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Abstract. In this paper an approximation method for the construction of
reachable sets of control systems with integral constraints on the control is
considered. It is assumed that the control system is non-linear with respect
to the phase state vector and is linear with respect to the control vector. The
admissible control functions are chosen from the ball centered at the origin
with radius µ0 in Lp, p > 1. The reachable set is replaced by the set which
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consists of finite number of points. The estimated accuracy of the Hausdorff
distance between the reachable set and the set which is approximately con-
structed is obtained.
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1 Introduction

Numerous publications have been devoted to the study of various properties of
the reachable sets of the control systems with geometrical constraints on control
(see, e.g. [1, 4, 5, 14, 15, 18] and references therein). In papers (see, [3, 8, 11, 17]
and references therein) the numerical methods for construction and estimation of
the reachable sets of the control systems with geometrical constraints on control
are considered. Control systems with integral constraints on control have been
investigated in [2, 6, 7, 9, 10, 12, 13, 16].

Consider a control system whose behavior is described by a differential
equation

ẋ(t) = f(t, x(t)) + B(t, x(t))u(t), (1.1)

where x ∈ Rn is the n-dimensional phase state vector, u is the r-dimensional
control vector, t ∈ [t0, θ] (t0 < θ < ∞) is the time, f(t, x) is an n-dimensional
vector function and B(t, x) is an (n × r)-dimensional matrix function.

It is assumed that the realizations u(t), t ∈ [t0, θ], of the control u are
restricted by the constraint∫ θ

t0

‖u(t)‖pdt ≤ µp
0, µ0 > 0, 1 < p < ∞, (1.2)

where ‖ · ‖ denotes the Euclidean norm. It is also assumed that the following
conditions are satisfied.

A. The functions f(t, x) and B(t, x) are continuous on (t, x) and for any
bounded set D ⊂ [t0, θ] × Rn there exist Lipschitz constants Li = Li(D) ∈
(0,∞) (i = 1, 2) such that

‖f(t, x∗) − f(t, x∗)‖ ≤ L1‖x∗ − x∗‖,

‖B(t, x∗) − B(t, x∗)‖ ≤ L2‖x∗ − x∗‖
for any (t, x∗) ∈ D, (t, x∗) ∈ D.

B. There exist constants γi ∈ (0,∞) (i = 1, 2) such that

‖f(t, x)‖ ≤ γ1(1 + ‖x‖), ‖B(t, x)‖ ≤ γ2(1 + ‖x‖)
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for every (t, x) ∈ [t0, θ]×Rn. Here, ‖B‖ is the Euclidean norm of matrix B.

Every function u(·) ∈ Lp([t0, θ];Rn), (1 < p < ∞), satisfying the inequality
(1.2) is said to be an admissible control. By the symbol U we denote the set of
all admissible control functions u(·).

Let u∗(·) ∈ U . The absolutely continuous function x∗(t) : [t0, θ] → Rn which
satisfies the equation ẋ∗(t) = f(t, x∗(t)) + B(t, x∗(t))u∗(t) a.e. in [t0, θ], is said
to be a solution of the system (1.1) generated by the admissible control function
u∗(·). By the symbol X(t0, X0) we denote the set of solutions of the system (1.1)
which are generated by all possible admissible control functions u(·) ∈ U and
satisfy initial condition x∗(t0) ∈ X0. We assume that

X(t; t0, X0) = {x(t) ∈ Rn : x(·) ∈ X(t0, X0)},

H(t0, X0) = {(t, x(t)) ∈ [t0, θ] × Rn : x(·) ∈ X(t0, X0)}.

X(t; t0, X0) is called the reachable set of the system (1.1) with initial set
(t0, X0) and constraint (1.2) at the instant of time t. The set H(t0, X0) is called
the integral funnel of the system (1.1) with constraint (1.2) and initial set (t0, X0).
It is obvious that the integral funnel can also be written as

H(t0, X0) = {(t, x) ∈ [t0, θ] × Rn : x ∈ X(t; t0, X0)}.

We consider approximation of the reachable set X(θ; t0, X0). To solve the
problem, the set of control functions U is replaced by the set of controls U1 which
possess some geometrical constraints along with integral ones (Section 2). In the
second step the set of controls U1 is narrowed down to the set of controls U2
which consists of piecewise constant controls (Section 3). In the third step the set
of controls is replaced by the set of controls U3 whose norms lie in uniform mesh of
the given interval (Section 4). In the fourth step the set of controls U3 is narrowed
down to the set of controls U4 which have finite number of control functions
(Section 5) and finally the solutions of the differential equation is replaced by
the Euler’s broken lines (Section 6). Note that each subsequent set of controls
is more convenient for approximation of the reachable set X(θ; t0, X0). In section
7 the estimated accuracy of the Hausdorff distance between the reachable set
X(θ; t0, X0) and the set which is constructed approximately and consists of finite
number of points, are given.

From now on it will be assumed that X0 ⊂ Rn is compact set. For the
following arguments, we will find the bounded cylinder D ⊂ [t0, θ] × Rn in which
the integral funnel H(t0, X0) is contained. Let

a = max {‖x‖ : x ∈ X0} ,

r0 = a + γ1(θ − t0) + µ0γ2(θ − t0)
p−1

p , (1.3)

r = r0[1 + (γ1(θ − t0) + µ0γ2(θ − t0)
p−1

p )eγ1(θ−t0)+µ0γ2(θ−t0)
p−1

p ], (1.4)
D = {(t, x) ∈ [t0, θ] × Rn : ‖x‖ ≤ r}. (1.5)
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Proposition 1.1 The inclusion H(t0, X0) ⊂ D holds where the cylinder D is
defined by relation (1.5).

The proof of the proposition can be obtained from the condition B.
Everywhere in the following arguments, we shall have in mind the cylinder

(1.5) as the set D.
Let σ > 0. Since X0 ⊂ Rn is a compact set then it has a finite σ-net. Let

Xσ
0 be a finite σ-net of X0 and

c∗ = L1(θ − t0) + L2µ0(θ − t0)
p−1

p . (1.6)

We denote by

α(E, F ) = max{sup
x∈F

d(x, E), sup
y∈E

d(y, F )}

the Hausdorff distance between the sets E, F ⊂ Rn where d(x, E) = inf
y∈E

‖x − y‖.

Let us formulate a proposition which characterizes the estimated accuracy
between the sets X(t; t0, X0) and X(t; t0, Xσ

0 ).

Proposition 1.2

α(X(t; t0, X0), X(t; t0, Xσ
0 )) ≤ σ(1 + c∗ec∗)

for all t ∈ [t0, θ].

The proof of the proposition follows from the condition A. Note, it is not
difficult to verify that the set X(t; t0, X0) is closed and it depends on t, t0, X0
and µ0 continuously.

2 Mixed constraints

Suppose λ ∈ (0,∞). By U1 we denote the set of all admissible control functions
u(·) ∈ U , which satisfy the geometrical constraint

‖u(t)‖ ≤ λ, t ∈ [t0, θ]. (2.1)

The set of all solutions of the system (1.1), satisfying initial condition x(t0) ∈
Xσ

0 and generated by all possible u(·) ∈ U1, is denoted by X1(t0, Xσ
0 ). We set

X1(t; t0, Xσ
0 ) = {x(t) ∈ Rn : x(·) ∈ X1(t0, Xσ

0 )}.

With the following proposition we will give the estimated accuracy of the
Hausdorff distance between the sets X(t; t0, Xσ

0 ) and X1(t; t0, Xσ
0 ).

Let

K1 = max
(t,x)∈D

‖B(t, x)‖, (2.2)

B1 = {x ∈ Rn : ‖x‖ ≤ 1} .
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Proposition 2.1

α(X(t; t0, Xσ
0 ), X1(t; t0, Xσ

0 )) ≤ K1
2µp

0

λp−1 (1 + c∗ec∗)

for all t ∈ [t0, θ] where c∗ is defined by (1.6).

Proof. Since U1 ⊂ U then

X1(t; t0, Xσ
0 ) ⊂ X(t; t0, Xσ

0 ) (2.3)

for every t ∈ [t0, θ]. Choose an arbitrary x(·) ∈ X(t0, Xσ
0 ). Then there exist

x0 ∈ Xσ
0 and u(·) ∈ U such that

x(t) = x0 +
∫ t

t0

f(τ, x(τ)) + B(τ, x(τ))u(τ)dτ

for all t ∈ [t0, θ]. Let us define the control function

u∗(t) =

{
u(t) if ‖u(t)‖ ≤ λ,

λ u(t)
‖u(t)‖ if ‖u(t)‖ > λ

where t ∈ [t0, θ]. It can be shown that u∗(·) ∈ U1. Let x∗(·) : [t0, θ] → Rn be
the solution of the system (1.1) with initial condition x∗(t0) = x0, generated by
control function u∗(·). Then x∗(·) ∈ X1(t0, Xσ

0 ) and taking into consideration the
condition A, we obtain that

‖x(t) − x∗(t)‖ ≤
∫ t

t0

(L1 + L2‖u(τ)‖)‖x(τ) − x∗(τ)‖dτ

+K1

∫ t

t0

‖u(τ) − u∗(τ)‖dτ

(2.4)

for every t ∈ [t0, θ] where K1 is defined by (2.2).
Let us set Ωt = {τ ∈ [t0, t] : ‖u(τ)‖ > λ}. Then, [t0, t]\Ωt = {τ ∈ [t0, t] :

‖u(τ)‖ ≤ λ} and by definition of u∗(·), ‖u(τ) − u∗(τ)‖ = 0 when τ ∈ [t0, t]\Ωt.
We also have the inequality

µp
0 ≥

∫ t

t0

‖u(τ)‖pdτ ≥
∫

Ωt

‖u(τ)‖pdτ

≥
∫

Ωt

λpdτ ≥ λpµ(Ωt),

from which it follows that

µ(Ωt) ≤ µp
0

λp
. (2.5)
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Here µ(Ωt) is the Lebesgue measure of the set Ωt. Using (2.5), Hölder’s and
Minkovski’s inequalities we obtain∫ t

t0

‖u(τ) − u∗(τ)‖dτ =
∫

Ωt

‖u(τ) − u∗(τ)‖dτ

≤ (µ (Ωt))
p−1

p

[(∫
Ωt

‖u(τ)‖pdτ

) 1
p

+
(∫

Ωt

‖u∗(τ)‖pdτ

) 1
p

]

≤
(

µp
0

λp

) p−1
p

[µ0 + µ0] =
2µp

0

λp−1 . (2.6)

Hence, by virtue of (2.4) and (2.6) we obtain

‖x(t) − x∗(t)‖ ≤ K1
2µp

0

λp−1 +
∫ t

t0

(L1 + L2‖u(τ)‖)‖x(τ) − x∗(τ)‖dτ.

By the Gronwall’s lemma it follows from here that

‖x(t) − x∗(t)‖ ≤ K1
2µp

0

λp−1 (1 + c∗ec∗), t ∈ [t0, θ] (2.7)

where the constant c∗ is defined by the relation (1.6). Since x(·) ∈ X(t0, Xσ
0 ) is

an arbitrary solution, we have from (2.7) that

X(t; t0, Xσ
0 ) ⊂ X1(t; t0, Xσ

0 ) + K1
2µp

0

λp−1 (1 + c∗ec∗)B1, t ∈ [t0, θ]. (2.8)

The inclusions (2.3) and (2.8) complete the proof. �

It follows from the Proposition 2.1 that

α(X(t; t0, Xσ
0 ), X1(t; t0, Xσ

0 )) → 0 as λ → ∞.

3 Piecewise constant controls

Now we will define the new class of controls which consists of piecewise-constant
controls on uniform partition of the interval [t0, θ].

Let Γ = {t0, t1, . . . , tN = θ} be uniform partition of the interval [t0, θ] such
that

ti+1 − ti =
θ − t0

N
= ∆, i = 0, 1, . . . , N − 1.

Let

U2 = {u(·) ∈ U1 : u(t) = ui ∀ t ∈ [ti, ti+1), i = 0, 1, . . . , N − 1}.
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By the symbol X2(t0, Xσ
0 ) we denote the set of solutions of the system (1.1)

which are generated by all possible u(·) ∈ U2 and satisfy initial condition x(t0) ∈
Xσ

0 . Now we set

X2(t; t0, Xσ
0 ) = {x(t) ∈ Rn : x(·) ∈ X2(t0, Xσ

0 )}.

Assume that

K2 = max
(t,x)∈D

‖f(t, x)‖, (3.1)

ϕ(∆) = K2∆ + K1µ0∆
p−1

p . (3.2)

We formulate an auxiliary proposition which will be used in following
arguments.

Proposition 3.1 The inequality

‖x(t) − x(ti)‖ ≤ ϕ(∆)

holds for every x(·) ∈ X2(t0, Xσ
0 ), t ∈ [ti, ti+1] and i = 0, 1, . . . , N − 1.

Let us set

ω∗(∆) = max
|t−τ |≤∆,‖x−y‖≤∆

‖B(t, x) − B(τ, y)‖, (t, x) ∈ D, (τ, y) ∈ D, (3.3)

ξ(∆) = 2µ0ω
∗(ϕ(∆))(θ − t0)

p−1
p + 2µ0K1∆

p−1
p . (3.4)

Now we give a proposition characterizing the Hausdorff distance between
the sets X1(t; t0, Xσ

0 ) and X2(t; t0, Xσ
0 ).

Proposition 3.2 The inequality

α(X1(t; t0, Xσ
0 ), X2(t; t0, Xσ

0 )) ≤ ξ(∆)(1 + c∗ec∗)

holds for all t ∈ [t0, θ].
Here the constant c∗ is defined by relation (1.6).

Proof. Let us choose an arbitrary x(·) ∈ X1(t0, Xσ
0 ). Then, there exist x0 ∈ Xσ

0
and u(·) ∈ U1 such that

x(t) = x0 +
∫ t

t0

f(τ, x(τ)) + B(τ, x(τ))u(τ)dτ

for all t ∈ [t0, θ].
Now we define a new control u∗(·) using u(·) by the following equality

u∗(t) =
1
∆

∫ ti+1

ti

u(τ)dτ, t ∈ [ti, ti+1).
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It is not difficult to prove that u∗(·) ∈ U2. Let x∗(·) be the solution of the
system (1.1) with initial condition x(t0) = x0, generated by the control u∗(·).
Then x∗(·) ∈ X2(t0, Xσ

0 ) and taking into account the condition A we obtain

‖x(t) − x∗(t)‖ ≤
∫ t

t0

(L1 + L2‖u(τ)‖)‖x(τ) − x∗(τ)‖dτ

+
∥∥∥∥∫ t

t0

B(τ, x∗(τ))(u(τ) − u∗(τ))dτ

∥∥∥∥ (3.5)

for all t ∈ [t0, θ]. Since t ∈ [t0, θ], then there exists k = 0, 1, 2, . . . , N −1 such that
t ∈ [tk, tk+1) or t = tN = θ. Therefore,∫ t

t0

B(τ, x∗(τ))(u(τ) − u∗(τ))dτ

=
k−1∑
i=0

∫ ti+1

ti

B(τ, x∗(τ))(u(τ) − u∗(τ))dτ

+
∫ t

tk

B(τ, x∗(τ))(u(τ) − u∗(τ))dτ (3.6)

holds. On the other hand, by the definition of u∗(·) we have∫ ti+1

ti

(u(τ) − u∗(τ))dτ = 0

and consequently∫ ti+1

ti

B(τ, x∗(τ))(u(τ) − u∗(τ))dτ

=
∫ ti+1

ti

[B(τ, x∗(τ)) − B(ti, x∗(ti))](u(τ) − u∗(τ))dτ (3.7)

is verified. Since x∗(·) ∈ X2(t0, Xσ
0 ), then according to Proposition 3.1 we have

that

‖x∗(t) − x∗(ti)‖ ≤ ϕ(∆) (3.8)

for every t ∈ [ti, ti+1) where ϕ(∆) is defined by relation (3.2) and ϕ(∆) tends to
zero as ∆ → 0.

With no loss of generality we assume that ∆ ≤ ϕ(∆). Then it follows from
(3.3) and (3.8) that ∫ ti+1

ti

‖B(τ, x∗(τ)) − B(ti, x∗(ti))‖‖u(τ) − u∗(τ)‖dτ

≤ ω∗(ϕ(∆))
∫ ti+1

ti

‖u(τ) − u∗(τ)‖dτ
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holds. Consequently, applying Hölder’s and Minkowski’s inequalities we obtain
that

k−1∑
i=0

∫ ti+1

ti

‖B(τ, x∗(τ))(u(τ) − u∗(τ))‖dτ

≤
k−1∑
i=0

ω∗(ϕ(∆))
∫ ti+1

ti

‖(u(τ) − u∗(τ))‖dτ ≤ 2µ0ω
∗(ϕ(∆))(tk − t0)

p−1
p , (3.9)

∫ t

tk

‖B(τ, x∗(τ))(u(τ) − u∗(τ))‖dτ ≤ 2µ0K1∆
p−1

p . (3.10)

From (3.6), (3.7), (3.9) and (3.10) we conclude that∥∥∥∥∫ t

t0

B(τ, x∗(τ))(u(τ) − u∗(τ))dτ

∥∥∥∥ ≤ ξ(∆), (3.11)

where ξ(∆) is defined by relation (3.4). Then, we have from (3.5) and (3.11) that

‖x(t) − x∗(t)‖ ≤
∫ t

t0

(L1 + L2‖u(τ)‖)‖x(τ) − x∗(τ)‖dτ + ξ(∆)

holds for all t ∈ [t0, θ]. Finally, using Gronwall’s lemma and the last inequality
we get

‖x(t) − x∗(t)‖ ≤ ξ(∆)(1 + c∗ec∗) (3.12)

for all t ∈ [t0, θ] where c∗ > 0 is defined by (1.6). Since x(·) ∈ X1(t0, Xσ
0 ) is an

arbitrary solution, it follows from (3.12) that

X1(t; t0, Xσ
0 ) ⊂ X2(t; t0, Xσ

0 ) + ξ(∆)(1 + c∗ec∗)B1. (3.13)

Since U2 ⊂ U1, then (3.13) completes the proof. �

We have from the Proposition 3.2 that

α(X1(t; t0, Xσ
0 ), X2(t; t0, Xσ

0 )) → 0 as ∆ → 0.

4 Piecewise constant controls with norms from
uniform partition

Let Γ∗ = {y0 = 0, y1, . . . , yR = λ} be uniform partition of the interval [0, λ] such
that

yj+1 − yj =
λ

R
= ∆∗; j = 0, 1, 2, . . . , R − 1.
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Let

U3 = {u(·) ∈ U2 : ‖u(t)‖ = yji
∈ Γ∗ ∀t ∈ [ti, ti+1) , i = 0, 1, . . . , N − 1} .

So, we narrow down the set of control functions U2 to U3 which consists
of piecewise constant controls and the norms of which lie in a defined uniform
partition Γ∗.

By the symbol X3(t0, Xσ
0 ) we denote the set of all solutions of the system

(1.1), which are generated by all possible u(·) ∈ U3 and satisfy initial condition
x(t0) ∈ Xσ

0 . We set

X3(t; t0, Xσ
0 ) = {x(t) ∈ Rn : x(·) ∈ X3(t0, Xσ

0 )}.

Let u(·) ∈ U3. Then, ‖u(t)‖ = yji for every t ∈ [ti, ti+1) where yji ∈ Γ∗ for
any i = 0, 1, . . . , N − 1. Since the control function u(·) ∈ U3 satisfy the constraint
(1.2) then we obtain the following inequality

N−1∑
i=0

∫ ti+1

ti

‖u(τ)‖pdτ = ∆
N−1∑
i=0

yp
ji

≤ µp
0

hence,

N−1∑
i=0

yp
ji

≤ µp
0

∆
. (4.1)

Therefore, for control functions u(·) ∈ U3 we have to use the constraint (4.1)
instead of constraint (1.2).

Proposition 4.1 The inequality

α(X2(t; t0, Xσ
0 ), X3(t; t0, Xσ

0 )) ≤ K1∆∗(θ − t0)(1 + c∗ec∗)

holds for all t ∈ [t0, θ].
The constants K1 and c∗ are defined by relations (2.2) and (1.6) respectively.

Proof. Let x(·) ∈ X2(t0, Xσ
0 ) be an arbitrarily chosen solution. Then, there exist

x0 ∈ Xσ
0 and u(·) ∈ U2 such that

x(t) = x0 +
∫ t

t0

f(τ, x(τ)) + B(τ, x(τ))u(τ)dτ

for all t ∈ [t0, θ].
Since u(·) ∈ U2 then, u(t) = ui for all t ∈ [ti, ti+1) and ‖ui‖ ≤ λ for each

i = 0, 1, ..., N − 1. Let us define the new control function u∗(·), setting

u∗(t) =
{

yji

ui

‖ui‖ if 0 < ‖ui‖ < λ,

ui if ‖ui‖ = 0 or ‖ui‖ = λ
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where t ∈ [ti, ti+1), i = 0, 1, . . . N −1. Here yji
∈ Γ∗ is such that ‖ui‖ ∈ [yji , yji+1).

One can verify that u∗(·) ∈ U3 and the inequality

‖u(t) − u∗(t)‖ ≤ ∆∗ (4.2)

holds for every t ∈ [t0, θ]. Suppose x∗(·) is the solution of the system (1.1) gener-
ated by control function u∗(·) which satisfies initial condition x∗(t0) = x0. Then,
x∗(·) ∈ X3(t0, Xσ

0 ) and by virtue of condition A and (4.2) we obtain

‖x(t) − x∗(t)‖ ≤ K1∆∗(θ − t0) +
∫ t

t0

(L1 + L2‖u(τ)‖)‖x(τ) − x∗(τ)‖dτ

for all t ∈ [t0, θ] where K1 is defined by (2.2). Now using Gronwall’s lemma and
Hölder’s inequality we get

‖x(t) − x∗(t)‖ ≤ K1∆∗(θ − t0)(1 + c∗ec∗)

for all t ∈ [t0, θ] where c∗ is defined by relation (1.6). It means that the inclusion

X2(t; t0, Xσ
0 ) ⊂ X3(t; t0, Xσ

0 ) + [K1∆∗(θ − t0)(1 + c∗ec∗)]B1 (4.3)

holds for every t ∈ [t0, θ]. Since U3 ⊂ U2, then (4.3) completes the proof of
proposition. �

It follows from the Proposition 4.1 that

α(X2(t; t0, Xσ
0 ), X3(t; t0, Xσ

0 )) → 0 as ∆∗ → 0.

5 Finite number of control functions

Let S = {u ∈ Rr : ‖u‖ = 1} be the unit sphere of the space Rr, δ > 0 and
Γ̃ = {s0, s1, . . . , sp} be a finite δ-net of S.

We now define the set of control functions U4, which consists of finite number
of control functions, setting

U4 = {u(·) ∈ U3 :

u(t) = yji
sli , t ∈ [ti, ti+1), yji

∈ Γ∗, sli ∈ Γ̃, i = 0, ..., N − 1}.

We denote by symbol X4(t0, Xσ
0 ) the set of all solutions of the system (1.1),

which are generated by the class of controls U4 and satisfy initial condition x(t0) ∈
Xσ

0 . Let

X4(t; t0, Xσ
0 ) = {x(t) ∈ Rn : x(·) ∈ X4(t0, Xσ

0 )},

where t ∈ [t0, θ]. Since Xσ
0 is a finite σ-net of X0, the set of control functions

U4 consists of finite number of control functions, therefore the set X4(t; t0, Xσ
0 )

includes finite number of points.
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Proposition 5.1 The following inequality holds

α(X3(t; t0, Xσ
0 ), X4(t; t0, Xσ

0 )) ≤ K1δλ(θ − t0)(1 + c∗ec∗)

for all t ∈ [t0, θ].
The positive constants K1 and c∗ are defined by relations (1.6) and (2.2)

respectively.

Proof. Let us choose an arbitrary x(·) ∈ X3(t0, Xσ
0 ). Then, there exist x0 ∈ Xσ

0
and u(·) ∈ U3 such that

x(t) = x0 +
∫ t

t0

f(τ, x(τ)) + B(τ, x(τ))u(τ)dτ

for all t ∈ [t0, θ].
Since u(·) ∈ U3 then, by the definition of U3, u(·) can be written as

u(t) = yjibli , yji ∈ Γ∗, bli ∈ S

for all t ∈ [ti, ti+1) (i = 0, 1, ..., N − 1).
By virtue of the definition of the δ-net, for each bli ∈ S there exists sli ∈ Γ̃

such that ‖ bli − sli ‖≤ δ. Let

u∗(t) = yji
sli , yji

∈ Γ∗, sli ∈ Γ̃, t ∈ [ti, ti+1), i = 0, 1, . . . , N − 1.

It is obvious that u∗(·) ∈ U4 and the inequality

‖u(t) − u∗(t)‖ ≤ δλ (5.1)

holds for all t ∈ [t0, θ].
Suppose x∗(·) is the solution of the system (1.1) generated by the control

function u∗(·) ∈ U4, which satisfies initial condition x(t0) = x0. Then, by virtue
of condition A and inequality (5.1) we have that

‖x(t) − x∗(t)‖ ≤
∫ t

t0

(L1 + L2‖u(τ)‖)‖x(τ) − x∗(τ)‖dτ +
∫ t

t0

K1δλdτ

for all t ∈ [t0, θ]. Then, applying Gronwall’s lemma we obtain

‖x(t) − x∗(t)‖ ≤ K1δλ(θ − t0)(1 + c∗ec∗), t ∈ [t0, θ].

Thus,

X3(t; t0, Xσ
0 ) ⊂ X4(t; t0, Xσ

0 ) + [K1δλ(θ − t0)(1 + c∗ec∗)]B1 (5.2)

for every t ∈ [t0, θ]. Since U4 ⊂ U3, from (5.2) we complete the proof. �

We obtain from Proposition 5.1 that for every ε > 0 and λ > 0 there exist
δ > 0 such that

α(X3(t; t0, Xσ
0 ), X4(t; t0, Xσ

0 )) ≤ ε.



Vol. 14, 2007 The approximation of reachable sets 69

6 Euler’s method

Now we will approximately calculate the set X4(θ; t0, Xσ
0 ). Same arguments and

estimates are valid for the general case X4(t; t0, Xσ
0 ), t ∈ [t0, θ].

We will construct the Euler’s broken line

z(t) = z(ti) + (t − ti) [f(ti, z(ti)) + B(ti, z(ti))u(ti)] ,
z(t0) = x(t0) = x0 ∈ Xσ

0 , t ∈ [ti, ti+1), i = 0, 1, ..., N − 1,

which corresponds to solution x(·) of the system (1.1), generated by a control
function u(·) ∈ U4, where x(t0) = x0. We will denote by the symbol Z(θ; t0, Xσ

0 )
the set of values of z(θ) of the Euler’s broken lines, generated by all possible
controls of U4 from all initial positions x0 ∈ Xσ

0 .
The values of z(θ) ∈ Z(θ; t0, Xσ

0 ) can be calculated by the following recursive
formula

z(ti+1) = z(ti) + ∆[f(ti, z(ti)) + B(ti, z(ti))yji
sli ],

z(t0) = x0 ∈ Xσ
0 , yji ∈ Γ∗, sli ∈ Γ̃, i = 0, 1, ..., N − 1, (6.1)

where the numbers yji
∈ Γ∗ satisfy the inequality (4.1). Assume

K∗(∆) = max
|τ−t|≤∆, ‖y−x‖≤∆

‖f(τ, y) − f(t, x)‖, (τ, y) ∈ D, (t, x) ∈ D,

η∗(λ, ∆) = K∗(ϕ(∆)) + λω∗(ϕ(∆)), (6.2)

η(λ, ∆) = ∆η∗(λ, ∆), L(λ) = L1 + L2λ,

g(λ) = (θ − t0)eL(λ)(θ−t0). (6.3)

The functions ϕ(∆) and ω∗(∆) are defined by relations (3.2) and (3.3)
respectively.

Proposition 6.1 The inequality

α(X4(θ; t0, Xσ
0 ), Z(θ; t0, Xσ

0 )) ≤ g(λ)η∗(λ, ∆)

holds.

Proof. Let x(·) be an arbitrary solution of the system (1.1), generated by the
control function u(·) ∈ U4 which satisfies initial condition x(t0) = x0 ∈ Xσ

0 where
u(t) = yjisli as t ∈ [ti, ti+1), yji ∈ Γ∗, sli ∈ Γ̃, i = 0, 1, . . . , N − 1.
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Suppose ε1 = ‖x(t1) − z(t1)‖. Then according to the Proposition 6.1 and
(6.1), the inequality

ε1 ≤
∫ t1

t0

‖f(τ, x(τ)) − f(t0, x(t0))‖dτ

+
∫ t1

t0

‖B(τ, x(τ)) − B(t0, x(t0))‖ ‖yj0sl0‖dτ (6.4)

≤
∫ t1

t0

K∗(ϕ(∆))dτ +
∫ t1

t0

λω∗(ϕ(∆))dτ = ∆η∗(λ, ∆) = η(λ, ∆)

holds.
Now, let ε2 = ‖x(t2) − z(t2)‖. Then it follows from (6.1), (6.4) and

Proposition 3.1 that

‖x(t2) − z(t2)‖ ≤ ‖x(t1) − z(t1)‖ + ‖ ∫ t2
t1

[f(τ, x(τ)) + B(τ, x(τ))yj1s�1 ] dτ

−∆[f(t1, z(t1)) + B(t1, z(t1))yj1s�1 ]‖
≤ η(λ, ∆) +

∫ t2
t1

‖f(τ, x(τ)) − f(t1, z(t1))‖dτ

+λ
∫ t2

t1
‖B(τ, x(τ)) − B(t1, z(t1))‖dτ

≤ η(λ, ∆) +
∫ t2

t1
‖f(τ, x(τ)) − f(t1, x(t1))‖dτ

+
∫ t2

t1
‖f(t1, x(t1)) − f(t1, z(t1))‖dτ

+λ
(∫ t2

t1
‖B(τ, x(τ)) − B(t1, x(t1))‖dτ +

∫ t2
t1

‖B(t1, x(t1)) − B(t1, z(t1))‖dτ
)

≤ η(λ, ∆) +
∫ t2

t1
K∗(ϕ(∆))dτ + L1

∫ t2
t1

‖x(t1) − z(t1)‖dτ

+λ
(∫ t2

t1
ω∗(ϕ(∆))dτ + L2

∫ t2
t1

‖x(t1) − z(t1)‖dτ
)

≤ η(λ, ∆) + ∆K∗(ϕ(∆)) + L1∆η(λ, ∆) + λ [∆ω∗(ϕ(∆)) + L2∆η(λ, ∆)] .

Since η(λ, ∆) = ∆η∗(λ, ∆) = ∆ [K∗(ϕ(∆)) + λω∗(ϕ(∆))] , L(λ) = L1 + λL2
and 1 + L(λ)∆ ≤ exp(L(λ)∆), we get

‖x(t2) − z(t2)‖ ≤ η(λ, ∆) + η(λ, ∆) + L1∆η(λ, ∆) + λL2∆η(λ, ∆)
= η(λ, ∆) + η(λ, ∆)(1 + L1∆ + λL2∆)
= η(λ, ∆) + η(λ, ∆)(1 + L(λ)∆)
≤ η(λ, ∆) + η(λ, ∆) exp(L(λ)∆).

Similarly, the estimation

ε3 ≤ η(λ, ∆)eL(λ)(∆+∆) + η(λ, ∆)eL(λ)∆ + η(λ, ∆)

holds for ε3 = ‖x(t3) − z(t3)‖.
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Finally, for εN = ‖x(tN ) − z(tN )‖ = ‖x(θ) − z(θ)‖, we obtain

εN ≤ eL(λ)(θ−t0)
N−1∑
i=0

η(λ, ∆) = g(λ)η∗(λ, ∆).

This completes the proof. �

It follows from Proposition 6.1 that for every ε > 0 and λ > 0 there exist
∆ > 0 such that

α(X4(θ; t0, Xσ
0 ), Z(θ; t0, Xσ

0 )) ≤ ε.

7 Main result

From Propositions 1.2, 2.1, 3.2, 4.1, 5.1 and 6.1 we obtain the validity of the fol-
lowing theorem which gives evaluated accuracy of Hausdorff distance between the
reachable set X(θ; t0, X0) of the system (1.1) generated by the control functions
u(·) ∈ U and the set Z(θ; t0, Xσ

0 ) which consists of finite number of points.

Theorem 7.1 The estimation

α(X(θ; t0, X0), Z(θ; t0, Xσ
0 )) ≤ σ(1 + c∗ec∗) + K1

2µp
0

λp−1 (1 + c∗ec∗)

+ξ(∆)(1 + c∗ec∗) + K1∆∗(θ − t0)(1 + c∗ec∗)
+K1δλ(θ − t0)(1 + c∗ec∗) + g(λ)η∗(λ, ∆)

holds where c∗, K1, ξ(∆), η∗(λ, ∆) and g(λ) are defined by relations (1.6), (2.2),
(3.4), (6.2) and (6.3) respectively.

Note that if the system (1.1) is autonomous i.e., if the functions (t, x) →
f(t, x) and (t, x) → B(t, x) do not depend on t then

ξ(∆) = 2µ0L2ϕ(∆)(θ − t0)
p−1

p + 2µ0K1∆
p−1

p ,

η∗(λ, ∆) = (L1 + λL2) ϕ(∆),

where ϕ(∆) is defined by (3.2).
The validity of the following corollary follows from Theorem 7.1.

Corollary 7.2 For any ε > 0 there exist σ > 0, λ > 0, ∆ > 0, ∆∗ > 0, δ > 0
such that

α(X(θ; t0, X0), Z(θ; t0, Xσ
0 )) ≤ ε.
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