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Abstract: We study almost contact metric structures induced by 2-fold vector cross products on manifolds with G2

structures. We get some results on possible classes of almost contact metric structures. Finally, we give examples.
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1. Introduction

A recent research area in geometry is the relation between manifolds with structure group G2 and almost contact

metric manifolds. A manifold with G2 structure has a particular 3-form globally defined on its tangent bundle.

Such manifolds were classified into sixteen classes by Fernández and Gray in [9] according to the properties of

the covariant derivative of the 3-form.

On an almost contact metric manifold, there exists a global 2-form and the properties of the covariant

derivative of this 2-form yield 212 classes of almost contact metric manifolds [3, 7].

Recently Matzeu and Munteanu constructed almost contact metric structures induced by the 2-fold vector

cross product on some classes of manifolds with G2 structures admitting a globally defined nonzero vector field

such as parallelizable 7-dimensional manifolds and orientable hypersurfaces of R8 [10]. Arikan et al. proved the

existence of almost contact metric structures on manifolds with G2 structures [4]. Todd studied almost contact

metric structures on manifolds with parallel G2 structures [12].

Our aim is to study almost contact metric structures on manifolds with arbitrary G2 structures. We

eliminate some classes that almost contact metric structures induced from a G2 structure may belong to

according to properties of the characteristic vector field of the almost contact metric structure. In particular,

we also investigate the possible classes of almost contact metric structures on manifolds with nearly parallel G2

structures. In addition, we give examples of almost contact metric structures on manifolds with G2 structures

induced by the 2-fold vector cross product.

2. Preliminaries

Consider R7 with the standard basis {e1, ..., e7} . The fundamental 3-form on R7 is defined as

φ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356,
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where {e1, ..., e7} is the dual basis of the standard basis and eijk = ei ∧ ej ∧ ek . Then the compact, simple, and

simply connected 14-dimensional Lie group G2 is

G2 := {f ∈ GL(7,R) | f∗φ0 = φ0}.

A manifold with G2 structure is a 7-dimensional oriented manifold whose structure group reduces to the group

G2 . In this case, there exists a global 3-form φ on M such that for all p ∈ M , (TpM,φp) ∼= (R7, φ0). This

3-form is called the fundamental 3-form or the G2 structure on M and gives a Riemannian metric g , a volume

form, and a 2-fold vector cross product P on M defined by

φ(x, y, z) = g(P (x, y), z) (2.1)

for all vector fields x, y on M [6].

Manifolds (M, g) with G2 structure φ were classified according to properties of the covariant derivative

of the fundamental 3-form. The space

W = {α ∈ (R7)∗ ⊗ Λ3(R7)∗|α(x, y ∧ z ∧ P (y, z)) = 0 ∀x, y, z ∈ R7}

of tensors having the same symmetry properties as the covariant derivative of φ was given, and then this space

was decomposed into four G2 -irreducible subspaces using the representation of the group G2 on W . Since

(∇φ)p∈Wp={α∈T ∗
pM ⊗ Λ3(T ∗

pM)|α(x, y∧ z∧ P (y, z))=0 ∀x, y, z∈TpM}

and there are 16 invariant subspaces of Wp , each subspace corresponds to a different class of manifolds with

G2 structure. For example, the class P , in which the covariant derivative of φ is zero, is the class of manifolds

with parallel G2 structure. A manifold in this class is sometimes called a G2 manifold. W1 corresponds to

the class of nearly parallel manifolds, which are manifolds with G2 structure φ satisfying dφ = k ∗ φ for some

constant k [9].

Let M2n+1 be a differentiable manifold of dimension 2n+ 1. If there is a (1, 1) tensor field ϕ , a vector

field ξ , and a 1-form η on M satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

then M is said to have an almost contact structure (ϕ, ξ, η). A manifold with an almost contact structure is

called an almost contact manifold.

If in addition to an almost contact structure (ϕ, ξ, η), M also admits a Riemannian metric g such that

g(ϕ(x), ϕ(y)) = g(x, y)− η(x)η(y)

for all vector fields x, y , then M is an almost contact metric manifold with the almost contact metric structure

(ϕ, ξ, η, g). The Riemannian metric g is called a compatible metric. The 2-form Φ defined by

Φ(x, y) = g(x, ϕ(y))

for all vector fields x, y is called the fundamental 2-form of the almost contact metric manifold (M,ϕ, ξ, η, g).
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In [7], a classification of almost contact metric manifolds was obtained via the study of the covariant

derivative of the fundamental 2-form. Let (ξ, η, g) be an almost contact metric structure on R2n+1 . A space

C =
{
α ∈ ⊗0

3R2n+1|α(x, y, z) = −α(x, z, y) = −α(x, ϕy, ϕz)

+η(y)α(x, ξ, z) + η(z)α(x, y, ξ)}

having the same symmetries as the covariant derivative of the fundamental 2-form was given. First this space

was written as a direct sum of three subspaces,

D1 = {α ∈ C|α(ξ, x, y) = α(x, ξ, y) = 0}, (2.2)

D2 = {α ∈ C|α(x, y, z) = η(x)α(ξ, y, z) + η(y)α(x, ξ, z) + η(z)α(x, y, ξ)}, (2.3)

and
C12 = {α ∈ C|α(x, y, z) = η(x)η(y)α(ξ, ξ, z) + η(x)η(z)α(ξ, y, ξ)}, (2.4)

and then D1 , D2 were decomposed into U(n)×1 irreducible components C1, . . . , C4 and C5, . . . , C11 , respectively.
Thus, there are 212 invariant subspaces given by all possible combinations of the twelve subspaces C1, . . . , C12 ,
each corresponding to a class of almost contact metric manifolds. For example, the trivial class such that

∇Φ = 0 corresponds to the class of cosymplectic [5] (called co-Kähler by some authors) manifolds, C1 , is the

class of nearly-K-cosymplectic manifolds, etc.

In the classification of Chinea and Gonzales, it was shown that the space of quadratic invariants of C is

generated by the following 18 elements:

i1(α) =
∑
i,j,k

α(ei, ej , ek)
2 i2(α) =

∑
i,j,k

α(ei, ej , ek)α(ej , ei, ek)

i3(α) =
∑
i,j,k

α(ei, ej , ek)α(ϕei, ϕej , ek) i4(α) =
∑
i,j,k

α(ei, ei, ek)α(ej , ej , ek)

i5(α) =
∑
j,k

α(ξ, ej , ek)
2 i6(α) =

∑
i,k

α(ei, ξ, ek)
2

i7(α) =
∑
j,k

α(ξ, ej , ek)α(ej , ξ, ek) i8(α) =
∑
i,j

α(ei, ej , ξ)α(ej , ei, ξ)

i9(α) =
∑
i,j

α(ei, ej , ξ)α(ϕei, ϕej , ξ) i10(α) =
∑
i,j

α(ei, ei, ξ)α(ej , ej , ξ)

i11(α) =
∑
i,j

α(ei, ej , ξ)α(ej , ϕei, ξ) i12(α) =
∑
i,j

α(ei, ej , ξ)α(ϕej , ϕei, ξ)

i13(α) =
∑
j,k

α(ξ, ej , ek)α(ϕej , ξ, ek) i14(α) =
∑
i,j

α(ei, ϕei, ξ)α(ej , ϕej , ξ)

i15(α) =
∑
i,j

α(ei, ϕei, ξ)α(ej , ej , ξ) i16(α) =
∑
k

α(ξ, ξ, ek)
2

i17(α) =
∑
i,k

α(ei, ei, ek)α(ξ, ξ, ek) i18(α) =
∑
i,k

α(ei, ei, ϕek)α(ξ, ξ, ek)

where {e1, e2, ..., e2n, ξ} is a local orthonormal basis. The following relations among quadratic invariants were

also expressed for manifolds having dimensions ≥ 7, where α ∈ C and A = {1, 2, 3, 4, 5, 7, 11, 13, 15, 16, 17, 18} :
C1 :i1(α) = −i2(α) = −i3(α) = ||α||2, im(α) = 0 (m ≥ 4).

C2 :i1(α) = 2i2(α) = −i3(α) = ||α||2, im(α) = 0 (m ≥ 4).

C3 :i1(α) = i3(α) = ||α||2, i2(α) = im(α) = 0 (m ≥ 4).

C4 :i1(α) = i3(α) =
n

(n−1)2 i4(α) =
n

(n−1)2

2n∑
k

c212(α)(ek),
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i2(α) = im(α) = 0 (m > 4).

C5 :i6(α) = −i8(α) = i9(α) = −i12(α) =
1
2n i14(α),

i10(α) = im(α) = 0 (m ∈ A).

C6 :i6(α) = i8(α) = i9(α) = i12(α) =
1
2n i10(α),

i14(α) = im(α) = 0 (m ∈ A).

C7 :i6(α) = i8(α) = i9(α) = −i12(α) =
||α||2

2 ,

i10(α) = i14(α) = im(α) = 0 (m ∈ A).

C8 :i6(α) = −i8(α) = i9(α) = −i12(α) =
||α||2

2 ,

i10(α) = i14(α) = im(α) = 0 (m ∈ A).

C9 :i6(α) = i8(α) = −i9(α) = −i12(α) =
||α||2

2 ,

i10(α) = i14(α) = im(α) = 0 (m ∈ A).

C10 :i6(α) = −i8(α) = −i9(α) = i12(α) =
||α||2

2 ,

i10(α) = i14(α) = im(α) = 0 (m ∈ A).

C11 :i5(α) = ||α||2, im(α) = 0 (m ̸= 5).

C12 :i16(α) = ||α||2, im(α) = 0 (m ̸= 16).

For details, refer to [7].

We give below the most studied classes of almost contact metric structures as the direct sum of spaces

Ci :
| C |= the class of cosymplectic manifolds.

C1 = the class of nearly-K-cosymplectic manifolds.

C2 ⊕ C9 = the class of almost cosymplectic manifolds.

C5 = the class of β -Kenmotsu manifolds.

C6 = the class of α -Sasakian manifolds.

C5 ⊕ C6 = the class of trans-Sasakian manifolds.

C6 ⊕ C7 = the class of quasi-Sasakian manifolds.

C3 ⊕ C7 ⊕ C8 = the class of semi-cosymplectic and normal manifolds.

C1 ⊕ C5 ⊕ C6 = the class of nearly trans-Sasakian manifolds.

C1 ⊕ C2 ⊕ C9 ⊕ C10 = the class of quasi-K-cosymplectic manifolds.

C3 ⊕ C4 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8 = the class of normal manifolds.

D1 ⊕ C5 ⊕ C6 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 = the class of almost-K-contact manifolds.

C1 ⊕ C2 ⊕ C3 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 ⊕ C11 = the class of semi-cosymplectic manifolds.

Note that the class C12 is not contained in the class of semi-cosymplectic manifolds [11].

Let (M, g) be a 7-dimensional Riemannian manifold with G2 structure φ and the associated 2-fold vector

cross product P , and let ξ be a nowhere zero vector field of unit length on M . Then for

ϕ(x) := P (ξ, x) η(x) := g(ξ, x),
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(ϕ, ξ, η, g) is an almost contact metric structure on M [4, 10]. Throughout this study, (ϕ, ξ, η, g) will denote

the almost contact metric structure (a.c.m.s.) induced by the G2 structure φ with the cross product P on

M and Φ will denote the fundamental 2-form of the a.c.m.s. In addition, all vector fields are considered to be

smooth.

3. Almost contact metric structures obtained from G2 structures

Let M be a manifold with G2 structure φ and ξ a nowhere zero unit vector field on M , and let (ϕ, ξ, η, g) be

the a.c.m.s. with the fundamental form Φ induced by the G2 structure φ .

If ∇φ = 0, then it can be seen that ∇Φ = 0 if and only if ∇ξ = 0 [2, 12].

If ξ is a Killing vector field on a manifold with any G2 structure, then

dη(x, y) =
1

2
{(∇xη)(y)− (∇yη)(x)}

=
1

2
{g(∇xξ, y)− g(∇yξ, x)}

= g(∇xξ, y), (3.1)

which implies

dη = 0 ⇔ ∇ξ = 0.

Therefore, if the Killing vector field ξ is not parallel, then the a.c.m.s. cannot be nearly-K-cosymplectic

(C1 ).
To deduce further results, we focus on the covariant derivative of the fundamental 2-form Φ, where the

a.c.m.s. (ϕ, ξ, η, g) is obtained from a G2 structure of any class and ξ is any nonzero vector field. Direct

calculation gives

(∇xΦ)(y, z) = g(y,∇x(P (ξ, z))) + g(∇xz, P (ξ, y)). (3.2)

We also compute some of ik(∇Φ), (k = 1, ..., 18) to understand which class ∇Φ may belong to.

Proposition 3.1 Let φ be a G2 structure on M of an arbitrary class and (ϕ, ξ, η, g) an a.c.m.s. obtained

from φ . Then:

a. i6(∇Φ) = 0 if and only if ∇eiξ = 0 for i = 1, · · · , 6 (note that ∇ξξ need not be zero),

b. i16(∇Φ) = 0 if and only if ∇ξξ = 0 .

Proof By direct calculation, for any i, k ∈ {1, 2, ..., 6} ,

(∇eiΦ)(ξ, ek) = g(ξ,∇ei(P (ξ, ek))) + g(∇eiek, P (ξ, ξ))

= g(ξ,∇ei(P (ξ, ek)))

= −g(∇eiξ, P (ξ, ek)) (3.3)

and thus we obtain

i6(∇Φ) =
∑
i,k

((∇eiΦ)(ξ, ek))
2 =

∑
i,k

g(∇eiξ, P (ξ, ek))
2. (3.4)
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Since P (ξ, ek) = el is a frame element other than ξ , we have

i6(∇Φ) = g(∇eiξ, P (ξ, ek))
2 = 0 iff g(∇eiξ, el) = 0 for l = 1, . . . , 6.

In addition, since g(ξ, ξ) = 1, we get g(∇eiξ, ξ) = 0 for i,∈ {1, 2, ..., 6} . Thus, i6(∇Φ) = 0 if and only if ∇eiξ

is zero i,∈ {1, 2, ..., 6} .
Similarly,

(∇ξΦ)(ξ, ek) = g(ξ,∇ξ(P (ξ, ek))) + g(∇ξek, P (ξ, ξ))

= −g(∇ξξ, P (ξ, ek)) (3.5)

for any k ∈ {1, 2, ..., 6} , and we get

i16(∇Φ) =
∑
k

(∇ξΦ)(ξ, ek)
2 =

∑
k

g(∇ξξ, P (ξ, ek))
2. (3.6)

Note that g(∇ξξ, ξ) = 0 since ξ is of unit length. As a result, i16(∇Φ) = 0 if and only if ∇ξξ = 0. 2

Before giving results on possible classes of a.c.m.s. induced by G2 structures, note that δη = −div(ξ).

To see this, consider the orthonormal basis {e1, · · · , e6, ξ} . Then

div(ξ) =
6∑

i=1

g(∇eiξ, ei) + g(∇ξξ, ξ)

=

6∑
i=1

g(∇eiξ, ei). (3.7)

On the other hand, since

(∇eiη)(ei) = ei[η(ei)]− η(∇eiei)

= g(∇eiξ, ei) + g(ξ,∇eiei)− g(ξ,∇eiei)

= g(∇eiξ, ei), (3.8)

we have

δη = −
6∑

i=1

(∇eiη)(ei) = −
6∑

i=1

g(∇eiξ, ei) = −div(ξ). (3.9)

Proposition 3.2 Let (ϕ, η, ξ, g) be an almost contact metric structure induced by a G2 structure φ . Then:

• i14(∇Φ) = 0 if and only if div(ξ) = 0.

• i15(∇Φ) = −div(ξ)g(ξ, v), where v =
6∑

j=1

P (ej ,∇ejξ) .
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Proof For any i, j ∈ {1, 2, ..., 6} we have

(∇eiΦ)(ϕei, ξ) = g(P (ξ, ei),∇ei(P (ξ, ξ))) + g(∇eiξ, P (ξ, P (ξ, ei)))

= −g(∇eiξ, ei)

= g(ξ,∇eiei). (3.10)

On the other hand,

6∑
i=1

∇eiei = −
6∑

i=1

div(ei)ei − div(ξ)ξ −∇ξξ (3.11)

and thus

g(ξ,
∑
i

∇eiei) = −g(ξ,
∑
i

div(ei)ei)− g(ξ, div(ξ)ξ)− g(ξ,∇ξξ)

= −div(ξ). (3.12)

Then

i14(∇Φ) =
∑
i,j

(∇eiΦ)(ϕei, ξ)(∇ejΦ)(ϕej , ξ)

=
(
g(ξ,

∑
i

∇eiei)
)(

g(ξ,
∑
j

∇ejej)
)
= (div(ξ))2. (3.13)

Therefore, i14(∇Φ) is zero if and only if div(ξ) is zero.

Similarly, from equations

(∇eiΦ)(ϕei, ξ) = −g(∇eiξ, ei) and (∇ejΦ)(ej , ξ) = g(∇ejξ, P (ξ, ej)),

we have

i15(∇Φ) =
∑
i,j

(∇eiΦ)(ϕei, ξ) (∇ejΦ)(ej , ξ)

=
∑
i,j

g(ξ,∇eiei)g(∇ejξ, P (ξ, ej))

=
(
g(ξ,

∑
i

∇eiei)
)(∑

j

g(∇ejξ, P (ξ, ej))
)

=
(
g(ξ,−div(ξ)ξ)− g(ξ,

∑
i

div(ei)ei)
)(∑

j

g(ξ, P (ej ,∇ejξ))
)

= −div(ξ).g(ξ, v). (3.14)

Note that
g(∇ejξ, P (ξ, ej)) = φ(ξ, ej ,∇ejξ) = φ(ej ,∇ejξ, ξ) = g(P (ej ,∇ejξ), ξ)

since φ is a 3-form. 2

Now consider in particular an a.c.m.s. induced by a nearly parallel G2 structure.
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Proposition 3.3 Let (ϕ, η, ξ, g) be an almost contact metric structure induced by a nearly parallel G2 structure.

Then:

• i5(∇Φ) = 0 if and only if ∇ξξ = 0 .

• If ∇ξξ = 0 , then i17(∇Φ) = i18(∇Φ) = 0 .

Proof Since φ is nearly parallel, for any j, k ∈ {1, 2, ..., 6} we have

(∇ξΦ)(ej , ek) = g(ej ,∇ξ(P (ξ, ek))) + g(∇ξek, P (ξ, ej))

= g(ej , P (∇ξξ, ek)) + g(ej , P (ξ,∇ξek)) + g(∇ξek, P (ξ, ej))

= −g(∇ξξ, P (ej , ek)). (3.15)

Thus,

i5(∇Φ) =
∑
j,k

((∇ξΦ)(ej , ek))
2 =

∑
j,k

(g(∇ξξ, P (ej , ek)))
2, (3.16)

which is zero if and only if ∇ξξ is zero. Here P (ej , ek) is also a frame element.

Similarly, for any i, k ∈ {1, 2, ..., 6} ,

(∇eiΦ)(ei, ϕek) = g(ei,∇ei(P (ξ, P (ξ, ek))) + g(∇ei(P (ξ, ek)), P (ξ, ei))

= g(ei,∇ei(−ek)) + g(∇ei(P (ξ, ek)), P (ξ, ei))

= g(∇eiei, ek) + g(∇ei(P (ξ, ek)), P (ξ, ei)), (3.17)

(∇ξΦ)(ξ, ek) = g(ξ,∇ξ(P (ξ, ek))) + g(∇ξek, P (ξ, ξ))

= g(ξ, P (∇ξξ, ek)) + g(ξ, P (ξ,∇ξek))

= −g(ek, P (∇ξξ, ξ)). (3.18)

Then

i18(∇Φ) =
∑
i,k

((∇eiΦ)(ei, ϕek))((∇ξΦ)(ξ, ek))

= −
∑
i,k

(
g(∇eiei, ek) + g(∇ei(P (ξ, ek)), P (ξ, ei))

)(
g(ek, P (∇ξξ, ξ))

)
= −

∑
i,k

(
g(∇eiei, ek)g(ek, P (∇ξξ, ξ))

)
−
∑
i,k

(
g(∇ei(P (ξ, ek)), P (ξ, ei))g(ek, P (∇ξξ, ξ))

)
= −

∑
i,k

(
g(∇eiei, ek)g(ek, P (∇ξξ, ξ))

)
(3.19)
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+
∑
i,k

(
g(∇eiei, ek)g(ek, P (∇ξξ, ξ))

)
−
∑
i,k

(
g(P (ξ, ek), P (ei,∇eiξ))g(ek, P (∇ξξ, ξ))

)
= −

∑
i

g
(
P (ξ, (

∑
k

g(P (∇ξξ, ξ), ek)ek + g(P (∇ξξ, ξ), ξ)ξ)), P (ei,∇eiξ)
)

= −
∑
i

g(P (ξ, P (∇ξξ, ξ)), P (ei,∇eiξ))

= −g(∇ξξ,
∑
i

(P (ei,∇eiξ))). (3.20)

Thus, if ∇ξξ is zero, so is i18(∇Φ).

For i17 we compute

(∇eiΦ)(ei, ek) = g(ei,∇ei(P (ξ, ek))) + g(∇eiek, P (ξ, ei)) (3.21)

and

(∇ξΦ)(ξ, ek) = g(ξ,∇ξ(P (ξ, ek))) + g(∇ξek, P (ξ, ξ))

= −g(∇ξξ, P (ξ, ek))

= g(ek, P (ξ,∇ξξ)) (3.22)

for any i, k ∈ {1, 2, ..., 6} and we obtain

i17(∇Φ) =
∑
i,k

((∇eiΦ)(ei, ek))((∇ξΦ)(ξ, ek))

=
∑
i,k

(
− g(∇eiei, P (ξ, ek))− g(ek,∇ei(P (ξ, ei))

)(
g(ek, P (ξ,∇ξξ))

)
=

∑
i,k

g(ek, P (ξ,∇eiei))g(ek, P (ξ,∇ξξ))−
∑
i,k

g(ek, P (ξ,∇eiei))g(ek, P (ξ,∇ξξ))

+
∑
i,k

g(ek, P (ei,∇eiξ))g(ek, P (ξ,∇ξξ))

=
∑
i,k

g(ek, P (ei,∇eiξ))g(ek, P (ξ,∇ξξ))

= g(P (ξ,∇ξξ),
∑
i

P (ei,∇eiξ)). (3.23)

Thus, if ∇ξξ = 0, then i17(∇Φ) = 0. 2

Similarly, if ∇ξ is zero, then so is i15(∇Φ); see Proposition 3.2.

Theorem 1 Let M be a manifold with a G2 structure φ and (ϕ, ξ, η, g) be an almost contact metric structure

(a.c.m.s.) obtained from φ .

(a) If ∇ξξ ̸= 0 , then ∇Φ cannot be in classes D2, C1, C2, · · · , C11 .
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(b) If div(ξ) ̸= 0 , then the almost contact metric structure cannot belong to classes D1 , Ci for i = 1, 2, 3, 4, 6, 7, · · · , 12
and cannot be semi-cosymplectic (C1 ⊕ C2 ⊕ C3 ⊕ C7 ⊕ C8 ⊕ C9 ⊕ C10 ⊕ C11 ).

In the following proofs, we use the relations below given in [7] together with properties of im for each Ci :
If α ∈ D1 , then im(α) = 0 for m ≥ 5.

If α ∈ D2 , then im(α) = 0 for m = 1, 2, 3, 4, 16, 17, 18.

Proof (a) Let ∇ξξ ̸= 0. Then by Proposition 3.1, we have i16(∇Φ) ̸= 0. This implies ∇Φ /∈ D2 . In addition,

∇Φ cannot belong to any of the classes Ci , i = 1, . . . , 11.

(b)If div(ξ) ̸= 0, then Proposition 3.2 yields that i14(∇Φ) = (div(ξ))2 ̸= 0. Hence, ∇Φ cannot satisfy

the defining relations of the classes

D1 = C1 ⊕ C2 ⊕ C3 ⊕ C4, C6, · · · , C12.

Besides, the defining relation of semi-cosymplectic manifolds is

δΦ = 0 and δη = 0.

By equation (3.9), the a.c.m.s. is not semi-cosymplectic. 2

Note that if ∇ξξ ̸= 0, then since ∇Φ /∈ D2 = C5 ⊕ . . . ⊕ C11 , the a.c.m.s. cannot be contained in

any subclass of D2 . In particular, the a.c.m.s. cannot be β -Kenmotsu, α -Sasakian, trans-Sasakian, or quasi-

Sasakian.

If div(ξ) ̸= 0, then we have ∇Φ /∈ D1 = C1 ⊕ . . . ⊕ C4 . In this case, the a.c.m.s. cannot be nearly-

K-cosymplectic. Also, since the a.c.m.s. cannot be semi-cosymplectic, it cannot be almost-cosymplectic, β -

Kenmotsu, α -Sasakian, trans-Sasakian, normal semi-cosymplectic, or quasi-K-cosymplectic.

Consider an a.c.m.s. induced by a nearly parallel G2 structure. We deduce the following results.

Theorem 2 Let (ϕ, ξ, η, g) be an a.c.m.s. obtained from a nearly parallel G2 structure φ . If ∇ξξ ̸= 0 , then ∇Φ

cannot be in classes D1,D2, C12 . (∇Φ may be contained by the classes D1⊕D2,D1⊕C12,D2⊕C12,D1⊕D2⊕C12 ).

Proof Let ∇ξξ ̸= 0. By Proposition 3.3, i5(∇Φ) ̸= 0. Thus, ∇Φ cannot be in D1 and C12 . Besides, by

Proposition 3.1, we have i16(∇Φ) ̸= 0, and then ∇Φ cannot be in D2 . 2

In particular, the a.c.m.s. cannot belong to any subclasses of D1 and D2 .

Theorem 3 Let (ϕ, ξ, η, g) be an a.c.m.s. obtained from a nearly parallel G2 structure φ . Then ∇ξξ = 0 if

and only if M is almost K-contact.

Proof The defining relation of almost K-contact manifolds is ∇ξϕ = 0, or equivalently ∇ξΦ = 0. Since φ is

nearly parallel, for any vector field x ,

(∇ξϕ)(x) = ∇ξ(ϕx)− ϕ(∇ξx) = ∇ξ(P (ξ, x))− P (ξ,∇ξx)

= P (∇ξξ, x) + P (ξ,∇ξx)− P (ξ,∇ξx) = P (∇ξξ, x), (3.24)

that is zero if and only if ∇ξξ is zero. 2

Theorem 4 Let (ϕ, η, ξ, g) be an almost contact metric structure induced by a G2 structure and v =
∑6

i=1 P (ei,∇eiξ) .

If g(ξ, v) ̸= 0 , then ∇Φ is not of classes D1, C5, C7, C8, C9, C10, C11, C12 .
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Proof First, to compute i10(∇Φ), we write

(∇eiΦ)(ei, ξ) = g(ei,∇ei(P (ξ, ξ))) + g(∇eiξ, P (ξ, ei))

= g(P (ei,∇eiξ), ξ), (3.25)

and we obtain

i10(∇Φ) =
6∑

i,j=1

g(P (ei,∇eiξ), ξ)g(P (ej ,∇ejξ), ξ) = g2(v, ξ). (3.26)

Assume that g(ξ, v) ̸= 0. Then i10(∇Φ) = g(ξ, v)2 ̸= 0 and the classes D1, C5, C7, C8, C9, C10, C11, C12 are elimi-

nated, similar to previous proofs. 2

Corollary 5 If g(ξ, v) ̸= 0 and div(ξ) ̸= 0 , then ∇Φ is not an element of the classes Ci , for i = 1, · · · , 12 .

Next we give examples of a.c.m.s. induced by a calibrated G2 structure (dφ = 0) and a nearly parallel

G2 structure, respectively. The a.c.m.s. induced by the calibrated G2 structure is nearly cosymplectic and

almost-K-contact, whereas that induced by the nearly parallel G2 structure is almost-K-contact.

Example 6 Let s be the Lie algebra with structure equations

de1 = −1

2
e17, de2 = −1

2
e27, de3 = e37, de4 = e47,

de5 = e13 − e24 − 1

2
e57, de6 = e14 + e23 − 1

2
e67, de7 = 0.

Then s admits the calibrated G2 structure

φ = −e136 + e145 + e235 + e246 + e567 − e127 − e347

such that the metric g induced by φ is the one making the basis {e1, . . . , e7} orthonormal [8]. The cross product

of frame elements can be written by using the identity (2.1). The nonzero brackets of frame elements are

[e1, e3] = −e5, [e1, e4] = −e6, [e1, e7] =
1

2
e1, [e2, e3] = −e6, [e2, e4] = e5,

[e2, e7] =
1

2
e2, [e3, e7] = −e3, [e4, e7] = −e4, [e5, e7] =

1

2
e5, [e6, e7] =

1

2
e6.

By Kozsul’s formula, the nonzero covariant derivatives are

e1 = 2∇e1e7 = −2∇e3e5 = −2∇e4e6 = −2∇e5e3 = −2∇e6e4,

e2 = 2∇e2e7 = −2∇e3e6 = 2∇e4e5 = 2∇e5e4 = −2∇e6e3,

e3 = 2∇e1e5 = 2∇e2e6 = −∇e3e7 = 2∇e5e1 = 2∇e6e2,

e4 = 2∇e1e6 = −2∇e2e5 = −∇e4e7 = −2∇e5e2 = 2∇e6e1,

e5 = −2∇e1e3 = 2∇e2e4 = 2∇e3e1 = −2∇e4e2 = 2∇e5e7,
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e6 = −2∇e1e4 = −2∇e2e3 = 2∇e3e2 = 2∇e4e1 = 2∇e6e7,

e7 = −2∇e1e1 = −2∇e2e2 = ∇e3e3 = ∇e4e4 = −2∇e5e5 = −2∇e6e6.

Now we show that there is no almost cosymplectic (dη = 0 and dΦ = 0) structure induced by φ on s .

Let η =
∑7

i=1 aie
i be any 1-form on s , where ai are constants. By direct calculation dη = 0 iff ai = 0 for

i = 1, . . . , 6 . Thus, to obtain an almost cosymplectic structure (ϕ, ξ, η, g) (such that dη = 0 and dΦ = 0), one

must have η = e7 and ξ = e7 . In this case, since

Φ(x, y) = g(x, ϕ(y)) = g(x, P (e7, y)) = −φ(e7, x, y) = −(e7⌟φ)(x, y),

the fundamental 2-form of the a.c.m.s. is Φ = e12 + e34 − e56 . Since

dΦ = e127 − e136 + e145 + e235 + e246 − 2e347 − e567 ̸= 0,

there is no almost cosymplectic (in particular cosymplectic) structure induced by φ on s .

Consider the a.c.m.s. (ϕ, ξ, η, g) induced by φ on s , where η = e7 , ξ = e7 and Φ = e12 + e34 − e56 .

Since

∇e7Φ(ei, ej) = e7[Φ(ei, ej)]− Φ(∇e7ei, ej)− Φ(ei,∇e7ej) = 0,

this structure is almost-K-contact (∇ξΦ = 0 , or equivalently ∇ξϕ = 0).

Since (∇e1Φ)(e7, e2) = −1
2 ̸= 0 , the defining relation of the class D1 is not satisfied; see the defining

relation (2.2).

The a.c.m.s. is not in D2 , since (∇e1Φ)(e3, e6) = −1 , whereas

η(e1)(∇e7Φ)(e3, e6) + η(e3)(∇e1Φ)(e7, e6) + η(e6)(∇e1Φ)(e3, e7) = 0;

see the relation (2.3). In addition, for x = e1 , y = e3 and z = e6 , it can be checked that the defining relation

of C12 is not satisfied; refer to (2.4).

An a.c.m.s. is called nearly cosymplectic if ∇xΦ(x, y) = 0 for all vector fields x , y . Direct calculation

yields (∇eiΦ)(ej , ek) + (∇ejΦ)(ei, ek) = 0 for all basis elements. Thus, the a.c.m.s is nearly cosymplectic.

Next consider the a.c.m.s. (ϕ, ξ, η, g) induced by φ , where ξ = e1 . Then η = e1 and Φ = e27+e36−e45 .

Since ∇ξΦ(ξ, e2) = −1
2 , this structure is not cosymplectic, nearly cosymplectic, almost-K-contact, or an element

of D1 . Moreover, ∇ξξ = ∇e1e1 ̸= 0 , which implies by Theorem 1 that the structure is not in D2 , C1 ,C2, . . . , C11 .
In addition, for x = e1 , y = e3 , and z = e4 , the defining relation of the class C12 is not satisfied; see the

defining relation (2.4).

Example 7 A Sasakian manifold is a normal contact metric manifold or equivalently an almost contact metric

structure (ϕ, ξ, η, g) such that

(∇xϕ)(y) = g(x, y)ξ − η(y)x;

see [5]. In addition, the following properties are satisfied for all vector fields x , y :

∇xξ = −ϕ(x), dη(x, y) = 2g(x, ϕ(y)).
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A 7-dimensional 3-Sasakian manifold is a Riemannian manifold (M, g) equipped with three Sasakian structures

(ϕi, ξi, ηi, g) , i = 1, 2, 3 satisfying

[ξ1, ξ2] = 2ξ3, [ξ2, ξ3] = 2ξ1, [ξ3, ξ1] = 2ξ2

and
ϕ3 ◦ ϕ2 = −ϕ1 + η2 ⊗ η3, ϕ2 ◦ ϕ3 = ϕ1 + η3 ⊗ η2,

ϕ1 ◦ ϕ3 = −ϕ2 + η3 ⊗ η1, ϕ3 ◦ ϕ1 = ϕ2 + η1 ⊗ η3,

ϕ2 ◦ ϕ1 = −ϕ3 + η1 ⊗ η2, ϕ1 ◦ ϕ2 = ϕ3 + η2 ⊗ η1.

The vertical subbundle T v is spanned by ξ1 , ξ2 , and ξ3 . Both T v and its orthogonal complement Th =

span{e4, e5, e6, e7} are invariant under ϕi . There exists a local orthonormal frame {e1, · · · , e7} such that

e1 = ξ1 , e2 = ξ2 , and e3 = ξ3 and the endomorphisms ϕi acting on the horizontal bundle are given by the

matrices below:

ϕ1 :=


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 , ϕ2 :=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 , ϕ3 :=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .

The corresponding coframe via the Riemannian metric is denoted by {η1, · · · , η7} . The differentials dηi ,

i = 1, 2, 3 are

dη1 = −2(η23 + η45 + η67), dη2 = 2(η13 − η46 + η57), dη3 = −2(η12 + η47 + η56).

Consider the 3-form

φ =
1

2
η1 ∧ dη1 −

1

2
η2 ∧ dη2 −

1

2
η3 ∧ dη3

constructed in [1]. This G2 structure is one of three nearly parallel G2 structures given in Theorem 6.2 in [1].

We denote φ1 in [1] by φ .

Now we give an example of an almost contact metric structure on a 3-Sasakian manifold with the nearly

parallel G2 structure φ . Definitions, endomorphisms given as matrices, differentials, and the G2 structure φ

can be found in [1].

By Kozsul’s formula we obtain ∇eiei = 0 for i = 1, 2, 3 and

∇e1e2 = e3,∇e1e3 = −e2,∇e2e1 = −e3,∇e2e3 = e1,∇e3e1 = e2,∇e3e2 = −e1.

By the local expression of

φ = 1
2η1 ∧ dη1 − 1

2η2 ∧ dη2 − 1
2η3 ∧ dη3

= η123 − η145 − η167 + η246 − η257 + η347 + η356,

the 2-fold vector cross products of frame elements are computed by equation (2.1).

Consider the a.c.m.s. (ϕ, ξ, η, g) on M induced by the 2-fold vector cross product of the nearly parallel

G2 structure φ , where ξ = e1 = ξ1 , η = η1 and ϕ(x) = P (ξ, x) . First, since

(∇xΦ)(y, z) = g(y,∇x(P (e1, z))) + g(∇xz, P (e1, y)),
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we have (∇e2Φ)(e1, e2) = 1 ̸= 0 and thus the a.c.m.s. is not cosymplectic and not in D1 = C1 ⊕ C2 ⊕ C3 ⊕ C4 ;
see (2.2).

Moreover, the a.c.m.s. is not semi-cosymplectic (δη = 0 and δΦ = 0). To see this, we compute

δΦ(e1) = −
7∑

i=1

(∇eiΦ)(ei, e1) =
7∑

i=1

Φ(ei,∇eie1) = −
7∑

i=1

g(∇eie1, P (e1, ei)).

Note that ∇eie1 = −ϕ1(ei) . Thus, we obtain δΦ(e1) = −2 .

In addition, the a.c.m.s. is not trans-Sasakian; that is, the defining relation

(∇xΦ)(y, z) = − 1

2n
{(g(x, y)η(z)− g(x, z)η(y))δΦ(ξ)

+(g(x, ϕ(y))η(z)− g(x, ϕ(z))η(y))δη} (3.27)

is not satisfied. For x = e2 , y = e1 , z = e2 , the left-hand side of the equation (3.27) is

(∇e2Φ)(e1, e2) = 1,

whereas the right-hand side is

1

3
{g(e2, e1)η(e2)− g(e2, e2)η(e1)} = −1

3
.

In particular, the a.c.m.s. is not α-Sasakian or β -Kenmotsu. Note that we started with a Sasakian

structure on a manifold and then we used the 2-fold vector cross product of the nearly parallel G2 structure φ ;

however, the induced a.c.m.s. is not Sasakian.

Note that since ∇ξξ = 0 , the a.c.m.s. is almost-K-contact by Theorem 3. It can be seen that for

ξ = ae1 + be2 + ce3 , where a , b , c are constants, one has ∇ξξ = 0 . Therefore, by Theorem 3, the a.c.m.s.

where ξ = ae1 + be2 + ce3 is almost-K-contact.
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