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ABSTRACT 

BINARY DATA RECONSTRUCTION IN PRIVACY-PRESERVING 

RECOMMENDATION ALGORITHMS 

 

Murat OKKALIOĞLU 

Department of Computer Engineering 

Anadolu University, Graduate School of Sciences, November 2017 

Supervisor: Assoc. Prof. Dr. Cihan KALELİ 

 

Collaborative filtering systems have become very popular with the frequent use of 

the Internet to offer reliable recommendations to users. Ratings for such systems could 

be in a binary or numeric scale, and data supplied by users could be stored in a central-

server, distributed among two- or multi-party or even peers could come together for 

collaborative filtering purposes. Collaborative filtering systems rely on true user 

feedbacks in order to produce accurate recommendations. However, users of such 

systems might be reluctant to provide their true opinions if they feel that their confidential 

data might be used other than the initial purpose of data collection. Such resistances to 

participate in collaborative filtering systems might hamper the recommendation quality. 

At this point, privacy-preserving collaborating filtering systems take the privacy concerns 

into the primary consideration without sacrificing the recommendation quality. 

Therefore, users are convinced to provide their true inputs as well as receive quality 

recommendations by the measures taken by privacy-preserving collaborative filtering 

systems. However, these measures should be investigated if the claimed privacy-

preservation is really maintained. The objective of this dissertation is to derive the original 

binary ratings, which are promised to be preserved, from the perturbed binary ratings in 

different privacy-preservation protocols under different data partitioning scenarios 

including central server-based, distributed between two- and multi-party and peer-to-peer 

collaboration. Auxiliary information is utilized throughout the dissertation to improve the 

reconstruction accuracy or circumvent the bottlenecks to derive the original ratings due 

to the privacy-preservation protocols.  

Keywords: Privacy, binary ratings, data reconstruction, auxiliary information, 

collaborative filtering.
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ÖZET 

GİZLİLİK TABANLI ÖNERİ ALGORİTMALARINDA İKİLİ VERİLERİN 

YENİDEN OLUŞTURULMASI  

Murat OKKALIOĞLU 

 

Bilgisayar Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Kasım 2017 

Danışman: Doç. Dr. Cihan KALELİ 

 

Ortak filtreleme sistemleri Internet’ in sıklıkla kullanılmasıyla beraber kullanıcılara 

güvenilir tavsiyeler üretmek için çok popüler oldu. Bu sistemlerin oylamaları ikili veya 

nümerik bir ölçekte olabilir ve kullanıcılar tarafından sağlanan veriler merkezi bir 

sunucuda tutulabilir, iki- veya çok-parti arasında dağıtık olabilir ve hatta eşler ortak 

filtreleme amaçları ile bir araya gelebilirler. Ortak filtreleme sistemleri doğru tavsiyeler 

üretebilmek için kullanıcıların doğru geri bildirimine bel bağlarlar. Fakat, bu sistemlerin 

kullanıcıları kişiye özel verilerinin toplanma amacı dışında kullanılabileceğini 

hissederlerse gerçek fikirlerini sağlamakta isteksiz davranabilirler. Ortak filtreleme 

sistemlerine katılmak için böyle bir direniş tavsiye kalitesini aksatabilir. Bu noktada, 

gizlilik tabanlı ortak filteleme sistemleri gizlilik endişelerini tavsiye kalitesini feda 

etmeden öncül olarak göz önüne alırlar. Bu yüzden, kullanıcılar gizlilik tabanlı ortak 

filtrelemede alınan önlemler sayesinde kaliteli tavsiye almanın yanında doğru girdiler 

sağlamaya da ikna edilirler. Fakat, bu önlemlerin ifade edilen gizlilik korumasını sağlayıp 

sağlamadığı incelenmelidir. Bu tez çalışmasının amacı merkezi sunucu tabanlı, iki- veya 

çok-parti arasında dağıtılmış ve eşler arası işbirliğini içeren farklı veri dağıtımı 

senaryoları altında farklı gizlilik koruma protokolleriyle saklanmış ikili oylamalardan 

korunması sözü verilen orijinal ikili oylamaların elde edilmesidir. Veri imarınin 

doğruluğunu ve gizlilik koruma protokollerinden orijinal ikili oylamaları elde ederken 

karşılaşılan engellerden kurtulmak için yardımcı bilgi kullanılmıştır.  

Anahtar kelimeler: Gizlilik, ikili oylamalar, veri imari, yardımcı bilgi, ortak 

filtreleme.
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1. INTRODUCTION 

The Internet has created new forms of interactions. Earlier daily routines such as 

shopping, ordering a meal, financial transactions or face-to-face conversations have been 

already transferred to online media. International Telecommunication Union (2017) 

estimates that 48% of world population and 70.6% of youth use the Internet in 2017. On 

the one hand, the amount of data created online has been steadily growing (McAfee et al., 

2012) due to such a frequent and widespread use of the Internet. On the other hand, people 

utilizing online solutions might be overwhelmed while deciding due to the abundance of 

options with which they are faced. This phenomenon, which requires processing more 

information than one can handle to make a decision, is called information overload. E-

commerce companies would like to attract more customers by finding out which products 

would best fit their customers’ tastes to overcome information overload problem. At this 

point, collaborative filtering (CF) is a technique to offer personalized recommendations 

based on the item or user preferences. 

1.1. Collaborative Filtering 

CF is a technique that aims to provide recommendations to its users by utilizing 

earlier preferences of items. The basic idea behind CF is that like-minded users have 

similar tastes so that they should be offered similar items. CF only uses feedbacks 

provided by users. A CF system offers predictions for a user by matching him or her with 

other users with similar tastes. This technique helps users reduce the time to search for a 

right product. The term was first coined by Goldberg et al. (1992) for an e-mail filtering 

system, Tapestry, which users annotate their emails for recommendations. A traditional 

CF system operates on a large n × m rating matrix, where n different users, {u1, u2,…, un-

1, un }, rate any of m different items, {it1, it2, …, itm-1, itm}. A rating matrix is usually 

sparse because users can only rate some of the items among a very large data set. In 

general, CF systems rely on either user-based or item-based algorithms. In the user-based 

CF systems, the active user (AU) who is looking for a prediction is matched with some 

other users called neighbors based on a metric measuring the similarity. A prediction is 

determined based on ratings from neighbors presuming that items liked by neighbors will 

also be liked by an AU (Herlocker and Konstan, 1999). On the other hand, item-based 

algorithms explore relationships between items instead of users to avoid searching users 

among (Sarwar et al., 2001). CF systems utilize numeric (scalar) or binary ratings. 
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Numeric ratings indicate how much an item is preferred by a user from a discrete or 

continuous value scale between two numbers. Binary ratings express if a user likes/agrees 

or dislikes/disagrees an item. Ratings can also be categorized as explicit and implicit. 

While explicit ratings are collected from users and represent users’ preferences, implicit 

ratings are more related to an inference from users’ behaviors such as browsing, purchase, 

or transaction history (Schafer et al., 2007). Implicit ratings can be referred as unary 

ratings indicating presence or absence. There are different CF schemes utilizing implicit 

(Oard and Kim, 1998; Hu, Koren and Volinsky, 2008) or explicit ratings (Breese, 

Heckerman and Kadie, 1998; Herlocker and Konstan, 1999; Miyahara and Pazzani, 

2000). An example of a rating matrix is given in Figure 1.1 to illustrate a CF system with 

binary ratings. In Figure 1.1, user Cihan wants a prediction for the book Pinocchio, which 

is question-marked in the figure. A prediction will be made among the like-minded or 

like-rated items based on the CF prediction algorithm. Light grey users denote the 

neighbors of Cihan, and the prediction will be made between these two users if a user-

based algorithm is utilized. If an item-based algorithm is used, light gray items will be 

picked as neighbor items, and the prediction will be produced based on these items.  

CF methods can be categorized into three different groups, namely, memory-based, 

model-based and hybrid CF. In memory-based methods, all rating matrix is utilized to 

produce recommendations. These methods usually need some sort of a similarity weight 

to obtain the neighborhood. Upon generating the neighborhood, recommendation 

algorithm utilizing the neighborhood information is executed. In memory-based CF 

methods, correlation-based and vector-based similarity calculations are widely preferred 

(Resnick et al., 1994; Konstan et al., 1997; Breese et al., 1998; Herlocker and Konstan, 

1999). Model-based CF utilizes a model, which could be a machine learning algorithm or 

a data mining method, on training data to learn. Then, predictions are generated based on 

 

Figure 1.1. An example of a CF matrix 
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the model learned (Breese et al., 1998). Hybrid methods are the combination of memory- 

and model-based methods, but it might include the use of textual information as well (Su 

and Khoshgoftaar, 2009).  

Until now, recommendation and prediction have been used to express CF systems’ 

output generated for AU based-on AU’s past preferences (rating vector). In CF context, 

prediction refers to predict a rating for a given item asked by AU. Recommendation refers 

to a list of items in which AU could be interested. Also, there might be cases that AU 

could specify set of items that she wants to be recommended. For example, in a music-

related CF system, assume that AU is a classical-music listener and she might not prefer 

to be recommended from other genres. Such a case is called constrained 

recommendations, AU could specify items from which her recommendations should be 

generated (Schafer et al., 2007).  

There are some challenges that CF systems should take care of. E-commerce 

companies might have a large variety of items so that users usually do not have an idea 

for most of the items in the data set, which causes sparsity. Data sparsity is one of the 

main challenges affecting the quality of recommendations (Sarwar et al., 1998). Since CF 

algorithms try to find out correlations between users or items, stronger relationships can 

be extracted with denser datasets. Data sparsity could lead to some problems other than 

recommendation quality. When a new user or item is inserted into data set, it would be 

difficult to find similar users or items because they have either limited or no ratings in 

their vectors. This problem is known as cold start. Reduced coverage and neighbor 

transitivity are the other problems encountered due to data sparsity (Su and Khoshgoftaar, 

2009). Reduced coverage occurs when CF algorithm cannot produce recommendations 

for some users due to relatively small rated items. Moreover, if a CF system cannot 

identify any neighbor for AU, this problem is called neighbors transitivity because no 

user have rated any common item with AU. Due to problems stemming from data 

sparsity, a denser data set is desirable for a more reliable CF system.  

Scalability is a general term to define the capability of a system to keep up with 

increasing volume of work. Since CF systems are usually available online, they are bound 

to frequent user interactions and data matrix is obliged to grow. Therefore, CF algorithms 

should cope with the growing size of data while offering predictions. Dimension 

reduction techniques could be employed to reduce the size of a large data matrix. Apart 
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from scalability and sparsity, grey sheep and synonym are the challenges for CF (Su and 

Khoshgoftaar, 2009).   

Up to now, operational challenges about CF is given. Above all else, users must 

provide their true opinion so that quality predictions can be produced. The key factor for 

a CF system to function properly regarding prediction accuracy is the voluntary and true 

user participation. To achieve this goal, users must be assured that their preferences would 

not be comprised. Therefore, privacy is another challenge for CF systems that could 

dramatically affect the true user participation. Users might be unwilling to share their 

opinions because they could go widely public if disclosed (Resnick and Varian, 1997). 

Ratings made by users can disclose opinions on sensitive issues or can be compromised 

against them. Therefore, users of a CF system might be reluctant to participate or mislead 

a CF system by providing false opinions if they believe that their privacy could be 

compromised. Data is a valuable asset and it can be sold in case of bankruptcy (Canny, 

2002). Furthermore, unsolicited marketing, government surveillance, price 

discrimination or subpoena are various examples of invasion of privacy that could be 

exploited by secondary use, which is the use of other than the initial purpose of data 

collection, of individual data (Cranor, 2003; Culnan, 1993).  Privacy-preserving 

collaborative filtering (PPCF) is a technique that puts special emphasis on privacy 

without neglecting the prediction accuracy. Therefore, PPCF bestows a right for privacy 

for users and aims to provide an equilibrium between privacy and accuracy because they 

are conflicting goals (Polat and Du, 2005b). 

1.2. Privacy and Privacy-Preserving Collaborative Filtering 

1.2.1. Privacy and Internet 

In 1879, Judge Cooley discussed a term, personal immunity, as “the right to one’s 

person may be said to be a right of complete immunity: to be let alone (Cooley, 1879)” 

as one of the legal rights of a person. In 1890, Warren and Brandies (1890) published an 

article concerning whether law offers a privacy protection for individuals if so, the extent 

and nature of it. In their article, protection against threats to a person and property is very 

old in law. However, recognition of different rights is indispensable owing to changes in 

life. Warren and Brandies (1890) argue that property is nothing more than any form of 

possession either tangible or intangible and recent developments highlight the need for 

the right “to be left alone” by citing Judge Cooley’s personal immunity definition (Cooley 
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1879) as a right to privacy. Solove (2002) gives six headings to conceptualize privacy. 

These include a variety of circumstances from “the right to be let alone” (Warren and 

Brandies, 1890), to limited access to self, control over personal information, secrecy, 

personhood, and intimacy. Magi (2011) discusses why privacy is important in fourteen 

reasons and lays out three main reasons: the benefits of privacy for individuals, inter-

personal relations and society. In these categorizations (Magi, 2011; Solove, 2002), one 

must decide own space for privacy. A disclosure of any matter considered private could 

cause many undesired circumstances. For example, one could be subject to a personal 

profiling, being misjudged or power imbalance between individuals and intuitions (Magi, 

2011). Therefore, privacy is a factor that can affect many aspects of one’s personal life 

and one could manage what is communicated about him- or herself to others (Westin, 

1967 as cited in Solove, 2002). As with this aspect of privacy, information privacy is 

defined as  

“refers to the claims of individuals that data about themselves should generally not be 

available to other individuals and organisations, and that, where data is possessed by another party, the 

individual must be able to exercise a substantial degree of control over that data and its use Clarke (1999, 

p. 60)”.  

Privacy concerns of e-commerce users have been grouped into three categories as 

privacy fundamentalists, pragmatic majority and marginally concerned by Ackerman, 

Cranor and Reagle (1999). Privacy fundamentalists are the ones who are very concerned 

about their privacy with 17% while marginally concerned are ready to give any input 

with a mild consideration of privacy. This group constitutes 27% of the users. On the 

other hand, pragmatic majority is the group of people with 56% who have less privacy 

concern than fundamentalists but marginally concerned ones. Their concern could be 

alleviated by acknowledging privacy measures (Ackermann, Cranor and Reagle, 1999). 

Users might also waive their privacy priorities if they are offered benefits in return 

(Berendt, Günther and Spiekermann, 2005). This study investigates if stated privacy of 

users is in accordance with their online behavior. In the study, incentives are offered to 

the users with the assistance of a shopping bot in order to test if they are willing to disclose 

their information. Participants are grouped into four groups. In addition to privacy 

fundamentalists (30%) and marginally concerned (24%) recognized by Ackerman, 

Cranor and Reagle (1999), Berendt, Günther and Spiekermann (2005) come up with 

identity concerned (20%) and profiling averse (26%) groups. Identity concerned people 
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are more cautious about their personal information such as name, birth date, and age to 

be disclosed while profiling averse ones are more concerned about being categorized 

based on information such as hobbies, health status, and political view. The study shows 

that many users do not take their stated privacy into consideration due to potential benefits 

in return. Therefore, Berendt, Günther and Spiekermann (2005) discuss that privacy 

statements have no impact on behavior. In terms of privacy, users are inclined to act 

differently from what they initially stated. Paine et al. (2007) perform a survey with open-

ended questions to understand privacy perception of users. Per their study, 56% of 

respondents declare that they have privacy concerns when they are online and 73% of 

respondents take actions to protect their privacy. Also, most respondents with privacy 

concerns take actions to protect their privacy. The ones who are concerned about their 

privacy yet take no action state that they just do not know what to do (Paine et al., 2007). 

Bélanger and Crossler (2011) present a comprehensive study that covers information 

privacy literature in detail.  

In terms of CF, some people might be unwilling to share their true opinions due to 

a variety of privacy concerns. Friedman et al. (2015) state that privacy risks might occur 

either with direct access to data or inference of new data and they define three types of 

adversaries, the recommender system itself, other users or external entities. The 

recommender system might misuse personal information; other users might exploit CF 

outputs, and external entities such as hackers or legal entities might access data. On the 

other hand, PPCF primarily focuses on protecting privacy which would help encourage 

users to participate in a recommendation process by assuring them with a privacy protocol 

instead of privacy statements to protect their data.  The main idea behind a typical PPCF 

scheme is that users perturb their data before sending it to the server. Privacy is usually 

performed by perturbing original data; therefore, it comes at the cost of losing some 

information due to perturbation.  As privacy measures are tightened to increase the level 

of privacy, the outcoming data might become very different from the original one to 

provide accurate predictions. Thus, privacy and accuracy are both need to be considered 

without sacrificing one to another. Thus, it is a fundamental tradeoff that must be 

addressed in PPCF.  
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1.2.2. Data partitioning and PPCF 

PPCF schemes might differ according to the type of data storage. Data could be 

stored centrally, shared between two- or multi-parties. Behind these, decentralized peer-

to-peer (P2P) schemes are also available.  In central server-based PPCF schemes, data is 

held by a central server that is going to provide predictions based on ratings provided by 

users. In such a scheme, users usually send their ratings to the central data holder after 

applying a perturbation method so that the data holder does not have the original ratings. 

Some companies that want to grow their business or get into a new market might not have 

enough ratings to produce accurate predictions. Such companies could come together to 

enhance their rating matrices (Polat and Du, 2005c). They can share their matrices either 

vertically or horizontally. Sharing data horizontally means that corresponding parties 

share ratings of the same set of items from different users. Sharing data vertically means 

that corresponding parties share ratings of the same set users for different items. By doing 

so, a party in this process obtains new ratings for its users. Imagine two different movie 

rental companies utilizing a CF algorithm to promote the sales. One of them would like 

to grow in its own sector while the other would like to branch out into a bookstore. The 

first company would choose to cooperate with another movie rental company that has 

different customers. Such cooperation, which adds new users to the same set of movies 

for both parties, results in a denser matrix for the first movie rental company, which wants 

to grow in the sector. This kind of data sharing is called horizontally-partitioned data 

(HPD). If the second movie rental company shares its movie ratings with a bookstore and 

obtains other party’s book ratings for its users in return, this cooperation adds new rating 

variety for the users of both parties. Such cooperation is called vertically-partitioned data 

(VPD), and it helps enterprises that are interested in new markets. If HPD or VPD is 

performed between multi parties, it is called horizontally- (HDD) or vertically-distributed 

data (VDD). Figure 1.2 displays HDD- and VDD-based data sharing between parties. If 

data sharing is between two-parties with privacy, it will be hereafter called privacy-

preserving partitioned collaborative filtering (P3CF) (Bilge et al., 2013).  Likewise, if it 

is between multi-parties with privacy considerations, then it will be called privacy-

preserving distributed collaborative filtering (PPDCF). Besides any server-based 

schemes either central, two- or multi-party, users (peers) might act individually to 

collaborate in a PPCF process. Peers can participate in a P2P network for CF purposes 
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with privacy. Such a scheme does not require any server; predictions are produced by a 

collaborative effort of peers. Such schemes without any data holder are called P2P PPCF.  

In PPCF, there are some techniques to perturb user data. Randomized perturbation 

is a widely-used one for the purpose of PPCF. This method adds a random noise to an 

original numeric rating so that the original data can be kept private to the extent of the 

appended noise. Traditionally, the random number, r, is added to the original rating, x. 

Polat and Du (2003; 2005a) are the first employing randomized perturbation to disguise 

original ratings of the users. The users calculate z-scores for each item and disguise them 

by adding random numbers drawn from either uniform or normal distribution before 

sending their vectors to the server. Each user might have different concern for privacy. 

Therefore, these concerns might be addressed by inconsistently disguising each user 

vector according to their needs (Polat and Du, 2007).  Polatidis et al. (2017) propose to 

add a level to the randomization allowing each user to generate a random perturbation 

level. Matrix factorization techniques such as singular value decomposition (SVD) are 

employed with randomized perturbation to offer privacy for users (Polat and Du, 2005d; 

Yakut and Polat, 2010).  

Obfuscation is a method to substitute real ratings with fake ones. Berkovsky et al. 

(2005) propose this method claiming that parts of users’ data can be obfuscated. The 

authors propose three methods of substitutes which are default, uniform and bell curved. 

As the names imply, users substitute their ratings with a default predefined value while 

random numbers drawn from uniform and normal distributions are substituted in the 

uniform and bell curved methods, respectively. This study is taken one step further by 

 

Figure 1.2. HDD- and VDD-based data sharing 
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introducing hierarchical neighborhood (Berkovsky et al., 2007). The authors organized 

users (peers) in groups and groups are managed by a superuser who organizes 

communication among other groups. Privacy in groups is maintained by obfuscation 

(Berkovsky et al., 2005). Berkovsky, Kuflik and Ricci (2012) show the effect of applying 

obfuscation on extreme and overall items claiming that prediction of extreme items is 

more important than overall items for users.  

The studies mentioned above are designed for numeric ratings. Users can also 

express their tastes in a binary scale. Randomized response technique (RRT), which is a 

survey technique proposed by Warner (1965) to find out the prevalence of a sensitive 

attribute in a population, is employed on binary ratings to disguise ratings of users in a 

central-server based PPCF scheme (Polat and Du, 2006). The idea of applying RRT is to 

reverse or preserve whole or part of a user vector based on a random determiner. Each 

user picks a random number and compares it with a predefined threshold to keep or 

reverse a rating vector. The details of this method and RRT are given in Chapter 2 where 

preliminary information is introduced. RRT is applied on P3CF with HPD- and VPD-

based schemes (Polat and Du, 2005c; 2008) and these schemes can be easily adapted into 

HDD- and VDD-based PPCF schemes.  As a prediction algorithm, Naïve Bayes classifier 

(NBC) is frequently used when ratings are binary. Miyahara and Pazzani (2000) use NBC 

for CF purposes. Kaleli and Polat (2007b) use RRT to provide privacy and utilize NBC 

for predictions. Their method covers a central server-based PPCF scheme. These NBC-

based prediction schemes are extended into P3CF (Kaleli and Polat, 2007a), PPDCF 

(Kaleli and Polat, 2015) and P2P PPCF(Kaleli and Polat, 2010). The above-mentioned 

binary PPCF schemes are handled in detail in Chapter 2 as well. Although PPCF has been 

receiving increasing attention over the last decade, the field is open for improvement, and 

overall performance should be improved (Ozturk and Polat, 2015). In this respect, Kaleli 

and Polat (2009) and Bilge and Polat (2010) put efforts to improve the performance of 

NBC-based predictions. Kaleli and Polat (2009) cluster users while Bilge and Polat 

(2010) form a neighborhood by determining the best similar item for each item with 

Tanimoto coefficient as binary similarity measure. The authors also fill vectors to 

increase the density of the dataset.  

In PPCF, privacy is considered in two aspects (Polat and Du, 2006). Given that a 

user has a rating for some items in a traditional CF user-item matrix, the first aspect of 

privacy is about preserving the exact rating value made for an item. The second aspect of 
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privacy is related to whether an item is rated or not. The first aspect of privacy is trivial 

because the main idea is that users do not want their ratings to be disclosed explicitly. 

The second aspect of privacy deals with profiling of a user because users could be 

socially, politically or sexually profiled based on the knowledge of which items they rate 

although their explicit ratings are not known. Privacy has another dimension apart from 

these two aspects. In central server-based and P2P PPCF schemes, users or peers want to 

preserve their confidential data from the server or other peers, respectively. Therefore, 

they would prefer to employ perturbation methods to avoid data disclosure. If users or 

peers take privacy measures to prevent from any disclosure of confidential information, 

it is called individual privacy (Bilge et al., 2013). On the other hand, an e-commerce 

company that would like to collaborate with other companies in a two- or multi-party 

fashion should preserve the privacy of its users. Such a company could employ data 

perturbation methods on its own data to avoid the disclosure of confidential information 

of its users. In two- or multi-party PPCF schemes, users usually send unperturbed data to 

their server. Therefore, companies in two- or multi-party collaboration should prevent 

their data from other parties. This type of privacy preservation is called institutional or 

corporate privacy (Bilge et al., 2013).   

1.3. Problem Definition 

Although individual or institutional privacy is promised to be maintained by PPCF 

schemes, these promises need to be investigated whether PPCF schemes are indeed 

immune to different attempts to derive original private data. In privacy-preserving data 

mining (PPDM) literature, the scholars (Huang, Du and Chen, 2005; Liu, 2007; Liu, 

Giannella and Kargupta, 2006; Guo and Wu, 2007) demonstrate that privacy might not 

be preserved. Inspired from such studies, PPCF schemes should be also scrutinized 

whether or how much privacy is provided by different PPCF schemes. Ratings could be 

either numeric or binary form. Studies in PPCF community to derive confidential data is 

mainly focused on numeric ratings (Zhang, Ford and Makedon, 2006; Demirelli 

Okkalioglu, Koc and Polat, 2016). Deriving original binary ratings from PPCF schemes 

under different data partitioning scenario is not as much as studied. The concentration in 

this dissertation is to derive original private binary ratings from PPCF schemes where 

data is stored in a central server, shared between two- or multi-party or distributed 

between peers. A malicious adversary might attempt to target individual or institutional 
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privacy while operating a PPCF protocol. This task is usually accomplished by proposing 

different reconstruction attacks that exploit the weakness in PPCF protocols. 

The main objective while deriving original data from a central server-based scheme 

is to disclose users’ data. Users send their data after they perturb it; therefore, the server 

gets the perturbed version of user vectors. In the presence of a semi-trusted server, users’ 

data might be at risk. A semi-trusted server is the one who acts in accordance with the 

PPCF protocol; however, it might exploit flaws of the protocol that may cause 

information disclosure to derive confidential information. The malicious server targets 

individual privacy of its users. In this dissertation, a malicious server will contemplate an 

attack technique to derive original user vectors in a central server-based PPCF scheme. 

When data is partitioned or distributed between parties, different data holders might 

come together to diversify their rating matrices with new users or items. In partitioned or 

distributed cases of PPCF, parties hold original user vectors as institutional data. Parties 

need to keep their institutional data private while collaborating with other parties. The 

main scenario when data is distributed among different parties is to derive institutional 

data of other parties when there occurs a semi-honest party who would exploit weaknesses 

in the protocol while fulling its responsibilities.  

The last case deals with P2P PPCF schemes where peers collaborate for private 

prediction purposes. However, one of the peers might act maliciously to derive the 

confidential data of others. The malicious peer who exploits the PPCF scheme while 

performing the protocol requirements could target the individual privacy of other peers. 

Although P2P collaboration is a distributed scheme, the main difference between P2P 

PPCF and PPDCF is that a malicious peer targets individual privacy of other peers while 

a malicious party targets institutional privacy of other parties. 

1.4. Related Work 

Deriving private information from perturbed data has been studied in PPDM to 

examine different privacy-preservation techniques. Scholars developed various methods 

to recover original data to show how well the original data has been hidden. On the other 

hand, the efforts made to derive private information in PPCF schemes are still limited 

when compared to PPDM literature. In this part, such attacks in PPDM and PPCF are 

grouped into five major classes, which are spectral filtering (SF)-based, principal 

component analysis (PCA)-based, singular value decomposition (SVD)-based, 
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independent component analysis (ICA)-based, and other attacks. The first three classes 

of attacks are highly related to each other. 

1.4.1. Spectral Filtering-based reconstruction 

One of the primary methods for deriving original data from random perturbation or 

randomization is to utilize SF. Randomization is a frequently used technique to protect 

numerically rated user data (Agrawal and Srikant, 2000). In this setting, a random value, 

r, is picked from a distribution (Gaussian or uniform) and it is added to the original value, 

xi, to get a substitute value, xi + r, which will take the place of xi in the data set. The studies 

presented in (Kargupta et al., 2003; 2005) discuss the theoretical bounds of maximum and 

minimum eigenvalues of a random matrix for random perturbation. After determining 

maximum and minimum eigenvalues of a random matrix, the noise created by the random 

matrix can be filtered off. During their experiments, the authors also introduce signal-to-

noise ratio that quantifies how much noise added to the signal (original data). Dutta et al. 

(2003) extend the work in (Kargupta et al., 2003) by considering various data types. 

Experiments show that the estimation accuracy decreases as the amount of noise 

increases, which is associated with low signal-to-noise ratio. Guo and Wu (2006) study 

on determining the success of the SF-based reconstruction. They derive an upper bound 

for the attacker to assess how close the estimate to the original data when spectral filtering 

is exploited. A similar observation stated by Guo, Wu and Li (2008) in terms of upper 

bound for reconstruction error; however, they also determine a lower bound for data 

owners to specify how much noise should be added for desired privacy. An SVD-based 

approach is used for lower bound extraction; however, it is indeed equivalent to SF lower 

bound. 

1.4.2. PCA-based reconstruction 

PCA is a technique to express given data in reduced number of dimensions by 

exploiting correlation among data. PCA-based reconstruction approach, introduced by 

Huang, Du and Chen (2005), reconstructs the original data from the disguised data 

perturbed by randomization. The authors show that PCA-based method reconstructs 

accurately in highly correlated data. On the other hand, they introduce a different version 

of randomization that adds correlated noise to enhance privacy. PCA is also recognized 

by other researchers to obtain original data (Liu, Giannella and Kargupta, 2006; Turgay 

et al., 2008) and these studies assume that the attacker has some prior knowledge about 
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data. The scholars (Liu, Giannella and Kargupta, 2006) assume that the attacker has 

known inputs-outputs and some known samples. Likewise, Turgay et al. (2008) assume 

that the attacker has a dissimilarity matrix. The PCA-based attack is built on top the 

hyper-lateration technique, where a candidate data set is generated from the dissimilarity 

matrix. 

1.4.3. SVD-based reconstruction 

SVD-based reconstruction attacks are highly related to SF-based ones. SVD splits a 

matrix into three matrices as follows: An×m = Un×nSn×mVT
m×m, where Un×n and VT

m×m are 

orthogonal matrices and Sn×n is a diagonal matrix with singular values of A. An upper 

bound is determined with SF-based reconstruction (Guo and Wu, 2006). The scholars 

(Guo and Wu, 2006; Guo, Wu and Li, 2006; 2008) give an upper and lower bound on 

reconstruction error for SF-based reconstructions. Upper bound can be used by attackers 

to determine how close their estimation to the original data. The lower bound can be used 

by data holders to arrange privacy level of their data. They also prove the equivalence of 

SF and SVD. In this method, the important point is to find the first k singular values of 

perturbed data. Another SVD-based reconstruction with expectation maximization (EM) 

is proposed by Zhang, Ford and Makedon (2006) to derive numeric data from masked 

data.  

1.4.4. ICA-based reconstruction 

The reconstruction methods covered until now are designed against randomized 

perturbation.  Nonetheless, there are also other data reconstruction methods worth 

mentioning. Some studies focus on recovering data perturbed by multiplicative 

perturbation like rotation perturbation (Chen and Liu, 2005; Oliveira and Zaїane, 2010) 

and random projection (Liu, Kargupta and Ryan, 2006). Such perturbations are defined 

as Y = MX, where M is a mixing matrix. ICA is a technique to observe a linear 

representation of statistically independent components. In rotation perturbation case, 

when Y is observed, both M and X can be estimated with some restrictions via ICA 

method. Hyvärinen, Karhunen and Oja (2001) mention three restrictions and two 

ambiguities about ICA. Two of these restrictions are argued by researchers (Chen and 

Liu, 2005; Liu, Kargupta and Ryan, 2006). The authors claim that ICA is ineffective due 

to the restrictions (source signals are independent, and all of them must be non-Gaussian 

except one). These restrictions are not very applicable in privacy-preserving data mining 
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approaches. In addition to these restrictions defined in ICA, two ambiguities, the order of 

recovered data is not guaranteed (Chen and Liu, 2005; Chen, Sun and Liu, 2007) and 

variances of original data cannot be determined, make ICA ineffective if additional 

statistics about data is not known (Chen, Sun and Liu, 2007). A-priori knowledge ICA 

(AK-ICA) attack is utilized when a sample of original data is available (Guo and Wu, 

2007). AK-ICA applies ICA on both perturbed data and sample of original data; then it 

explores relationships among them to reconstruct original data. Undetermined ICA is 

applied to perturbation methods when the mixing matrix is rectangular, and the mixing 

matrix is known with prior knowledge (Sang, Shen and Tian, 2009; 2012). 

1.4.5. Other attacks 

Agrawal and Srikant (2000) are the pioneers that aim to provide privacy in data 

mining. They state that original data distribution can be reconstructed after data is 

perturbed by randomization. Their aim is to estimate the original distribution not to 

reconstruct individual values. The authors apply Bayes’ rule to show that the distribution 

of the original data can be estimated. Agrawal and Aggarwal (2001) utilize EM to 

estimate original distribution. If a large amount of data is available, EM can produce a 

good estimate of the original distribution. The scholars also propose a quantification of 

privacy and information loss stating that increased privacy causes information loss. 

Huang, Du and Chen (2005) utilize Bayes estimated-based data reconstruction. As the 

name implies, they search for reconstructed data X given perturbed data Y that maximizes 

P (X|Y). While above approach targets randomization, Liu (2007) designs a similar attack, 

maximum a posteriori probability attack, against random projection. Zhang, Ford and 

Makedon (2006) propose k-means-based reconstruction approach to recover z-score data 

from normalized masked ratings. Their algorithm tries to cluster z-scores into groups so 

that original ratings can be discovered. Calandrino et al. (2011) utilize auxiliary 

information to infer information about customers of CF systems and they test their attack 

with online websites. The authors devise knn attack for neighborhood-based CF systems. 

If the part of a user vector is known before, an attacker inserts k fake users identical to 

the disclosed user. When one of the k fake users asks for a prediction for items in place 

of the attacker, Calandrino et al. (2011) state that k-1 fake neighbors and the disclosed 

user will constitute k neighbors so that the prediction comes from the disclosed user. 

Huang and Du (2008) work with RRTs to discover optimal scheme. They quantify both 
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privacy and utility stating that considering one of them for an optimal scheme would be 

a bad decision. The approaches proposed in (Kargupta et al., 2003; Zhang, Ford and 

Makedon, 2006; Calandrino et al., 2011) target CF systems particularly. Kargupta et al. 

(2003) and Zhang, Ford and Makedon (2006) recover numerically rated schemes, and 

Calandrino et al. (2011) make inferences. 

Studies given in this chapter are mostly related to numeric format and covers PPDM 

algorithms. However, tastes of users are not always expressed in numeric format in CF 

systems. Especially, if data is about the preference of an item, it can be coded in binary 

such as like or dislike. At this point, it is important to emphasize that the focus of this 

dissertation is to derive perturbed binary data because there is no concentrated effort to 

reconstruct perturbed binary data although Huang and Du (2008) quantify utility and 

privacy for RRTs. The work presented in this dissertation targets central, partitioned, 

distributed and P2P PPCF schemes to derive private data of users or data holders by 

exploiting auxiliary information to improve results or overcome bottlenecks.   

1.5. Contribution 

The problem focused on this dissertation is to derive original ratings of individuals 

or institutional data in binary PPCF systems. The literature in PPCF for binary rated data 

covers various schemes based on how data is stored. As mentioned, data could be stored 

centrally by a server or distributed between two- or multi-parties and even each user can 

collaborate for a P2P network to obviate the need for data holders. This dissertation 

targets PPCF schemes with these data partitioning scenarios. The contribution of this 

dissertation can be summarized as follows:  

1. The first contribution of this dissertation is to develop an attack technique 

on the central server-based binary PPCF scheme (Polat and Du, 2006) to 

derive user ratings perturbed by RRT with multi-group. The authors of this 

targeted scheme utilize RRT, but this technique of disguising binary rating 

values allows a malicious data holder to estimate the ratings of any item by 

using θ value. This information is exploited to recover original binary 

ratings. 

2. In addition to disguising original rating values of users, the scholars propose 

to insert some fake ratings into user vectors so that the data holder cannot 

distinguish the genuine ratings from the fake ones. In this dissertation, 



16 

 

auxiliary information is utilized to tackle the problem of fake ratings to 

discover genuine ratings. 

3. Regarding distributed PPCF schemes, two attacks are proposed and two 

other attacks from the literature have been applied to P3CF and PPDCF 

schemes to derive institutional data by exploiting similarity values 

exchanged between parties. NBC-based horizontal PPCF schemes are 

immune to data disclosure attacks because the master party does not have 

the value of the queried item, q. This problem is overcome by introducing 

auxiliary information to estimate the value of q.    

4. In terms of P2P PPCF, three attacks have been applied to disclose individual 

privacy. Auxiliary information is exploited to recover ratings of peers in 

order to eliminate bottlenecks due to horizontal nature of P2P collaboration.  

1.6. The Data Set and Evaluation Criteria 

MovieLens Million (MLM)1 is a well-known, frequently used benchmark data set 

in CF and PPCF community and it has been used throughout all experiments in this 

dissertation. MLM is a movie rating data set on a discrete scale from 1 to 5 where 1 

indicates the lowest preference and 5 represents the opposite. In MLM data set, there are 

1,000,209 ratings associated with 6,040 users for 3,883 items (movies), which makes its 

density roughly 4.3%. MLM can be considered a sparse data set, which is very common 

for CF systems. One of the motivations of this dissertation is to utilize auxiliary 

information while deriving private individual or institutional data. In this context, 

auxiliary information needs to be collected about MLM data, and it is collected from 

Internet Movie Database2 (IMDB) website.  

This dissertation deals with binary rated PPCF schemes; however, MLM data 

contains numeric ratings. Thus, numeric scales are converted to their binary equivalences 

(Miyahara and Pazzani, 2000) to constitute a matrix of binary ratings. Ratings greater 

than 3 are converted to like and the rest other than unrated ones are converted to dislike 

for MLM data set. Details about the data set is given in Table 1.1.  

                                                 
1 https://grouplens.org/datasets/movielens/1m/ 
2 http://www.imdb.com 
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As evaluation criteria, precision (prec) and recall (rec) have been used. Since MLM 

and conventional data sets are highly sparse, conventional prec and rec calculations will 

be dominated by unrated entries. Therefore, prec and rec are calculated by considering 

on recovered rated items. Prec is useful to understand how much of the derived likes and 

dislikes were indeed identical to the original data. Rec gives the ratio of how much of the 

original likes and dislikes are recovered. An example of confusion matrices for the first 

and second aspect of privacy is given in Table 1.2. When an attack attempts to derive 

original ratings for a PPCF scheme, the outcoming confusion matrix is given in Table 

1.2.a. If an attack attempts to derive whether an item is rated or not, the outcoming 

confusion matrix will become a 2 × 2 matrix as in Table1.2.b. After ratings are derived, 

and the confusion matrix is composed, prec and rec are computed by dividing the sum of 

correctly classified likes and dislikes to the sum of row and column values of likes and 

dislikes, respectively. The calculation of prec and rec are given in Eq. 1.1 for the first and 

the second aspect of privacy, respectively. 

1.7. Organization 

The rest of the dissertation is organized as follows. In Chapter 2, details about the 

targeted PPCF systems and preliminaries needed throughout the dissertation are given. In 

Chapter 3, proposed scenarios to derive private data from central-based binary PPCF 

schemes are given. In Chapter 4, two- and multi-party binary PPCF schemes are 

Table 1.1. Details of the data set 

Data set User x Items Density Rating Scale Binary Conversion 

MLM 6,040 x 3,883 4.26% 5 star 
If greater than 3, marked as like 

Otherwise, marked as dislike 

 

Table 1.2. Confusion matrices 

a) The first aspect of privacy 

  Original 

  Likes Dislikes Unrated 

Classified 

Likes V11 V12 V13 

Dislikes V21 V22 V23 

Unrated V31 V32 V33 

b) The second aspect of privacy 

  Original 

  Rated Unrated 

Classified 
Rated Z11 Z12 

Unrated Z21 Z22 
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investigated through different attack techniques to derive private institutional data. In 

Chapter 5, P2P binary PPCF schemes are scrutinized to derive private peer data. In 

Chapter 6, concluding remarks about the dissertation are discussed.   

 2 2
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1 1 1 1
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2. PRELIMINARIES 

In this chapter, preliminary information required throughout the dissertation is 

given. This dissertation is focused on deriving private user or institutional data from 

binary PPCF schemes with different data partitioning scenarios. Therefore, related data 

perturbation methods, prediction or recommendation protocols of binary PPCF schemes 

targeted in this dissertation will be introduced in the following subsections.  

2.1. Randomized Response Technique – RRT 

RRT is a survey method proposed by Warner (1965) to estimate the prevalence of 

a sensitive attribute in a population. The main purpose of RRT is to protect the privacy of 

respondents. The sensitive question is a polar one whose answer is either positive or 

negative. In an RRT setting, a threshold, θ, is determined in advance and each respondent 

is notified about θ before the sensitive question is released. Then, each respondent is 

asked to use a device that generates a random number from the range (0, 1] before 

responding the sensitive question. The sensitive question is asked and the respondent of 

the survey is asked to give an opposite answer to the question if the random device 

generates an output greater than θ. Otherwise, the respondent gives a true answer for the 

sensitive question. On the other hand, the interviewer does not know whether the 

respondent gives a true or opposite answer to the sensitive question. Since respondents 

utilize a random device, the percentage of the population who gives their true answers to 

the sensitive question is approximately θ while the percentage of the population giving 

their opposite answer is 1−θ. Assume that φ is the percentage of yes answers after the 

interviewer collects the answers. Let π be the percentage of the sensitive attribute in the 

population. φ can be formulated as seen in Eq. 2.1. 

   1 1        (2.1) 

π can be estimated after Eq. 2.1 is rewritten for it. Eq. 2.2 displays the estimation 

of π. Although the reviewer does not know which respondent gives a true answer, he or 

she can estimate the true percentage of the population with sensitive attribute without 

disclosing their privacy. Such a method can encourage people to express their true opinion 

on a sensitive issue that otherwise they hesitate to reveal. 
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RRT could be very useful for disguising binary data. Any binary rated data has two 

options either like and dislike if it is rated. Therefore, it is very convenient for users to 

perturb the data set by utilizing RRT based on predetermined or random θ. RRT deals 

with the first aspect of privacy, which disguises the actual rated values of items in the 

dataset. 

2.2. Naïve Bayes Classifier - NBC 

Bayes’ rule of conditional probability gives the probability of an event to occur 

when the occurrence of another event is observed. Assume that the class membership 

probability of X will be calculated. It is denoted by p(ci | X) where ci is a class variable 

and X’s class membership for ci will be calculated. This conditional probability is called 

posterior probability and defines the conditional relationship between ci and X. Bayes’ 

rule states that the posterior probability can be calculated by using probabilities related to 

it. Eq. 2.3 gives the Bayes’ rule. The equation states that the posterior probability of p(ci 

| X) can be calculated by utilizing the posterior probability of p(X | ci), the prior probability 

of event p(X) and p(ci). 
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  (2.3) 

Given X has m features, one has to calculate p(x1 | ci), p(x2 | ci),…, p(xm | ci) in order 

to obtain p(X | ci), and the naïve assumption requires that these features be independent. 

Eq. 2.3 is calculated for each class and X is assigned to the class with the highest 

probability. p(X) can be ignored because it will yield the same result every time. Since 

the naïve assumption is that features are independent from each other, p(X | ci) can be 

expressed as seen in Eq. 2.4 (Han, Kamber and Pei, 2012). Polat and Du (2006), Kaleli 

and Polat (2007a; 2007b; 2010; 2015) utilize NBC while producing private 

recommendations. Details about these schemes will be given later in this chapter.  
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2.3. Methods for Hiding Rated Items 

Beside disguising the actual rating values, a malicious server or party should not 

identify which items are indeed rated, which is the second aspect of privacy. Therefore, 

another data perturbation phase is needed in addition to perturbing the actual rating 

values. The authors of the studies targeted in this dissertation (Polat and Du, 2005c, 2006, 

2008; Kaleli and Polat, 2007a, 2010, 2015) usually employ various methods of inserting 

some fake ratings into the original vector so that rated items cannot be differentiated from 

unrated fake items. This dissertation handles PPCF schemes with central server-based 

(Polat and Du, 2006), P3CF (Polat and Du, 2005c, 2008; Kaleli and Polat, 2007a), PPDCF 

(Kaleli and Polat, 2015) and P2P (Kaleli and Polat, 2015) schemes and the method of 

hiding rated items in these schemes are given in this part.  

The central server-based binary PPCF schemes by Polat and Du (2006) fills unrated 

items by checking the number of genuine rated items in the original user vector. A user, 

u, finds the number of rated items in his or her vector, mu, and picks a randomly drawn 

uniform number, mup, from the range (1, mu). Then, u selects mup items from unrated items 

and fills half of them with like and the other half with dislike. The density of a user vector, 

d, can be defined as the number of rated items divided by the number of all items in the 

original user vector. Then, this method of filling unrated items can be associated with d. 

Any u can fill his or her rating vector with fake items as much as d in the worst-case.  

  Polat and Du (2005c; 2008) propose HPD- and VPD-based binary P3CF schemes. 

The authors discuss that their schemes can be extended to PPDCF schemes as well. In 

these schemes, institutional privacy is handled because users send their original data to a 

data holder (server) without perturbing their vectors. Servers (data holders) must maintain 

privacy for their institutional data to prevent any disclosure. The method of hiding rated 

items proposed for by Polat and Du (2005c; 2008) is called private similarity computation 

protocol (PSCP). In PSCP, each party finds the number of rated items, mu, for each user 

they have. Then, they compare mu with m, the number of total items. If mu ≥ m/2, then the 

party picks a random number drawn uniformly from the range (1, m) and randomly 

removes the corresponding number of rated items from the user vector. If mu < m/2, the 

party picks a uniform random number from the range (1, m−mu) and fills randomly 

selected unrated cells with the default votes of corresponding items that are calculated 

privately. Kaleli and Polat (2007a) apply a similar method for the NBC-based VPD binary 

P3CF scheme. The non-master party picks a random number drawn uniformly over the 
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range [1,100] and fills that percentage of unrated items of AU’s vector with default votes. 

The filling methods proposed by Polat and Du (2005c; 2008) and Kaleli and Polat (2007a) 

fills the user vector with a random number of unrated items. If the number of appended 

ratings is proportionally very large compared to mu, then the output user vector will 

become much more different from the original rating. However, the idea in PPCF is to 

balance privacy and accuracy. Dramatically perturbed data for the sake of privacy would 

affect the prediction accuracy. In another NBC-based HDD and VDD binary PDPCF 

scheme by Kaleli and Polat (2015), the authors associate the number of fake items to be 

appended into the user vector with d to alleviate such a downside. The party having AU 

initiates a prediction process and determines a filling factor, δAU, where δAU can be factors 

of d such as 0.25d, 0.5d, d, 2d or 4d. The related party with AU randomly pick a uniform 

number, L, from the range (1, δAU]. There might occur some cases in sparse data sets 

where δAU is less than 1, so the range can be updated as (0, δAU]. Then, L percent of unrated 

items of AU are filled with either default votes (DV) or random filling (RF) method. A 

default vote for an item is the dominant rating in a vector. In other words, if likes are more 

than dislikes in a user vector, then like is the default vote for that user. In RF, a random 

binary value inserted into each selected unrated item cell, independently. This method of 

hiding rated item cells by filling unrated items based on δAU is called hiding rated items 

(HRI) protocol. An illustration of HRI is given in Figure 2.1. Filled unrated items are 

shaded. When DV is utilized, the dominant rating, which is like, is appended into the 

selected unrated items’ cells. When RF is utilized, selected unrated items’ cells are 

appended with random values. 

In the P2P binary PPCF scheme (Kaleli and Polat, 2010), peers employ a very 

similar method to PSCP. In this setting, active peer, AP, picks a random density value, 

αAP, between 0 and 100. Then, they pick another random integer δAP from the range [0, 

 

Figure 2.1. An illustration of the HRI protocol 
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αAP]. Peers fill half of the δAP percent of unrated cells with likes and the remaining half 

with dislikes.  

Filling methods other than HRI in distributed schemes including P2P could result 

in a user vector filled with fake appended ratings. Therefore, non-central server-based 

schemes will utilize HRI protocol to fill unrated items of user vectors. HRI protocol 

associates the size of fake ratings to be inserted with the factors of d. On the other hand, 

the central server-based PPCF scheme is exempted from this generalization because it 

fills unrated items up to d. 

2.4. Central server-based Binary PPCF 

The central server-based binary PPCF scheme targeted in this dissertation is 

proposed by Polat and Du (2006). The authors devise a PPCF scheme to offer 

recommendations by utilizing RRT as a data disguising method. RRT can be easily 

adapted into PPCF to perturb binary data. Each user, u, selects a random value ru 

uniformly randomly over the range [0, 1] and checks it against a predetermined value of 

θ. If ru < θ, then the user sends the true vector to the server as is. Otherwise, he or she 

sends the false rating vector (the exact opposite of the rating vector). A false rating vector 

is created by applying not operation on binary ratings. Assume that Vu = (0110-1-0-0) is 

a binary rated vector of a user, u, where 1, 0 and - means like, dislike and an unrated item, 

respectively. If randomly generated uniform number ru is less than θ, then the user sends 

Vu as it is. Otherwise, binary rated items in Vu are reversed, and u sends Vu = (1001-0-1-

1). A couple of scenarios can be used to determine θ value. In the constant θ case, both 

the server and users agree on a predetermined θ value. In the random θ case, each user 

randomly picks θ value selected uniformly randomly from the range [0, 1] and the server 

is not aware of it. Notice that larger θ values mean that users’ rating vectors will be 

preserved in most cases. For example, the server can expect that 80 percent of incoming 

data from the users are preserved, when θ is 0.8 in the constant θ case. 

Although users apply RRT before sending their data to the server, the server can 

disclose user vector if it knows a true rating for any item. In such a case, the server can 

understand whether the user vector is reversed or preserved by simply checking the rating 

of the item whose true value is known by the server in perturbed data. If the related rating 

in the perturbed vector is equal to the true value of it (known by the server), then the 

server infers that the user preserves the rating vector; otherwise, the rating vector is 
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reversed. As a result, whole rating vector of a user is disclosed when a rating is known by 

the server. However, users might alleviate the effects of such an occurrence if rating 

vector is divided in multi-groups. Polat and Du (2006) propose that each user can divide 

their rating vector into G groups, where 1 ≤ G ≤ m and RRT can be applied to each group 

independently by users. Figure 2.2 displays RRT with 1-, 2- and 5-group. In the figure, 

groups are split by the color tones to differentiate from each other visually and the relation 

between sample ru and θ values for each group is given just above each group. Suppose 

that a malicious server knows the true value of the first item of the related user vector, it 

discloses all user rating vector in 1-group while it can disclose the first half of the user 

vector in 2-group scheme. On the other hand, the server can only disclose the 20 percent 

of the original user vector in 5-group scheme. As a result, items that are in the same group 

with the item whose rating is known by the malicious server are disclosed. Items in other 

groups remain private in case of such disclosure. Therefore, the multi-group approach is 

another level of data disguising accompanied with RRT. 

In terms of the second aspect of privacy, the genuinely rated items are disguised by 

filling unrated items. The idea is to confuse the data holder about genuine ratings. As 

discussed in Chapter 2.3, users fill their unrated items with half likes and dislikes with a 

random density drawn from (0, d]. Therefore, the maximum number of unrated items to 

be filled is limited to the number of rated items in the original user vector.  

Polat and Du (2006) hypothesize that recommendation can be made if they can 

reconstruct the original rating. They utilize Bayes’ theorem to recover original matrix and 

produce recommendations. Given that Y is perturbed version of the original data, X, by 

 

Figure 2.2. RRT with multi-group 
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RRT and the server has to find a way to reach X.  The authors utilize Bayes’ theorem to 

reach X from Y, p(X | Y), as given in Eq. 2.5.  

    

 

|
(X | Y)

p Y X p X
p

p Y
  (2.5) 

The data holder knows that p(Y | X) is θ owing to RRT. p(Y) can be calculated from 

the perturbed data (Polat and Du, 2006). p(X) can be calculated by utilizing θ as calculated 

in Eq. 2.1 and 2.2. When Eq. 2.5 is rewritten, Eq. 2.6 is obtained as follows. 
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2.5. HPD- VPD-based Binary P3CF Schemes 

Two different data holders can decide to collaborate to enhance their data matrix 

for better recommendations. The basic assumption with distributed PPCF schemes is that 

parties hold original user vector and they should preserve institutional privacy while 

interacting each other. HPD- and VPD-based binary P3CF schemes targeted to obtain the 

private original institutional data in this dissertation are proposed by Polat and Du (2005c; 

2008) and Kaleli and Polat (2007a).  

P3CF schemes proposed by Polat and Du (2005c; 2008) are recommendation based 

algorithms, which returns top-N recommendations. In these schemes, a party associated 

with AU or an AU sends an initial query along with NAU items, among which the AU 

wants the top-N recommendations to be produced. The number of items in NAU is limited 

to N < NAU < m-M, where M is the number of rated items of the AU. The authors employ 

a similarity metric based on the difference of the number of similarly, t(s), and 

dissimilarly, t(d), rated items over commonly rated items, t(c), as shown in Eq. 2.7. The 

scholars offer two different HPD-based P3CF schemes based on how neighbors are 

selected. One of them selects best-k neighbors while the other one picks neighbors with 

a higher similarity with AU than a predefined threshold (τ), the threshold scheme.  After 

neighbors are determined, the recommendation algorithm performs a column-wise sum 

of the number of likes, li and dislikes, di for each item. If li − di  > 0, then the related item 

will be liked by the AU. Items whose li − di  results are greater than 0 are sorted in 

descending order, and top-N items will be the list of recommendation.  
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Assume that there are two parties, A and B. The threshold scheme is given below. 

As discussed, this scheme utilizes τ to decide which users will become neighbors.  

1. AU sends his or her ratings to A and B together with NAU items. 

2. The party A selects neighbors whose similarity is higher than τ. Then, it 

might add a random number over the range [−α, α] to τ to avoid B from 

making any inference about A’s institutional data.  

3. Then, A calculates ldAi = li − di for i = {1, 2, …, NAU} and sends it to B. 

4. B selects best neighbors and calculates ldBi. B adds ldBi to ldAi, which is 

received from A. Then, the summation is sorted in descending order, and 

top-N items among NAU are returned as recommendations to AU. 

The below is the protocol for best-k where neighbors are sorted and best k of them 

are selected.  

1. AU sends his or her rating along with the query to A and B. 

2. The party A calculates similarities by applying PSCP on AU’s rating vector. 

Then, A permutes and take absolute values of similarities and sends the 

similarities to B.  

3. B calculates its own similarities and finds the best-k neighbors. Then, B 

calculates ldBi values. B sends ldBi values and best neighbors of A among 

best-k neighbors. 

4. The party A identifies its own best neighbors by reverting permutation 

process and adds ldAi to ldBi. Then, the summation is sorted and the top-N 

list is returned.  

Beside HPD-based schemes, Polat and Du (2008) propose VPD-based binary P3CF 

schemes as well. The authors consider two cases for VPD-based P3CF schemes. The list 

of NAU items where recommendations will be produced could be either held by one of the 

parties, which is called Case-All, or shared between two party, which is called Case-Split. 

The details of Case-All are given below in steps. Notice that B acts as the master party.  



27 

 

1. AU splits his or her rating vector into two for A and B. AU sends 

corresponding parts of the vector to A and B. The list of NAU items are sent 

to B since B holds those items. 

2. The party A finds the partial similarity values by applying PSCP because A 

has part of the ratings. For each user, A sends these partial similarity values 

to B. 

3. B also finds its own partial similarity values and calculates final similarity 

values by adding the ones received from A. Then, B selects best-k 

neighbors. However, B adds some random numbers drawn from the range 

[−α, α] and [−γ, γ] to τ and k, respectively, to prevent A from disclosing any 

further information. 

4. After selecting the neighbors, B calculates ldBi and sorts it in descending 

order and returns top-N list. B does not need ldAj values because all of NAU 

items reside on B’s side. 

The Case-Split case is very similar to Case-All, the only difference is that NAU items 

are split between two-party. Therefore, ldj = ldAi + ldBi is calculated collaboratively as 

below. 

1. AU splits his or her rating vector into two for A and B. AU sends 

corresponding parts of the vector to A and B.  

2. B calculates partial similarity values by utilizing PSCP and sends them to 

A.  

3. The party A calculates its own partial similarity values and adds them to the 

partial similarity values received from B in order to calculate the final 

similarities for each user. Then, A selects neighbors with random τ and 

sends neighbors to B and sign of the similarities associated with neighbors.  

4. B calculates ldBi values for the neighbors and sends them to A. 

5. The party A must calculate ldAi values; however, A reselects own neighbors 

to prevent B from disclosing any information after the recommendation. 

Therefore, it applies random τ and k to select its neighbors. Then, it 

calculates ldAi values and adds them to ldBi to return top-N list. 
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The HPD- and VPD-based binary P3CF schemes by Kaleli and Polat (2007a) is an 

NBC-based prediction scheme contrary to the top-N recommendation introduced by Polat 

and Du (2005c; 2008) as discussed until now in this part. Miyahara and Pazzini (2000) 

employ NBC for CF purposes on binary data. In NBC-based CF, each user is a feature, 

and corresponding ratings are feature values. Kaleli and Polat (2007a) also employ NBC 

for prediction purposes on partitioned data. Given that an item has n features and the 

probability of this item to belong a class, cj where j  {like, dislike} can be expressed as 

given in Eq. 2.8 (Kaleli and Polat, 2007a).  
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Eq. 2.8 needs to be rewritten when data is horizontally partitioned because each 

party will have half of the features. Assuming that nf is the number of users that the first 

party has and Eq. 2.8 can be expressed as:  
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Eq.2.9 displays that n feature of an item is partitioned between parties; therefore, 

each party must calculate its part, and the interim results must be then multiplied. The 

authors give the related HPD-based scheme presuming that B is a master party as follows:  

1. AU send his or her data both parties and B calculates p(cj). 

2. Each party computes own part of conditional probabilities. A sends its own 

conditional probabilities to B. 

3. B calculates the final probability value once A’s interim conditional 

probabilities are received. 

Notice that there is no data hiding method is employed in the NBC HPD-based 

P3CF scheme. Since both of the parties exchange aggregated values of conditional 

probabilities, the scholars claim that the scheme preserves the privacy of institutional 

data.  

In HPD-based binary P3CF (Kaleli and Polat, 2007a), probabilities can be 

calculated easily; the VPD-based scheme requires the exchange of interim results to reach 

the final conditional probability because q is held by one of the parties. Since 
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corresponding parts of AU’s query vector is received by each party, parties should 

calculate their own nominator, PN, and denominator, PD, to compute p(fi | cj) as shown 

in Eq. 2.10, where PN1 and PN2 show the nominator values of the first and the second 

party, respectively. Likewise, PD1 and PD2 show the denominator values of each party. 

VPD-based scheme with B being the master party is defined as follows: 

1. AU sends corresponding parts of the his or her rating vector to A and B. AU 

also calculates p(cj) and sends it to B along with the vector. 

2. Party A calculates own part of the conditional probability by hiding rated 

items of AU to prevent B from disclosing information. The party A employs 

the related filling method covered in Chapter 2.3, which does not take d into 

account. Then, A calculates PN1 and PD1 and sends them to B. 

3. B adds PN1 and PD1 received from A to PN2 and PD2, which are calculated 

by B, respectively. B now can calculate the final conditional probability. 
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2.6. HDD- and VDD-based Binary PPDCF Schemes 

Beside P3CF schemes, where two data holders collaborate, many data holders can 

also collaborate to produce CF recommendations with privacy. The main objective of the 

parties collaborating in PPDCF is also to preserve the privacy of institutional data. Similar 

to P3CF schemes, users send their original data and parties perform data exchange with 

privacy. Polat and Du (2008) explain how their P3CF schemes (Polat and Du, 2005c, 

2008) can be extended to PPDCF. Kaleli and Polat (2015) extend their P3CF schemes 

(2007a) to PPDCF in their study as well.  

Polat and Du (2008) discuss in their paper that HPD- and VPD-based binary P3CF 

schemes can be extended to PPDCF with slight modifications. To adapt the threshold 

based HPD scheme into PPDCF, each party picks its own best neighbors and calculates 

ldlj where subscript l varies between 1 to the number of parties. Then, these values are 

sent to the selected master party for the top-N recommendation. In the best-k HPD-based 

binary P3CF scheme, the parties calculate similarities and send them to the master party 

for the best neighbor selection. After the best neighbors are selected, the master party lets 

each party know about their users who manage to get into the neighborhood. Each party 
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calculates ldlj values and sends it to the master party for the top-N recommendation. Case-

All and Case-Split, VPD-based binary P3CF schemes, can be adapted to PPDCF as well. 

In Case-All, each party calculates their own similarity values and lets the master party 

know them. Since the master party has all NAU items, the master party adds the values 

received from parties to the ones calculated by itself. After neighbors are selected, the 

master party calculates ldlj and returns top-N recommendation. In Case-Split scenario, 

similarities are calculated and sent to the master party for neighborhood selection. The 

master party selects neighbors and broadcasts it to the parties that own an item in NAU 

list. Then, these parties calculate ldlj values and send them to the master for the top-N 

recommendation.  

Polat and Du (2008) only discuss that HPD- and VPD-based binary P3CF schemes 

can be extended in HDD- and VDD-based manner for binary PPDCF schemes as cited 

above. However, they do not include the extended PPDCF versions in their experiments. 

P3CF schemes by Polat and Du (2005c; 2008) are extended to PPDCF in this dissertation 

in Chapter 4 to derive private institutional data. Because P3CF can be extended to PPDCF 

schemes, they are only discussed Chapter 4.7 in the experiments, where the number of 

parties participated in PPCF process are discussed.  

NBC-based HDD and VDD binary PPDCF schemes are proposed by Kaleli and 

Polat (2015). These schemes provide a prediction for q contrary to recommendation 

provided in the HDD- and VDD-based binary PPDCF schemes (Polat and Du, 2008). The 

NBC-based PPDCF schemes differ its P3CF version by the way AU’s vector is perturbed. 

The authors apply HRI and RRT with multi groups on AU’s data. Since AU’s rating 

vector is divided into multi-groups, the HDD- and VDD-based binary PPDCF schemes 

become more complicated compared with the HPD- and VPD-based binary P3CF 

schemes given in the previous subsection Chapter 2.5. A master party is determined 

before the NBC-based HDD and VDD binary PPDCF schemes start. Therefore, the AU 

sends her ratings and q to the master party. The first thing that the master party does is to 

perturb AU’s data by HRI, which fills unrated items based on d, vector density. After HRI 

is applied, the master party applies RRT with multi-group. However, the master party 

applies multi-group RRT in a different way. For each group, the master party determines 

a random θ over the range (0, 1] rather than a fixed predetermined one as applied in the 

central server-based PPCF scheme.  
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In the HDD-based binary PPDCF scheme by Kaleli and Polat (2015), it is trivial 

that Eq. 2.9 must be extended to each party. Each party must be able to calculate the 

conditional probability for their part without interacting with other parties. However, 

AU’s data is perturbed with random θ and the collaborating parties do not know whether 

the rating vector of AU is true or false due to RRT with multi-group. Only the master 

party knows it. Therefore, the conditional probabilities for each feature in each party must 

be calculated using Eq. 2.11. PNig denotes the nominator value for i-th feature, where i 

can range between 1 and the number of users the relevant party has, for the g-th group, 

where g = {1, 2, …, G}. Likewise, PDig denotes the denominator value for the i-th feature 

and g-th group. Although each party uses Eq. 2.11 for the conditional probabilities, they 

should calculate it twice for both j = like and j = dislike because of RRT. The protocol for 

HDD-based binary PPDCF scheme is given below. 

1. AU’ s rating vector with q is received by the master party. The master party 

appends AU’ s vector with HRI and perturbs it RRT with multi-groups. The 

perturbed vector is sent to other parties.  

2. Each party calculates PNig and PDig values for each feature they have and 

group g for j = like and j = dislike. Then, each party sends these interim 

results to the master party.  

3. Once all interim results for the conditional probabilities received from other 

parties, the master party picks the right p(fi | cj). Then, the final result is 

calculated, and prediction about q is returned.  
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 (2.11) 

In the NBC-based VDD binary scheme by by Kaleli and Polat (2015), conditional 

probabilities can be calculated by utilizing Eq. 2.11 as well. Due to multi-groups, each 

party calculates p(fi | cj) for both j = like and j = dislike in a similar way to NBC HDD-

based scheme. However, in vertically shared data, q is held by the master party. Therefore, 

collaborating parties have to calculate p(fi | cj) for both fi = like and fi = dislike contrary 

to the NBC-based HDD scheme; fortunately, p(fi  = like | cj)  + p(fi  = dislike | cj) = 1. 

The NBC-based VDD binary scheme is described as follows. 
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1. AU sends her rating vector and q to the party having q, which becomes the 

master party. The mater party perturbs AU’ s rating vector with HRI and 

RRT with multi-groups. Then, the master party sends the corresponding 

parts of the rating vector to the relevant parties. 

2. Each party calculates PNig and PDig values for each feature they have and 

group for j = like and j = dislike. Then, each party sends these interim results 

to the master party.  

3. The master party checks q and picks the correct conditional probability for 

j = like and j = dislike. Then, the final conditional probability is calculated, 

and the prediction about q is returned.  

2.7. P2P Binary PPCF schemes 

P2P binary PPCF scheme (Kaleli and Polat, 2010) is an NBC-based scheme whose 

foundation is similar to the NBC-based P3CF (Kaleli and Polat, 2007a) and PPDCF 

(Kaleli and Polat, 2015) schemes. In this setting, users (peers) collaborate with each other 

to establish a CF system with privacy instead of relying on data holders. Since each peer 

participates in the prediction process individually, they should put efforts to preserve their 

privacy while interacting with other peers so that individual privacy of peers can be 

maintained. In P2P setting by Kaleli and Polat (2010), AP perturbs her data for each peer 

separately. AP applies RRT with multi-groups and fills unrated items with random 

density. AP picks a random θi and Gi values for each peer where i = {1,2, …, n}. θi are 

selected from the range [0, 0.5] while Gi is selected from the range between [2, γ], where 

γ ≥ 2. However, Kaleli and Polat (2010) stress that a large value of γ could cause 

performance issues. AP utilizes a method that fills the unrated items with a random 

density. As discussed in Chapter 2.3, a query vector filled with random density could alter 

the vector dramatically. Therefore, HRI protocol, which associates d with the number of 

fake items to be inserted into unrated items’ cells, is preferred in this dissertation instead 

of filling peer’s unrated items with random density. AP applies RRT with multi-group 

and HRI protocol on her vector for each peer. Therefore, a different copy of the rating 

vector is sent to each different peer. In terms of the calculation of the conditional 

probability, each peer can compute it by utilizing Eq. 3.11 once they receive the AP’s 

vector and q. This scheme is similar to the NBC-based PPDCF (Kaleli and Polat, 2015) 

because each peer has q. Thus, AP is not aware of whether p(fi | cj) is calculated for fi = 
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like or fi = dislike. Still, peers have to calculate PNig and PDig values where g = {1, 2, …, 

Gi} because of RRT with multi-group.  The details of the scheme are described below. 

1. AP broadcast a participation request. Peers who would like to join in the 

prediction process return a positive answer.  

2. AP perturbs her rating vector with RRT with multi-groups and sends the 

perturbed rating vector with q to peers who wish to participate in the 

prediction process. 

3. Each peer having q computes PNig and PDig required for the conditional 

probability calculation for each group.  

4. AP picks the right PN and PD values and calculates the final conditional 

probability value. Then, the prediction about q is made.  

In NBC-based PPDCF schemes (Kaleli and Polat, 2015), the master party adapts 

privacy measures to protect AU’s data. The master party perturbs the user vector by 

employing RRT and HRI protocols. Nevertheless, the authors discuss that there might be 

cases where the master party can infer confidential information about other parties. The 

authors list two extreme cases threatening the NBC-based PPDCF schemes (Kaleli and 

Polat, 2015). 

1. The similarity between AU and a user can be calculated only if the relevant 

user has a rating for q. Therefore, the master party infers that a user of a 

collaborating party did not rate q if the similarity value is not calculated for 

that user. In such a scenario, the master party can create a mapping of all 

users who rate q.  

2. A user might have a rating for q but she might not have any commonly rated 

item with AU. The master party can detect such an incident when it receives 

the similarity values. This incident reveals that the relevant user did not rate 

any rated items in the AU’s vector.  

The first extreme case is not a threat for VDD because parties do not have q and 

must calculate interim results. Kaleli and Polat (2015) propose that collaborating parties 

in HDD-based schemes can circumvent the first extreme case by performing a 

modification on HRI protocol. The relevant party determines a random L value based on 

data set density, dset, in place of d, which is the density of a user vector. Then, the relevant 
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party constructs a list of users who did not rate q. L percent of those users’ q is filled with 

random or default value of the user vector. So, the master party could not differentiate 

who rated q because some randomly introduced users who did not rate q calculates 

similarity values.  

The second extreme case is a concern for HDD- and VDD-based schemes.  When 

the second extreme case is experienced, it means that a particular user has no commonly 

rated item with AU. A party with such users who experience the second extreme case 

applies HRI protocol on the unrated items that correspond the rated items of the AU.  The 

new perturbed vector of those users would have some commonly rated items after this 

process. To fill unrated items, the relevant party fills L percent of corresponding items in 

the relevant user vector with default votes of the user.  

In the NBC P2P binary PPCF scheme (Kaleli and Polat, 2010), similar extreme 

cases are addressed by the authors. The first extreme case is the exact same incident with 

the NBC-based HDD (Kaleli and Polat, 2015) scheme about discovering the users who 

rate q. If a peer does not rate q, she cannot join the prediction process. Therefore, peers 

who rate q is revealed by monitoring peers in the prediction processes for different q’s. 

The authors propose an extra privacy measure for peers to avoid such an incident. Each 

peer in the P2P network generates two uniformly random values λi and ri between [0, 1]. 

If ri is less than λi, the related peer should participate in the prediction process. Therefore, 

half of the peers join the prediction process regardless of the presence of q, rated or not. 

The second extreme case that the authors mention is a measure against an attack known 

as acting as an active user. This attack will be covered in Chapter 4; it is an effort to 

derive the ratings of users by manipulating a single cell every time a new query is 

dispatched by an AP or AU. The authors indicate that such an attack could be alleviated 

if peers apply a similar data hiding method to AP. Each time AP asks for a prediction, 

peers should apply HRI protocol for their vector. Thus, peers respond each query with a 

different rating vector. 

To sum up, the remedies offered by Kaleli and Polat (2010; 2015) for extreme cases 

have similar foundations in PPDCF and P2P PPCF. When the first extreme case is 

encountered, the solution is to intervene in users’ or peers’ participation in PPCF process. 

Therefore, the measures taken against the first extreme case will be hereafter called 

peer/party privacy for participation (PPP) for convenience. On the other hand, the 

solution to prevent from the second extreme case is to perturb user or peer ratings. 
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Likewise, the measures taken against the second extreme case will be hereafter called 

peer/party privacy for ratings (PPR) for convenience. 
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3. DERIVING PRIVATE DATA FROM CENTRAL SERVER BASED BINARY 

PPCF SCHEMES 

In this chapter, the central server based PPCF scheme by Polat and Du (2006) is 

scrutinized regarding the degree of privacy they provided. The authors claim that 

individual privacy can be kept by RRT proposed by Warner (1965) with multi-groups and 

a filling method of unrated items.  Each user in these schemes perturbs own rating vector 

before submitting it to a central server to protect their individual privacy. The PPCF 

scheme handles the privacy of users in two aspects. The first aspect of privacy deals with 

the actual rating values made by users, and it is controlled by RRT with multi-groups. On 

the other hand, the second aspect of privacy aims to hide the information of whether an 

item is rated or not. This ascpect of privacy is maintained by inserting fake ratings into 

the original data so that the server does not distinguish the genuine rated items from the 

fake items. 

The main concentration of this chapter is to reconstruct the original user vectors 

from the perturbed data so that user ratings can be disclosed. Since each user perturbs his 

or her own rating vector, the server has a perturbed data matrix collected from users. This 

chapter devises and describes attack techniques to reconstruct the original data from the 

perturbed data assuming that there is a malicious server whose intention is to derive 

confidential user data. Deriving the original data from the perturbed data has two goals. 

The first goal assumes that users mask their data with RRT without applying the filling 

method. Therefore, the first goal of the reconstruction is to derive rating values made by 

users. The second goal is to identify which items are indeed rated. This goal is related to 

the data hiding phase. There are two subsections that deal with the problem of data 

reconstruction in terms of the first and second aspect of privacy. 

3.1. Reconstructing Actual Ratings 

The motivation here is to derive actual rating values of users by an effort to 

reconstruct the original data matrix from the perturbed one. As discussed, RRT is utilized 

to disguise the ratings. The main idea in this data reconstruction attack is to discover the 

behavior of some critical items. Identifying the behavior of some particular items from 

the data set perturbed by users can help the malicious server reconstruct the original 

binary ratings of users. Items having special patterns such as mostly being rated like or 

dislike by users might be beneficial to anticipate potential ratings. Therefore, the first and 
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main goal is to extract extreme items that can be described as the ones that are rated either 

like or dislike by the overwhelming majority of users. Such items will be useful for 

deriving binary ratings from the perturbed data. Extreme items might reveal a lot about a 

data set even though RRT disguises ratings. For example, assume that a malicious server 

knows that it1, it2, and it3 are extreme items, which are rated as like by most of the users. 

If the malicious server realizes that all of these three extreme items are rated as dislike in 

the disguised user-item matrix, it is highly possible that the related user has reversed his 

or her ratings before sending it to the server. Due to the nature of RRT, all items in the 

same group with extreme items can be disclosed.  

The base method to reconstruct original binary ratings relies on determining 

extreme items. Extreme items can be easily recognized from an unperturbed (original) 

data set by calculating the column-wise sum of all items for the presence of like and 

dislike. Let si-like and si-dislike be the number of presence of like and dislike for i-th item, 

respectively. If either si-like or si-dislike is very large while the other is very low, then one 

can infer the rating that most of the users prefer to rate for the related item. The calculation 

of si-like and si-dislike for each item would not be achieved by simply doing column-wise 

sum when RRT is employed. Therefore, estimation of the prevalence of each item in order 

to figure out extreme ones requires some processing. Recall that Warner (1965) originally 

designed RRT to find out the percentage of a population belonging to a sensitive group. 

This condition is quite similar to extracting extreme items since the original data set is 

perturbed by RRT. Warner's (1965) simple assumption estimates the percentage of 

population having answered positive to a sensitive question. In this scenario, item ratings, 

whose values are binary, are perturbed. Therefore, one who wants to estimate the true 

percentages of items that are originally rated like or dislike must repeat the same 

calculations for each item. After RRT is applied, the estimated percentage of the 

population who rates like for i-th item can be calculated using Eq. 3.1 as follows:   

     1 1ip X like         (3.1) 

In Eq. 3.1, π is the true percentage of users rating the related item, Xi, as like before 

RRT. It is the value that needs to be estimated. Therefore, Eq. 3.1 states that the 

percentage of users in the perturbed data set whose rating for the related item, Xi, is like 

consists of the percentage of users who indeed rate it like (π) with probability θ and the 

percentage of users who indeed rate it dislike (1 − π) with the probability of (1 − θ). If Eq. 
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3.1 is solved for π, an estimate about π (referred to as �̃� ) is obtained in terms of p(Xi = 

1) and θ as follows: 

 
  1

2 1

ip X like 




  



 (3.2) 

The notion expressed in Eq. 3.2 is used to estimate the true percentage of user 

population who rates a particular item like in the user-item matrix. Hence, it is trivial that 

the percentage of population of users rating the same item dislike is 1 − �̃�. The probability 

of an item being like or dislike will be called as popularity index or unpopularity index, 

respectively. Items with high popularity index values are the items with low unpopularity 

index and vice versa because the sum of popularity and unpopularity indexes of an item 

is complementary and equal to 1. Therefore, items with high popularity indexes can be 

considered as rated like and the ones with high unpopularity index values can be 

considered as rated dislike in the reconstruction. To determine extreme items, items in the 

perturbed data set disguised by RRT are sorted in descending order based on their 

popularity and unpopularity indexes after their popularity and unpopularity indexes are 

calculated using Eq. 3.2. Items with higher popularity and unpopularity indexes place 

themselves up in the list. The first N items are chosen as extreme items. N can be any 

number from the range [1, m]. Remember that m is the number of items. After extreme 

items are identified, the ones with high popularity indexes are marked like because they 

are more likely to be rated like. Similar process is done for extreme items with high 

unpopularity indexes by marking them with dislike. After extreme items are extracted 

from the perturbed data set, the reconstruction method checks if users rate the extreme 

items in the expected pattern.  If an extreme item is marked as like (high popularity index), 

a user is expected to rate that extreme item like.  On the contrary, an extreme item marked 

as dislike (high unpopularity index) is expected to be rated as dislike by users. Assume 

that there are twenty extreme items extracted from a data set, twelve of them are marked 

as like and eight of them are marked as dislike. If a specific user rated like for three of the 

twelve extreme items, which are marked as like, and rated dislike for two of the eight 

extreme items, which are marked as dislike, then it can be estimated that the ratings of 

this particular user is reversed. Figure 3.1 displays a sample reconstruction process with 

four extreme items at top. The values in these items are compared with corresponding 

items in each user’s vectors if majority of corresponding ratings are in accordance with 
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the extreme item ratings, then the user vector is preserved. Otherwise, it is reversed, which 

is highlighted in the derived data set.  

The reconstruction method can be briefly described for the one-group scheme with 

constant θ as follows: 

1. Apply Eq. 3.2 to calculate the popularity and unpopularity index values. 

2. Sort items in descending order according to their popularity and unpopularity 

indexes. 

3. Select the first N of the sorted items as extreme items. 

4. Mark as like or dislike for those extreme items based on their popularity or 

unpopularity indexes, respectively. 

5. For each user u, compare the ratings with extreme items. 

a. If the majority of the ratings are in accordance with the extreme items, 

then keep the rating vector as it is. This user preserves his or her rating 

vector. 

b. Otherwise, reverse the rating vector (transform likes into dislikes and 

dislikes into likes) to obtain the original vector. 

3.1.1. Extending reconstruction model for multi-group 

In addition to the one-group approach, users might use a multi-group scheme and 

can divide their rating vector into G groups as discussed in Chapter 2.1. Instead of 

 

Figure 3.1. Reconstruction with extreme items 
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applying RRT for all items in the vector for once, users apply RRT G times for each 

group. Therefore, each group is, independently from each other, either preserved or 

reversed. As G grows, the privacy provided by the targeted PPCF scheme tightens (Polat 

and Du, 2006; Gambs and Lolive, 2013). Principally, the maximum privacy can be 

achieved when G is equal to m, the number of items, while the minimum privacy is the 

case where G is 1. With the maximum privacy, a disclosure about a rating only reveals 

the rating of the related item while a disclosure about a rating reveals whole rating vector 

of a user with the minimum privacy.  

When there are G groups, the initial assumption about the calculation of items’ 

popularity and unpopularity indexes (Eq. 3.2) to extract extreme items holds. The only 

difference is that extreme items need to be extracted for each group separately in a multi-

group scheme. Thus, each group needs to be taken care of independently. First, extreme 

items are extracted for each group. After extreme items are determined, the ratings for all 

users are compared with extreme items in each group separately. If most of the votes are 

similar, items of that group are preserved. Otherwise, they are reversed. 

Dealing each group independently might have some foreseeable problems for a 

small number of extreme items. If extreme items are extracted with no consideration of 

which groups they belong to, the majority of them can gather around a particular group. 

Suppose that fifty extreme items will be extracted for a 10-group scheme and thirty of 

them belong to the first group.  Assume that the second group has the rest of twenty 

extreme items. The remaining eight groups would hold no extreme items. Such a case 

might dismiss the reconstruction of the groups with no extreme items. To avoid such an 

issue, equal number of extreme items can be extracted for each group. This approach 

might be advantageous for a relatively small number of extreme item sets and larger G 

values. When extreme items set is small, and G is large, each group must be guaranteed 

to have at least a fair number of extreme items to recover original ratings. On the other 

hand, if the extreme item set is large, the problem of gathering extreme items around a 

group might be less obvious because each group will probably have enough extreme items 

for data reconstruction. We will call the first approach, where the number of extreme 

items per group is not considered, as classical approach (CA). The second case, where 

extreme items will be shared almost equally between groups, will be called fair approach 

(FA) because it gives equal chances to each group to be reconstructed.  
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 Another issue in RRT is to determine the value of θ. Notice that users might either 

use a fixed θ value or choose θ values uniformly randomly over the range (0.50, 1.0].  

Hence, after presenting the extended method for the multi-group scheme, it should be 

discussed how to extend it if users select random θ values uniformly. The extension for 

random θ is given in the following subsection. 

3.1.2. Extending reconstruction model for random θ 

In case of random θ, using Eq. 3.2 becomes ambiguous to extract extreme items 

because there is no prior knowledge about θ and each user determines it randomly. Hence, 

an estimation of θ is needed. Determining θ values for each user is nothing more than a 

random guess because there is no prior knowledge about θ values except the fact that they 

are randomly generated using a uniform distribution from the range (0.5, 1.0]. Instead of 

trying to guess a unique θ for each user, an approach to determine a common θ value for 

all users based on the expected value of the uniform distribution is preferred.   

When θ is not public, the expected value is a good candidate for an estimation about 

θ. The calculation of popularity and unpopularity indexes for an item will be performed 

column-wise throughout all users so expected value of θ can be utilized. This calculation 

is repeated for all items to extract the extreme items. Then, the same practice as explained 

in the algorithm proposed for the one-group scheme is followed to reconstruct the original 

data. 

3.1.3. Exploiting significance weighting 

An item is qualified to be an extreme item based on its rank in popularity and 

unpopularity indexes after Eq. 3.2. is applied. This extreme item extraction process does 

not take the number of users who rates an item into account. There might be some items 

that are rated by only a few users but end up being extracted as extreme items due to their 

high rank in popularity or unpopularity indexes. Such a case might promote some items 

with very few ratings but a relatively higher rank and ignore some other items that have 

many ratings but a relatively lower rank. 

To promote popularity and unpopularity indexes, the idea of significance 

weighting, SW, can be employed. Herlocker and Konstan (1999) utilize SW to promote 

similarity values that are based on a large number of commonly rated items. They devalue 

a similarity value between users if it is calculated with less than 50 commonly rated items. 

A similar approach is utilized by Polat and Du (2006) as well. They set SW correlation 
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factor to 2c / t where t is equal to the total number of users, which is n, and c is the number 

of commonly ratings between items. If c is greater than t / 2, SW factor is set to 1. 

Otherwise, they multiply the similarity by SW correlation factor of 2c / t.  In this 

dissertation, 2c / t will be used as SW, but t can be set any value rather than being fixed 

at n. t is a denominator to devalue popularity and unpopularity indexes based on the value 

of c. The SW factor is set to 1 c is greater than half of t. The slight difference between the 

SW correlation factor in this study and the one used by Polat and Du (2006) is that they 

apply SW on item-item similarities while it is applied on the popularity and unpopularity 

item indexes in extreme item extraction process. 

Besides SW, a limit on the minimum number of users rating an item can be set. 

Items with more ratings than the limit are eligible for the extreme item extraction process. 

Items with fewer ratings than the limit are ignored. Therefore, items with enough ratings 

can be promoted while selecting extreme items. The basic idea behind these two 

approaches, SW and the minimum number of rating requirement, is to promote items with 

more ratings. These two approaches are analyzed in the experiments. 

3.1.4. Exploiting auxiliary information 

The fundamental reconstruction method is based on determining extreme items. It 

leverages such knowledge to derive actual binary ratings from a disguised data set. 

Although finding out extreme items is not a daunting task, some auxiliary information 

can be beneficial to the reconstruction approaches. Some publicly available auxiliary 

information can be a good candidate to become popular or unpopular items. Indeed, 

extreme item extraction aims to identify popular and unpopular items in the perturbed 

data set. Publicly available information can be integrated into the extraction process of 

the extreme items so that the proposed method is backed up with widely accepted data 

approved by many others. Inserting public and auxiliary information as additional 

elements shaped from the views of the great amount of people to improve the 

reconstruction approaches would be beneficial.   

Since this dissertation focuses on deriving binary ratings in a movie related data set, 

public information about all movies included in the data set has been collected from a 

well-known movie website, IMDB2, to make use of auxiliary information. The publicly 

available data is then attached to the reconstruction method. This method of integrating 
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publicly available information into the set of extreme items helps decide if a user has 

reversed or preserved his or her rating vector. 

The method of integrating auxiliary public information into the extreme items is 

based on a simple idea of discovering potential items that the reconstruction algorithm is 

not aware of. Thus, public data items from IMDB that are not included in extreme items 

set are listed based on their average ratings. The items, which are retrieved from IMDB, 

whose average ratings greater than a predetermined popularity threshold are marked as 

like (high popularity index). Similarly, the items, which are retrieved from IMDB, with 

average ratings less than a predetermined unpopularity threshold are marked as dislike 

(high unpopularity index). These items, marked either like or dislike, are accepted as the 

new extreme items and merged with the original extreme items extracted from the 

perturbed data. Since there are three major applicable scenarios to implement the 

reconstruction method, it should be discussed how adding auxiliary data into the 

reconstruction method for such cases. 

In the first case, one-group and constant θ, the integration of new extreme items 

obtained from auxiliary data is straightforward. Since there is no group to consider, 

extreme items are merged with the ones obtained from the auxiliary data, IMDB. After 

creating an extended extreme item set, the last step of the method is applied. 

In the second case, multi-group scheme and constant θ, auxiliary information for 

each group must be handled. The items from IMDB in each separate group are ordered 

based on their public average ratings and potential items are marked as like or dislike, as 

explained previously. Then, items marked as like or dislike from each group are inserted 

into the extreme items set of the group to which they belong. Finally, the algorithm is 

applied to the extended extreme item set by taking the pattern of extreme items into 

account to obtain the estimated data set. The key point is to treat auxiliary items from 

each group separately. 

The last case, where θ is randomly drawn from an interval, is more related to 

making a prediction about the expected value of θ. One must consider one- or multi-group 

cases while adapting the auxiliary information into this approach. If the one-group 

scheme is used with the random θ, the attacker must consider measures taken in the first 

case to exploit auxiliary information. Otherwise, the attacker should think about the 

second case, which is discussed in the previous paragraph. Note that the crucial point in 

exploiting auxiliary information is to cope with the number of groups instead of θ. 



44 

 

3.2. Reconstructing Rated Items 

When discovering genuine rated items in the perturbed data set, exploiting noise 

elimination techniques can be useful if items are numerically rated for randomization 

process (Demirelli Okkalioglu et al., 2016). Randomization proposed by Polat and Du 

(2003) inserts some fake ratings into the numerically rated user-item matrix and this 

method of inserting fake ratings can be considered as noise to the original data. Noise 

elimination techniques can be useful to some extent to derive original ratings (Demirelli 

Okkalioglu, Koc and Polat, 2016; Gu, Wu and Li, 2006; 2008). On the other hand, in 

binary rated data, RRT possibly creates multiple groups and reverses ratings if randomly 

selected value by each user is greater than the predetermined θ value. RRT alters the 

characteristics of original data deeply. Additionally, fake ratings inserted into empty cells 

and their characteristic is not different from original ratings, which makes them difficult 

to discover. Inserted items are just likes and dislikes just like any other original items. 

Even RRT, which reverses some ratings, alone distorts the binary data pattern 

dramatically. In case of θ with 0.65, the perturbed data would have about 35 percent 

different ratings from the original matrix even though appended fake items are not 

considered. If the fake items are taken into account, the change between masked and 

original data becomes larger.  

Although it is argued that noise elimination techniques do not help discover true 

rated items, exploiting public information could be useful. Since the primary focus is to 

identify genuinely rated items in the perturbed data, collecting auxiliary information 

could reveal a high degree of useful information. Auxiliary information is used about the 

targeted data set to test the hypothesis that auxiliary information would identify true rated 

items with decent accuracy. The data set is MLM with movie ratings of 3,883 users for 

6,040 movies. Demographic data is already available with the data set. 

3.2.1. Exploiting auxiliary information 

The intuition to discover rated items is based on the idea of collecting public 

auxiliary information about the data set. While determining items that have been rated, 

the abovementioned auxiliary information will be used. Since there are fake items 

appended into user vectors, the first step of the algorithm must figure out how many items 

in the perturbed data are indeed rated in the original data. The server might want to find 

out the number of ratings made by each user; however, the filling method is based on user 
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vector density, d, as discussed in Chapter 2. Such an estimation can be achieved by a 

random guess due to random nature of the filling method. Instead of trying to estimate 

the number of rated items for each user, a vertical view to estimate the number of genuine 

users who rate the related item would be more practical. For such an attempt, the first step 

must be identifying the density of the data set, dset, before the filling method is applied. 

dset can be easily estimated because appended ratings will be approximately the half of 

the genuine ratings which originally reside in the original data matrix of users. Because 

the server has the perturbed data set with all genuine and appended fake ratings, it is easy 

to figure out for the server that dset is approximately 66% of the density of the perturbed 

data set.  

After estimating dset, the server must determine the number of users who rated the 

related item. It is obvious that the total number of users in the perturbed data matrix whose 

i-th item is rated, ri, is composed of the number of genuine, rgi, and fake, rfi, raters of the 

related item, ri = rgi + rfi. The server needs to calculate rgi; however, rfi is an unknown. rfi 

can be estimated by using the expected value of the filling factor. The filling factor is 

associated with the dset because ratings are appended based on d, which is the user density. 

Although identifying the filling factor for each user requires a random guess as discussed 

in the previous paragraph, it can be estimated for each item.  When each item is examined 

independently, the filling factor will approach to dset / 2 because all users apply the filling 

method in terms of their density, d. As a result, rfi can be estimated in terms of rgi, dset and 

n, the number of users, as in Eq. 3.3. After estimating rfi, the estimation of rgi is trivial.  
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The algorithm must identify genuine items rated by users after estimating rgi. At 

this point, auxiliary public information might be helpful to discover these items. Since 

users will be marked as genuine or fake raters of each item in the perturbed data set, user-

related auxiliary information about movies would be more helpful. The related data set 

used in this dissertation contains demographic information about its users. Therefore, the 

demographic user data is integrated along with movie genres data believing that people’s 

taste of movie-genre differ by age group. The basic intuition is that some age groups are 

more willing to watch some movie genres and a report conducted for British Film Institute 
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analyzing contributions of movies to United Kingdom culture is utilized3. The algorithm 

to discover the rated items has three-phases. 

1. First, genres of each movie are listed (comedy, action, adventure, drama, 

etc.). A movie might have multiple genres. This information comes with the 

data set. 

2. Then, age groups of users are determined, and a user cell remains rated if 

age group and movie genre relation holds. For example, if a user is young, 

it is assumed that he or she likes comedy. There are a couple of rules for 

each age group inspired by a report conducted for British Film Institute3.  

3. After this process, there still might be some unidentified user cells. 

Remember that rgi is determined. The number of ratings made by each user 

in the perturbed matrix is listed to locate the remaining users who might 

have rated the movie. A higher number of ratings for a user in the perturbed 

matrix can be an indication of a specific user who has also rated for the 

related movie. This step of the algorithm to mark the remaining users as 

rated is based on the number of ratings they have in the disguised data. 

3.3. Experiments 

Various experiments have been conducted to test how varying of different 

parameters in the central server-based PPCF schemes affect the reconstruction results. 

Experiments are grouped in two different subtitles based on two aspects of privacy. 

Unless otherwise stated, the θ is constant and set to 0.65 while G is 5. The number of 

extreme items will be experimentally determined in the first experiment, and the selected 

number of extreme items will be utilized afterward.   

3.3.1. Reconstructing actual item ratings 

This group of experiments aims to reconstruct rating values from the perturbed data, 

which deals with the first aspect of privacy. There are seven experiments in this section. 

Experiments start with controlling how the number of extreme items has an effect on the 

reconstruction approaches. Since θ is a variable that determines whether a user should 

                                                 
3 This report by Northern Allience and Ipsos MediaCT is available at 

http://old.bfi.org.uk/publications/openingoureyes/downloads/Appendix-2-Results-Tables-Cultural-

Contribution-of-Film.pdf 
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keep or reserve his or her ratings, the server approximately has 100 × θ percent of the 

original data. Therefore, any reconstruction result should be evaluated considering this 

granted ratio. Privacy measures, θ and G, proposed in targeted studies (Polat and Du, 

2006; Kaleli and Polat, 2007b) are controlled in following three experiments. These 

measures are examined to analyze the argument that tighter privacy measures help protect 

confidential data. The fifth experiment discusses the effects of the number of users 

participating in a PPCF process in terms of reconstruction output. Then, SW and the 

number of minimum ratings to be eligible for extreme item nomination is analyzed. This 

study argues that exploiting auxiliary information could help recover the original data and 

utilizes movie-related information collected from IMDB. In the last experiment, the 

effects of introducing such auxiliary information are discussed. Throughout the 

experiment in this subsection, only prec values will be given. Since there is no filling 

method included for this part, it is not possible that any item rated either like or dislike 

will be marked as unrated by users. Table 1.2 gives the confusion matrix, and it is clear 

that applying RRT without a filling method would result in the same result for prec and 

rec. 

3.3.1.1. Effects of varying number of extreme items 

The first experiment is conducted to analyze the effects of the number of extreme 

items on the reconstruction. There are two reconstruction approaches, FA and CA. The 

main idea in CA is to extract the best extreme items and apply the reconstruction. CA 

does not consider the distribution of these extreme items among groups. On the other 

hand, in FA, the initial argument is that extreme items should be split equally between 

groups, which is neglected in CA, so that each group is given an opportunity for the 

reconstruction. The small number of extreme items might lack enough data for the 

reconstruction; the initial hypothesis is that increasing number of extreme items will 

provide better prec results. In terms of FA and CA, FA might be better than CA because 

FA tries to reconstruct each group by letting them have an equal number of extreme items. 

The number of extreme items in this experiment is associated with m, so it is varied 

between the factors of m, m/32 (121), m/16 (242), m/8 (485), m/4 (970), m/2 (1,941), 3m/4 

(2,912), and 7m/8 (3,397). Overall averages of prec values are displayed in Figure 3.2. 

The corresponding values for the number of extreme items are given in x-axis of the 

figure.  
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As seen in Figure 3.2, FA and CA start with very close prec values to each other 

and 0.650, which is the expected prec ratio due to RRT. This could be an indication that 

the reconstruction approaches need more extreme items to derive meaningful data. The 

trend of increase in FA and CA with the larger number of extreme items supports this 

fact. FA demonstrates a clear increasing trend until 1,941 extreme items. FA reaches its 

peak prec value at 1,941with 0.948. After this point, FA shows a stable trend with 

insignificant declines in 2,912 and 3,397 extreme items. The behavior of FA with varying 

number of extreme items shows that FA achieves a good accuracy in terms of prec for 

larger extreme items. In terms of CA, there is a consistent and sharp increase until 970 

extreme items are exploited. The highest prec recorded for CA is 0.945 when 970 extreme 

items are utilized. Larger extreme item sets beyond this point remain relatively stable 

with slight decreases as the number of extreme items grows. 

When FA is compared with CA, it is clear that CA records much better results until 

970 extreme items are used in the reconstruction. FA slightly surpasses CA starting with 

1,941 through 3,397 extreme items. Contrary to the initial expectation, FA could not be 

considered useful compared with CA until 1,941 extreme items. This experiment shows 

that increasing number of extreme items provides sharp increases in terms of prec. 

However, this trend is stabilized after a certain point for both of the approaches. The 

reason behind this phenomenon could be attributed to the fact that the reconstruction 

approaches could not find out undiscovered and useful extreme items after a certain point, 

which seems to be 1,941 and 970 for FA and CA, respectively.  

 

Figure 3.2. Reconstruction with varying number of extreme items 

121 242 485 970 1941 2912 3397

FA 0.654 0.685 0.735 0.906 0.948 0.946 0.941

CA 0.683 0.772 0.916 0.945 0.940 0.941 0.941
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Because 1,941 and 970 extreme items mark the best output for FA and CA, 

respectively, these numbers will be used in the following experiments as the default value 

for the number of extreme items.   

3.3.1.2. Effects of varying θ 

The second experiment is conducted on varying θ values. θ determines a threshold 

to preserve or reverse ratings in a group based on a uniformly drawn random number. 

Therefore, RRT approximately assures the server that 100 × θ percent of the perturbed 

data is indeed original, but it does not tell which ratings are preserved. This means that 

without any reconstruction effort, prec would yield roughly 0.650. In the targeted study, 

Polat and Du (2006) vary θ between 0.51 and 1.00. As an expectation for this experiment, 

as θ goes away from 0.51 to 1.00, randomness starts to vanish, so FA and CA would 

produce higher prec results. Figure 3.3 displays the results. The dashed line demonstrates 

the expected precision value of the perturbed data due to RRT, which is associated with 

θ. It is a linear line starting from 0.51 up to 0.95.  

The first thing that draws attention when Figure 3.3 is analyzed is that the difference 

in terms of prec between the expected precision and the reconstruction approaches are 

very wide except θ is 0.95, which is a very impractical value to be set as a privacy 

measure. When θ is 0.51, where the perturbed data is at its highest randomized version 

with 0.510 expected precision, FA and CA perform prec results as high as 0.674 and 

0.602, respectively. A marked increase is recorded for FA and CA when θ is 0.55. At this 

point, FA and CA record 0.876 and 0.884 as prec values, respectively, which is the 

highest difference recorded between the reconstruction approaches and expected 

precision. Beyond this point, the difference in prec values compared to the expected 

precision is still dramatic until θ is 0.75, which is at least roughly as much as 0.200. As 

randomness greatly diminishes from 0.85 to 0.95, where RRT’s data perturbation effect 

weakens as well, the difference in prec between the reconstruction approaches and 

expected precision starts to narrow. When θ is 0.95, FA and CA achieve 0.961 and 0.955 

in terms of prec, respectively, which are still marginally greater than the expected 

precision. 

θ values closer to 0.51 mean the perturbed data has more randomness due to RRT, 

as repeatedly discussed. The reconstruction results are improving as θ moves away from 

0.51; however, this also means that randomness diminishes. Therefore, the evaluation 
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criterion, prec, is compared with the expected precision. In all cases, proposed 

reconstruction approaches always beat the expected precision. 

3.3.1.3. Effects of random θ 

Another factor that might affect the reconstruction is the way of selecting θ values. 

Recall that users can use a constant θ value, as considered in the previous experiments. 

Each user can also uniformly randomly choose θ values from the range (0.5, 1.0]. This 

experiment is conducted to evaluate the effects of selecting θ values randomly by each 

user independently. In this experiment, it is assumed that each user can randomly select 

a uniform θ value over the range (0.50, 1.0] rather than using a constant one. As discussed 

in subsection Chapter 3.1.2, an expected value for θ needs to be set, and it is set to 0.755. 

The results of this experiment are compared with a base case, where θ is constant and set 

to 0.755. Overall averages are displayed in Table. 3.1.  

As can be seen in Table. 3.1, using a constant θ value yields modestly higher results 

compared to the case, where random θ values are uniformly selected. This phenomenon 

is expected because it is always guaranteed to use the true value of θ in Eq. 3.2 when 

users utilize a constant θ value. However, θ can only be estimated with the random case. 

 

Figure 3.3. Reconstruction with varying θ 
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Table 3.1. Comparison of reconstruction with random and constant θ 

Recons. Approach Random θ Constant θ = 0.755 

FA 0.941 0.956 

CA 0.916 0.951 
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Although, constant θ case beats the random θ case, as expected, utilizing the expected 

value of θ produces promising results as well. prec values recorded with random θ case 

are as high as 0.941 and 0.916 for FA and CA, respectively. These results are considerably 

higher than the expected reconstruction precision which could be calculated 

approximately as 100 × �̃�, where �̃� is the expected value for random θ for whole data set, 

and this calculation yields 0.755.  This is a prominent outcome because there is no prior 

knowledge about θ except its possible range of (0.50, 1.0].  

3.3.1.4. Effects of varying G 

This experiment scrutinizes how varying G affects the reconstruction approaches. 

As G grows, users split their data more, and each group is independently subject to RRT. 

It is obvious that larger G adds randomness to the original data; intuitively, as randomness 

increases, the reconstruction criterion should decrease. Therefore, the hypothesis is that 

prec values will perform a decline as G gets larger. The reason why larger G values 

provide more privacy for users is that the number of items belonging to each group is 

small (Gambs and Lolive, 2013). In case of disclosure of a rating in a group causes a 

comprise in the privacy of items that are in the same group with the compromised item. 

G is varied among 1, 3, 5, 10, 970 (m/4), 1,941 (m/2), 3,883 (m) to demonstrate the 

performance of the reconstruction approaches between the maximum and minimum 

privacy. Figure 3.4 illustrates the results.  

FA and CA record very close prec results and are performing a stable decline as G 

grows. Although the decline is important, each case except FA when G is 3,883 surpasses 

the expected prec results. Recall that θ is 0.65 and the expected prec is 0.650. Especially, 

prec is very promising for the one-group scheme, which is slightly above 0.979 and 0.970 

for FA and CA, respectively. The decline is very sharp when G reaches 970 (m/4). G 

being 970 means that each group has only four items; therefore, qualified extreme items 

will only help four items be reconstructed. Since the number of items that each group 

shrinks with larger G, a downward trend continues toward 3,883-group scheme.  

To sum up, this experiment shows G is an important factor to offer privacy for 

individuals. Nonetheless, as privacy increases, accuracy diminishes. This phrase is a 

leitmotif describing the fundamental tradeoff of PPCF. Therefore, very large G values are 

not very practical for CF systems. The reconstruction approaches; on the other hand, 

achieve very promising results up to 10-group, which are practical numbers of groups due 
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to accuracy concerns in PPCF. Polat and Du (2006) and Kaleli and Polat (2007b) test 

their PPCF schemes up to 5-group; therefore, 10 could be considered a very tight privacy 

measure and prec results are above 0.920 for FA and CA for 10-groups. When this result 

is compared with the expected prec, which is indeed 0.650 in this experiment, there is a 

recovery more than 0.270 for FA and CA. 

3.3.1.5. Effects of varying n 

n, the number of users, participated in the reconstruction process might be another 

factor that would affect the reconstruction. Intuitively, increasing n should contribute to 

a higher prec. When n increases, the perturbed data matrix would contain more ratings 

for items. The more ratings the reconstruction approaches work with, the higher the 

possibility of extracting qualified extreme items will be. To test the hypothesis, an 

experiment with varying n from n/32 (188), n/16 (377), n/8 (755), n/4 (1,510), n/2 (3,020), 

and n (6,040) is carried out. The averages of prec values are given in Figure 3.5.  

Empirical outcomes in Figure 3.5 show that prec improves with increasing n values. 

Such outcomes verify the hypothesis, and they support the intuition that more 

contribution of users produces qualified extreme items. A consistent upward trend in prec 

through increasing n values is clear. Although improvements follow a relatively stable 

trend for n values larger than 1,510, enhancement in prec is dramatically significant 

compared with the smaller n values. At this point, prec for FA and CA is recorded as 

0.748 and 0.749 when n is 188, respectively. The two approaches perform prec value of 

 

Figure 3.4. Reconstruction with varying G 
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0.949 and 0.939 for n is 6040.  Such a difference in recovery between n being 188 and 

6,040 marks an enhancement of 0.201 and 0.190 in prec for FA and CA, respectively. In 

summary, overall trend illustrates that increasing n helps prec. 

3.3.1.6. Effects of SW and the limit on the minimum number of ratings in extreme 

item extraction with varying number of extreme items 

SW and the limit on the minimum number of ratings have similar foundations; 

therefore, they are grouped in here and tested together. This experiment discusses the 

effects of both approaches in reconstruction. The hypothesis is that these approaches 

might be beneficial for cases where extreme item set is small. Extreme item set starts to 

include many items as it gets larger; therefore, the effect of these approaches is expected 

to wear off. Apart from the size of extreme item sets, another important point would be 

the limit set on the number of ratings. Since traditional CF schemes are sparse, an 

important deal of items will be eliminated from the extreme item extraction process if the 

minimum number of ratings set for extreme item eligibility is a large number. Increasing 

the minimum number of ratings is expected to have a diminishing effect on results since 

the number of items satisfying this criterion will dramatically drop. This experiment is 

performed by varying number extreme items to see the effects of these approaches with 

small and large extreme item sets. Note that SW correlation factor is 2c / t. t and the 

minimum number of ratings is associated with n and varied between 0, n/32 (188), n/16 

(377), n/8 (755), n/4 (1,510), and n/2 (3,020). t is also set to n (6,040). However, the 

minimum number of ratings is not set to n because no item can be eligible to be an extreme 

item in such a case. The column set to 0 means that the base method of extraction of 

extreme items is applied. Results are listed in Table 3.2 and 3.3. 

 

Figure 3.5. Reconstruction with varying n 
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Remember that the optimum number of extreme items are 1,941 and 970 for FA 

and CA, respectively, as discussed in the first experiment in this part. The results show 

that SW correlation factor and the limit on the minimum number of ratings records an 

improvement in prec up to the optimum number of extreme items. This means that 

promoting items with a relatively high number of ratings could help in reconstruction 

unless extreme item set is large while discovering extreme items. The reason why the 

positive effect of the approaches with a large extreme item is because such large set of 

extreme items has enough variety of items to reconstruct the original data.  

Notice in Table 3.2 that large t values have relatively better effect with small 

extreme item set. To illustrate, when the number of the extreme items is 121 and 242, the 

best scoring t value in terms of prec is 1540 while t is 755, 377 and 188 for 485, 970 and 

1941 extreme items for FA. On the other hand, if the limit on the minimum number of 

ratings is a large number; the improvement starts to vanish as well. This occurs due to the 

fact that locating an item with so many ratings is so rare. For example, an item with more 

than 3,020 ratings means that half of the users have a rating for that item, which is not 

very likely in CF systems. To sum up, methods to promote items with more ratings while 

extracting extreme items is beneficial if the extreme item set is small. However, it does 

not help when the optimum number of extreme items are utilized which are 1,941 and 

970 for FA and CA, respectively.  

Table 3.2. Reconstruction with varying limit on the minimum number of ratings 

Recons.  

Appr. 

Number of  

extreme items 

The minimum number of ratings 

0 188 377 775 1540 3020 

FA 

121 0.656 0.878 0.910 0.894 0.819 0.583 

242 0.679 0.925 0.927 0.884 0.779 0.573 

485 0.740 0.940 0.928 0.844 0.739 0.564 

970 0.904 0.938 0.906 0.798 0.707 0.614 

1941 0.948 0.923 0.857 0.744 0.672 0.631 

2912 0.946 0.901 0.805 0.703 0.662 0.652 

3397 0.943 0.891 0.788 0.691 0.655 0.652 

CA 

121 0.685 0.919 0.908 0.830 0.836 0.678 

242 0.770 0.939 0.914 0.889 0.818 0.664 

485 0.917 0.938 0.918 0.857 0.801 0.664 

970 0.946 0.931 0.909 0.826 0.788 0.702 

1941 0.939 0.919 0.865 0.779 0.730 0.703 

2912 0.941 0.900 0.810 0.706 0.666 0.655 

3397 0.940 0.891 0.789 0.692 0.655 0.651 
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3.3.1.7. Effects of auxiliary information with varying number of extreme items 

This experiment analyzes how integrating publicly available auxiliary information 

into the base reconstruction methods affects the overall performance. The hypothesis is 

that auxiliary information can contribute toward achieving better prec values. There 

might be some items among 3,883 available items that the base method could not manage 

to include into its extreme items set. Nonetheless, recall that number of extreme items is 

picked as 1,941 and 940 for FA and CA, respectively, in the base method in the first 

experiment analyzing the optimum number of extreme items. Integrating the auxiliary 

information, which is generally public, could be helpful to choose some undiscovered 

extreme items. 1,941 and 940 are already large numbers to include enough data for the 

reconstruction. However, a small number of extreme items could miss some useful items 

for the reconstruction. This experiment will test if including auxiliary item could help the 

reconstruction by utilizing a varying number of extreme items. Now, the hypothesis is 

that auxiliary information can contribute toward achieving better prec values, especially 

for small number extreme items because they might neglect some useful items while 

determining extreme items. 

Movie related public information is retrieved from IMDB. Movies with an average 

rating greater than or equal to 8 as popular movies. Similarly, movies with an average 

rating less than 5 are accepted as unpopular movies. This public information is inserted 

into the extreme items set that are extracted from the perturbed data set. The experiment 

contains five cases related to auxiliary and public information and one case with the base 

Table 3.3. Reconstruction with the number set as denominator, t 

Recons.  

Appr. 

Number of  

extr. items 

t, the number set as denominator  

0 188 377 775 1540 3020 6040 

FA 

121 0.656 0.723 0.830 0.880 0.910 0.901 0.879 

242 0.679 0.794 0.888 0.924 0.928 0.905 0.881 

485 0.740 0.886 0.935 0.941 0.935 0.906 0.907 

970 0.904 0.941 0.948 0.945 0.929 0.924 0.926 

1941 0.948 0.949 0.943 0.937 0.938 0.937 0.937 

2912 0.946 0.942 0.940 0.939 0.940 0.941 0.939 

3397 0.943 0.940 0.940 0.939 0.940 0.941 0.941 

CA 

121 0.685 0.816 0.896 0.912 0.920 0.898 0.878 

242 0.770 0.908 0.935 0.939 0.931 0.905 0.911 

485 0.917 0.941 0.948 0.946 0.932 0.928 0.923 

970 0.946 0.947 0.944 0.938 0.936 0.933 0.933 

1941 0.939 0.940 0.939 0.939 0.938 0.938 0.938 

2912 0.941 0.939 0.941 0.940 0.940 0.940 0.940 

3397 0.940 0.940 0.940 0.940 0.939 0.939 0.939 
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method. The first case is a test case for a base method with no auxiliary information. In 

the second case, only popular movies are used as auxiliary information. In the third case, 

unpopular movies are utilized while the fourth case contains Oscar winner movies. The 

fifth case utilizes a combination of the second and third cases while the last case utilizes 

the combination of the second, third and fourth cases. The outcomes are given in Table. 

3.4 and the type of auxiliary information utilized given in the column headers of the table. 

Additionally, the largest prec value is marked bold for each row. 

Empirical outcomes in Table 3.4 demonstrate that using publicly available auxiliary 

information can make a noteworthy contribution based on the number of extreme items 

utilized. The contribution of auxiliary information is very dominant for FA and CA if a 

small number of extreme items is utilized. Auxiliary information takes a critical role in 

recovering original data when the number of extreme items is up to 485 for both 

approaches. However, when the extreme item set is larger, the auxiliary information 

makes almost no help. Its contribution is very marginal to notice. The reason behind this 

phenomenon is that small number of extreme item set might have some missing items 

that could be important in terms of deriving the original data. In other words, some items 

might not be extracted as extreme items by the reconstruction approaches, but they might 

have an important effect that remains undiscovered. Auxiliary information with a small 

number of extreme items has a promising effect approaching the best cases with the base 

method. Extracting a high number of extreme items adds computational costs for very 

large data sets; hence, this experiment presents that utilizing auxiliary with relatively 

Table 3.4. Reconstruction with auxiliary information 

Recons. 

Appr. 

Number of 

Extreme Items 

Base 

Method 
Popular Unpopular 

Oscar 

Won 

Popular & 

Unpopular 
All 

FA 

121 0.655 0.889 0.811 0.829 0.925 0.907 

242 0.687 0.893 0.815 0.835 0.926 0.908 

485 0.738 0.905 0.814 0.855 0.928 0.911 

970 0.904 0.929 0.914 0.908 0.936 0.922 

1941 0.948 0.948 0.949 0.940 0.949 0.941 

2912 0.946 0.946 0.947 0.942 0.946 0.942 

3397 0.943 0.941 0.942 0.939 0.942 0.939 

CA 

121 0.690 0.893 0.808 0.835 0.926 0.908 

242 0.772 0.901 0.849 0.850 0.927 0.910 

485 0.912 0.924 0.928 0.896 0.934 0.919 

970 0.945 0.944 0.946 0.935 0.946 0.937 

1941 0.940 0.940 0.941 0.937 0.940 0.938 

2912 0.940 0.940 0.941 0.938 0.940 0.937 

3397 0.940 0.940 0.941 0.937 0.941 0.938 
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small number of extreme items could be useful instead of exploiting a large number of 

extreme items for accurate reconstruction.  

3.3.2. Reconstructing rated items 

This experiment is conducted to derive if a rated item in the perturbed data set is 

really rated in the original data set or a fake item inserted by the filling method, which is 

the second aspect of privacy. Auxiliary information is utilized to create rules to 

accomplish this task. In the targeted schemes (Polat and Du, 2006; Kaleli and Polat, 

2007b), users insert fake ratings by drawing a random number between (0, d], where d is 

the density of the vector. This filling method assures that a user can fill his or her rating 

vector with items less than the number of original ratings. The idea here is to find out the 

genuine ratings made by users. Since fake ratings are inserted into the original user vector 

based on a random process, the auxiliary information is utilized to derive genuine rated 

item. The report by British Film Institute3 includes movie genre preference of people by 

different age groups. The related data set used in this dissertation is MLM, and it also 

contains demographic user information about user age groups. The results of the survey 

are matched with the age groups in MLM, and related rules are created to determine the 

genuine rated items. Contrary to the approaches deriving actual ratings, prec and rec 

would not yield same results in this experiment. Both are given for this experiment in 

Table 3.5. This experiment deal with the second aspect of privacy and evaluation criteria 

are calculated by the related formula given in Eq. 1.1.  

The parameters, θ and G, has no effect on discovering rated items because this 

reconstruction is concerned about the filling method. The filling method executes its 

operation by inserting fake ratings. prec can be considered more important than rec in 

this experiment. Since the removal of items is not considered by the filling method, rec 

is 1.000 after the filling method is applied. Recall that this protocol hides the original 

ratings by appending new ones. Moreover, the reconstruction method achieves 0.786 in 

terms of prec. In the perturbed data, the prec could be estimated around 0.666 because 

every one item out of three in the perturbed data is fake due to the filling method. Recall 

that each user fills his or her rating vector with a random percentage drawn uniformly 

Table 3.5. Reconstruction of rated items 

prec rec 

0.786 0.804 
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from the range (0, d]. Thus, the density of fake items approximately becomes dset / 2 over 

the whole data set that causes the estimated prec value to become 0.666. Indeed, this 

estimation of prec is a paraphrase of the calculation of the estimated density of the original 

data, dset, in Chapter 3.2.1.  

3.3.3. Reconstructing actual ratings from full-privacy 

The previous two group of experiments handle the recovery of the original ratings 

from perturbed data in two different cases by applying data masking and hiding methods 

independently. In Chapter 3.3.1, data hiding method is not considered in the experiments. 

The purpose was to reconstruct data does not consider the second aspect of privacy. 

Likewise, the reconstruction in the experiment of Chapter 3.3.2 does not consider the first 

aspect of privacy; in other words, RRT with multi-group. In this experiment, both RRT 

with multi-group, which is the first aspect of privacy, and data hiding method, which is 

the second aspect of privacy, are applied together. In such a case, a malicious data holder 

needs to find out genuinely rated items before determining the actual rating values. 

Therefore, auxiliary information will first be utilized, and then extreme items will be 

extracted to derive the rating values of the original data. θ is set 0.650, and G is set to 5. 

The number of extreme items are 1,941 and 970 for FA and CA, respectively, without 

considering SW, the number of minimum ratings in extreme item extraction and auxiliary 

information.  

Table 3.6 displays the results. The column “Granted” shows the prec and rec values 

calculated from the perturbed data with full-privacy before the reconstruction has been 

performed for comparison purposes. The reconstruction of the original data achieves 

higher results when compared with the granted ratio of both metrics. A malicious server 

has granted ratio of 0.431 prec and 0.650 rec. After the reconstruction is applied, prec is  

0.739 and 0.738 for FA and CA, respectively. The difference between granted prec and 

the prec from FA and CA is significant and 0.308 and 0.307, respectively. Rec is very 

close for FA and CA and records 0.759, 0.758, respectively. These values are again 

remarkable when the granted rec value is considered. Note that it is impossible to exceed 

prec and rec values in Table 3.5 because deriving which items are rated is the first step 

Table 3.6. Reconstruction from full-privacy 

 FA CA Granted 

prec 0.739 0.738 0.431 

rec 0.759 0.758 0.650 
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of a two-step process when deriving original rating values from full-privacy. The final 

reconstruction results in Table 3.6 (with full-privacy) are very close to the results in Table 

3.5. As a result, even if users perturb their data with full privacy, proposed reconstruction 

methods achieve remarkable results.  

3.4. Conclusion 

In this chapter, central server-based binary PPCF schemes (Polat and Du, 2006; 

Kaleli and Polat, 2007b) are examined. These schemes offer privacy preservation for their 

users by employing RRT with multi-group to disguise items’ rating values and a filling 

method to hide the items rated by users. The attacks proposed in this chapter derive 

confidential user data by trying to reconstruct the original data matrix from the perturbed 

data that users submit to the server. The first attack extracts extreme items whose ratings 

are overwhelmingly consistent among different user by employing RRT estimation. Then, 

actual rating values are checked against these extreme items. The second attack utilizes 

auxiliary public information to derive the presence of a rating. The third attack derives 

original ratings when both data masking (RRT with multi-group) and data hiding are 

applied by integrating solutions from first two attacks.  

Experiments about deriving the actual ratings analyze the targeted schemes with 

different control parameters. In the first experiment, the effects of the number of extreme 

items are analyzed. The results in this experiment are parallel with the hypothesis that the 

reconstruction approaches need enough data for data recovery. Therefore, as the number 

of extreme items increase, higher reconstruction results are achieved up to a certain point. 

Then, reconstruction results follow a rather stable trend with marginal declines. In the 

following experiment, reconstruction approaches are tested against varying θ value. θ is 

used as a determiner to preserve or reverse ratings. The randomness introduced by θ 

reaches its highest ratio as it approaches 0.500. Although the experimental results were 

consistent with the fact that reconstruction results decrease as randomness increases, 

proposed reconstruction approaches provide very high reconstruction results especially 

when θ = 0.650, which is a practical value for a prediction process. Polat and Du (2006) 

shows in their work that accuracy diminishes as θ values approach 0.50. As discussed 

before, privacy and accuracy need a balance to avoid dramatic loss in accuracy. The next 

experiment is tested how setting θ randomly for each user affects the reconstruction. In 

this setting, the server is unaware of the exact θ value used by users except for its range. 
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The proposed solution is to use the expected value of θ and the outcoming results are 

compared with the case where θ is constant. For this comparison, θ is set to the expected 

value while employing random θ. As expected, constant θ is better than random θ case 

but using expected value of θ yield decent results. Apart from θ, G is another factor that 

complements RRT approach. G is varied between 1 and m, the number of items, and the 

experimental results are in line with the expectation that 1-group scheme is the most prone 

to privacy disclosure while the m-group scheme is the most resilient in terms of privacy 

disclosure. The number of users, n, is also tested to see how varying values of it has an 

effect on the reconstruction. It is discussed that more users are needed for the better 

nomination of extreme items, and increasing values of n have a contribution. Then, SW 

and the minimum number of ratings to be eligible for extreme item nomination is tested. 

These parameters generally help for small extreme item sets. The last experiment about 

deriving actual ratings is to control whether integrating auxiliary information into the base 

method can be a factor promoting the reconstruction. The experiment shows that it can 

be a prominent factor if the number of extreme items are small and yields very close 

precision results with cases where a high number of extreme items are utilized. However, 

the effect of auxiliary information integration vanishes as the extreme item set gets larger. 

Such a help from auxiliary information can be exploited for big data sets where extracting 

a high number of extreme items could be costly. Recall that FA and CA require m/2 and 

m/4 number of extreme items for MLM data set, respectively, for the best reconstruction 

results.  

The motivation for the second attack is to determine if a rated item in the perturbed 

data set received by the server is a genuine or fake one inserted by the filling method. 

Since this operation is merely based on a random appending of fake items, the auxiliary 

information is exploited for reconstruction. The results show that exploiting auxiliary 

information could derive genuine rated ratings from the perturbed data that is disguised 

by the filling method. 

The last attack aims to derive private individual rating values when data hiding 

method is integrated. The attack technique first applies the auxiliary information to derive 

which items are rated. Then, extreme item extraction process recovers original rating 

values. The results demonstrate remarkable results when compared to the granted metrics 

of the perturbed data.  
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To summarize, RRT with multi-group is prone to reconstruction with decent 

accuracy unless full-privacy is applied. Even full-privacy is applied, the reconstruction of 

actual rating values, the first aspect of privacy, is remarkable. The problem with RRT in 

central server-based PPCF is that it is originally designed to reveal percentages of binary 

preferences. Such a disclosure is an extreme vulnerability that can be exploited. 
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4. DERIVING PRIVATE DATA FROM BINARY DISTRIBUTED PPCF 

SCHEMES 

The previous chapter deals with the central server-based binary PPCF scheme 

(Polat and Du, 2006), where users perturb their data before sending a central server. This 

chapter handles the case where user data does not reside on a central server. Instead, 

multiple parties hold different parts of user data. A data holder can collaborate with others 

to enhance its own data set. Such a collaboration could happen between two- or multi-

parties either horizontally or vertically as discussed in Chapter 1 and 2. Unlike central 

server-based PPCF schemes, users send their original data to a data holder, and the data 

holder perturbs the collected original user data to preserve the privacy of institutional data 

from any malicious party. The effort of protecting the privacy of institutional data is called 

institutional privacy and discussed in Chapter 1.  

The objective of this chapter is to derive the private institutional data from the 

binary P3CF (Polat and Du, 2005c; 2008; Kaleli and Polat, 2007a) or PPDCF (Polat and 

Du, 2008; Kaleli and Polat, 2015) schemes in the presence of a malicious party. The 

related PPCF schemes in this chapter are given as preliminaries in Chapter 2. Although 

P3CF schemes are built upon in the presence of a two-party in the PPCF community, they 

are included in this chapter together with PPDCF schemes. This way of categorization is 

preferred because many PPDCF schemes discussed in this chapter are extended from 

P3CF schemes and the attacks deriving private data can be applied on both P3CF and 

PPDCF schemes together. The following section introduces attack techniques and their 

applicability on PPDCF schemes.  

4.1. Attacks to Derive Private Data 

Attack techniques in this chapter aim to reconstruct original data matrices of parties 

taking part in various distributed binary PPCF schemes. There are four attack techniques 

with different motivations. To summarize, the first one picks an item and alienates it from 

other items’ rating in the query and monitors the similarities returned from other parties 

for the query. The second attack monitors perfect matches with the query. While the third 

one manipulates a different item’s rating, each time a new query is sent. The last attack 

exploits neighborhood relation when the history of a user is known. The attacks in this 

chapter are designed as if no privacy measures were taken. In other words, these attacks 
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will be covered here for distributed binary CF protocols. Then, privacy measures are 

applied to show how these parameters help preserve privacy. 

4.1.1. Alienate the victim attack 

Alienate the victim item attack is designed to derive confidential data from NBC-

based distributed binary PPCF schemes. The basic principle in alienate the victim attack 

is to mark a victim item with a different binary rating from the rest. A malicious party 

prepares an active query in a way that an item is alienated with its rating from the 

remaining rated items. The objective is to derive the original rating of the victim item. 

Chapter 2 introduces the binary PPCF schemes targeted in this dissertation. In the NBC-

based binary PPCF schemes (Kaleli and Polat, 2015), parties are not able to transfer 

similarity values in the aggregated form. Recall that parties send p(q | like) and p(q | 

dislike)  results for each user they own to the master party for the final similarity 

calculation. Furthermore, the numerator, PNig, and the denominator parts, PDig, are 

separately transferred to the master party due to the fact that a query might have multi-

groups. Such an exchange between parties can be exploited because collaborating parties 

calculate the related similarity value for the victim item by comparing the victim item’s 

rating with the corresponding rating in users’ vector. Therefore, the master party can infer 

the rating for the victim item by checking PNig and PDig values. Figure 4.1 illustrates this 

attack for an HPD-based binary PPCF scheme. 

In Figure 4.1, an HPD-based P3CF scheme is deployed. The malicious master party 

has a query vector with 2-group. Notice that the fourth item in the first group and the third 

item in the second group are the victim items, whose ratings are alienated in the query, 

these ratings will be derived. After receiving the query vector, the collaborating party 

calculates required conditional probability values for 2-group and sends it to the master 

party. Upon receiving conditional probability values, the master party knows that p(q | 

dislike) and p(q | like) are calculated for the victim items in the first group and the second 

group, respectively. Hence, the master party can figure out the value of the victim item 

relative to q because it does not know the true value of q in the related users’ vectors of 

the collaborating party. For instance, the third item, which is the victim item, in the first 

user’s vector of the collaborating party is opposite of the value of q. This can be verified 

by checking PN11 and PD11 of p(q | dislike). Since p(q | dislike) is only calculated for the 

third item through all users, PD11 reveals if the corresponding item in the user vector is 
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rated or unrated. If it is 1, then it rated. If it is 0, then the corresponding item is unrated. 

Then, the malicious master party must check the value of PN11 to derive the rating relative 

to q. If it is 1, then the related item’s rating is identical to the value of q. Otherwise, it is 

opposite of the value of q. As a result, the master party marks the victim item either 

opposite or identical to the value of q. If the malicious party somehow achieves to learn 

the value of q, the exact rating can be derived. At this point, the auxiliary information can 

help derive the actual rating, which will be discussed later in this chapter. On the other 

hand, the exact rating of q can be derived in VPD- or VDD-based scenarios. The 

collaborative parties do not own q in VPD- and VDD-based schemes; therefore, they have 

to calculate all possible conditional probabilities, p(q = like | dislike), p(q = dislike | 

dislike), p(q = like | like) and p(q = dislike | like), to let the master party choose the correct 

one. Having collected all possible conditional probabilities, the master party can easily 

figure out the rating. Assume that the master party checks p(q = dislike | dislike) returned 

from the collaborating party to derive the victim item. If PNig and PDig are equal and 1, 

then the victim item in the related user vector is dislike. If PNig is 0 and PDig is 1, then the 

victim item is like. If PDig is 0, then it is unrated because PDig yields 0 when there are no 

commonly rated items. 

 

Figure 4.1. Alienate the victim attack 
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4.1.2. Perfect match attack 

Perfect match attack exploits the similarity value exchanged between a malicious 

master and collaborating parties. In this attack, the malicious party initiates a random 

query and looks for perfect matches in similarity values returned from other parties. A 

perfect match in this context defines a similarity between the active query and any user 

where all corresponding commonly rated items are identical or opposite to each other. A 

query with a positive and negative perfect match with two different user vectors is given 

in Figure 4.2. In a positive perfect match, all corresponding commonly rated items are 

identical to each other while a negative perfect match occurs when all corresponding 

commonly rated items are opposite to each other between the query and related user 

vector. A positive or negative perfect match can be easily detected by a similarity value 

of 1 or -1, respectively. Such occurrences let the master party infer about the user vector. 

For example, the malicious master party infers that the user with a positive perfect match 

holds a vector where each corresponding rating is either identical to the query or unrated. 

To illustrate, the user with a positive perfect match in Figure 4.2 has both identical ratings 

and unrated items for the corresponding commonly rated items with the query. 

This attack can be applied in a repeated manner. A new perfect match can be 

captured in successive queries for a user. In such a case, the master party can infer 

additional information. Figure 4.3 displays perfect match attack with repeated queries. 

There are three queries with perfect matches. After the master party captures the first 

perfect, it stores a copy of the first query except the fact that the master party marks 

corresponding items as ?like or ?dislike instead of like or dislike. ?like means that the 

corresponding item in the user vector is either rated like or unrated. Similarly, ?dislike 

means that the corresponding item in the user vector is either rated dislike or unrated. 

After the master party captures the second perfect match, it prepares a temporary user 

 

Figure 4.2. A perfect match 
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vector that is identical to the second query. This vector is compared with the vector stored 

for the first perfect match by the master party. If any rating in the first query contradicts 

with its corresponding rating in the temporary vector, that item is marked as unrated. 

Notice the third item in the first derived user vector is ?like; however, it is marked as 

unrated after this vector is compared with the second temporary user vector. This repeated 

process is performed for each perfect match to eliminate unrated items.  

4.1.3. Acting as an active user attack 

Acting as an active user attack exploits temporal changes in the similarity values 

for repeated queries that differ by only one rating from each other. Multiple queries are 

needed to derive private data with this attack. A malicious master party acts as AU and 

sends multiple queries. The malicious master party creates a reference query vector and 

initiates the recommendation protocol. When similarities are returned from the other 

parties, the master party stores these similarity values to utilize them in the future. The 

master party continues to send subsequent queries by only altering one rating at a time 

with an opposite value. When new similarity values are received, the master party 

compares the incoming similarity values with the reference, which has been already 

stored by the master party. If there is an increase in the incoming similarity value, then 

the correlation (similarity) between the new query and the relevant user increases, which 

means that the altered rating in the new query is identical to the corresponding rating in 

the relevant user’s vector. If there is a decrease, then they are opposite. If the incoming 

and reference similarity values are equal, then the corresponding item of the relevant user 

is unrated.  

 

Figure 4.3. A perfect match attack 
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Figure 4.4 displays acting as an active user attack with subsequent queries. First, 

the similarities for the reference query is stored. Then, the reference query is altered for 

the first item, and the incoming similarity values are compared with the reference 

similarity values for each user. If an increase is reported, that item is marked like. If a 

decrease is reported for a user, that item is rated as dislike. If similarities remain same, 

then it is rated unrated as it happens for the second item in Figure 4.4. This process 

continues after all items are recovered.  

Acting as an active user attack is the only attack technique that the targeted 

distributed schemes (Polat and Du, 2005c; 2008; Kaleli and Polat, 2007a; 2015) in this 

dissertation consider as a threat and set specific privacy measures. The experiments will 

be performed to analyze the effects of this attack when privacy measures are taken. 

4.1.4. knn attack 

knn attack targets the selected neighbors in a CF scheme to derive information. This 

attack is proposed by Calandrino et al. (2011) to disclose information from various online 

CF services. The main idea in this attack is that the attacker is assumed to have a partial 

vector of a target user. The attacker creates k duplicates of this partially compromised 

vector and introduces these k fake duplicate vectors as new users into a target CF system. 

Then, the attacker requests a recommendation for one of the k fake users. If a CF 

algorithm utilizes neighborhood, it must select k neighbors for an incoming query to 

produce a recommendation. In such a case, the selected k neighbors are expected to 

 

Figure 4.4. Acting as an active user attack 
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include k-1 fake users and the targeted user whose partial vector is known. Since the query 

and the fake users are identical, the recommendation will be produced from the unknown 

items in the targeted user’s vector. 

Figure 4.5 gives an illustration about adding fake users into a CF system. Assume 

that the attacker has a partial vector of the second vector of the data holder. Lightly shaded 

part describes the compromised part of the vector. The dark shaded side shows the still 

confidential data. After fake user vectors are introduced by leaving the confidential part 

of the vector unrated, the attacker asks for a recommendation for one the fake users. The 

neighbor selection algorithm might include the partially compromised user’s vector and 

k-1 fake user vectors as neighbors of size k as shown in the figure. Therefore, the 

recommendations will be produced from the confidential part of the targeted user vector. 

The attacker can now figure out which items are rated by the second user of the data 

holder. However, this attack does not guarantee that k neighbors will include the targeted 

user and k-1 fake users. This figure is just an illustration to clarify the understanding of 

this attack. There might be some other users that can manage to qualify as neighbors of 

the partially compromised user vector.  

4.2. The Application of Privacy Attacks on Distributed Binary Schemes 

Before delving into the details of how the attacks in this chapter are applied on 

different binary P3CF and PPDCF schemes, two of these schemes, which are HDD-based 

threshold (Polat and Du, 2005c; 2008) and NBC-based HDD on PPDCF (Kaleli and Polat, 

2007a; 2015), need some clarifications. Alienate the victim, acting as an active user and 

perfect match attacks exploit the similarity values exchanged between parties. However, 

 

Figure 4.5. knn attack, introducing fake users 
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HDD-based threshold scheme (Polat and Du, 2005c; 2008) does not require such an 

exchange between parties; therefore, these attacks are not applicable for this scheme. On 

the other hand, these three attacks can only derive whether items of users in collaborating 

parties are rated or not (second aspect of privacy) when NBC-based binary PPDCF 

scheme on HDD (Kaleli and Polat, 2007a; 2015) is utilized. The reason behind this 

phenomenon is that q is hold by each party in HDD; therefore, the master party does not 

know whether p(fu | like) or p(fu | dislike) is calculated for fu = like or fu = dislike. Figure 

4.6 shows how q resides in NBC-based HDD- and VDD-based schemes (Kaleli and Polat, 

2007c; 2015). In HDD-based schemes, collaborating parties hold q of its users, so the 

master party does not know the value of it. Hence, the malicious master party cannot 

discover the rating value made for the target item. To overcome this problem, auxiliary 

information will be used and the details are given in the next section, Chapter 4.3. In 

contrast to HDD-based schemes, the master party has q in its own institutional data in 

VDD-based scenarios; thus, the collaborating parties have to calculate all possible 

conditional probabilities to let the master party choose the correct one based on the value 

q.  

Alienate the victim attack singles out an item in an active query so that its ratings 

can be disclosed. However, this attack is only applicable for NBC-based P3CF and 

PPDCF schemes (Kaleli and Polat, 2007a; 2015). Parties calculate p(fu | like) and p(fu | 

dislike) and send these values to the master party by separating related nominator and 

denominator values. Therefore, the rating for the victim item can be discovered by 

checking the relevant conditional probability. For example, if the victim item is like, the 

malicious master party must check p(fu | like). Since fu is determined based on the value 

 

Figure 4.6. The location of q in NBC-based PPDCF schemes 
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of q, the master party should not worry about it. In VPD- and VDD-based schemes (Kaleli 

and Polat, 2007c; 2015), collaborating parties have to calculate all possible conditional 

probabilities and let the master party know those probabilities explicitly. Therefore, the 

master party could exploit the conditional probabilities and discover the rating made for 

the victim item as discussed in Chapter 4.1.1. In VDD-based schemes, the malicious 

master party prepares m− mMP number of queries, where mMP is the number of items that 

the master party holds. A different victim item is picked for each query, and its rating is 

discovered for all users according to the conditional values returned from other parties.  

Perfect match attack exploits similarities values that are 1. This attack can be 

applied on all P3CF (Polat and Du, 2005c; 2008; Kaleli and Polat, 2007a) and PPDCF 

(Polat and Du, 2008; Kaleli and Polat, 2015) schemes except threshold-based HDD 

scheme (Polat and Du, 2005c; 2008). The threshold-based HDD scheme does not require 

to exchange similarity values, which make perfect match attack invalid. On the other 

hand, perfect match needs modification for the NBC-based binary PPDCF on HDD 

(Kaleli and Polat, 2015) because the master party does not hold q. Auxiliary information 

will be used to derive genuine rating values. Perfect match attack must be conducted in a 

repeated manner to reconstruct data matrices of collaborating parties. As the number of 

repeated queries increases, the unrated items of collaborating parties start to emerge. High 

number of repetition of perfect match attack will cause the overwhelming majority of 

unrated items to emerge. The remaining items with either ?like or ?dislike are marked like 

and dislike after the perfect match attack has been repeatedly, respectively. 1000 

repetitions with random query vectors will be performed throughout the experiments.  

Acting as an active user attack is built upon exploiting the relative change in the 

similarity values when one of the ratings is reversed in the subsequent query. A reference 

query is set, and each rated item in the reference query is manipulated to derive their 

ratings in the users’ vectors. After the first reference query is exhausted, new reference 

queries are created until all of the items are manipulated. After all items are manipulated, 

and their ratings are discovered, the attack is terminated. Again, this attack will not be 

applied for threshold-based HDD scheme (Polat and Du, 2005c; 2008). 

In knn attack, the main idea is to mimic k best neighbors with k−1 fake users and 

the user whose partial vector is known. Since NBC-based HDD and VDD PPDCF 

schemes (Kaleli and Polat, 2015) do not utilize neighborhood, knn attack is not applicable 

to them. VDD-based schemes (Polat and Du, 2005c; 2008) inherently has a history of 
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ratings for each user because collaborating parties share different ratings for the same set 

of users. The attacker introduces k fake users into the system, which are identical to the 

user whose ratings will be discovered. This process is repeated until every user is 

exploited. In HDD-based schemes, the attacker does not have such a luxury to hold a 

history of any user vector inherently. knn will be applied on HDD-based schemes with a 

strong assumption that the attacker has half of the targeted user vector. This assumption 

will be repeated for HDD-based schemes during the experiments.   

4.3. Exploiting Auxiliary Information 

As discussed in the previous section, alienate the victim, perfect match and acting 

as an active user attacks are applicable to prediction based P3CF and PPDCF schemes 

(Kaleli and Polat, 2007c; 2015) to derive exact rating values (the first aspect of privacy) 

if data is vertically distributed between parties. When data is horizontally distributed, the 

attacker party does not have access to q. Thus, an assumption about the value of q is 

needed. This problem will be overcome by auxiliary information. 

Auxiliary information is proved to be useful (Demirelli Okkalioglu, Koc and Polat, 

2016; Calandrino et al., 2011) to recover information in various scenarios. As repeatedly 

stated until now in Chapter 4, IMDB was utilized to collect auxiliary information about 

MLM. This collected information includes average rating, number of votes made for each 

movie in MLM. This information is exploited in the reconstruction process to disclose 

private institutional data of collaborating parties. Since the master party does not know 

the value of q in the HDD-based scenario, auxiliary information about q might help the 

malicious master party have an idea about the value of q. The master party assumes that 

the value of q for a user might be correlated with the average rating collected from IMDB. 

The problem with this approach is that q is expected to be rated identically to the average 

rating in IMDB by all users throughout collaborating parties. Hence, a criterion could be 

adopted to choose which q will be queried for the prediction. A query about q whose 

average rating is not decisive such as 6 out of 10 and voted by a few number of IMDB 

users will not probably serve the initial purpose of having an idea about q. It is highly 

possible that most of the users in collaborating parties hold no rating for q whose number 

of votes in IMDB is very few. In such a case, collaborating parties will not calculate 

conditional probabilities for those users, and the master party could not derive 

information about the rating vector. Even if the conditional probability is calculated for a 
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user, this conditional probability is calculated for q whose rating is non-decisive. By non-

decisive, it is implied that an average rating such as 6 shows that there is not a consensus 

over the rating of q by IMDB users. Very low and high ratings at least show a consensus 

toward the unpopularity and popularity of an item, respectively. In this regard, movies 

with higher than 500,000 number of votes in IMDB are first picked to promote q’s that 

are rated. A list of q’s is formed among these movies whose rating is higher than 8.5 or 

less than 4.0. No movie with a rating less than 4; however, meets these criteria in the 

collected data set. A random movie (item) is picked as q from the list every time a query 

is dispatched for alienate the victim and acting as an active user attacks. These attacks 

are repeated m times to derive the ratings of all items. On the other hand, perfect match 

attack can reveal that an item’s rating is either unrated or its value relative to q. After this 

attack is repeatedly performed for the NBC-based HDD PPDCF (Kaleli and Polat, 2015), 

recall that the master party obtains a reconstructed data matrix whose items might contain 

one of the three possible values, unrated, ?like or ?dislike. However, the master party can 

discover whether an item is rated or not by the relevant user by monitoring similarity 

values. If a collaborating party does not calculate the conditional probability for a user, it 

means that the relevant user did not rate q. Therefore, the master party could also allocate 

a secondary matrix to map which users rate which items, the second aspect of privacy, by 

asking as many different q’s as for the prediction. Assume that perfect match attack has 

been repeated many times and the master party wants to create a derived matrix.  There 

would be many cells marked such as ?like. By exploiting the secondary matrix, the master 

party could easily figure out whether the relevant cell should be left unrated or marked as 

like. If the relevant cell is marked as rated in the secondary matrix before, then the master 

party marks the related item as like. As a result, it is also very crucial to ask as many 

different q’s as possible to discover the second aspect of privacy. Therefore, perfect match 

attack will utilize random q’s in the first half of the repeated queries to discover whether 

user rate q or not while q’s selected from the auxiliary information will be utilized in the 

last half of the repeated queries to promote reliable relative values of q.  

4.4. Experiments 

Experiments have been carried out to see the effects of different privacy parameters 

on the reconstruction attacks on horizontal and vertical P3CF and PPDCF schemes. 

Unless otherwise stated δAU is 0.25, G is 5 and the number of parties is 5. There are a 
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couple of things to clarify before the details of the experiments are given. In best-k HDD 

P3CF and PPDCF (Polat and Du, 2005c; 2008), the collaborating party permutes 

neighbors’ similarity values and take absolute values of similarities before sending them 

to the master party. This condition is neglected in the experiments below. The authors 

give the related privacy analysis about this condition in their study. In terms of knn attack, 

if the number of eligible neighbors is more than k, k of them are randomly selected. Also, 

remember that knn attacks is associated with the second aspect of privacy while other 

attacks are associated with the first aspect of privacy. 

4.4.1. Effects of varying δAU  

δAU controls how much fake ratings should be appended to the original rating vector, 

and it is associated with d. In this experiment, δAU will be varied between 0.125d, 0.25d, 

0.5d and 1d. The highest value of δAU is set to 1d because appending more ratings than 

the original vector has is unrealistic. As δAU gets larger, the perturbed data will become 

more random. Therefore, the intuition is that the evaluation criteria drop for larger values 

of δAU when G and number of parties are fixed at 5. Table 4.1 displays results for HDD- 

and VDD-based PPDCF scheme while Table 4.2 shows the threshold-based scheme for 

different attack types. The threshold-based scheme is separated from the rest because its 

parameter is based on τ. The first columns displaying results with header “No filling” in 

tables refer a setting where no defense mechanism is applied, a simple CF scheme. DV 

and RF denote data filling methods. Notice that only knn attack is applicable for the 

threshold-based scheme and prec and rec are calculated for the second aspect of privacy 

of it. 

Alienate the victim attack relies on a victim item. Notice that DV does not change 

the status of victim item. Default rating of a vector is appended as fake ratings into the 

original vector, which does not alter the alienated status of the victim item. Therefore, it 

is expected that DV will have no effect of preserving private user data when this attack is 

employed. However, HDD-based schemes utilize auxiliary information since the 

malicious master party does not have access the rating of q. Recall that the attacker has 

to make an assumption about the rating of q using the auxiliary information. Thus, the 

rating set for q will decide the accuracy of this attack rather than DV. Contrary to DV, 

RF method randomly appends new ratings into unrated cells; therefore, it will definitely 

deteriorate the evaluation criteria, prec and rec. Results in Table 4.1 confirms the initial 
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intuition about DV and RF for NBC-based HDD and VDD PPDCF schemes. It is 

important to note that this attack performs full recovery in both metrics for the VDD-

based scheme when DV is applied even when δAU gets larger. The rest records a declining 

trend for larger δAU values as expected.  

Table 4.1. Effects of varying δAU 

    δAU 

    0.125d 0.25d 0.5d 1d 0.125d 0.25d 0.5d 1d 

   
No 

filling 
DV RF 

Alienate 

the 

victim 

NBC 

HDD 

prec 0.846 0.483 0.343 0.226 0.148 0.475 0.335 0.214 0.133 

rec 0.452 0.402 0.361 0.300 0.226 0.400 0.357 0.292 0.216 

NBC 

VDD 

prec 1.000 1.000 1.000 1.000 1.000 0.611 0.431 0.285 0.169 

rec 1.000 1.000 1.000 1.000 1.000 0.930 0.856 0.753 0.601 

Perfect 

match 

NBC 

HDD 

prec 0.697 0.699 0.704 0.699 0.693 0.698 0.693 0.699 0.702 

rec 0.053 0.054 0.056 0.056 0.053 0.054 0.051 0.054 0.054 

Best-

k 

prec 0.445 0.448 0.452 0.454 0.445 0.447 0.450 0.449 0.437 

rec 0.931 0.918 0.907 0.885 0.847 0.919 0.907 0.882 0.840 

NBC 

VDD 

prec 0.165 0.167 0.170 0.173 0.177 0.167 0.169 0.171 0.175 

rec 0.996 0.995 0.995 0.994 0.993 0.994 0.993 0.989 0.981 

Case-

All 

prec 0.455 0.455 0.456 0.451 0.439 0.458 0.458 0.458 0.450 

rec 0.930 0.921 0.913 0.897 0.867 0.920 0.910 0.889 0.854 

Case-

Split 

prec 0.356 0.358 0.362 0.372 0.375 0.364 0.371 0.380 0.387 

rec 0.957 0.949 0.941 0.924 0.896 0.947 0.938 0.918 0.883 

Acting 

as an 

active 

user 

NBC 

HDD 

prec 0.852 0.420 0.283 0.191 0.128 0.409 0.272 0.181 0.117 

rec 0.471 0.397 0.353 0.324 0.286 0.401 0.354 0.346 0.272 

Best-

k 

prec 1.000 0.271 0.192 0.128 0.091 0.277 0.190 0.121 0.094 

rec 1.000 0.983 0.966 0.943 0.921 0.985 0.968 0.940 0.924 

NBC 

VDD 

prec 1.000 0.520 0.383 0.255 0.180 0.525 0.366 0.237 0.145 

rec 1.000 0.933 0.894 0.844 0.785 0.911 0.859 0.783 0.675 

Case-

All 

prec 1.000 0.334 0.210 0.135 0.096 0.321 0.212 0.142 0.096 

rec 1.000 0.988 0.965 0.922 0.872 0.987 0.965 0.927 0.870 

Case-

Split 

prec 1.000 0.325 0.216 0.143 0.094 0.334 0.217 0.137 0.099 

rec 1.000 0.988 0.967 0.927 0.869 0.988 0.968 0.923 0.874 

knn 

Best-

k 

prec 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 

rec 0.426 0.426 0.426 0.426 0.426 0.425 0.426 0.426 0.425 

Case-

All 

prec 0.058 0.058 0.058 0.058 0.059 0.058 0.058 0.059 0.060 

rec 0.449 0.448 0.447 0.448 0.449 0.448 0.446 0.448 0.442 

Case-

Split 

prec 0.071 0.070 0.069 0.069 0.067 0.070 0.070 0.070 0.070 

rec 0.520 0.510 0.497 0.478 0.442 0.516 0.512 0.505 0.493 
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There are five different PPDCF schemes that perfect match attack can be applied as 

seen in Table 4.1. The general inference made from the results is that results do not show 

dramatic declining or increasing trends as alienate the victim attack in the previous 

paragraph. In terms of the NBC-based HDD PPDCF scheme, prec results change between 

0.693 and 0.704, which is the best among all of the schemes. However, rec is very low 

and fluctuating between 0.051 and 0.056. This means that derived ratings from perfect 

match attack are reliable (high precision), but the amount of correctly derived ratings 

corresponds to the small fraction of original ratings (low recall). On the other hand, very 

high rec values around 0.900 are very common for the rest of the schemes. For example, 

perfect match attack records very remarkable rec values around 0.990 for different δAU 

values when the NBC-based vertical PPDCF scheme is employed although prec values 

are lower than the other schemes.  Low precision means that derived ratings contain many 

unrelated ratings in size while high recall means that high percentage of original ratings 

are indeed recovered. Perfect match attack demonstrates promising results in terms of rec 

for best-k, Case-All and Case-Split as well.  

Acting as an active user attack should perform full prec and rec results when no 

privacy measures are taken. However, the NBC-based horizontal PPDCF scheme utilizes 

auxiliary information to predict the value of q; therefore, prec and rec are lower than 

1.000 for this scheme when HRI is not applied. When δAU increases, there is a declining 

trend due to HRI. Repetitive queries should differ from each other with only by one cell; 

nonetheless, HRI with higher δAU possibly makes each subsequent query differ 

dramatically. As a result, this attack yields very high rec results and lower prec for all 

schemes except NBC-based horizontal one.  

Results for knn attack are given in both Table 4.1 and 4.2. The latter table includes 

results for threshold-based horizontal PPDCF scheme since the parameter is different for 

this scheme. This scheme selects neighborhood based on τ and it does not apply HRI and 

therefore separated from the rest. Results show stable trends for all schemes in knn attack 

although measures are tightened. If there are more than k users who are eligible to become 

neighbors, k of them are randomly picked. With increasing values of privacy measures, 

there is not a significant change in the results so one can argue that there are always some 

unintended neighbors. Very low prec results describe that most of the recovered ratings 

do not match with the original ratings. In terms of rec, knn attack records moderate results. 
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However, the drawback of this attack is that prec values are too low to be considered 

effective for different PPDCF schemes for varying δAU. 

4.4.2. Effects of varying G 

Parties could divide ratings of its users into a different number of groups, G, as 

discussed. For each group, RRT is applied independently. The problem with the one-

group scheme is that any disclosure of an item reveals whole rating vector due to RRT 

because ratings are either reversed or preserved. Thus, a disclosure of an item in a multi-

group vector only reveals ratings of other items in the same group. This experiment 

investigates the effects of G on the reconstruction results against different attacks given 

in this study. G is varied between 1, 3, 5, 10 and 20. It is worth mentioning that G used 

in this experiment defines the number of groups for a whole user vector; for example, if 

G is 5 for a vertically distributed user vector, each party has one-group for their part in a 

5-party scheme. There is also one more point to clarify with VDD. When G is not a factor 

of the number of parties, the actual total number of groups could exceed G. For example, 

when G is 3 and the number of parties are 5, the actual G becomes 7 as shown in Figure 

4.7.  

Remember that HRI protocol appends ratings into AU’s query up to δAU which is 

associated with d. An AU’s query is filled with an average of δAU / 2 fake ratings which 

contribute to privacy. However, it is hypothesized that increasing G values under a 

constant δAU will help reconstruction results. When G is increased, the possibility of each 

group to be perturbed by HRI decreases. Assume that G = m, where m is the number of 

items, interim calculations are made for each group, and none of the groups of the geniune 

rated items (each item constitutes a group) are manipulated by HRI. Since the master 

party knows true AU’s query, it can easily capture true interim results. As a result, the 

hypothesis is that reconstruction results will improve as G increases. Table 4.3 shows the 

experimental results.  

Table 4.2. Effects of varying δAU on the HDD-based threshold scheme 

  τ No threshold 0.125 0.25 0.75 

knn Threshold 
prec 0.032 0.032 0.031 0.032 

rec 0.327 0.325 0.303 0.285 
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 Alienate the victim attack singles out a victim item from the rest to derive its rating. 

Results show that prec and rec metrics improve for larger G values. As G increases, it is 

less probable that a victim item’s group will be invaded by fake ratings introduced due to 

HRI. Therefore, increasing values of G yields better results regardless of the filling 

methods, DV or RF. In NBC-based horizontal PPDCF, prec value starts around 0.120 

when G is 1 and hikes up to around 0.600 for both of the filling methods when G is 20. 

Rec values also demonstrate gradual increase up to around 0.430. The gradual increasing 

trends are also very clear with the NBC-based vertical PPDCF scheme with two 

exceptions. Prec and rec are 1.000 when G is 1 and 5 and the filling method is DV for 

the NBC-based vertical PPDCF scheme. DV appends the dominant rating in the vector, 

and it is clear that this does not alter the isolated status of the victim item when G is 1. 

Similarly, when G is 5, each party has exactly 1-group since the total number of groups 

is 5. When RF is examined, the trends is very clear and numbers follow an increasing 

trend as G increases. In vertical schemes, results are becoming very promising with 

especially large G values. 

Perfect match attack creates random queries and looks for positively or negatively 

perfectly matched users. As G increases, AU’s vector will be split into smaller parts. This 

might cause more perfect matches to be captured. This attack records slight increases for 

the NBC-based HDD scheme in prec and rec. However, rec values change between 0.033 

and 0.060 for different G values and filling methods, DV and RF. Such rec values are too 

 

Figure 4.7. Number of groups with VDD 
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low. On the other hand, prec change between 0.680 and 0.708 with a generally increasing  

trend. When the best-k scheme is applied, rec consistently rises up to 1.000 for DV and 

RF. This means that all of the original ratings can be derived when G is close to 20. 

However, prec reaches its peek when G is 5. When G approaches 20, this attack 

Table 4.3. Effects of varying G 

   G 

   1 3 5 10 20 1 3 5 10 20 

   DV RF 

Alienate 

the victim 

NBC 

HDD 

prec 0.126 0.254 0.343 0.467 0.600 0.113 0.241 0.335 0.472 0.595 

rec 0.204 0.318 0.361 0.398 0.428 0.194 0.315 0.357 0.400 0.427 

NBC 

VDD 

prec 1.000 0.923 1.000 0.763 0.823 0.437 0.495 0.431 0.594 0.724 

rec 1.000 0.990 1.000 0.959 0.970 0.861 0.883 0.856 0.915 0.942 

Perfect 

match 

NBC 

HDD 

prec 0.684 0.696 0.704 0.705 0.701 0.680 0.695 0.693 0.693 0.708 

rec 0.033 0.053 0.056 0.058 0.060 0.033 0.050 0.051 0.056 0.058 

Best-

k 

prec 0.127 0.386 0.452 0.352 0.253 0.127 0.383 0.450 0.351 0.253 

rec 0.353 0.753 0.907 0.990 1.000 0.351 0.751 0.907 0.989 1.000 

NBC 

VDD 

prec 0.169 0.149 0.170 0.130 0.113 0.169 0.149 0.169 0.129 0.113 

rec 0.995 0.997 0.995 1.000 1.000 0.993 0.996 0.993 1.000 1.000 

Case-

All 

prec 0.231 0.300 0.456 0.351 0.251 0.230 0.306 0.458 0.357 0.257 

rec 0.026 0.188 0.913 0.991 1.000 0.026 0.188 0.910 0.991 1.000 

Case-

Split 

prec 0.283 0.064 0.362 0.261 0.195 0.281 0.064 0.371 0.266 0.199 

rec 0.007 0.038 0.941 0.995 1.000 0.008 0.038 0.938 0.995 1.000 

Acting as 

an active 

user 

NBC 

HDD 

prec 0.113 0.211 0.283 0.407 0.551 0.104 0.206 0.272 0.404 0.559 

rec 0.279 0.345 0.353 0.392 0.423 0.265 0.358 0.354 0.397 0.424 

Best-

k 

prec 0.078 0.146 0.192 0.261 0.401 0.087 0.144 0.190 0.283 0.370 

rec 0.914 0.950 0.966 0.982 0.992 0.922 0.952 0.968 0.984 0.991 

NBC 

VDD 

prec 0.385 0.432 0.383 0.524 0.681 0.371 0.366 0.526 0.526 0.689 

rec 0.904 0.907 0.894 0.933 0.961 0.865 0.874 0.859 0.911 0.952 

Case-

All 

prec 0.223 0.247 0.210 0.314 0.460 0.230 0.306 0.212 0.357 0.257 

rec 0.968 0.974 0.965 0.985 0.995 0.026 0.188 0.965 0.991 1.000 

Case-

Split 

prec 0.206 0.251 0.216 0.334 0.466 0.210 0.258 0.217 0.316 0.477 

rec 0.964 0.974 0.967 0.987 0.995 0.965 0.976 0.968 0.986 0.995 

knn 

Best-

k 

prec 0.047 0.047 0.047 0.047 0.047 0.048 0.046 0.047 0.047 0.047 

rec 0.427 0.425 0.426 0.426 0.426 0.425 0.427 0.426 0.427 0.426 

Case-

All 

prec 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 

rec 0.447 0.449 0.447 0.449 0.448 0.447 0.447 0.446 0.447 0.448 

Case-

Split 

prec 0.069 0.069 0.069 0.069 0.070 0.070 0.070 0.070 0.070 0.070 

rec 0.498 0.498 0.498 0.498 0.498 0.512 0.513 0.513 0.513 0.513 
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demonstrates a declining trend in terms of prec for best-k. The trend for prec is similar to 

the VDD-based schemes as well. It reaches its peak at G = 5 and a decline follows toward 

G is 20. Increasing G toward 20 promotes rec up to 1.000 for VDD-based schemes in a 

similar way it occurs for best-k. To sum up, increasing values of G promotes especially 

rec for PPDCF schemes except for the NBC-based HDD scheme. 

Acting as an active user attack monitors temporal changes between subsequent 

queries manipulated by only one cell. Therefore, HRI protocol should not append fake 

ratings into the groups of the manipulated item for this attack to be successful. As G 

increases, this possibility increases; thus, it is expected that the results will get better. 

With HDD-based schemes (NBC and best-k), increase in both metrics is obvious and 

consistent. For example, when G is 1, prec is 0.113 and 0.104 for DV and RF, 

respectively. When G approaches to 20, prec consistently climbs up to 0.551 and 0.559 

for DV and RF, respectively. In the VDD-based schemes (NBC, Case-All and Case-

Split), this attack demonstrates increasing trends for larger G values. When G is 3, prec 

and rec results are always better than the case where G is 5. The reason behind this 

phenomenon is that the actual number of groups is greater when G is 3 than G is 5 when 

the number of parties is 5 as shown in Figure 4.7. 

Results for knn attack are very stable for varying group numbers. Remember that 

these numbers are calculated for the second aspect of privacy. Although rec values can 

be considered reliable, prec values are very low. Low prec values indicate that derived 

item list of the attacker contains a high volume of unrelated items. Zhang, Ford and 

Makedon (2006) indicate that precision is more important for an attacker. As a result, knn 

attack follows a stable trend as it did in the previous experiment. However, very low 

values of prec render this attack impractical.  

4.4.3. Effects of varying number of parties 

The above experiments are performed with 5 different parties. However, the 

number of parties could vary. In this experiment, the number of parties are varied between 

2, 3, 5 and 10. Since multi-party, PPDCF, schemes (Polat and Du, 2008; Kaleli and Polat, 

2015) are extended upon two-party, P3CF, schemes (Polat and Du, 2005c; 2008; Kaleli 

and Polat, 2007a), P3CF schemes are not included earlier experiments in this section. 

They will be now demonstrated in this experiment by starting the number of parties from 
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2 to 10. Results are given in Table 4.4 and 4.5, and the latter table includes threshold-

based scheme. 

Results for the NBC-based HDD scheme when alienate the victim attack is applied 

varies between 0.327 and 0.343 for prec and 0.348 and 0.361 for rec with DV. Although 

results are in similar ranges, a marginal increase is observed through the 5-party scheme. 

Table 4.4. Effects of varying number of parties 

   Number of parties 

   2 3 5 10 2 3 5 10 

   DV RF 

Alienate the 

victim 

NBC 

HDD 

prec 0.327 0.335 0.343 0.333 0.318 0.323 0.335 0.322 

rec 0.348 0.359 0.361 0.354 0.347 0.355 0.357 0.352 

NBC 

VDD 

prec 0.650 0.777 1.000 1.000 0.418 0.466 0.431 0.623 

rec 0.934 0.957 1.000 1.000 0.845 0.867 0.856 0.927 

Perfect 

match 

NBC 

HDD 

prec 0.716 0.711 0.704 0.696 0.721 0.716 0.693 0.690 

rec 0.072 0.067 0.056 0.041 0.075 0.068 0.051 0.041 

Best-k 
prec 0.467 0.463 0.452 0.465 0.465 0.461 0.450 0.465 

rec 0.901 0.908 0.907 0.902 0.899 0.907 0.907 0.901 

NBC 

VDD 

prec 0.177 0.161 0.170 0.120 0.177 0.161 0.169 0.119 

rec 0.994 0.996 0.995 1.000 0.991 0.994 0.993 1.000 

Case-

All 

prec 0.496 0.453 0.456 0.074 0.498 0.462 0.458 0.076 

rec 0.799 0.582 0.913 0.125 0.794 0.580 0.910 0.124 

Case-

Split 

prec 0.406 0.322 0.362 0.028 0.412 0.332 0.371 0.028 

rec 0.757 0.545 0.941 0.051 0.753 0.542 0.938 0.050 

Acting as an 

active user 

NBC 

HDD 

prec 0.270 0.277 0.283 0.277 0.265 0.274 0.272 0.266 

rec 0.355 0.366 0.383 0.371 0.355 0.361 0.354 0.342 

Best-k 
prec 0.181 0.182 0.192 0.192 0.164 0.173 0.190 0.175 

rec 0.966 0.965 0.966 0.967 0.961 0.963 0.968 0.964 

NBC 

VDD 

prec 0.372 0.518 0.383 0.542 0.353 0.386 0.366 0.553 

rec 0.877 0.934 0.894 0.940 0.836 0.856 0.859 0.924 

Case-

All 

prec 0.207 0.237 0.210 0.344 0.498 0.462 0.212 0.336 

rec 0.963 0.970 0.965 0.989 0.794 0.580 0.965 0.988 

Case-

Split 

prec 0.196 0.235 0.216 0.342 0.208 0.246 0.217 0.338 

rec 0.958 0.969 0.967 0.989 0.962 0.970 0.968 0.988 

knn 

Best-k 
prec 0.049 0.048 0.047 0.046 0.048 0.048 0.047 0.046 

rec 0.423 0.426 0.426 0.430 0.424 0.425 0.426 0.430 

Case-

All 

prec 0.064 0.065 0.058 0.050 0.064 0.065 0.058 0.050 

rec 0.443 0.464 0.447 0.436 0.443 0.465 0.446 0.436 

Case-

Split 

prec 0.081 0.075 0.069 0.070 0.082 0.076 0.070 0.071 

rec 0.490 0.495 0.497 0.490 0.500 0.506 0.512 0.505 
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This attack performs very similar results when RF is utilized. The way of filling unrated 

items differs when the NBC-based VDD scheme is applied. When the filling method 

associated with HRI is DV, results are promising for varying number of parties. Prec and 

rec are 1.000 when the number of parties is 5 and 10. The reason for this phenomenon is 

that the actual number of groups per party is 1 when the number of parties is 5 and 10. 

When data filling method is RF, the reconstruction results increase toward 10-party 

scheme. Especially, prec and rec are 0.623 and 0.927, respectively.  

When perfect match attack is utilized for varying number of parties, prec values 

remain relatively steady from 2- to 10-party in the NBC-based and best-k HDD schemes 

for both of the filling methods, DV and RF. On the hand, rec follows a falling trend and 

very low for the NBC-based HDD scheme. At this point, recall that the NBC-based HDD 

scheme utilizes auxiliary information. On the other hand, rec is almost above 0.900 and 

remains almost stable for all cases in the best-k scheme. For all of VDD-based schemes, 

this attack generally performs stable prec results except a steep decline for 10-party cases 

in Case-All and Case-Split. In terms of the NBC-based VDD scheme, rec results are very 

promising. 

Acting as an active user attack remains relatively stable with marginal changes for 

HDD-based schemes (NBC and best-k) for both metrics. On the other hand, both metric 

fluctuate for the NBC-based VDD scheme while there is an increasing trend for a larger 

number of parties in Case-All and Case Split.  

knn attack remains almost stable for varying number of parties for all schemes in 

terms of prec and rec as given in Table 4.4 and 4.5. One can conclude that varying number 

of parties does not affect the reconstruction results of the attack. Once again, note that 

prec is very low.  

4.4.4. Effects of privacy measure for extreme cases 

As discussed in Chapter 2.7, two extreme cases might occur that could disclose 

confidential information. The first case is related to users who did not rate q. A malicious 

Table 4.5. Effects of varying parties on HDD-based threshold scheme 

  

Number 

of 

parties 

2 3 5 10 

knn Threshold 
prec 0.032 0.032 0.032 0.031 

rec 0.285 0.285 0.285 0.287 
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master party could disclose the users rating q, which is a violation of the second aspect of 

privacy. NBC-based schemes (Kaleli and Polat, 2015) offer to fill unrated q’s of some 

users with a random percentage up to dset to let unrelated users participate in the PPCF 

algorithm for the related party. Notice that this case is called PPP in Chapter 2.7. In the 

second extreme case, users might rate q but do not have any common ratings with AU. A 

malicious master party could infer that the related user did not rate any rating that the AU 

rate. The authors (Kaleli and Polat, 2015) propose to use HRI on the related user vector 

where no corresponding entries match to fill some of them. This privacy measure is called 

PPR in Chapter 2.7. Note that the first extreme case is not valid for the NBC-based VDD 

scheme because parties do not have the part of the vector to which q belongs. Parties 

calculate similarity values for all possible values of q. Table 4.6 and 4.7 display the results 

for the NBC-based HDD and VDD schemes, respectively. Reference column in the tables 

refers to the case where no extreme privacy measures are applied.  

Since PPP adds some users who did not rate q into prediction process and PPR 

perturbs users’ vectors who have a rating for q yet no common ratings with the AU, a 

declining trend is expected. When PPP and PPR are applied, the decline in evaluation 

metrics are not very apparent considering the reference case. For example, the highest 

decline in prec is 0.008 and 0.007 for DV and RF are applied, respectively, when alienate 

the victim attack is applied. Likewise, the decline for other attack types when extra 

privacy measures are applied are not prominent. Since the NBC-based HDD scheme 

utilizes auxiliary information to determine q, there is already an inherited randomness in 

the process; therefore, the integrated privacy measures might not be effective in a 

dramatic extent. Even, evaluation metrics increase with RF when both PPP and PPR are 

applied for perfect match and acting as an active user attacks. 

The NBC-based VDD scheme can only employ PPR as discussed. Since some user 

vectors are perturbed by a similar method to HRI, randomness increases, and it would 

negatively affect the reconstruction results. Table 4.7 displays the results and decline is 

reported for all attack types in terms of prec. However, the degree of the decline is not 

very dramatic for prec. For example, prec is 1.000 and 0.431 with the reference case when 

alienate the victim attack is utilized with DV and RF, respectively. When PPR is added 

by the parties as an extra measure, these numbers fall to 0.973 and 0.426. The only 

credible decline is recorded for acting as an active user attack, prec fell from 0.383 and 
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0.366 to 0.313 and 0.306 for DV and RF, respectively. On the other hand, rec values 

remain almost stable when PPR is applied.  

As a result, PPP and PPR, which are applied to provide privacy against two extreme 

cases, do not offer privacy as much as expected. The decline in prec is very limited while 

rec remains almost stable for both HDD- and VDD-based PPDCF schemes.  

4.5. Conclusion 

In this part, institutional privacy offered in P3CF and PPDCF schemes is examined. 

Four different attacks have been discussed and their success to derive original institutional 

data is experimentally tested. Alienate the victim and perfect match attacks that exploit 

exchanged similarity values are proposed. Acting as an active user and knn attacks are 

well-known attacks, and they are also implemented in this chapter. Throughout the 

experiments, different parameters are controlled to see how they affect the reconstruction 

results.  

Alienate the victim attack records a declining trend when δAU is increased to control 

how much of the AU’s vector should be appended with fake ratings. Recall that HRI 

protocol has two different kinds of filling methods, DV and RF while filling unrated items 

Table 4.6. Effects privacy measures against extreme cases, the NBC-based HDD scheme 

   Reference PPP PPR Both Reference PPP PPR Both 

   DV RF 

Alienate 

the victim 

NBC 

HDD 

prec 0.343 0.336 0.332 0.335 0.335 0.336 0.331 0.328 

rec 0.361 0.358 0.356 0.357 0.357 0.358 0.358 0.357 

Perfect 

match 

NBC 

HDD 

prec 0.704 0.699 0.693 0.694 0.693 0.703 0.694 0.697 

rec 0.056 0.053 0.057 0.053 0.051 0.056 0.057 0.055 

Acting as 

an active 

user 

NBC 

HDD 

prec 0.283 0.285 0.287 0.278 0.272 0.289 0.277 0.282 

rec 0.383 0.381 0.368 0.373 0.354 0.388 0.375 0.370 

 

Table 4.7. Effects privacy measures against extreme cases, the NBC-based VDD scheme 

   Reference PPR Reference PPR 

   DV RF 

Alienate the  

victim 
NBC VDD 

prec 1.000 0.973 0.431 0.426 

rec 1.000 1.000 0.856 0.860 

Perfect  

match 
NBC VDD 

prec 0.170 0.160 0.169 0.159 

rec 0.995 0.995 0.993 0.993 

Acting as an  

active user 
NBC VDD 

prec 0.383 0.313 0.366 0.306 

rec 0.894 0.884 0.859 0.859 
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of AU. However, when DV is utilized for NBC-based VDD scheme, this attack achieves 

prec and rec values of 1.000 for all values of δAU because DV does not hinder the status 

of the victim item due to the fact that unrated items are filled with the dominating rating. 

The second experimental setting tests how varying G affects the reconstruction. An 

increasing trend for prec and rec is recorded for larger G values. Such results contradict 

with an initial thought that larger G should decrease the reconstruction results; however, 

when G is increased, it is probable that the alienated status of victim item remains 

unaltered. Nonetheless, there is an exception with NBC-based VDD scheme with DV due 

to the number of groups corresponding to each party if G is not a factor of the number of 

parties. In the third experimental setting, the number of parties is tested. The most 

important point is prec and rec results that are 1.000 when the number of parties 5 and 10 

when partitioning is vertical and the filling method is DV. The reason is that the number 

of groups for each party is 1 with 5- and 10-party schemes; therefore, the victim item 

remains alienated. As a result, alienate the victim attack achieves very good results 

especially with DV, and it could become very destructive to derive private institutional 

data. The experiments show that the relation between G per party is very important to 

avoid this attack. 

When perfect match attack is employed for different control parameters in the 

experiments, the general trend of this attack shows a stable trend.  This attack usually 

performs very high rec results for all PPDCF schemes except NBC-based HDD scheme. 

It should be noted that attacks applied on this scheme have to utilize auxiliary information 

to assign the value of q. The use of auxiliary information might cause such low rec results 

for NBC-based HDD algorithm. On the other hand, prec results recorded for NBC-based 

VDD scheme by this attack are not promising when compared to the success of alienate 

the victim attack on this algorithm. Perfect match attack clearly shows promising rec 

results; however, prec is usually considered more important for the adversaries (Zhang, 

Ford and Makedon, 2006) because adversaries would be more interested in the volume 

of accurately derived ratings. An adversary would prefer higher prec and lower rec pair 

rather than lower prec and higher rec pair. 

Acting as an active user attack declines for larger δAU values in terms of prec and 

rec values for all PPDCF schemes. This declining trend is in line with the expectation 

because larger δAU values append more fake ratings into the AU’s query. Such fake ratings 

alter the manipulated query which is different from the reference query by only one cell. 
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When G is varied, both metrics increase for larger G. Similar to alienate the victim attack, 

increasing G values create more groups and it would be less possible to append fake 

ratings into the group where manipulated item belongs to. The third experiment tests the 

effect of the number of parties. This attack does not show dramatic fluctuation for varying 

number of parties.  

The last attack, knn, derives whether an item is rated or not, the second aspect of 

privacy. Throughout all experiments, prec and rec results almost remain stable for all 

different experimental settings when knn attack is employed. An important drawback with 

this attack is the low prec values although rec values could be considered as moderate.  

Apart from the three experimental settings that deal with parameters of HRI and 

number of parties involved in the PPCF process, participating parties other than the 

master party could take extra privacy measure to prevent from possible extreme 

situations. When these extreme privacy measures are introduced, the decline in 

reconstruction results can be regarded as too marginal to be considered effective for NBC-

based PPDCF schemes.
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5. DERIVING PRIVATE DATA FROM P2P BINARY PPCF SCHEMES 

Although server-based schemes, which are central, partitioned or distributed, have 

privacy measures to preserve the privacy of individual or institutional data, peers can 

come together and establish their P2P network for CF purposes without a data holder. A 

P2P binary PPCF scheme studied by Kaleli and Polat (2010) is targeted in this chapter. 

This is also an NBC-based prediction scheme where an AP perturbs his or her vector 

before asking for a prediction to preserve the privacy of her rating vector from other peers. 

On the other hand, peers can also apply privacy measures to prevent data disclose while 

collaborating for a prediction. Details of this scheme are given in Chapter 2.7, where 

preliminaries are introduced. The objective of this chapter is to derive peers’ rating 

vectors when an AP acts maliciously. Attacks introduced in Chapter 4 to derive original 

ratings will be applied for the P2P binary PPCF scheme too. Each party holds original 

user data, and distributed PPCF protocols are adapted to preserve the privacy of 

institutional data from other parties. However, the objective in P2P PPCF is to preserve 

the individual privacy of peers. Therefore, the main distinction between the previous and 

this chapter is that the first aims to derive private institutional data while the latter aims 

to derive private individual peer’s data. Since the same set of attacks will be applied on 

P2P binary PPCF scheme, they will not be introduced here. Their application on the P2P 

binary PPCF scheme (Kaleli and Polat, 2010) will be discussed in the following 

subsection.  

5.1. The Application of Attacks on P2P Binary PPCF Schemes 

P2P PPCF schemes are similar to HDD-based PPCF schemes in nature because 

each peer has its own rating vector. In P2P setting with privacy, each peer could be 

considered as an independent party and q is held by each peer. Thus, the only difference 

between HDD-based and P2P scenarios is that a party has many original user vectors 

while each peer has her own vector, respectively. Since q does not reside in AP’s vector, 

AP is not able to know whether p(q=like | cj) or p(q=dislike | cj) where cj ∈ {like, dislike} 

is returned from peers. Similar to the attacks applied on the NBC-based HDD scheme 

(Kaleli and Polat, 2015), the attacks in this chapter need auxiliary information as well to 

estimate the value of q residing at peers’ sites while deriving peers’ individual data (the 

first aspect of privacy).  
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Alienate the victim attack can be employed for the P2P binary scheme by Kaleli and 

Polat (2010) in a repeated manner by picking a unique victim item each time a new query 

is dispatched so that each item is set victim once to derive its possible rating. Therefore, 

this attack is repeated m times to attempt to derive all ratings from other peers. A 

malicious AP prepares a query with one victim item and asks for a prediction. Perfect 

match attack is also suitable for this scheme. As discussed in Chapter 4, this attack 

recovers private data by controlling similarity values that are either 1 or -1, perfect 

matches. This attack is also applied in 2 × m times to increase the number of repetitions. 

In the first m successive queries, unique q values for each item are queried to create a 

mapping of rated items. The second m queries, q’s selected from auxiliary information 

are queried. The third attack, acting as an active user, can also be applied by manipulating 

a rating at a time from the reference query. Therefore, this attack needs to be repeated m 

times to try to derive all items.  

The targeted scheme (Kaleli and Polat, 2010) in this chapter is an NBC-based 

scheme that provides predictions between peers. Since this scheme neither utilizes 

neighboring approach nor provides a recommendation, top-N results, knn attack will not 

be included in the attacks for the P2P binary PPCF.   

5.2. Exploiting Auxiliary Information 

AP needs to know the rating made for q by peers to derive peers’ ratings; however, 

each peer holds q so AP is not aware of the value of q. On the other hand, the attacks in 

this dissertation given for PPDCF schemes, which are also applicable for the P2P scheme 

given in this chapter, cannot derive actual rating values if AP does not know q. The NBC-

based P2P binary PPCF scheme (Kaleli and Polat, 2010) does not require the value of q 

to calculate the final probabilities. Thus, AP needs auxiliary information to make an 

assumption about the value of q that peers have for all attack types. AP uses the same set 

of auxiliary information that has been used in Chapter 4 and the way how the value of q 

is estimated is identical as well. Movies with higher than 500,000 votes whose ratings are 

greater than 8.5 or less than 4.0 are picked as q. Alienate the victim and acting as an active 

user attacks have utilized a different q each time this attack is repeated to derive the rating 

of each item in peers’ vectors. Hence, these two attacks have been repeated m times to 

derive the rating of every item. Perfect match attack is applied with a little modification 

because it can reveal whether an item’s rating is either unrated or its value relative to q as 
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discussed previously. Perfect match attack is performed in two-steps. First, each item is 

queried to create a mapping of which peer rated which item, the second aspect of privacy. 

Then, the second step is performed for m times with movies which can be nominated as 

q similar to other two attacks. This way of applying this attack in two-steps is different 

from its application for HDD-based schemes in the previous chapter. It is applied 1000 

times in Chapter 4 for HDD-based schemes, although the half of them is to create a 

mapping of rated items and the other half is to use q’s observed from auxiliary 

information. 

5.3. Experiments 

Experiments have been carried out with different control parameters that are δAP, 

the filling method, G, and peer privacy measures, PPP and PPR. Unless otherwise stated, 

δAP is 0.25d, G is 5 and peer privacy measures are not active. The density of each query 

dispatched from AP is prepared is associated with d. Each experiment is repeated 5 times 

and their averages are taken. 

5.3.1. Effects of δAP and filling methods 

AP utilizes HRI protocol to hide ratings by appending up to δAP density. Note that 

δAP value is associated with d and ratings are appended based on two different filling 

methods, RF and DV. It is obvious that introducing δAP should decrease the reconstruction 

metrics because some unintended ratings are appended to AP’s rating vector. 

Reconstruction results for acting as an active user attack could be affected by increasing 

δAP values regardless of which filling method is utilized. This attack relies on subsequent 

queries that differ by only one item rating at a time. When δAP and a filling method are 

utilized for a query, the next queries will be much more different from the intended one 

that is expected to differ only one item rating. Therefore, the intuition is that altering each 

departing query for participating peers by δAP and the filling method will definitely 

diminish the results. The resilience of alienate the victim attack against privacy measures, 

δAP, and the filling method, could depend on the filling method that is used. This attack 

relies on singling out a victim item’s rating from the rest. DV method appends ratings 

into unrated item cells by the dominant rating in the vector. Such a way of filling unrated 

item cells does not affect the basic intuition behind this attack. Therefore, it is not 

expected that increasing δAP with DV would not make a prominent effect on 

reconstruction results. On the other hand, RF method randomly fills unrated item cells. 
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This way of filling unrated cells breaks the alienated status of the victim item. A declining 

trend is expected for growing δAP with RF similar to acting as an active user attack. 

Remember that perfect match attack dispatches a query and tracks peers who have a 

perfect match with the dispatched query. Appending new ratings into AP’s rating vector 

does not alter the basic principle of the attack, AP continues to monitor perfect matches 

in an unaffected way because this protocol only modifies AP’s rating and AP knows that 

there is no data hiding in peers’ sites. Appended ratings into a vector could either create 

a new perfect match or spoil a current perfect match. Therefore, the number of captured 

perfect matches might stay similar in size. As a result, similar results are expected as δAP 

grows with RF and DV. 

Table 5.1 displays the results. Note that G is set 1 to eliminate any unexpected 

consequences that might result from RRT with multi-group when HRI is applied. If the 

filling method is no filling and δAP is 0d in the table, then it means that this algorithm has 

been applied as a plain P2P CF (no privacy). In CF mode, prec varies between 0.831 and 

0.915 and rec varies between 0.405 and 0.443 for different attack types. Being able to 

recover with decent prec and rec is important if this scheme is utilized in CF setting with 

no privacy. Remember that AP has no clue about the value of q in peers' vectors and 

auxiliary information is utilized to speculate the value of q at peers' site. This 

experimental result with CF is important to stress that exploiting such auxiliary 

information could be very useful to be exploited with the attacks. 

Table 5.1 clearly shows that increasing δAP values have a dramatic effect in terms 

of reconstruction for acting as an active user attack. One can notice in the table that larger 

values of δAP diminish prec results for both of the filling methods. In CF settings, prec is 

as high as 0.831, and there is a sharp decrease as soon as privacy measures are introduced 

with δAP = 0.125d. As δAP is increased up to 1d, the decline continues for DV and RF. 

Although the decline in rec is significant as well, it is not as much affected as prec. In the 

worst case, where δAP is 1d, rec is recorded around 0.246 and 0.225 for DV and RF, 

respectively. Results for acting as an active user attack are in accordance with the 

expectation with dramatic declines especially in terms of prec. Alienate the victim attack 

displays a constant trend in terms of prec and rec results for growing δAP with DV. As 

stated in this section, when DV is utilized as the filling method, increasing δAP has no 

effect on this attack because it has no particular damage in the alienated state of the victim 

item. Therefore, results for DV with larger δAP confirms this argument once again. 
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However, when RF is utilized to fill unrated items’ cells, a steep decline is recorded as 

δAP gets larger. Perfect match attack maintains a stable record in terms of both metrics. 

Especially, when DV is applied, this attack almost remains defiant for larger δAP values. 

Even there is a consistent slight increase in rec through δAP = 1d. When RF is utilized, 

very high prec and rec values are recorded. However, they are relatively lower than the 

CF setting. This might be due to the fact that DV is intuitively more inclined to be in 

harmony with peers' ratings. As a result, increasing δAP does not hinder AP from 

discovering perfect matches regardless of the filling method; therefore, evaluation metrics 

follow a more constant trend for DV and RF.  

5.3.2. Effects of varying G 

In addition to data hiding by HRI, AP masks the rating vector by utilizing RRT 

method as well. In data masking, AP generates a uniformly random group number for 

each peer, which is Gi. Gi prevents a peer from realizing if the related group is indeed 

preserved or reserved. As Gi grows for a peer, the rating vector is split more. In acting as 

an active user attack, the intuition is that growing Gi values could introduce some 

improvement on the reconstruction. It is important for this attack to be successful that 

subsequent queries are only different by one item owing to the fact that temporal changes 

are monitored between subsequent queries. As Gi gets larger, the size of each group 

shrinks. As a result, the possibility of appending a rating into a group decreases. 

Therefore, a group might remain unaltered after HRI, which would help the 

reconstruction accuracy. It is anticipated that alienate the victim attack remains unaffected 

from larger group sizes if DV is exploited as the filling method. This attack performs well 

as long as the victim item remained isolated from the rest. Increasing Gi has no effect on 

the victim item to take away its isolation status. In terms of perfect match attack, 

Table 5.1. Reconstruction with varying δAP and filling methods 

  Alienate the victim Perfect match Acting as an active user 

Filling Method δAP prec Rec prec rec Prec rec 

No filling 0d 0.842 0.443 0.915 0.405 0.831 0.443 

DV 

0.125d 0.843 0.445 0.914 0.411 0.107 0.267 

0.25d 0.844 0.446 0.913 0.416 0.092 0.260 

0.5d 0.842 0.445 0.913 0.422 0.077 0.243 

1d 0.844 0.445 0.913 0.436 0.063 0.246 

RF 

0.125d 0.374 0.367 0.913 0.401 0.117 0.278 

0.25d 0.250 0.315 0.904 0.396 0.101 0.266 

0.5d 0.158 0.245 0.897 0.386 0.085 0.241 

0.1d 0.100 0.171 0.891 0.369 0.071 0.225 
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introducing larger groups, principally, should have no adverse effect on the basic 

principle of the attack. Perfect matches can still be captured. However, the number of 

perfect matches is expected to rise because fewer items need to be matched with 

corresponding peers’ items for a perfect match. The increase in the number of perfect 

matches could contribute to the reconstruction criteria. 

Figure 5.1 displays the prec and rec results in a two-column graph. In Figure 5.1a 

and Figure 5.1b, a slightly increasing trend is recorded for acting as an active user attack 

with regards to prec and rec although prec is very low when compared with other attacks. 

This approves the intuition about larger groups makes it more difficult to append new 

ratings into each group. Some groups could remain same after HRI. The second attack 

type, alienate the victim, increasing Gi has no effect on the victim item’s probability 

results returned from other peers. Both metrics follow a constant trend for all values of 

Gi as initially hypothesized. Prec metric for perfect match attack shows a moderate 

increase in between one-group and three-groups. Remaining groups larger than 3 continue 

a relatively steady trend for prec. However, a marked decline is obvious in rec metric in 

the transition from one-group to three-group. This declining trend gradually continues up 

to the twenty-group scheme. Contrary to the initial thought, downward-trend in rec can 

be attributed to the increase in the number of perfect matches as well. Since CF data sets 

are usually sparse, perfect matches are usually expected to have a small number of 

corresponding rated items. These items should be identical or opposite to each other, so 

they should be marked dislike or like based on the value of q. However, AP does not know 

 

Figure 5.1. Reconstruction with varying Gi 
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which items rated by peers; therefore, she marks all items in the perfect match ?dislike 

?like as discussed in Chapter 4.2. As the number of perfect matches increases, items that 

do not have any corresponding item in peers’ vectors will eventually be marked as unrated 

if an opposite marking is encountered. Such an incident will cause a decline in rec results 

because more and more items are marked unrated because of the overwhelmingly 

increased number of perfect matches due to larger groups. Prec measures how much of 

recovered items are indeed identical to the original, so it is not affected by this issue as 

rec.  

5.3.3. Effects of peer privacy 

Up to now, privacy is always viewed from AP’s point of view. However, peers can 

also apply some privacy measures to prevent possible data disclosure. Recall that a peer 

must rate q to join a prediction process. PPP lets peers participate in the prediction process 

by a random determiner. Therefore, half of the peers join the prediction process without 

the need to have rated q. Non-rater peers determine a rating for q based on their default 

vote. This is a main problem for the malicious AP. Although AP does not know ratings 

made for q by peers even if PPP is not applied, AP makes an assumption that the rating 

of q would be correlated to the average rating collected from IMDB. Since a non-rater 

peer fills q based on her default voting, it adds another uncertainty to all attacks in the 

reconstruction process. AP marks items’ ratings based on q’s anticipated value which is 

the average rating collected from IMDB. Furthermore, PPR lets peers mask their ratings 

by utilizing HRI. Since appending ratings turns the original data into another one, it is 

expected that the attacks will be negatively affected in terms of reconstruction results. 

Figure 5.2 displays the related results. In Figure 5.2, PPP or PPR shows that only PPP or 

PPR is applied, respectively. PPP&PPR shows that both of PPP and PPR are applied. 

Reference column displays an experimental setting where the mere difference is that peer 

privacy measures are not applied.  

It is clear in Figure 5.2 that PPP causes a decline in reconstruction metrics for all 

attack types. The factor causing this decrease could be due to the default vote given for q 

by non-rater peers as discussed. In addition to this factor, in acting as an active user 

attack, AP exploits changes in peers’ probability values for subsequent queries. Since 

participating peers constantly change due to PPP, some peer’ probabilities might not be 

matched with whom AP is monitoring to exploit in the next query. This could be named 
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as another factor that has an effect on the decline recorded for acting as active user attack. 

The most noticeable point in Figure 5.2a and 5.2b is the decline recorded for perfect match 

attack when PPP is applied. AP marks all items in its rating vector based on q in perfect 

match attack; however, the first two attacks deal with only one item, the manipulated or 

victim item, on each run of the attack. The relatively greater decline in perfect match 

attack could be explained due to the larger item set that this attack dealt with each time. 

The main reason that makes sense about the decline in the results for all attack types 

when PPR is applied is that original data held by peers is masked. In parallel to this notion, 

the decline is observable for acting as an active user and alienate the victim attacks. 

However, perfect match attack seems to be resilient to PPR when compared to the 

reference setting. Similar to the first experiment where δAP and the filling methods are 

employed, there are two cases in PPR scenario affecting the number of perfect matches. 

The first is that a possible perfect match could be lost due to appended ratings. In another 

case, a new perfect match can be captured. AP and a peer might have no common ratings 

between each other. Any appended ratings could create a new perfect match. Because 

some perfect matches are lost and some are gained, this factor is the reason why perfect 

match attack is resilient to PPR.  

When PPP and PPR are applied together, alienate the victim and acting as an active 

user attacks records the worst cases while perfect match attack records better results than 

PPP. To summarize, the reference case, where extreme privacy measures are not applied, 

are always best, but alienate the victim attack performs very close rates, and it can be 

considered reliable compared with two other attacks. Perfect match attack perfroms ery 
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poor when PPP is applied, and acting as an active user attack records very poor prec  

results when extreme privacy measures are applied. 

5.4. Conclusion 

In this chapter, three different attack techniques have been examined for an NBC-

based binary P2P PPCF scheme. This scheme handles privacy in both AP’s and peers’ 

perspective. AP privacy is examined with varying δAP and the filling methods while peers' 

privacy is examined in terms of PPP and PPR. Experimental results show that acting as 

an active user attack is not successful for increasing δAP values in terms of particularly 

precision metric. While alienate the victim attack is resilient to large δAP if DV is utilized 

as the filling method. However, this attack records a dramatically declining trend when 

RF is applied as the filling method. Perfect match attack presents almost a stable trend 

for increasing δAP for both of the filling methods. When the number of groups is increased, 

acting as an active user attack performs some improvements; however, its precision 

results are already too low to be considered applicable. On the other hand, alienate the 

victim attack performs a stable trend in terms of precision and recall. Perfect match attack 

is very resilient to protect its precision value for larger groups; nevertheless, it 

demonstrates a steep decline in terms of recall. The decline in the recall might be because 

of the increasingly large number of perfect matches. When peers apply privacy metrics, 

which is primarily designed to prevent from acting as an active user attack, alienate the 

victim attacks seems to be very promising in terms of PPP and PPR. In terms of PPR, 

perfect match attack displays very consistent results compared to the reference setting 

where no peer privacy is utilized.  

To sum up, privacy measures taken by targeted PPCF scheme (Kaleli and Polat, 

2010) is very successful to thwarting acting as an active user attack. However, alienate 

the victim attack can reconstruct with very high precision unless RF is utilized. Results 

show that RF is a must to prevent peers from this attack. Perfect match attack also 

reconstructs with very high precision unless peers decide to protect themselves by PPP. 

However, utilizing PPP could harm prediction results as well because it lets peers take 

part in the prediction without rating q. Since alienate the victim and perfect match attacks 

are very resilient under different privacy settings, extra measures apart from RF and PPP 

should be developed. This study also confirms that exploiting auxiliary information 

would be very crucial to infer confidential data. NBC-based P2P binary PPCF scheme 
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(Kaleli and Polat, 2010) should be investigated in detail to take it one step further in terms 

of attack types given in this study as future work.
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6. CONCLUSION 

In this dissertation, various attack techniques are discussed to derive original binary 

ratings from perturbed data when privacy preserving collaborating filtering schemes with 

different data partitioning scenarios are applied. These attack techniques are 

experimentally tested with a well-known benchmark data set in terms of two different yet 

related evaluation metrics, precision and recall, to analyze how much of the original 

binary data can be recovered when privacy measures and other parameters are varied. 

Based on the experiments performed throughout the dissertation, conclusions can be 

listed as follows. 

The central server-based privacy preserving collaborating filtering scheme utilizes 

randomized response technique with the multi-group approach. It is shown that it can be 

reconstructed with decent accuracy. Since randomized response technique is designed to 

allow an interviewer to estimate the percentage of a sensitive attribute in a population, a 

malicious data holder can easily estimate the percentage of likes and dislikes for an item. 

The data holder can exploit estimated percentages of each item to create a list of extreme 

items, which are voted either like or dislike by the majority of users. The basic idea behind 

deriving private ratings of users is built upon checking these extreme items in perturbed 

user vectors to validate whether the related user rates the extreme items in accordance 

with their possible ratings estimated from the perturbed data. If the majority of extreme 

items are rated identically with their possible ratings, then the master party could deduce 

that the related user persevered her rating vector. Otherwise, the rating vector is reversed. 

Four important points can be drawn from experimental results. First, experimental results 

show that a malicious data holder could reconstruct with very high precision results with 

increasing number of extreme items up to a certain point when θ is predetermined and at 

a moderate level such as 0.650 not to sacrifice prediction accuracy. Second, when θ is 

varied between 0.510 and 0.950, where the randomness reaches its peak at 0.510, the 

precision results decline, but it is always better than the expected precision of θ × 100.  

Likewise, when the number of groups, which is the other privacy measure, is varied, the 

reconstruction results are in decline; however, it is again always greater than the expected 

precision. Based on findings from the second and the third, a malicious data holder is sure 

that more private original ratings can be derived no matter how tight the privacy measures 

are set. Last, auxiliary information is also integrated to improve the reconstruction results. 

The experimental results show that integrating auxiliary information improves the 
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reconstruction when the number of extreme items are small. However, the improvement 

achieved by auxiliary information is marginal when the number of extreme items is 

sufficiently large for reconstruction. Hence, a malicious data holder could utilize a small 

set of extreme items with auxiliary information to reach similar reconstruction results. 

In addition to data masking by randomized response method with multi-group, the 

central server-based privacy preserving collaborating filtering scheme hides whether an 

item is rated or not by inserting fake ratings into unrated items’ cells up to the percentage 

of the density of the related user vector. Since fake ratings are appended randomly, the 

use of auxiliary information is preferred to identify genuine ratings. The idea behind 

utilizing auxiliary information to derive genuine items is to exploit reliable data sources 

can reveal much about the targeted data set. Therefore, auxiliary information such as the 

number of votes and movie awards are collected from a well-known, recognized and 

reliable data source.  The related experiment records decent results in terms of precision 

and recall, respectively. Moreover, precision beats the estimated expected value of 0.666 

for data hiding. 

When two or multi data holders want to collaborate to enhance their rating matrix 

while producing recommendations, the primary concern is to preserve the privacy of 

institutional data. Since data is shared between a different number of parties in privacy-

preserving partitioned and distributed collaborating filtering schemes, parties need to 

exchange partial similarity values to calculate the ultimate similarity value. Therefore, 

such exchanges between parties are exploited by a malicious party in this study. Three of 

the four attacks in this dissertation exploit such similarity values exchanged between 

parties to reconstruct private institutional data. Although reconstruction results vary with 

different control parameters in the experiments, such attacks pose a high risk for parties. 

For example, alienate the victim attack can achieve full precision and recall results if data 

is vertical and default voting is utilized for appending fake ratings into unrated items’ 

cells. Perfect match attack generally follows a stable trend for varying privacy measures. 

Acting as an active user attack is in a declining trend and not successful in terms of 

precision with tightened privacy measures but recall values are very high. knn attack 

exploits the recommendation output. On the other hand, experimental results of knn attack 

are too low.  

Attacks exploiting similarity values exchanged between parties cannot be applied 

on Naïve Bayes Classifier based privacy preserving collaborative filtering scheme with 
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horizontal distributed data. The master party has to know the value of the queried item 

for reconstruction with these attacks. However, the queried item resides at collaborating 

parties if data is horizontally distributed between parties. A modification is necessary, 

and this bottleneck is overcome by utilizing auxiliary information. By using auxiliary 

information, the value of the queried item is estimated to activate the attacks. The last 

data partitioning scheme in this dissertation is a peer to peer scheme with Naïve Bayes 

Classifier for predictions. With peer to peer collaboration, peers eliminate the reign of 

data holders while producing collaborative filtering with privacy. Since partial 

conditional probability values to calculate the final similarity are exchanged between 

peers, this scheme is also prone to all attacks that can be applied on distributed schemes. 

However; the value of the queried item is not known by the malicious active peer because 

peer to peer collaboration is inherently a horizontal scheme in terms of data partitioning. 

Similar to multi-party horizontally distributed schemes, auxiliary information is utilized 

to estimate the value of the queried item. The use of auxiliary information is shown to be 

very important while disclosing private information throughout the dissertation. It is first 

exploited to derive actual rating values and rated items with central server-based schemes; 

then it is exploited to derive institutional and individual private information from 

horizontally distributed data schemes and peer-to-peer privacy preserving collaborating 

filtering schemes. This study only integrated item-related auxiliary information; 

nonetheless, auxiliary information could also be linked to users. The popularity of social 

media is undeniable, and it is a great opportunity to link users to know more about them. 

Such an integration of auxiliary information could be more destructive while deriving 

confidential information from privacy enhanced systems.     

To sum up, the main concentration in this dissertation is to derive private binary 

ratings from different privacy preserving collaborating filtering schemes when data is 

centrally stored by a data holder, distributed between parties or peers. These privacy-

preserving collaborative filtering schemes are scrutinized in terms of privacy measures, 

and various attacks are executed to exploit any deficiency to recover confidential user, 

institutional or peer data. Additionally, auxiliary information is utilized to show that some 

privacy measures or structural bottlenecks can be circumvented. The problem with the 

central server-based binary privacy preserving collaborating filtering scheme is that the 

randomized response technique, which is used by users to perturb their data, discloses 

itself. With distributed and peer to peer schemes are investigated, the main deficiency is 
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the similarity values exchanged between parties or peers, respectively. Additionally, 

splitting a vector into groups seems to be effective in practice, but experiments disprove 

this.  

When the computational power of modern day devices is taken into account, peer 

to peer collaboration should be more focused to offer private recommendations as future 

work. Especially, a solution is needed to communicate partial similarity values. Partial 

similarity values should not be transferred to the active peer without any modification, or 

some mediator peers could be selected randomly to transfer aggregate partial similarities 

to confuse the active peer. Therefore, the future work will focus more on the peer-to-peer 

collaboration to produce private recommendations.



100 

 

REFERENCES 

Ackerman, M.S., Cranor, L.F. and Reagle, J. (1999). Privacy in e-commerce: examining 

user scenarios and privacy preferences. Proceedings of the 1st ACM conference on 

Electronic commerce, New York, NY, USA: ACM, pp. 1-8. 

Agrawal, D. and Aggarwal, C.C. (2001). On the design and quantification of privacy 

preserving data mining algorithms. Proceedings of the 20th ACM SIGMOD-

SIGACTSIGART Symposium on Principles of Database Systems, New York, NY, 

USA: ACM, pp. 247-255.  

Agrawal, R. and Srikant, R. (2000). Privacy-preserving data mining. Proceedings of the 

19th ACM SIGMOD International Conference on Management of Data, New York, 

NY, USA: ACM, pp. 439-450. 

Bélanger F. and Crossler, R.E. (2011). Privacy in the digital age: a review of information 

privacy research in information systems. MIS Quarterly, 35(4), 1017-1041.  

Berendt, B., Günther, O. and Spiekermann S. (2005). Privacy in e-commerce: stated 

preferences vs. actual behavior. Communications of the ACM, 48(4), 101-106. 

Berkovsky, S., Eytani, Y., Kuflik, T. and Ricci, F. (2005). Privacy-enhanced collaborative 

filtering. In Workshop on Privacy-Enhanced Personalization, 

http://isr.uci.edu/pep05/papers/PEPfinal.pdf. (Accessed: 16.10.2017) 

Berkovsky, S., Eytani, Y., Kuflik, T. and Ricci, F. (2007). Enhancing privacy and 

preserving accuracy of a distributed collaborating filtering. Proceedings of the 2007 

ACM conference on Recommender systems, New York, NY, USA: ACM, pp. 9-16. 

Berkovsky, S., Kuflik, T. and Ricci, F. (2012) The impact of data obfuscation on the 

accuracy of collaborative filtering. Expert Syst Appl, 39(5), 5033-5042. 

Bilge, A., Kaleli, C., Yakut, I., Gunes, I. and Polat, H. (2013). A survey of privacy-

preserving collaborative filtering schemes. Int J Softw Eng Know, 23(8), 1085-

1108. 

Bilge, A. and Polat, H. (2010). Improving privacy-preserving NBC-based 

recommendations by preprocessing. Proceedings of 2010 IEEE/WIC/ACM 

International Conference on Web Intelligence and Intelligent Agent Technology, 

Toronto, ON, Canada: IEEE, pp. 143-147.  

Breese, J. S., Heckerman, D. and Kadie, C. (1998). Empirical Analysis of Predictive 

Algorithms for Collaborative Filtering. Proceedings of the Fourteenth Conference 



101 

 

on Uncertainty in Artificial Intelligence, San Francisco, CA, USA: Morgan 

Kaufmann Publishers Inc., pp. 43-52. 

Calandrino, J.A., Kilzer, A., Narayanan, A., Felten, E.W. and Shmatikov, V. (2011). 

“You might also like:” privacy risks of collaborative filtering. Proceedings of 2011 

IEEE Symposium on Security and Privacy, Washington, DC, USA: IEEE, pp. 231-

246. 

Canny, J. (2002). Collaborative filtering with privacy. Proceedings of the 25th Annual 

International ACM SIGIR Conference on Research and Development in 

Information Retrieval, New York, NY, USA : ACM, pp. 238-245.  

Chen, K. and Liu, L. (2005). Privacy preserving data classification with rotation 

perturbation. Proceedings of the 5th IEEE International Conference on Data 

Mining, Washington, DC, USA: IEEE, pp. 589-592.  

Chen, K., Sun, G. and Liu, L. (2007). Towards attack-resilient geometric data 

perturbation. Proceedings of the 2007 SIAM International Conference on Data 

Mining, Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 

pp. 78-89.  

Clarke, R. (1999). Internet privacy concerns confirm the case for intervention. 

Communications of ACM, 42 (2), 60-67.  

 Cooley, T. M. (1879). A treatise on the law of torts or the wrongs which arise 

independent of contract. Chicago: Callaghan. 

Cranor, L. F. (2003). ‘I didn’t buy it for myself’ privacy and ecommerce personalization. 

Proceedings of the ACM Workshop on Privacy in the Electronic Society, New York, 

NY, USA: ACM, pp. 111-117. 

Culnan, M. J. (1993). "How did they get my name?": an exploratory investigation of 

consumer attitudes toward secondary information use. MIS Quarterly, 17 (3), 341-

363.  

Demirelli Okkalioglu, B., Koc, M. and Polat, H. (2016) Reconstructing rated items from 

perturbed data. Neurocomputing, 207, 374-386. 

Dutta, H., Kargupta, H., Datta, S. and Sivakumar, K. (2003). Analysis of privacy 

preserving random perturbation techniques: Further explorations. Proceedings of 

the 2003 ACM Workshop on Privacy in the Electronic Society, New York, NY, 

USA: ACM, pp. 31-38. 



102 

 

Friedman, A., Knijnenburg, P.B., Vanhecke, K., Martens, L. and Berkovsky, S. (2015). 

Privacy aspects of recommender systems. F. Ricci, L. Rokach and B. Shpira (Eds.), 

In Recommender Systems Handbook (pp. 649, 688). USA: Springer.   

Gamb, S. and Lolive, S. (2013). SlopPy: slope one with privacy. Lect Notes Comput Sc, 

7731, 104-117. 

Goldberg, D., Nichols, D., Oki, B. M. and Terry, D. (1992). Using Collaborative Filtering 

to Weave an Information Tapestry. Communications of the ACM, 35 (12), 61–70. 

Guo, S. and Wu, X. (2006). On the use of spectral filtering for privacy preserving data 

mining. Proceedings of the 2006 ACM Symposium on Applied Computing, New 

York, NY, USA: ACM, pp. 622-626. 

Guo, S. and Wu, X. (2007). Deriving private information from arbitrarily projected data. 

Lect Notes Comput Sc, 4426, 84-95.  

Guo, S., Wu, X., Li, Y. (2006) On the lower bound of reconstruction error for spectral 

filtering based privacy preserving data mining. Lect Notes Comput Sc, 4213, 520-

527. 

Guo, S., Wu, X. and Li, Y. (2008). Determining error bounds for spectral filtering based 

reconstruction methods in privacy preserving data mining. Knowl Inf Syst, 17(2), 

217-240.  

Han, J., Kamber, M. and Pei, J. (2012). Data mining concepts and techniques. Waltham, 

MA, USA: Morgan Kaufmann Publishers.  

Herlocker, J. and Konstan, J. (1999). An algorithmic framework for performing 

collaborative filtering. Proceedings of the 22nd Annual International ACM SIGIR 

Conference on Research and Development in Information Retrieval, New York, NY, 

USA: ACM, pp. 230-237. 

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative Filtering for Implicit Feedback 

Datasets. Proceedings of the 2008 Eighth IEEE International Conference on Data 

Mining, Washington, DC, USA: IEEE, pp. 263–272.  

Huang, Z. and Du, W. (2008). OptRR: Optimizing randomized response schemes for 

privacy-preserving data mining. Proceedings of the 24th International Conference 

on Data Engineering, Washington, DC, USA: IEEE, pp. 705-714.  

Huang, Z., Du, W. and Chen, B. (2005) Deriving private information from randomized 

data. Proceedings of the 2005 ACM SIGMOD International Conference on 

Management of Data, New York, NY, USA: ACM, pp. 37-48. 



103 

 

 Hyvärinen, A., Karhunen, J. and Oja, E. (2001). Independent component analysis. John 

Wiley & Sons. 

International Telecommunication Union (2017). ICT Facts and Figures 2017. Geneva, 

Switzerland: International Telecommunication Union. 

Kaleli, C. and Polat, H. (2007a) Providing naïve bayesian classifier-based private 

recommendation on partitioned data. Lect Notes Comput Sc, 4702, 515-522. 

Kaleli, C. and Polat, H. (2007b). Providing private recommendations using naïve 

bayesian classifier. Adv Soft Comp, 43, 168-173.  

Kaleli, C. and Polat, H. (2009). Similar or dissimilar users? Or both?. Proceedings of 

2009 Second International Symposium on Electronic Commerce and Security, 

Nanchang City, China, China, May 22 - 24, 2009, pp. 184-189. ISBN: 978-0-7695-

3643-9. 

Kaleli, C. and Polat, H. (2010) P2P collaborative filtering with privacy. Turk J Electr Eng 

Co, 18 (1), 101-116. 

Kaleli, C. and Polat, H. (2015). Privacy-preserving naïve bayesian classifier-based 

recommendations on distributed data. Comput Intell, 31 (1), 47-68. 

Kargupta H, Datta S, Wang Q, and Sivakumar K (2003). On the privacy preserving 

properties of random data perturbation techniques. Proceedings of Third IEEE 

International Conference on Data Mining, Washington, DC, USA: IEEE, pp 99-

106.08 

Kargupta, H., Datta, S., Wang, Q. and Sivakumar, K. (2005). Random-data perturbation 

techniques and privacy preserving data mining. Knowl Inf Syst, 7(4), 387-414. 

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and Riedl, J. 

(1997). GroupLens: Applying Collaborative Filtering to Usenet News. 

Communication of the ACM, 40 (3), 77–87.  

Liu, K. (2007). Multiplicative data perturbation for privacy preserving data mining. 

Ph.D. thesis, College Park, MD, USA: University of Maryland. 

Liu, K., Kargupta, H. and Ryan, J. (2006). Random projection based multiplicative data 

perturbation for privacy preserving distributed data mining. IEEE T Knowl Data En, 

18(1), 92-106.  

Liu, K., Giannella, C. and Kargupta, H. (2006). An attacker’s view of distance preserving 

maps for privacy preserving data mining. Lect Notes Comput Sc, 4213, 297- 308. 



104 

 

Magi, T. (2011). Fourteen reasons privacy matters: a multidisciplinary review of 

scholarly literature. The Library Quarterly: Information, Community, Policy, 81(2), 

187-209. 

McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J. and Barton, D. (2012). Big 

data. The Management Revolution. Harvard Bus Rev, 90 (10), 61–67. 

Miyahara, K., and Pazzani, M. J. (2000). Collaborative filtering with the simple Bayesian 

classifier. Lect Notes Comput Sci, 1886, 679-689.  

Oard, D.W. and Kim, J. (1998). Implicit feedback for recommender systems. Proceedings 

of the AAAI workshop on recommender systems, Menlo Park, CA, USA: AAAI 

Press, pp. 81-83. 

Oliveira, S.R.M. and Zaїane, O.R. (2010) Privacy preserving clustering by data 

transformation. Journal of Information and Data Management 1 (1), 37-52. 

Ozturk, A. and Polat, H. (2010). From existing trends to future trends in privacy-

preserving collaborative filtering. WIREs Data Min Knowl, 5(6), 276-291. 

Paine, C., Reips, U.D., Stieger, S., Joinson, A., and Buchanan, T. (2007). Internet users’ 

perceptions of ‘privacy concerns’ and ‘privacy actions’. Int J Hum-Comput Stud, 

65(6), 526-536. 

Polat, H. and Du, W. (2003). Privacy-preserving collaborative filtering using randomized 

perturbation techniques. Proceeding of Third IEEE International Conference on 

Data Mining, Melbourne, FL, USA, Nov. 19-22, 2003, ICDM '03. pp. 625-628. 

ISBN: 0-7695-1978-4. doi: 10.1109/ICDM.2003.1250993 

Polat, H., and Du, W. (2005a). Privacy-preserving collaborative filtering. Int J Electron 

Comm, 9 (4), 9-35. 

Polat, H., and Du, W. (2005b). Privacy-preserving collaborative filtering on vertically 

partitioned data. Lect Notes Comput Sc, 3721, 651-658. 

Polat, H., and Du, W. (2005c). Privacy-preserving top-N recommendation on horizontally 

partitioned data. Proceedings of the 2005 IEEE/WIC/ACM International Conference 

on Web Intelligence, Washington, DC, USA: IEEE, pp. 725-731. 

Polat, H. and Du, W. (2005d). SVD-based collaborative filtering with privacy. 

Proceedings of the 2005 ACM symposium on Applied computing, New York, NY, 

USA: ACM, pp.791-795. 

Polat, H. and Du, W. (2006). Achieving private recommendations using randomized 

response techniques. Lect Notes Comput Sci, 3918, 637–646.  



105 

 

Polat, H. and Du, W. (2007). Effects of inconsistently masked data using RPT on CF with 

privacy. Proceedings of the 2007 ACM symposium on Applied computing, Seoul, 

Korea, March 11 - 15, 2007, SAC '07. pp. 649-653. ISBN: 1-59593-480-4.   

Polat, H. and Du, W. (2008). Privacy-preserving top-N recommendation on distributed 

data. J Assoc Inf Sci Tech, 59 (7), 1093-1108. 

Polatidis, N., Georgiaidis, C.K., Pimenidis, E. and Mouratidis, H. (2017). Privacy-

preserving collaborative recommendations based on random perturbations. Expert 

Syst Appl, 71, 18-25.  

Resnick, P. and Varian, H. (1997). Recommender Systems. Communications of ACM, 40 

(3), 56-58.  

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994). GroupLens: An 

Open Architecture for Collaborative Filtering of Netnews. Proceedings of the 1994 

ACM Conference on Computer Supported Cooperative Work, New York, NY, USA: 

ACM, pp.175-186. 

Sang, Y., Shen, H. and Tian, H. (2009). Reconstructing data perturbed by random 

projections when the mixing matrix is known. Lect Notes Comput Sc, 5782, 334-

349. 

Sang, Y., Shen, H. and Tian, H. (2012). Effective reconstruction of data perturbed by 

random projections. IEEE T Comput, 61(1), 101-117    

Sarwar, B.M., Karypis, G., Konstan, J.A., and Riedl, J. (2001). Item-based Collaborative 

Filtering Recommendation Algorithms. Proceedings of the 10th International 

Conference on World Wide Web, Hong Kong, May 1 - 5, 2001, WWW '01. pp. 285–

295. ISBN:1-58113-348-0.  

Sarwar, B. M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B. and Riedl, J. (1998). 

Using filtering agents to improve prediction quality in the grouplens research 

collaborative filtering system. Proceedings of the 1998 ACM Conference on 

Computer Supported Cooperative work, New York, NY, USA: ACM, pp. 345-354. 

Schafer, J. B., Frankowski, D., Herlocker, J. and Sen, S. (2007). Collaborative Filtering 

Recommender Systems. Lect Notes Comput Sc, 4321, 291–324.  

Solove, D. J. (2002). Conceptualizing privacy. Calif Law Rev, 90(4), 1087-1155.  

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. 

Lect Notes Artif Int, 2009, 1-9. 



106 

 

Turgay, E.O., Pedersen, T.B., Saygin, Y., Savas, E. and Levi, A. (2008) Disclosure risks 

of distance preserving data transformations. Lect Notes Comput Sc, 5069, 79-94. 

Warner, S.L. (1965). Randomized Response: A Survey Technique for Eliminating 

Evasive Answer Bias. J Am Stat Assoc, 60 (309), 63-69.  

Warren, S. D. and Brandeis, L. D. (1890). The Right to Privacy. Harvard Law Rev, 4(5), 

193–220. 

Westin, A. F. (1967). Privacy and Freedom. New York: Atheneum as cited in Solove, D. 

J. (2002). Conceptualizing privacy. Cal Law Rev, 90(4), 1087-1155. 

Yakut I. and Polat, H. (2010). Privacy-preserving SVD-based collaborative filtering on 

partitioned data. Int J Inf Tech Decis, 9 (03), 473-502. 

Zhang, S., Ford, J., and Makedon, F. (2006). Deriving private information from randomly 

perturbed ratings. Proceedings of the 2006 SIAM International Conference on Data 

Mining, Bethesda, MD, USA, Apr. 20-22, 2006. pp.59-69. ISBN: 978-0-89871-611-

5. J. Ghosh, D. Lambert, D. Skillicorn and J. Srivastava (Eds.). 

  



107 

 

CIRRUCULUM VITAE 

 

First and Last Name : Murat OKKALIOĞLU 

Foreign Language : English 

Place and Year of Birth : Denizli / 1985 

E-Mail   : muratokkalioglu@anadolu.edu.tr 

 

Education 

• The University of Texas at San Antonio, College of Sciences, Department 

of Computer Science, Master of Science, 2012. 

• Pamukkale University, Faculty of Engineering, Department of Computer 

Engineering, 2008. 

Professional 

• Yalova University, Research Assitant, Faculty of Engineering, Department 

of Computer Engineering, 2012 -  

• Pamukkale University, IT Department, 2008 – 2009. 

Honors 

• 2009 – 2012, Scholarship from Ministry of National Education to Study 

Abroad. 

Publications 

• Okkalioglu, M. and Kaleli, C. Deriving private data from P2P collaborative 

filtering with privacy. Turkish Journal of Electrical Engineering & 

Computer Sciences. (Submitted) 

• Okkalioglu, M., Koc, M. and Polat, H. (2016). A Privacy Review of 

Vertically Partitioned Data-based PPCF Schemes. International Journal of 

Information Security Science 5 (3), 51-68. 



108 

 

• Demirelli Okkalioglu, B., Okkalioglu, M., Koc, M. and H Polat (2015). A 

survey: deriving private information from perturbed data. Artificial 

Intelligence Review 44 (4), 547-569. 

• Okkalioglu, M., Koc, M. and Polat, H. (2015). Deriving private data in 

vertically partitioned data-based PPCF schemes. Proceedings of the 8th 

International Conference on Information Security and Cryptology. pp. 1-6. 

• Okkalioglu, M., Koc, M. and Polat, H. (2015). On the privacy of 

horizontally partitioned binary data-based privacy-preserving collaborative 

filtering. International Workshop on Data Privacy Management. pp. 199-

214. 

• Okkalioglu, M., Koc, M. and Polat, H. (2015). On the discovery of fake 

binary ratings. Proceedings of the 30th Annual ACM Symposium on Applied 

Computing. pp. 901-907. 


