

PROGRAMLAMA ÖDEVLERİ İÇİN
OTOMATİK PUANLAMA SİSTEMİ

Önder DEMİR

Yüksek Lisans Tezi

Bilgisayar Mühendisliği Anabilim Dalı

Ocak 2014

JÜRİ VE ENSTİTÜ ONAYI

Önder Demir’in “PROGRAMLAMA ÖDEVLERİ İÇİN

OTOMATİK PUANLAMA SİSTEMİ” başlıklı Bilgisayar Mühendisliği

Anabilim Dalındaki, Yüksek Lisans Tezi 23.12.2013 tarihinde, aşağıdaki jüri

tarafından Anadolu Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav

Yönetmeliğinin ilgili maddeleri uyarınca değerlendirilerek kabul edilmiştir.

 Adı-Soyadı İmza

Üye (Tez Danışmanı): Yrd. Doç. Dr. Özgür YILMAZEL ………………

Üye: Doç. Dr. Hüseyin POLAT ………………

Üye: Yrd. Doç. Dr. Gürkan ÖZTÜRK ………………

Anadolu Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu'nun
……………… tarih ve ………… sayılı kararıyla onaylanmıştır.

 Enstitü Müdürü

i

ÖZET

Yüksek Lisans Tezi

PROGRAMLAMA ÖDEVLERİ İÇİN

OTOMATİK PUANLAMA SİSTEMİ

Önder DEMİR

Anadolu Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Yrd. Doç. Dr. Özgür YILMAZEL

2014, 57 sayfa

Programlama derslerinde öğrenmenin en etkili yollarından biri

ödevlerdir. Her ne kadar ödevler etkili olsada ödevleri hazırlamak, dağıtmak ve

notlandırmak çok fazla zaman almaktadır. Bir derse katılan öğrenci sayısı arttıkça,

o derste verilen ödev sayıları ya da ödevlerin öğreticiliği ve kalitesi düşmektedir.

Bu problemi çözmenin yollarından biri otomatik puanlama sistemlerini

kullanmaktır. Bu tezde, böyle bir sistemin modellenmesi ve gerçeklenmesi

anlatılmıştır. Bu sistem Java programlama dili ve test güdümlü geliştirme

metotları temel alınarak gerçeklenmiştir ve sistem dört temel aşamadan

oluşmaktadır. Bu aşamalar; ödevi hazırlama, dağıtma, tekrar toplama ve

notlandırmadır. Bu sistem 30 öğrencinin katıldığı bir derste, sekiz ödev konusu ile

test edilmiş ve sonuçlar bu tez içerisinde sunulmuştur.

Anahtar Kelimeler: Yazılım testi, TDD, Programlama ödevleri, Otomatik

notlandırma, Birim test

ii

ABSTRACT

Master of Science Thesis

AUTOMATIC GRADING SYSTEM

FOR

PROGRAMMING HOMEWORK

Önder DEMİR

Anadolu University

Graduate School of Sciences

Computer Engineering Program

Supervisor: Asst. Prof. Dr. Özgür YILMAZEL
2014, 57 pages

One of the best methods of learning in programming courses depends on

practical exercises through homework assignments. Preparing, collecting and

grading homework manually requires considerable amount of time from

instructors. When the number of students increases, the amount of homework

given reduces. This reduces effectiveness of the whole course. One way to solve

this problem is to give homework via an automatic grading system and get back

immediate feedback.

This thesis describes an open source system that grades programming

homework automatically. This system uses test driven software development

methods and technologies to create homework assignments. The system was

tested on engineering students taking computer-programming courses. The results

show that quality of the work completed by students increased, and that students

performed better in these courses on the overall compared to previous years.

Keywords: Software testing, TDD, programming assignments, automated
grading, unit testing

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Asst. Prof. Dr. Özgür Yılmazel for his

guidance and support during my study. It was a great pleasure to work with him

during this study.

Önder DEMİR

Ocak 2014

iv

TABLE of CONTENTS

PAGE

ÖZET ... i	

ABSTRACT ... ii	

ACKNOWLEDGEMENTS ... iii	

TABLE of CONTENTS ... iv	

TABLE of FIGURES ... vi	

TABLE of LISTS ... vii	

TABLE of ABBREVIATIONS ... viii	

1.	
 INTRODUCTION .. 1	

1.1.	
 Challenges ... 2	

1.2.	
 Education and Automatic Grading Systems .. 3	

1.3.	
 Test Driven Development ... 5	

1.4.	
 Methods of Evaluating the Study .. 8	

2.	
 CODOMETER: A LANGUAGE-INDEPENDENT AUTOMATIC
GRADING SYSTEM USED FOR PROGRAMMING HOMEWORK 10	

2.1.	
 Requirements of Codometer .. 11	

2.2.	
 Codometer: Design Structure .. 13	

2.2.1.	
 Codepoint .. 13	

2.3.	
 Codometer: How To? .. 15	

2.3.1.	
 Step 1: preparing test-based homework .. 15	

2.3.2.	
 Step 2: distributing homework .. 17	

2.3.3.	
 Step 3: instant results of homework .. 19	

2.3.4.	
 Step 4: recollecting homework ... 20	

2.3.5.	
 Step 5: final grading .. 21	

2.4.	
 Codometer: Given Assignments .. 22	

3.	
 METHODOLOGY ... 23	

4.	
 RESULTS .. 26	

5.	
 CONCLUSION AND FUTURE WORK .. 30	

REFERENCES .. 31	

v

APPENDIX -1 2nd Week Homework ... 36	

APPENDIX -2 2nd Week Homework Sources ... 39	

vi

TABLE of FIGURES

1.1 Life Cycle of Test Driven Development Process .. 6	

1.2 A Simple Test Case ... 6	

1.3 A Simple Class to Remove Compilation Errors ... 7	

1.4 A Simple Calculator Class to Pass Test Case ... 7	

2.1 Homework Lifecycle of Codometer .. 11	

2.2 Basic Structure of Codepoint .. 13	

2.3 A Sample Codometer Unit Test Case for Java .. 15	

2.4 A Sample Codometer Unit Test Case for C# .. 15	

2.5 A Sample POM File .. 16	

2.6 An Extended Version of Test Cases .. 17	

2.7 Distribution of Homework .. 18	

2.8 A Sample POM File for Students .. 19	

2.9 A Sample Test Case .. 20	

2.10 Codometer Final Grading Lifecycle .. 21	

2.11 A Homework Result Shown to Instructor ... 22	

vii

TABLE of LISTS

2.1 Requirements of Codometer ... 11	

2.2 Basic Methods of CodepointEvaluator ... 14	

2.3 List of Given Homework Using Codometer ... 22	

3.1 Assignment Groups ... 23	

3.2 The Poll ... 24	

4.1 Average Score of Student Groups ... 27	

4.2 Average Score of Students .. 28	

viii

TABLE of ABBREVIATIONS

IDE : Integrated Development Enviroment
POM : Project Object Model
SVN : Subversion
TDD : Test Driven Development

1

1. INTRODUCTION

Today not only institutions that give computer engineering or computer

science education but also many other disciplines need to teach programming

skills to their students. For this reason, every successful programming course

should incorporate programming exercises where students try out their theoretical

knowledge [1, 2]. One of the best ways of learning programming is to try to write

programs that work [1, 3]. Homework is a proper medium for students to write

correct programs. In previous years, homework was prepared and distributed via

Internet, collected back, and then manually graded. This manual process included

both program output and source code analysis, and thus took time. This process

works with small number of students. However, when the number of students

increases, productivity decreases and human-related errors increase for the

instructor [3, 4]. These problems make instructors reduce the amount of

homework given to students. Another problem with conventional homework is

that students are unable to see whether they are on the right track or not when

finding a solution to the given homework [2, 3].

The motivation behind designing a system is to find a way both to ease

the way students learn programming, and to provide a solution to prepare,

distribute and collect homework quickly and efficiently [5]. Instructors are using

such automated grading systems [2-4, 6-12]. A few of these systems are using

learning management systems [12], there is a system that includes GUI testing

called JEWL [13], but majority of grading systems are based on the idea of test-

driven development (TDD) [5]. TDD is a software development method, which is

introduced by extreme programming (XP) [6, 14-17]. Using TDD in the

classroom is not a new method [4, 10, 16]. The most important problem with the

systems that are based on TDD is that tests to grade homework need to be written

in a way that must guide and motivate students. Writing test can be cumbersome

[10] and in order to reduce this cumbersomeness, most of these systems are using

TDD tools [5]. The main drawbacks of these systems are they do not give the

chance of changing the programming language of courses independently and do

not provide a proper and well-known medium to distribute homework.

2

Thinking on these problems, we decided to implement a language-

independent system, whose infrastructure is based on well-known TDD

frameworks, for instructors of computer-programming courses. We develop a core

grading framework called Codepoint that uses jUnit [18] and nUnit [19] test

frameworks. To distribute homework, we use Maven [20], project management

and build automation tool; and for collecting homework, we use SVN [21]

revision control software.

While introducing such a system in a programming course, changes of

the environment are inevitable. A typical course system is composed of

components such as instructor, students, curriculum and the methods of exercises.

If a change occurs in a component, this change might have effects on one or more

other components of the system. In our case, the changes will effect dialog time

between instructor and student [22]. The course will become to look like a

distance education course in some ways.

While emphasizing the problems and trying to trace the change, a

concept of distance education called Systems Approach comes up. Systems

Approach considers all parts of a course interrelated between each other. This

concept considers each course as a system. That means if a component of course

changes the other components will absolutely change in a good or bad way.

Usually system approaches shows them in designing new courses. But in our case

changing only one component of system and experiment the results will be the

best practice. Despite this difference there is still a great parallelism with our

study and System Approach concept. The traces of System Approach concept can

be found in 1960s and early of 1970s. The best well-known experiments of

System Approach are Articulated Instructional Media Project (AIM) at 1964 and

Open University (OU) at 1969 [23].

1.1. Challenges

While stating the problem, we realized that there are some major

problems:

3

● Students, especially freshmen, have difficulties to find the

preliminaries of an assignment, and struggle to create a workable solution of

assignment [4].

● While solving the assignment students are not sure if they are on

right track or not.

● For instructors, human-related errors are directly proportional with

the number of given assignments and number of students [4].

● Both students and instructor have difficulties in distributing and

collecting the given assignments [5].

● Despite there are many project management and build automation

tools for Java e.g. Maven, there are not many options for .Net environment [24].

● Previous works do not provide a flexible framework to generate

various types of assignments.

● Previous works do not support generating assignments in different

programming languages.

● Previous works do not give data about their studies if it was a

success or not.

The problems mentioned are not directly involved in the learning

process. They only reduce the productivity of a course and learning process. As a

solution we present Codometer to overcome these problems.

1.2. Education and Automatic Grading Systems

The idea of evaluating homework automatically is not a new approach in

this research area [4, 10]. There have been lots of semi or full automatic grading

systems and frameworks used by educators [4]. Most of these systems are based

on compiling the program and asserting the results of executed program with

certain predefined parameters or thresholds. Ala-Mutka [4] categorized this type

of assessment as Dynamic Assessments. Most of these systems are checking the

assignment from the perspective of functional requirements. There are some

systems that check the output of execution using regular expression like

coursemarker [25] and pattern recognition like ASSYST [26]. Another approach

4

to check the functional requirements of an assignment is analysing the subparts of

the code such as classes and methods. There are some systems that use reflection

classes [2, 27] and injection of pre-implemented codes of the instructor. Most of

these systems are written for Java platform. So far, there has been only one

platform for .NET [2]. This approach has a lot of similarities with a developing

methodology called TDD, about which we give more details in Section 2.3.

Programming course educators started to give lessons about TDD in their classes

[9, 10].

All previous studies in this field have some good features inspiring this

field. But they have some drawbacks too. The most significant drawbacks can be

stated as:

• They only check the functional requirements by checking the

results with threshold values or using injections of predefined

codes. There was no study that merges these two methods.

• They support only one programming language.

• They do not present an efficient way to distribute homework.

All these previous works are trying to reduce the cost of evaluating an

assignment in a conventional course. Their focus was only to grade an assignment

by using one approach. But as time passes the characteristics of courses changed.

Now students and instructors want more freedom over the courses. They want to

be free of time and space.

Due to improvements in technology of connectivity, distance-learning

courses evolve into their sixth generation named distance-learning 2.0 [23]. In this

era of distance learning the main tools are computers, world wide web and social

networking tools [28].

After overcoming bandwidth problems of Internet, a new distance-

learning course type called “Massive Open Online Course (MOOC)”[29] has been

developed in late 2000s. MOOC is an online course aimed for unlimited

participants. The first MOOC was opened at September 2008 in University of

Manitoba[30]. There were only 2200 students enrolled in the first MOOC[30].

5

But overall participant number of MOOCs all-over the world is increasing

exponentially after each year.

Unlike the early stages of distance learning, not only social science but

also formal science courses like programming courses started to be a part of

distance learning. So a lot of programming course MOOCs starts to be presented.

Assessing techniques of a MOOC varies from simple Multiple Choice

responses to peer review feedbacks[31]. Because of unlimited participation and

lack of crowed control over participants, assessments is a very important

weakness on current MOOCs that is under research[32]. While peer reviewing

consumes lots of human resources, multiple-choice questions are not feasible for

all types of courses. Since assessment is important in the success of a course,

researchers on this field are trying to find a feasible solution to deliver, recollect

and evaluate the assignments given in this type of courses. Also participants of

MOOCs want to get the instant results of assignments.

Another important characteristic of MOOCs is participants select their

collaboration in course. For programming courses this means participants may

want to choose the type of assignments depending on their knowledge or interests.

So by the information we gathered, again this can be said that the

previous works in automated grading systems are not sufficient for neither

MOOCs nor another distance learning course. Although Codometer is designed

for a conventional course, it may also be used for distance learning programming

courses as a side tool.

1.3. Test Driven Development

TDD is a methodology that is based on writing test before writing the

actual code [15, 33, 34]. In TDD strategy, only code that passes from tests is

developed [34, 35]. In his book, Kent [15] implies two main rules of TDD:

• Do not write any code without a failing automated tests [15, 35].

• Refactor your code [15, 35].

First rule implies that coders have to write automated test code before

implementing their actual code. This causes failing of all tests. By this method,

6

coder makes sure that all of his test codes are running [14, 15, 33-35]. Then coder

implements enough codes to pass tests [34]. After all the tests pass successfully,

the second main rule comes in hand. The second rule implies that after all tests

passed, coder has to refactor his code to reduce the complexity and remove

duplications [5]. Then new tests are added to the system, and new code should be

written to pass from those tests [5, 33, 35]. In his book, Wake [36] proposes a

sample walkthrough list to coder (Figure 1.1):

Figure 1.1 Life Cycle of Test Driven Development Process

• Write one test (Figure 1.2).

Figure 1.2 A Simple Test Case

• Compile the test. It should fail to compile, because there is not any code

that works.

import junit.framework.TestCase;

public class CalculatorTest extends TestCase {

 Calculator cal=new Calculator();

 public CalculatorTest(String name) {
 super(name);
 }

 public void testSum(){
 assertEquals(2,cal.sum(1,1));
 }
}

7

• Implement enough code, which makes errors to disappear and makes the

test compliable (Figure 1.3).

Figure 1.3 A Simple Class to Remove Compilation Errors

• Run the test. You should see it fail because the code, which is tested, has

not been implemented yet (You are now sure that your test is working).

• Implement only enough code, which is passed from your tests (Figure 1.4).

Figure 1.4 A Simple Calculator Class to Pass Test Case

• Run the test, and see it pass.

• Refactor your code for redundancies and duplications.

• Repeat the cycle.

There are some major benefits of repeating that cycle in a development

of software. Since this cycle is repeated continuously, the software is developed

evolutionarily [5]. While new tests are being developed, old tests are running to

see that the code is in a stable state [5].

Writing tests before implementation enables the developer to focus on

the interface of the code without drowning in the complexity of implementation

details [5, 14, 15, 33, 36]. Refactoring code after a cycle gives a chance to the

public class Calculator{

 int sum(int num1,int num2){

 return 0;
 }
}

public class Calculator{

 int sum(int num1,int num2){

 return num1+num2;
 }
}

8

coder to look for duplication in small amount of code rather than handling mass

amount of code [35, 37].

1.4. Methods of Evaluating the Study

In this thesis, we want to express the impact of Codometer to a

conventional programming class. There are three main evaluation methods to

study the results: quantitative, qualitative and mixed-method evaluation methods.

Qualitative research methods rely on natural settings of a topic mainly

using verbal descriptions, case studies and stories [38]. The goal of qualitative

research is describe situations by investigating the actors’ behaviors and habits by

using qualitative ways such as observations and interviews [39].

On the other hand, quantitative research proposes the topic is

independent from the beliefs of individuals [40]. Quantitative methods use

statistics to summarize and describe a topic [41]. Generally in quantitative

methods, researchers are using polls and surveys.

The mixed methods are a combination of qualitative and quantitative

methods [38, 42]. In mixed methods approach, researcher choses his methods due

to needs of situation which means the researcher may use the benefits of both

methods to collect data to understand problems [43].

Although up to today almost all researches on education were

quantitative [38] and there are some researches reported that using mixed-methods

and qualitative methods.

In this thesis we will use both quantitative and qualitative research

methods.

To determine the progress of students, we used quantitative methods

because there is no obvious relation between student beliefs and actual

improvement of students. Choosing quantitative methods approach has another

advantage; numerical results are better in emphasizing the success of study. In

order to gather results from students, we administrated a poll. We used Likert [44,

45] which is one of the scaling methods, to create the poll.

9

On the other hand, the problems and needs of instructors are relative to

their tuition style. To understand and experience the problems and needs of

instructors we used qualitative methods such as interviewing and observing their

problems during the assignment process.

10

2. CODOMETER: A LANGUAGE-INDEPENDENT AUTOMATIC

GRADING SYSTEM USED FOR PROGRAMMING HOMEWORK

Codometer [46] is an open source tool developed by the authors to

distribute homework assignments and automate grading of students’ submissions.

The main advantage of Codometer is the support of multiple languages.

The instructors can give the same homework in any programming language

according to the students’ level and knowledge.

Codometer is using the hybrid methods of dynamic assessments [4] such

as compiling the program and asserting the results of executed programs with

predefined parameters and also is using reflection classes and injection of pre-

coded classes and methods. This hybrid method helps the instructor assess the

assignments in more than one way, depending on the characteristic of the

assignment.

Codometer also introduces a distribution method different from its

successors. Codometer uses Maven to distribute homework.

Codometer has three main steps seen in Figure 2.1 Homework Lifecycle

of Codometer: distribution of the homework with test packages, recollecting the

student solutions using source control repository and automatically grading of the

committed codes. In conventional announcement process of assignments, there are

always problems that are not part of the learning process. For instance, not all

students get or find the preliminaries of homework, and students struggle to create

working solution of homework. One of the most important advantages of using

Codometer is the simplicity of distributing the homework. Before we start the

Codometer project, in our requirement analysis phase, we found out that 37% of

students are not sure if they understood the requirements of homework well. In

another words, they want to know if they prepared the solution of homework

correctly. In order to solve this problem, we package homework and use Maven’s

dependency management infrastructure. Students can setup their working

environment by adding the prepared homework package to their Maven project as

a dependency. All homework packages include a command, so that students can

execute the grading process and see their progress on the given homework.

Another important feature of Codometer is that it allows instructors to change the

11

programming language of course independently according to preliminaries and

student profile. Currently, with Codometer, instructors can give homework written

in Java and C# languages.

Figure 2.1 Homework Lifecycle of Codometer

2.1. Requirements of Codometer

It is widely recognized that determining the requirements of an

information system is essential for success in design[47]. There are some

requirements of Codometer given at Table 2.1 Requirements of Codometer. These

requirements are gathered in the analyzing phase and approved by the mentor of

this thesis.

Table 2.1 Requirements of Codometer

Requirement Code Requirement
CREQ- 1. Instructor should write the testing code in unit testing

structure.

CREQ- 2. Instructor should be able to package the tests.

CREQ- 3. Instructor should be able to give points to every test.

CREQ- 4. Instructor should be able to start writing test without
any installation rather than Codometer.

CREQ- 5. Instructor should be able to deliver test packages.

12

Requirement Code Requirement
CREQ- 6. Instructor should be able to change the test packages

easily by using Codometer.

CREQ- 7. Instructor should be able to set a deadline to
homework.

CREQ- 8. Instructor should be able to change the deadline of
homework.

CREQ- 9. Instructor should be able to start grading process
manually.

CREQ- 10. Instructor should be able to write their tests in multiple
programming languages.

CREQ 11. Instructors should be able to trace how many students
deliver their homework.

CREQ- 12. Students should be able to get their homework using
Codometer.

CREQ- 13. Students should be able to deliver their solutions using
Codometer.

CREQ- 14. Students should be able to see their instant grades.

CREQ- 15. Students should be able to write their solution in
multiple programming languages.

CREQ 16. Students should have unique user names and
passwords.

CREQ 17. Students should be able to send their solutions with
their user credentials.

CREQ- 18. Codometer should provide methods to instructors
which helps instructors to write their tests.

CREQ- 19. Codometer should grade all students’ homework
automatically after the deadline.

CREQ- 20. Codometer should provide a user interface for
instructor to set the preliminaries of homework.

CREQ- 21. Codometer should be extendible for other testing
frameworks.

CREQ- 22. Codometer should be able to integrate with various
dependency management tools.

CREQ- 23. Codometer should be able to integrate with source
control tools.

CREQ- 24. Codometer should be able to export results of each
assignments into XML files.

13

2.2. Codometer: Design Structure

Codometer uses Maven for dependency management and distribution and

SVN for recollecting homework from students. To make grading, Codometer uses

a tool called CodePoint, which is a tool, based on Junit and Nunit testing

frameworks.

2.2.1. Codepoint

Codepoint is the basis of Codometer system. Codepoint is used for both

testing and grading. A system component view of CodePoint can be seen in

Figure 2.2 Basic Structure of Codepoint.

Figure 2.2 Basic Structure of Codepoint

To gain the ability to write test cases, CodePoint uses xUnit frameworks.

These frameworks are JUnit for Java and NUnit for C# programming languages.

These frameworks are well-documented and trustworthy frameworks in their

field.

Despite the mobility and the power of these unit test frameworks, they

are not enough to grade homework. To gain grading ability Codepoint modifies

these frameworks and injects some powerful extensions such as Codometer

14

assertion methods seen in Table 2.2 Basic Methods of CodepointEvaluator and

TestPoint annotiations.

Table 2.2 Basic Methods of CodepointEvaluator

Method Name Method Description
evaluateMethod() Checks the method if it is an

Codometer annotated method or
not

getInstance() Gets a CodepointEvaluator class.
StartTesting(String) Starts Codometer cycle
assertArrayEquals(Object[], Object[]) Checks the equality of two arrays’

values
assertArrayEquals(String, Object[],
Object[])

Checks the equality of two arrays’
values. If not returns the first
parameter as an error message

assertBetween(int, int, int) Checks if an integer value is
between the given ranges.

assertEquals(double, double) Checks if two double value are
equal or not.

assertEquals(double, double, double) Checks if two double value’s
equality with a threshold value.

assertEquals(Object[], Object[]) Checks the equality of two arrays.
assertEquals(Object, Object) Checks the equality of two objects.
assertFalse(boolean) Checks the value of a boolean, if it

is false or not.
assertNotNull(Object) Checks the value if it is NULL(1)

or not.

To be marked as an Codometer test method, that method must be

annotated with TestPoint annotation. Then if that method uses a Codometer

assertion method that method is marked as a Codometer test method and given

grade point is added to global point.

Another important class is CodePointHelper class, which has injection

and reflection methods. These methods are used for getting methods and classes,

which are used by students in their solutions by using reflection classes.

(1) NULL, in programming languages, express that any value is not assigned to a variable.

15

2.3. Codometer: How To?

There are five basic steps of Codometer. In this chapter, these five basic

steps will be expressed.

2.3.1. Step 1: preparing test-based homework

Codometer uses the dynamic approach of testing and mainly uses

dependency injection techniques and reflection methods.

To prepare a test-based homework, instructor has to create a Maven

project. In POM file, she has to declare dependency to Codepoint, the grading tool

of Codometer. Codepoint uses a free testing tool called jUnit for Java based

homework and nUnit for C# based homework as core. With Codepoint, educator

can create countless test cases and assign points for assignments. Before every test

method, educator has to put two annotations, first @TestPoint(<point for Test>)

and second @Test for Java-based homework. For C# based homework educator

has to add “TestPoint(<point for Test>)” attribute after [Test] attribute. An

example of a java test case is shown in Figure 2.3:

Figure 2.3 A Sample Codometer Unit Test Case for Java

An example of a C# test case is shown in Figure 2.4:

Figure 2.4 A Sample Codometer Unit Test Case for C#

@TestPoint(25)
@Test

public void testSum()
{
 int expected= 2;
 int result= Math.add(1,1);
 CodePointEvaluator.getInstance().assertEquals(expected,result);
}

16

After preparing all test cases instructor has to package his test classes

into jar files or dll files depending on the programming language. To pacakage

homework, instructor uses maven. To use maven instructor creates a POM (Figure

2.5) file.

Figure 2.5 A Sample POM File

Running “maven install” command makes maven to create test packages.

After successful compiling, instructor has a test package, which can be used by

students in their homework solutions. In this phase, we suggest two steps of test

cases. First step of cases will be distributed to the students only if they are on the

right way to solve the homework. In the second step of cases, educator will use

Codometer to do final grading. This second step can be a new set of test cases or

also an extended version of the first step cases (Figure 2.6) or the same test cases

of the first step.

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.codometer.homework.bim460</groupId>
<artifactId>homework8</artifactId>
<version>0.0.1-SNAPSHOT</version>
<repositories>

<repository>
<id>internal</id>
<name>Archiva Managed Internal Repository</name>
<url>http://cengsvn.anadolu.edu.tr:8080/archiva/repository/internal</url>

 </repository>
 </repositories>
 <dependencies>
 <dependency>
 <groupId>com.codometer</groupId>
 <artifactId>codepoint</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </dependency>
 </dependencies>
</project>

17

Figure 2.6 An Extended Version of Test Cases

After the deadline of homework, instructor can easily change his first

step with second step test cases or leave it in the same way and see the final

grading of homework. By using first step test cases, students will only have a brief

idea if they are on the right way to the solution of the problem. Using two sets of

test cases to grade encourages students to do more tests on their own.

2.3.2. Step 2: distributing homework

To distribute the homework, we use MAVEN. MAVEN is an open

source tool to manage distribution and dependency management. A sample

illustration of Codeometer’s dependency management structure is shown in

Figure 2.7 Distribution of Homework:

@TestPoint(25)
@Test

public void testSum()
{
 int expected= 2;
 int result= Math.add(1,1);
 CodePointEvaluator.getInstance().assertEquals

(“1+1=2 olmalıdır”,expected,result);
}

18

Figure 2.7 Distribution of Homework

Instructor has to put her test packages in a maven repository, which is

accessible by students. In the announcement of homework, instructor must

announce the settings of the test package, the name and URL of repository, group

id, artifact id and version of test package, which are essential parts of a regular

Maven project. An example of part of POM file is shown Figure 2.8 A Sample

POM File for Students:

19

Figure 2.8 A Sample POM File for Students

2.3.3. Step 3: instant results of homework

After student creates a successful error-free solution, she must use the

method startTests with the full-qualified path of her package as a parameter.

While the test cases in package run, the student can instantaneously see the output

of tests and the scores she gets. If she made a mistake during the implementation,

she will simultaneously find the line number, the expected value, the error

messages that Codepoint creates or the helpful hints that instructor puts in the test

code to guide student in completing homework.

After student calls method startTests, each test case runs one by one. For

example if a test case is like at Figure 2.9 A Sample Test Case, after running the

test case, student will see messages on the screen.

<project>
<modelVersion>4.0.0</modelVersion>

 <groupId>com.codometer.homeworks</groupId>
 <artifactId>homework8Impl</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <repositories>
 <repository>
 <id>internal</id>
 <name>Archiva Managed Internal Repository</name>
 <url>http://cengsvn.anadolu.edu.tr:8080/archiva/repository/internal/</url>
 </repository>
 </repositories>
 <dependencies>
 <dependency>
 <groupId>com.codometer.homework.bim460</groupId>
 <artifactId>homework8</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </dependency>
 </dependencies>
</project>

20

Figure 2.9 A Sample Test Case

At first student will see the message: “Trying to send a message from

Avea using IConnectorAdapter.send()…”. After this message student will see a

message: “Checking Avea Phone Number Format... Passed” if his code passes the

formatting test. After the test completed, student will see a message: “Trying to

send a message from Avea using IConnectorAdapter.send()...Done”.

2.3.4. Step 4: recollecting homework

In conventional method, each student has to deliver her homework

solution to instructor via e-mail, FTP or by physical media (such as CD, USB

drive, etc.). This process works well with small number of students. Nevertheless,

when the number of students increases, productivity decreases and human-related

errors such as losing solution increase. This causes another burden on instructor in

archiving the solutions. To overcome these challenges, we are using SVN, a free

source control tool. Every student has to have a repository, which can be accessed

by himself and Codometer. We suggest instructors to give only read

authentication to Codometer. Each student commits her solution to SVN. SVN

provides a safe place for solutions and keeps track dates of commits. So even if a

student commits homework after the deadline, with SVN instructor can checkout

the last solution committed before the deadline. After the deadline, Codometer

 @TestPoint(25)
 @Test
 public void CheckAveaSend() {
 init(packageName);
 System.out.println("Trying to send a message from Avea using
IConnectorAdapter.send()...");
 try {
 IConnectorAdapter connector = (IConnectorAdapter) AveaClass.newInstance();
 String message="Hello World!";
 connector.send("905555555555", message);
 eval.assertEquals("Checking Avea Phone Number Format... Passed",
 "Checking Avea Phone Number Format... FAILED",
 "MSISDN:905555555555", AveaConnector.recipient);
 eval.assertEquals("Checking Avea Message... Passed",
 "Checking Avea Message... FAILED",
 message, AveaConnector.message);
 System.out.println("Trying to send a message from Avea using
IConnectorAdapter.send()...Done");
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

21

collects all homework from SVN automatically. After gathering all homework,

the final grading step starts.

2.3.5. Step 5: final grading

Last part of Codometer process is grading. After collecting all

homework, Codometer starts grading process at a time which educator may set or

by manual grade command by educator anytime. The flow of final grading step

can be seen in Figure 2.10 Codometer Final Grading Lifecycle.

Figure 2.10 Codometer Final Grading Lifecycle

After grading finishes, the results could be seen in Codometer user

interface. The result interface can be seen at Figure 2.11 A Homework Result

Shown to Instructor. The usernames of students blurred due to privacy concerns.

The results are also exported to XML files so that they can be used in further

analysis.

22

Figure 2.11 A Homework Result Shown to Instructor

2.4. Codometer: Given Assignments

By using Codometer, there are eight assignments given. In Table 2.3, a

list of given homework can be seen. Sample POM file and source codes of Week

2 homework, Weather-Broadcasting, can be seen in Appendix 1. These all

assignments are about the main topic of course, design patterns.

Table 2.3 List of Given Homework Using Codometer

Week # Name of Homework
Week 1 Reach First
Week 2 Weather-Broadcasting
Week 3 SMS sender
Week 4 Pseudo Osi Layer 3-4
Week 5 Village
Week 6 Composite Components
Week 7 Connector Adapters
Week 8 Cruise Control –State Machine

23

3. METHODOLOGY

Codometer is used in Advanced Programming Course in the Computer

Engineering Department at Anadolu University. There were thirty students

enrolled in this course. These students had taken three semesters of programming

courses in Java. We divided these students into three groups (SG1, SG2 and SG3)

and divided assignments into three groups as seen in Table 3.1 Assignment

Groups. “Assignment Group 1” (AG1) consisted four assignments generated by

using Codometer. “Assignment Group 2” (AG2) consisted four assignments

generated in conventional way. “Assignment Group 3” (AG3) consisted four

assignments generated by using Codometer. In first four weeks period SG1 took

AG1, SG2 took AG2. In the same period SG3 took assignments from either AG1

or AG2. And all of three-student groups took the third assignment group for the

rest of their semester. We administrated same poll three times of the semester.

First at the start of semester, the second time at the end of Week four and the last

time is at the end of semester. The poll is shown Table 3.2 The Poll.

Table 3.1 Assignment Groups

Week # Name of Homework Assignment Group

Week 1 Reach First Group 1&2

Week 2 WeatherBroadcasting Group 1&2

Week 3 SMS sender Group 1&2

Week 4 Pseudo Osi Layer 3-4 Group 1&2

Week 5 Village Group 3

Week 6 Composite Components Group 3

Week 7 Connector Adapters Group 3

Week 8 Crusise Control –State Machine Group 3

24

Table 3.2 The Poll

Number Question
1 I have been in a professional project before.

 Yes
 No

2 Test Driven Development is a good way to programming.
 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

3 Using a version control tool is a must in programming.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

4 I find bugs while I am coding.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

5 Writing tests before coding is not possible.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

6 Using a dependency management tool simplifies coding.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

7 Every week there must be homework.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

8 I will use test driven development.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

25

9 I will use a source control tool in my professional life.
 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

10 Using a automated grader is a good way to give assignments.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

11 Using TDD helps me find my bugs.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

12 Homework is a good method in programming courses.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

13 I can participate in a professional project as developer.

 Strongly Disagree
 Disagree
 No Idea
 Agree
 Strongly Agree

26

4. RESULTS

We conducted this study by using Codometer in Advanced Programming

Course in the Computer Engineering Department at Anadolu University. There

were 30 students enrolled in this course and eight homework assignments were

given using Codometer. To evaluate the effectiveness of Codometer use in the

course, we administered same poll at the beginning of semester, at the middle of

semester and at the end of the semester.

At the beginning of semester before administering the poll we explained

Codometer and the mechanics of Codometer to students. The results of the poll

are:

55% of students collaborated in a professional project before. While 90%

of students never heard before about TDD, only 5% of students have used this

strategy and 5% of students do not know if they used or not TDD. While 98% of

students had no information about if TDD is useful or not, only 2% of students

thought TDD is a good way to write programs. Only 2% of students thought that

they will use TDD in their future life, the rest of the students indicate that writing

test code before the actual code is not possible or not a good way to code. 94.4%

of students had no idea about if automatic grader will be a good method in the

class or not, despite the majority 4% of students strongly disagrees that automatic

graders would be good at class.

Only 3% of students strongly agree, 2% agree that using a version control

tool is important while writing programs, on the other hand 86% of students

disagrees that using a version control tool is necessary. 91% of students disagree

that using dependency management tools are necessary, on the other hand only

4% of students thought that dependency management tools are beneficial while

programming.

The majority of students who collaborate in a professional project,

approximately 90%, indicate that the clients found majority of their bugs.

95% of students indicated that every week there must be at least one

assignment. 55% of students agree that they can participate a developer role in a

project, on the other hand 33% of students disagree that they are ready to

professional life.

27

Average score of student groups for first four weeks period can be seen

in Table 4.1.

Table 4.1 Average Score of Student Groups

 Week 1 Week 2 Week 3 Week 4

Student Group 1 62.1 63.3 80.2 87.9

Student Group 2 75 73 65.9 66.0

Student Group 3 75 65 45.3 80.4

As can be seen in Table 4.1, at first and second weeks the “Student

Group 1” had some problems with Codometer but after getting familiar with

Codometer, an improvement of scores are observed each week. Despite the

success of “Student Group 1”, since scores are inversely proportional with the

complexity of the assignment, scores of “Student Group 2” decreases each week

as the complexity increases for each assignment week by week. “Student Group

3” suffers the same causes of “Student Group 2” while they got the same

assignments at weeks 1, 3. But again a great increase of scores can be observed at

week 4 because of getting familiar with the Codometer.

After week four, we administrated the same poll again. The responses

from the “Student Group 2” were not different from first poll responses. The

responses of Group 1&3 were different from the beginning of semester. 90% of

students strongly agree, 7% of students agree that TDD is a good method while

programming. 85% of students strongly agree, 5% of students agree that if project

is using TDD they have the confidence to take a developer role in the project.

75% of students strongly agree, 22% agree that using version control

system and dependency management system while coding is necessary. 97% of

students agree that they will use version control systems and version control

systems in their professional life.

The average scores of students from week 4 to the end of the semester

can be seen Table 4.2.

28

Table 4.2 Average Score of Students

 Week 5 Week 6 Week 7 Week 8

Student Group 1&3 95.3 93.3 98.7 97.9

Student Group 2 65 80.4 89.5 93.3

Due to lack of experience of “Student Group 2” at week 5 an overall

decrease of average score is observed. But after getting familiar with Codometer

mechanics there were a great increase at average scores week by week.

We administrated the last poll at the end of semester. The responses from

students were very positive according to the first poll we administrated at the

beginning of semester. Students expressed the beneficiate of the course to their

future life. 94% of students strongly agree, 5% of students agree that TDD is a

good method while programming. Approximately 95% of students agree or

strongly agree that they will use TDD in their professional future life. 95% of

students agree or strongly agree that after using TDD methodology they have

released more bug free software. 80% of students strongly agree, 17% agree that

using version control system and dependency management system while coding is

necessary. 97% of students agree that they will use version control systems and

version control systems in their professional life. 85% of students strongly agree,

10% of students agree that if project is using TDD they can take a developer role

in the project.

75% of students also indicate that Codometer do not have support of

writing testing codes. So they need more assistance on writing tests.

Overall at the end of the semester, we got very positive responses from

both student and instructor groups. Students expressed a strong preference for

Codometer compared to the classical homework assignments. From the

instructor’s view, we see a 40% increase in time while preparing the homework,

but the grading procedure has shortened by approximately 90%. Instructors only

have to answer the questions of students about the homework. Thus, in overall,

the time spent on an assignment decreases by 82%. Instructors stated that they are

willing to use Codometer in their future courses. But instructors also indicated

29

that Codometer is more suitable for algorithms or data structure courses and is

vulnerable against plagiarism in code.

Also, instructors requested some important new features:

• They need a framework to enable students to do more tests by themselves.

• They need a framework to test user interfaces in homework assignments.

• They need a module for detect plagiarism in written codes.

After this study, we gathered critical information about Codometer

system and its benefits to students. After applying Codometer, students learnt the

concepts about TDD, source controlling and dependency management. Students

started to write tests before coding not only in class but also in their professional

projects. Students prefer Codometer more than conventional way and prefer the

use of Codometer in other classes too. Students feel more confident about writing

codes than before.

30

5. CONCLUSION AND FUTURE WORK

In this thesis, we presented an open source tool created at Anadolu

University Computer Engineering department to distribute and grade

programming assignments automatically. We found that using Codometer, an

automated grading system, in the classroom, is a very positive experience and

increases the productivity of the course. A significant increase in the quality of

student codes and decrease in the human-related errors is observed.

One of the most important features of Codometer is the support of

multiple programming languages. Currently Codometer supports Java and C#. We

plan to continue to use Codometer in programming courses at Computer

Engineering and in Industrial Engineering classes that use C# programming

languages. For the future, we plan to add support for other programming

languages like C/C++ to Codometer. Also because of the flexibility to create

various types of assignments, Codometer is a good candidate for distance learning

courses.

We further plan to add new frameworks and new features to Codometer

according to the feedback from student and instructors groups. We intend to add a

new framework to Codometer named Testometer, which will be used for

improving students’ ability to write test cases. In this scenario, instructor writes a

set of buggy code and expects students to write codes that reveal and catch those

bugs. Another feature that is worth adding is the identification of plagiarism in

code, which can be achieved by integrating Moss [48] from Stanford University.

As a result of using Codometer to create assignments, there will become

a library of assignments. On instructor view, to find a usable assignment will

become troublesome. To overcome this, we plan to add labelling feature to

Codometer-assignments in our future releases.

31

REFERENCES

1. Huet, I., et al., New Challenges in Teaching Introductory Programming

Courses: a Case Study. 34th ASEE/IEEE Frontiers in Education

Conference, 2004.

2. Cerioli, M. and P. Cinelli, GRASP: Grading and Rating ASsistant

Professor. Proceedings of the ACM-IFIP IEEIII 2008 Informatics

Education Europe III Conference Venice, Italy, December 4-5, 2008,

2008: p. 37-51.

3. Cheang, B., et al., On automated grading of programming assignments in

an academic institution. Comput. Educ., 2003. 41(2): p. 121-131.

4. Ala-Mutka, K., A Survey of Automated Assessment Approaches for

Programming Assignments. Computer Science Education, 2005. 15(2): p.

83-102.

5. Önder Demir, A.S., Ahmet Arslan, Özgür Yılmazel, Automatic Grading

System for Programming Homework, in Annual International Conference

on Computer Science Education2010.

6. EDWARDS, S.H., Using Test-Driven Development in the Classroom:

Providing Students with Automatic, Concrete Feedback on Performance.

7. Edwards, S.H., Rethinking computer science education from a test-first

perspective, in Companion of the 18th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and

applications2003, ACM: Anaheim, CA, USA. p. 148-155.

8. Morris, D.S. Automatic grading of student's programming assignments: an

interactive process and suite of programs. in Frontiers in Education,

2003. FIE 2003 33rd Annual. 2003.

9. Jones, C.G., Test-driven development goes to school. J. Comput. Small

Coll., 2004. 20(1): p. 220-231.

32

10. Li-Ren, C., et al. An evaluation of TDD training methods in a

programming curriculum. in IT in Medicine and Education, 2008. ITME

2008. IEEE International Symposium on. 2008.

11. Matt, u.v., Kassandra: the automatic grading system. SIGCUE Outlook,

1994. 22(1): p. 26-40.

12. Suleman, H., Automatic marking with Sakai, in Proceedings of the 2008

annual research conference of the South African Institute of Computer

Scientists and Information Technologists on IT research in developing

countries: riding the wave of technology2008, ACM: Wilderness, South

Africa. p. 229-236.

13. English, J., Automated assessment of GUI programs using JEWL, in

Proceedings of the 9th annual SIGCSE conference on Innovation and

technology in computer science education2004, ACM: Leeds, United

Kingdom. p. 137-141.

14. Beck, K., Aim, fire [test-first coding]. Software, IEEE, 2001. 18(5): p. 87-

89.

15. Beck, K., Test-Driven Development: By Example. Addison-Wesley,

Boston, MA.

16. Keefe, K., J. Sheard, and M. Dick, Adopting XP practices for teaching

object oriented programming, in Proceedings of the 8th Australasian

Conference on Computing Education - Volume 522006, Australian

Computer Society, Inc.: Hobart, Australia. p. 91-100.

17. Beck, K. and C. Andres, Extreme Programming Explained: Embrace

Change (2nd Edition). 2004: Addison-Wesley Professional.

18. Mentor, J.-O. JUnit.org Resources for Test Driven Development. 2011;

Available from: http://www.junit.org/.

19. nUnit. NUnit- a unit-testing framework for all .Net languages. 2011;

Available from: http://www.nunit.org.

20. maven. http://maven.apache.org/. 2011; Available from:

http://maven.apache.org/.

33

21. SVN. Open Source Software Engineering Tool. 2011; Available from:

http://subversion.tigris.org/.

22. Moore, M.G., Handbook of Distance Education. 2007.

23. Michael Moore, G.K., Distance Education- A Systems View. Second

Edition ed. 2005.

24. NPANDAY. NPanday - a project to integrate Apache Maven into .NET

development environments. 2012; Available from:

http://incubator.apache.org/npanday/.

25. Higgins, C., et al., The CourseMarker CBA System: Improvements over

Ceilidh. Education and Information Technologies, 2003. 8(3): p. 287-304.

26. Jackson, D. and M. Usher, Grading student programs using ASSYST, in

Proceedings of the twenty-eighth SIGCSE technical symposium on

Computer science education1997, ACM: San Jose, California, United

States. p. 335-339.

27. Bettini, L., et al. An environment for self-assessing Java programming

skills in first programming courses. in Advanced Learning Technologies,

2004. Proceedings. IEEE International Conference on. 2004.

28. Yüzer, T.V., Uzaktan Öğrenmede Etkileşimlilik. 2013.

29. McAuley, A., et al., The MOOC model for digital practice, 2010.

30. Mackness, J., S. Mak, and R. Williams. The ideals and reality of

participating in a MOOC. in Networked Learing Conference. 2010.

University of Lancaster.

31. Conole, G., MOOCs as disruptive technologies: strategies for enhancing

the learner experience and quality of MOOCs. Preprint]. Recuperado de:

http://eprints. rclis. org/19388/4/Pegagogies% 20for% 20enhanced%

20the% 20learner% 20experience% 20and% 20quality% 20of%

20MOOCs. pdf, 2013.

32. Alario-Hoyos, C., et al., Analysing the impact of built-in and external

social tools in a MOOC on educational technologies, in Scaling up

learning for sustained impact. 2013, Springer. p. 5-18.

34

33. Astels, D., Test Driven development: A Practical Guide. 2003: Prentice

Hall Professional Technical Reference. 592.

34. Janzen, D.S. and H. Saiedian. On the Influence of Test-Driven

Development on Software Design. in Software Engineering Education and

Training, 2006. Proceedings. 19th Conference on. 2006.

35. Newkirk, J.W. and A.A. Vorontsov, Test-Driven Development in

Microsoft .Net. 2004: Microsoft Press.

36. Wake, W.C., Extreme programming explored. 2002: Addison-Wesley

Longman Publishing Co., Inc. 192.

37. Wells, D. Extreme Programming: A gentle introduction. 2012; Available

from: http://www.extremeprogramming.org/rules/simple.html.

38. MCMILLAN, J. and J. WERGIN, Understanding and evaluating

educational research. 2006.

39. Kaplan, B. and J.A. Maxwell, Qualitative research methods for evaluating

computer information systems. Evaluating the Organizational Impact of

Healthcare Information Systems, 2005: p. 30-55.

40. Firestone, W.A., Meaning in method: The rhetoric of quantitative and

qualitative research. Educational researcher, 1987. 16(7): p. 16-21.

41. Cook, T.D. and C.S. Reichardt, Qualitative and quantitative methods in

evaluation research. Vol. 1. 1979: Sage publications Beverly Hills^ eCA

CA.

42. Johnson, R.B. and A.J. Onwuegbuzie, Mixed methods research: A

research paradigm whose time has come. Educational researcher, 2004.

33(7): p. 14-26.

43. Creswell, J.W., Research design: Qualitative, quantitative, and mixed

methods approaches. 2013: Sage Publications, Incorporated.

44. Likert scale. 2013; Available from:

http://en.wikipedia.org/wiki/Likert_scale.

35

45. Likert, R., A technique for the measurement of attitudes. Archives of

psychology, 1932.

46. Codometer. Codometer- an open source tool to distribute homework

assignments and automate grading of the students’ submissions. 2012;

Available from:

http://blog.anadolu.edu.tr/onderdemir/OpenSourceProjects/Codometer.

47. Yadav, S., et al., Comparison of analysis techniques for information

requirement determination. Communications of the ACM, 1988. 31(9): p.

1090-1097.

48. MOSS. A System for Detecting Software Plagiarism. 2012; Available

from: http://theory.stanford.edu/~aiken/moss/.

36

APPENDIX -1 2nd Week Homework

BIM460 - Homework 2
WeatherBroadcasting

Published on 02.03.2010

Due Date 09.03.2010 - Extended to 12.03.2010

The Preliminaries

• Knowledge about Observer pattern
• Knowledge about loose coupling

The Objective

• Write three classes one is WeatherBroadCaster, second one is
WeatherListenerCelcius and third one is WeatherListenerFahrenheit

• In WeatherBroadCaster there must be two methods:
o AddWeatherListener can take observer
o BroadCastWeather takes nothing

• • In WeatherListenerCelcius there must be three methods:
o RegisterToWeatherBroadCaster can take observe
o DisplayTemperature returns temperature in celcius
o Update takes float temperature value in celcius
o Default temperature value must be 120 (float)

• In WeatherListenerFahrenheit there must be two methods:
o RegisterToWeatherBroadCaster can take observe
o DisplayTemperature returns temperature in Fahrenheit
o Update takes float temperature value in celcius
o Default temperature value must be -10 (float)

• In every BroadCast temperature must raise by 10 (float) in celcius.
Starting from 0(float).

37

•

How to get

add mvn dependency:

<dependencies>
<dependency>

<groupId>com.codometer.homework.bim460</groupId>
<artifactId>homework2</artifactId><version>0.0.2-SNAPSHOT</version>

</dependency>
</dependencies>

Interface to Implement

• com.codometer.bim460.homework2.interfaces.IObserver
• com.codometer.bim460.homework2.interfaces.IObservee

See your grade:

java com.codometer.homework.bim460.HomeworkTester [YourWBC full-
qualified class name] [YourWLC full-qualified class name] [YourWLF full-
qualified class name]

Where to put?

/bim460/[YOUR USERNAME]/hw2

example: /bim460/odemir/hw2

so your pom.xml file should be in /bim460/odemir/hw2/pom.xml and your src
folder should be in /bim460/odemir/hw2/src

38

sample pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.codometer.homework.bim460</groupId>
<artifactId>homework2Impl</artifactId>
<name>homework2Impl</name>
<version>0.0.2-SNAPSHOT</version>
<build>
<pluginManagement>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.0.2</version>
<configuration>
<source>1.6</source>
<target>1.6</target></configuration>
</plugin>
</plugins>
</pluginManagement>
</build>
<repositories>
<repository>
<id>internal</id>
<name>Archiva Managed Internal Repository</name>
<url>http://cengsvn.anadolu.edu.tr:8080/archiva/repository/internal/
</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>com.codometer.homework.bim460</groupId>
<artifactId>homework2</artifactId>
<version>0.0.2-SNAPSHOT</version>
</dependency>
</dependencies>
</project>

39

APPENDIX -2 2nd Week Homework Sources

IObservee.java

package com.codometer.homework.bim460.homework2.interfaces;

public interface IObservee {
 void AddWeatherListener(IObserver newObservee);
 void BroadCastWeather();
}

IObserver.java

package com.codometer.homework.bim460.homework2.interfaces;

public interface IObserver {
 void RegisterToWeatherBroadCaster(IObservee newObservee);
 float DisplayTemperature();
 void Update(float temp);
}

CodometerWeatherBroadCaster.java

package com.codometer.homework.bim460.homework2;

import java.util.ArrayList;

import
com.codometer.homework.bim460.homework2.interfaces.IObservee;
import
com.codometer.homework.bim460.homework2.interfaces.IObserver;

public final class CodometerWeatherBroadCaster implements
IObservee{
 ArrayList<IObserver> listeners=new ArrayList<IObserver>();
 public void AddWeatherListener(IObserver newObserver)
 {
 listeners.add(newObserver);

 }
 public void BroadCastWeather()
 {
 for(int i=0;i<listeners.size();i++)
 {

 ((IObserver)listeners.get(i)).Update(10.0f);//hep ayni
 }
 }
}

40

CodometerWeatherListenerC.java

package com.codometer.homework.bim460.homework2;

import
com.codometer.homework.bim460.homework2.interfaces.IObservee;
import
com.codometer.homework.bim460.homework2.interfaces.IObserver;

public final class CodometerWeatherListenerC implements IObserver
{
 float temperature=120;
 public void RegisterToWeatherBroadCaster(IObservee
newObservee)
 {
 newObservee.AddWeatherListener(this);

 }
 public float DisplayTemperature()
 {
 return temperature;
 }

 public void Update(float temp)
 {
 this.temperature=temp;
 }
}

CodometerWeatherListenerF.java

package com.codometer.homework.bim460.homework2;

import
com.codometer.homework.bim460.homework2.interfaces.IObservee;
import
com.codometer.homework.bim460.homework2.interfaces.IObserver;

public final class CodometerWeatherListenerF implements IObserver
{
 float temperature=-10;
 public void RegisterToWeatherBroadCaster(IObservee
newObservee)
 {
 newObservee.AddWeatherListener(this);
 }
 public float DisplayTemperature()
 {

 return temperature;
 }

 public void Update(float temp)
 {
 this.temperature= (9.0f/5.0f)*temp+32.0f;
 }
}

41

HomeworkTester.java

package com.codometer.homework.bim460.homework2;

import java.lang.reflect.InvocationTargetException;
import java.util.ArrayList;

import org.junit.Test;

import com.codometer.codepoint.CodePointEvualator;
import com.codometer.codepoint.CodePointHelper;
import com.codometer.codepoint.TestPoint;
import
com.codometer.homework.bim460.homework2.interfaces.IObservee;
import
com.codometer.homework.bim460.homework2.interfaces.IObserver;

public class HomeworkTester {

 private static String packageName;
 private static CodePointEvualator eval;
 static Class observer1Class;
 static Class observer2Class;
 static Class observeClass;
 static ArrayList<IObserver>observers;
 private IObservee CreateObservee(Class observe)
 {
 IObservee result = null;
 java.lang.reflect.Constructor co = null;
 try {
 co = observe.getConstructor(null);
 } catch (SecurityException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (NoSuchMethodException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 try {
 result= (IObservee) co.newInstance(null);
 } catch (IllegalArgumentException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (InstantiationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return result;
 }

 private IObserver CreateObserver(Class observer)

42

 {
 IObserver result = null;
 java.lang.reflect.Constructor co = null;
 try {
 co = observer.getConstructor(null);
 } catch (SecurityException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (NoSuchMethodException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 try {
 result= (IObserver) co.newInstance(null);
 } catch (IllegalArgumentException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (InstantiationException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (IllegalAccessException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 } catch (InvocationTargetException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 return result;
 }

 @TestPoint(20)
 @Test
 public void TestAddObserverCF()
 {
 IObservee observee=new CodometerWeatherBroadCaster();
 HomeworkTester.observers=new ArrayList<IObserver>();
 for(int i=0;i<10;i++)
 {
 IObserver tmp=null;
 if(i%2==0)
 {
 tmp=CreateObserver(this.observer1Class);
 }
 else
 {
 tmp=CreateObserver(this.observer2Class);

 }
 HomeworkTester.observers.add(tmp);
 tmp.RegisterToWeatherBroadCaster(observee);
 if(i==8)//son eleman hava durumunu alamamis
olacak. Digerleri alacak
 {
 observee.BroadCastWeather();
 }

 }

 for(int i=0;i<10;i++)

43

 {
 float expected;
 float actual;
 if(i%2==0)
 {
 expected=10.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 }
 else
 {
 expected=50.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 }
 if(i==9)
 {
 expected=-10.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 }

 CodePointEvualator.getInstance().assertEquals(expected,
actual);
 }
 }

 @TestPoint(20)
 @Test
 public void TestAddObserverF()
 {
 IObservee observee=new CodometerWeatherBroadCaster();
 HomeworkTester.observers=new ArrayList<IObserver>();
 for(int i=0;i<10;i++)
 {
 IObserver tmp=null;

 tmp=CreateObserver(this.observer2Class);

 HomeworkTester.observers.add(tmp);
 tmp.RegisterToWeatherBroadCaster(observee);
 if(i==8)//son eleman hava durumunu alamamis
olacak. Digerleri alacak
 {
 observee.BroadCastWeather();
 }

 }

 for(int i=0;i<10;i++)
 {
 float expected;
 float actual;
 expected=50.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 if(i==9)

44

 {
 expected=-10.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 }

 CodePointEvualator.getInstance().assertEquals(expected,
actual);
 }
 }

 @TestPoint(20)
 @Test
 public void TestAddObserverC()
 {
 IObservee observee=new CodometerWeatherBroadCaster();
 HomeworkTester.observers=new ArrayList<IObserver>();
 for(int i=0;i<10;i++)
 {
 IObserver tmp=null;

 tmp=CreateObserver(this.observer1Class);

 HomeworkTester.observers.add(tmp);
 tmp.RegisterToWeatherBroadCaster(observee);
 if(i==8)//son eleman hava durumunu alamamis
olacak. Digerleri alacak
 {
 observee.BroadCastWeather();
 }

 }

 for(int i=0;i<10;i++)
 {
 float expected;
 float actual;
 expected=10.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 if(i==9)
 {
 expected=120.0f;

 actual=HomeworkTester.observers.get(i).DisplayTemperature();
 }

 CodePointEvualator.getInstance().assertEquals(expected,
actual);
 }
 }

 @TestPoint(40)
 @Test
 public void TestObservee()
 {
 IObservee observee=CreateObservee(this.observeClass);

45

 IObserver observer1=new CodometerWeatherListenerC();
 IObserver observer2=new CodometerWeatherListenerC();
 IObserver observer3=new CodometerWeatherListenerC();
 IObserver observer4=new CodometerWeatherListenerF();
 observee.BroadCastWeather();

 observer1.RegisterToWeatherBroadCaster(observee);
 observer2.RegisterToWeatherBroadCaster(observee);
 CodePointEvualator.getInstance().assertEquals(10.0f,
observer1.DisplayTemperature());
 observee.BroadCastWeather();
 CodePointEvualator.getInstance().assertEquals(20.0f,
observer2.DisplayTemperature());
 observer3.RegisterToWeatherBroadCaster(observee);
 observee.BroadCastWeather();

 IObservee
anotherObservee=CreateObservee(this.observeClass);

 observer4.RegisterToWeatherBroadCaster(anotherObservee);

 observer1.RegisterToWeatherBroadCaster(anotherObservee);
 anotherObservee.BroadCastWeather();

 CodePointEvualator.getInstance().assertEquals(10.0f,
observer1.DisplayTemperature());
 CodePointEvualator.getInstance().assertEquals(30.0f,
observer2.DisplayTemperature());
 CodePointEvualator.getInstance().assertEquals(30.0f,
observer3.DisplayTemperature());
 CodePointEvualator.getInstance().assertEquals(50.0f,
observer4.DisplayTemperature());

 }

 public static void RunGrader() {

CodePointEvualator.getInstance().PuanlamayaBasla(HomeworkTester.cl
ass.getName());
 System.out.println();
 System.out.println();
 System.out.println();
 System.out.println("Toplam: "+
CodePointEvualator.getInstance().getOverall());
 System.out.println("Alinan: "+
CodePointEvualator.getInstance().getPointsTaken());
 System.out.println("Basari: %"+
CodePointEvualator.getInstance().normalizeTo100());
 }
//
 //First is observer class name second and third is observees

 public static boolean init(String packageName) {
 Class []classes=null;
 try{
 classes=CodePointHelper.getClasses(packageName);

46

 for (Class c : classes) {
 //System.out.println(c.getName());
 if (c.newInstance() instanceof IObservee)
 {
 observeClass = c;
 }
 else if (c.newInstance() instanceof
IObserver)
 {
 if(((IObserver)
c.newInstance()).DisplayTemperature()==120.0f)
 {
 HomeworkTester.observer1Class
= c;
 }
 else if(((IObserver)
c.newInstance()).DisplayTemperature()==-10.0f)
 {
 HomeworkTester.observer2Class
= c;
 }

 }

 }

 if (observeClass==null) {
 System.err.println("I can't find your
Wheather Broadcaster");
 return false;
 }
 if (observer1Class==null) {
 System.err.println("I can't find your
Wheather Broadcaster Listener For Celcius");
 return false;
 }
 if (observer2Class==null) {
 System.err.println("I can't find your
Wheather Broadcaster Listener For Fahrenheit");
 return false;
 }
 else
 {

 }
 }
 catch(Exception ex)
 {
 System.err.println(ex.getLocalizedMessage());

 }
 return true;
 }
 public static void main(String[] args)
 {

 try {

47

 packageName=args[0];
 System.out.println(packageName);
 eval=CodePointEvualator.getInstance();
 if(init(packageName))
 {
 HomeworkTester.RunGrader();
 }

// HomeworkTester.observeClass =
Class.forName(args[0]);
//
 HomeworkTester.observer1Class=Class.forName(args[1]);
//
 HomeworkTester.observer2Class=Class.forName(args[2]);

 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }
}

