwe(F (x0), F (x))
s.t. x ∈ X

({
maxwe(F (x), F (x0))
s.t. x ∈ X

)
.

Proof (=⇒) It is a result of Theorem 4.1.
(⇐=) Let x0 be a solution of (V OP s

w) . Then we have (0, 0) ̸≤R2
+
we(F (x0), F (x)) for all x ∈ X , where

F (x) ̸∈ [F (x0)]
s . By Theorem 3.5 (iii) F (x0) ̸⪯s F (x) for all x ∈ X , where F (x) ̸∈ [F (x0)]

s . Thus, x0 is a
solution of (s− SOP ) . 2
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Theorem 4.4 Let F : X ⇒ Y be ∓C -compact valued on X and e ∈ −int(C) . x0 ∈ X is a weak s-maximal
(weak s-minimal) solution of (s− SOP ) if and only if x0 is a strong solution of the problem

(V OP s
w)

{
maxwe(F (x0), F (x))
s.t. x ∈ X

({
maxwe(F (x), F (x0))
s.t. x ∈ X

)
.

Proof

(=⇒) It is a result of Theorem 4.2.
(⇐=) It can be proved by using Theorem 3.6. 2

Corollary 4.5 Let F : X ⇒ Y be ∓C -closed and ∓C -bounded valued on X and

F (x) ⪯s F (y) or F (y) ⪯s F (x) for all x, y ∈ X. (8)

If x0 ∈ X is an s-maximal (s-minimal) solution of (s−SOP ) , then it is also a strong solution of the problem:

(V OP s
v )

{
max ve(F (x))
s.t. x ∈ X

({
min ve(F (x))
s.t. x ∈ X

)
.

Proof Let x0 be an s -maximal solution of (s − SOP ) . If F (x) ∈ [F (x0)]
s , then F (x) ⪯s F (x0) .

If F (x) ̸∈ [F (x0)]
s , then from s -maximality of x0 and (8) we have F (x) ⪯s F (x0) . Thus, we obtain

F (x) ⪯s F (x0) for all x ∈ X . Since ve(·) is s -increasing, we get ve(F (x)) ≤R2
+

ve(F (x0)) for all x ∈ X .

Therefore, x0 is a strong solution of (V OP s
v ) . 2

The following example shows that the condition (8) is necessary in Corollary 4.5.

Example 4.6 Let Y = R2 , C = R2
+ , X = {1, 2} , A = [1, 2] × {1} , B = {( 32 , 2)} , F : X ⇒ Y be defined as

F (1) = A , F (2) = B . Consider the problem

(s− SOP )

{
maxF (x)
s.t. x ∈ {1, 2}.

As seen in Figure 6, A ̸⪯s B and B ̸⪯s A , i.e. (8) is not satisfied for this problem. Since A ̸⪯s B and B ̸⪯s A ,
solutions of (s− SOP ) are 1 and 2.

Let us choose e = (−1,−1) . We have

ve(F (1)) = (−Gℓ
e({0}, F (1)), Gu

e (F (1), {0})) = (1, 1)

and

ve(F (2)) = (−Gℓ
e({0}, F (2)), Gu

e (F (2), {0})) =
(
3

2
,
3

2

)
.

However, the unique solution of the problem

(V OP s
v )

{
max ve(F (x))
s.t. x ∈ X.

is x0 = 2 . x1 = 1 is a solution of (s− SOP ) , but it cannot be obtained by Gerstewitz vectorization.
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1 2− 1− 2

− 1

− 2

1

2

O
x

y

A

B

Figure 6. Image sets of F .

Corollary 4.7 Let F : X ⇒ Y be ∓C -compact valued on X and

F (x) ≺s F (y) or F (y) ≺s F (x) for all x, y ∈ X. (9)

If x0 ∈ X is a weak s-maximal (weak s-minimal) solution of (s − SOP ) , then it is also a strong solution of
the problem

(V OP s
v )

{
max ve(F (x))
s.t x ∈ X

({
min ve(F (x))
s.t. x ∈ X

)
.

Proof It can be proved using strict monotonicity of ve(·) . 2

Theorem 4.8 Let F : X ⇒ Y be ∓C -closed, ∓C -bounded valued on X , and ve(F (x)) ̸= ve(F (y)) for all
x, y ∈ X , x ̸= y . If x0 ∈ X is a maximal (minimal) solution of (V OP s

v ) , then it is also an s-maximal
(s-minimal) solution of (s− SOP ) .

Proof Let x0 be a maximal solution of (V OP s
v ) . Then we have ve(F (x0)) ̸≤R2

+
ve(F (x)) for all x ∈ X such

that F (x) ̸∈ [F (x0)]
s . As ve(·) is s -increasing, we get Gℓ

e({0}, F (x)) ̸≤ Gℓ
e({0}, F (x0)) or Gu

e (F (x0), {0}) ̸≤
Gu

e (F (x), {0}) . Since Gℓ
e({0}, ·) and Gu

e (·, {0}) are ℓ -decreasing, we have F (x0) ̸⪯ℓ F (x) or F (x0) ̸⪯u F (x)

from (1), respectively. Hence, we obtain F (x0) ̸⪯s F (x) for all x ∈ X such that F (x) ̸∈ [F (x0)]
s . Therefore,

x0 is an s -maximal solution of (s− SOP ) . 2

We construct Gerstewitz vectorization for (s− SOP ) given in [11, Example 3.1] with a convex objective
map in the following example.

Example 4.9 Let Y = R2 , C = R2
+ , and F : [−1, 1] ⇒ Y be defined as

F (x) :=
{
(y1, y2) ∈ R2 | (y1 − 2x2)2 + (y2 − 2x2)2 ≤ (x2 + 1)2

}
for all x ∈ [−1, 1] . Consider
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(s− SOP )

{
minF (x)
s.t. x ∈ [−1, 1].

Because F (x) = F (−x) for all x ∈ [−1, 1] , we consider the problem

(s− SOP )

{
minF (x)
s.t. x ∈ [0, 1].

Let us choose e =
(
−

√
2
2 ,−

√
2
2

)
and consider the problem

(V OP s
v )

{
min ve(F (x))
s.t. x ∈ [0, 1].

As seen in Figure 1 and Figure 7, F : X ⇒ Y is ∓C -closed, ∓C -bounded valued on X , and
ve(F (x)) ̸= ve(F (y)) for all x ̸= y and x, y ∈ [0, 1] . From (6) we have

ve(F (x)) =
(√

2(x2 − 1), 2
√
2x2 + x2 + 1

)
.

O
x

y

v
e
(F (0))

v
e
(F (1))2 + 2 √2

− √2

Figure 7. Image set of ve(F (x)) .

Moreover, there is not any x ∈ (0, 1] such that

ve(F (x)) ≤R2
+
ve(F (0)).

Thus, x0 = 0 is the minimal solution of (V OP s
v ) . Therefore, x0 = 0 is a solution of (s− SOP ) by Theorem

4.8.

Now we construct Gerstewitz vectorization for a nonconvex (s− SOP ) .

1829



KARAMAN et al./Turk J Math

Example 4.10 Let Y = R2 , C = R2
+ , and F : [0, 2] ⇒ Y be defined as

F (x) :=

{
([x− 2, x]× [x− 2, x]) ∪ {(6 + x, 6 + x)} ;x ∈ [0, 2)
conv{(−5, 0), (6, 6)} ∪ conv{(0,−5), (6, 6)} ;x = 2.

Consider the problem

(s− SOP )

{
minF (x)
s.t. x ∈ [0, 2].

2 4 6 8− 2− 4− 6

− 2

− 4

− 6

2

4

6

8

O
x

y

F (2)

F (0)

F (1)

Figure 8. Some image sets of F .

Some image sets of F are given in Figure 8. Since F (x) ̸⪯ℓ F (2) , we have F (x) ̸⪯s F (2) for all
x ∈ [0, 2) . Then x0 = 2 is an s-minimal solution of (s − SOP ) . As F (x) ̸⪯ℓ F (0) , we get F (x) ̸⪯s F (0)

for all x ∈ (0, 2] . Hence, x0 = 0 is an s-minimal solution of (s − SOP ) . Let us choose x ∈ (0, 2) . We get
F (0) ⪯s F (x) and F (x) ̸⪯s F (0) . Thus, x is not an s-minimal solution of (s − SOP ) . Therefore, solutions
of (s− SOP ) are 0 and 2.

Since F (2) + C is not convex, vectorization in [11] could not be applied to this problem. However, we
can solve this problem via Gerstewitz vectorization.

Now we show that x0 = 2 is a solution of this problem by using Theorem 4.3.
Let us choose e = (−1,−1) and consider the problem

(V OP s
w)

{
maxwe(F (x), F (2))
s.t. x ∈ [0, 2].

1830



KARAMAN et al./Turk J Math

We get
we(F (x), F (2)) = (−Gℓ

e(F (x), F (2)), Gu
e (F (2), F (x)))

=

{
(−3− x,−x) ;x ̸= 2

(0, 0) ;x = 2.

− 3 O
x

y

w
e
(F (0), F (2)) w

e
(F (2), F (2))

-2

-5

Figure 9. Image set of we(F (x), F (2)) .

As seen in Figure 9 there is not any x ∈ [0, 2) such that

we(F (2), F (2)) ≤R2
+
we(F (x), F (2)).

Thus, x0 = 2 is the solution of (V OP s
w) . Therefore, x0 = 2 is a solution of (s− SOP ) by Theorem 4.3.

x0 = 0 is also a solution of (s− SOP ) . It can be shown similarly via Gerstewitz vectorization.

5. Conclusion
In this study, our aim is to replace a nonconvex set-valued optimization problem with respect to the set less
order relation with a vector optimization problem via the Gerstewitz vectorizing function. This can allow
us to use known solution techniques such as scalarization, duality, and derivative in vector optimization to
solve nonconvex set-valued optimization problems. For further studies, one can investigate the usage of these
techniques in set-valued optimization via different vectorizations.
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