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ABSTRACT 

DERIVING PRIVATE NUMERIC DATA IN PRIVACY-PRESERVING 

COLLABORATIVE FILTERING SYSTEMS 

Burcu DEMİRELLİ OKKALIOĞLU 

Computer Engineering Program 

Anadolu University, Graduate School of Science, November 2017 

Supervisor: Assoc. Prof. Dr. Cihan KALELİ 

There are a great number of methods introduced to offer reliable and accurate 

recommendations in privacy-preserving collaborative filtering systems without 

disclosing individual or data holders’ private data. Privacy has become a fundamental 

principle in privacy-preserving collaborative filtering systems. Several data disguising 

methods have been proposed to alleviate users’ privacy concerns. Randomization, which 

is one of the such proposed methods, is commonly utilized to protect individual private 

data while allowing collaborative filtering systems to produce decent recommendations. 

However, recent studies show that it is likely to reconstruct private data from the data 

disguised by randomization.  

The dissertation scrutinizes whether the private numeric data can be reconstructed 

from central, partitioned and distributed data-based privacy-preserving schemes by 

planning privacy attack scenarios. In central data-based schemes, noise from z-scores 

must be eliminated first by employing the noise elimination methods. A new method is 

proposed to derive the original ratings from the estimated z-score values utilizing public 

data. It is also crucial to reconstruct rated items when users inconsistently perturb their 

confidential data. In partitioned data based-schemes, deriving other party’s private data 

from the aggregate results are investigated. In distributed data-based schemes, data 

holders might coalesce against one holder to derive its private data. In addition, solutions 

are proposed by utilizing various domain-related auxiliary information and characteristic 

features of collaborative filtering systems to enhance the reconstructions. Theoretical 

analysis and experimental outcomes demonstrate that the proposed approaches help 

attackers derive a meaningful amount of private data in certain circumstances.  

Keywords: Privacy, data reconstruction, auxiliary information, privacy attack, 

collaborative filtering. 
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ÖZET 

GİZLİLİK TABANLI ORTAK FİLTRELEME SİSTEMLERİNDE GİZLİ NÜMERİK 

VERİLERİN ELDE EDİLMESİ 

Burcu DEMİRELLİ OKKALIOĞLU 

Bilgisayar Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Kasım 2017 

Danışman: Doç. Dr. Cihan KALELİ 

Gizlilik tabanlı ortak filtreleme sistemlerinde kişilerin veya veri sahiplerinin 

mahrem verilerini ifşa etmeden güvenilir ve doğru öneriler sunmak için çok sayıda 

yöntem uygulanmıştır. Mahremiyet gizlilik tabanlı ortak filtreleme sistemlerinde temel 

prensiptir. Kullanıcıların mahremiyet endişelerini gidermek için farklı veri gizleme 

metotları sunulmuştur. Bu metotlardan biri olan rasgeleleştirme ortak filtreleme 

sistemlerinin iyi sonuçlar üretmesini mümkün kılarken aynı zamanda mahrem veriyi 

korumak için yaygın biçimde faydalanılan bir yöntemdir. Fakat, yakın zamanda ki 

çalışmalar rasgeleleştirme ile saklanmış veriden mahrem veriyi imar etmenin olası 

olduğunu göstermiştir. 

Tez merkezi, bölünmüş ve dağıtık veri-tabanlı gizliliği koruyan ortak filtreleme 

şemalarından saldırı senaryoları planlayarak mahrem nümerik veri imarının yapılıp 

yapılamayacağını inceler. Merkezi veri-tabanlı şemalarda, gürültü ayıklama yöntemleri 

kullanılarak z-skorlardan gürültü giderilmelidir. Herkese açık veri kullanarak z-

skorlardan orijinal değerlemeleri elde etmek için yeni bir metot önerilmiştir. Kullanıcılar 

kişisel mahrem verilerini tutarsız şekilde sakladıklarında oylanan ürünleri imar etmek de 

çok önemlidir. Bölünmüş veri-tabanlı şemalarda, toplam sonuçlardan diğer partinin 

mahrem verisinin elde edilmesi incelenmiştir. Dağıtık veri-tabanlı şemalarda, bir veri 

sahibinin mahrem verisini elde etmek için diğer veri sahipleri ona karşı iş birliği 

yapabilirler. Bunun yanında, imar sonuçlarını iyileştirmek için alanla ilgili yardımcı 

bilgiler ve ortak filtreleme sistemlerinin karakteristik özelliklerini kullanan çözümler 

sunulmuştur. Teorik analizler ve deneysel sonuçlar göstermiştir ki sunulan yaklaşımlar 

saldırganlara belli durumlarda anlamlı ölçüde mahrem bilgi çıkarmasına yardımcı olur. 

Anahtar Sözcükler: Gizlilik, veri imarı, yardımcı bilgi, gizlilik saldırısı, ortak 

filtreleme. 
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1. INTRODUCTION 

With the increasing development and use of technology, many people have begun 

to shop over the Internet nowadays. There are numerous e-commerce sites which sell a 

great number of goods online. People can compare what they desire from different e-

commerce sites within minutes and buy it in a few seconds.  On the other hand, the 

Internet is like the ocean and finding out the right product that meets the expectation 

sometimes takes a long time. Although purchasing a new product through the Internet 

accomplishes in the blink of an eye, deciding which product to buy takes a long time for 

individuals due to overwhelmingly many options to choose from. This phenomenon 

causes to emerge a new term, which is called information overload. The information 

overload has become the primary problem for users to deal with. To overcome the 

information overload problem, recommender systems have emerged. Before the Internet 

became widespread and popular, people had shared their recommendations about movies, 

books, music, restaurants, and sightseeing trips with like-minded friends, families, and 

relatives. Today, recommender systems take like-minded friends’ and families’ place and 

assist people with their choices whenever they need. 

1.1. Collaborative Filtering 

Collaborative filtering (CF) is a relatively recent technique used by recommender 

systems. CF was first introduced by Golberg et al. (1992), who proposed a system called 

Tapestry for email filtering. CF helps users narrow down the number of choices they have 

to deal with. The underlying assumption of the CF is to collect users’ preferences or tastes 

and then finds a subset of users with similar preferences in the past. It is possible that two 

users with the same or similar preferences in the past will prefer other similar items in the 

future as well. Although a single vendor can collect users' preferences, it is likely that 

users’ preferences are distributed vertically or horizontally among different parties. There 

are a great number of e-commerce sites, and the new one is added to them every day. 

Thus, collecting users’ preferences by a single vendor is not always possible in a CF 

system.  

The type of user preference is another property of CF systems. Such preferences 

can be represented as numeric or binary ratings. In the numeric ratings, a rating scale 

indicates a minimum and maximum rating values. A user chooses his rating from this 
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range in the numeric scale while users either rate items as like or dislike in the binary 

ratings. The numeric ratings-based CF data set is employed in the dissertation. 

There are two goals in CF systems, which either recommend a list of new items 

called recommendation (or top-N recommendation) or predict a particular item for a 

specific user (referred to as an active user) called prediction based on other like-minded 

users and their previous ratings.  In order to achieve such goals, the proposed CF 

algorithms are divided into two main classes, which are memory-based and model-based 

(Breese, Heckerman and Kadie, 1998). In addition, hybrid schemes are introduced by 

combining different type of recommendation techniques (Burke, 2002). 

Memory-based schemes are the most popular algorithms used in CF systems, which 

are also called as neighborhood-based CF (Breese, Heckerman and Kadie, 1998; Resnick 

et al., 1994; Konstan et al., 1997; Herlocker et al., 1999; Sarwar et al., 2000; 2001). 

Memory-based algorithms are divided into two parts in terms of the implementation, 

either user-based CF (Resnick et al., 1994) or item-based CF (Sarwar et al., 2001). While 

user-based algorithms discover a correlation between users, item-based algorithms 

examine relationships between items. The first memory-based algorithm for a CF system 

utilizing user-based approach is introduced by GroupLens (Resnick et al., 1994; Konstan 

et al. 1997). According to memory-based algorithms, the whole user-item matrix is used 

to produce a prediction. The scheme consists of two steps. The first step calculates 

similarity among all users (or items) and an active user. There are various similarity 

metrics used in measuring correlation. The most popular and prevalent one is the Pearson 

correlation coefficient (PCC) (Resnick et al., 1994). PCC is given in Eq. 1.1. 

In Eq. 1.1,  𝑣𝑎𝑗 and 𝑣𝑢𝑗 are the ratings of user a and user u for item j,  𝑣𝑎 and 𝑣𝑢 are 

the averages of user a and user u and j illustrates the item sets both user a and user u rate 

commonly.    

 
𝑤𝑎𝑢=

∑ (𝑣𝑎𝑗 − 𝑣𝑎)(𝑣𝑢𝑗 − 𝑣𝑢)𝑗

√∑ (𝑣𝑎𝑗 − 𝑣𝑎)
2

𝑗 √∑ (𝑣𝑢𝑗 − 𝑣𝑢)
2

𝑗

 
(1.1) 

Instead of measuring the correlation between two users, similarities between two 

items can also be computed. Sarwar et al. (2001) propose three methods to calculate 

similarities between items, which are a cosine-based similarity, correlation-based 

similarity, and adjusted-cosine similarity. Their experimental results show that the 
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adjusted-cosine similarity gives the best results to calculate the similarities between items. 

The adjusted-cosine similarity is written as in Eq. 1.2, 

 
𝑠𝑖𝑚𝑖𝑗 = 

∑ (𝑣𝑢𝑖 − 𝑣𝑢)(𝑣𝑢𝑗 − 𝑣𝑢)𝑢∈𝑈

√∑ (𝑣𝑢𝑖 − 𝑣𝑢)
2

𝑢∈𝑈
√∑ (𝑣𝑢𝑗 − 𝑣𝑢)

2
𝑢∈𝑈

 
(1.2) 

where U refers to the set of users, who rated both items i and j. 𝑣𝑢𝑖 and 𝑣𝑢𝑗 are ratings of 

user u on item i and j, respectively. 𝑣𝑢 is the average of ratings of user u. 

After measuring similarities, the next step is to choose a subset of users or items 

(also known as neighbors). There are two techniques to identify the neighbors (Herlocker 

et al., 1999). The first technique called best k-neighbors is to select the best k users from 

all user (k << n) based on similarity weights. The second one called correlation-

thresholding is to determine users based on the predefined threshold value. If the 

similarity weight of a user is greater than the predefined threshold value, the user is picked 

as a neighbor. After choosing neighbors, the prediction is produced based on the 

preferences of selected neighbors. 

Model-based schemes have emerged to overcome the sparsity problem in memory-

based schemes. Model-based schemes aim to build a model off-line by utilizing the 

preferences of users. Then, the prediction is produced using the constructed model. 

Unlike the memory-based schemes, the model-based schemes do not need the whole data 

set to compute predictions every time. There are different approaches used in model-

based schemes. Some of the studies utilize probabilistic approaches, for instance; 

Bayesian networks (Breese, Heckerman and Kadie, 1998), while some of them use 

various machine learning techniques such as clustering (Breese, Heckerman and Kadie, 

1998; Ungar and Foster, 1998; Kim and Ahn, 2008; Bilge and Polat, 2013a), support 

vector machines (Grčar et al., 2006), and matrix factorization (Koren, Bell and Volinsky, 

2009; Hernando, Bobadilla and Ortega, 2016; Ortega et al. 2016). Although there are 

different approaches used in model-based schemes, the main idea of all used approaches 

is to construct a model before producing predictions or recommendations. 

Hybrid-model schemes are proposed to cope with the weaknesses of any individual 

recommender methods. Hybrid-model combines two or more recommender methods to 

increase the quality of recommendations. A hybrid model may be a combination of CF 

with content-based filtering (Claypool et al., 1999; Barragáns-Martínez et al., 2010; 
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Campos et al., 2010), CF with demographic filtering (Vozalis and Margaritis, 2007), CF 

with content-based and demographic filtering (Pazzani ,1999), CF with knowledge-based 

filtering [Burke, 2002; Martinez, Perez and Barranco, 2009; Zanker and Jessenitschnig, 

2009), CF with other CF algorithms (Pennock et al., 2000; Wang et al., 2014), and so on. 

Most of the hybrid-model schemes rely on the probabilistic methods such as neural 

networks (Christakou, Vrettos and Stafylopatis, 2007; Hsu et al.,2007), Bayesian 

networks (Campos et al., 2010), genetic algorithms (Gao and Li, 2008; Salehi, 

Pourzaferani and Razavi, 2013), fuzzy association rules (Lucas et al., 2012), latent 

features (Maneeroj and Takasu, 2009), and clustering (Shinde and Kulkarni, 2012). A 

detailed survey about the classification of hybrid recommender systems is demonstrated 

by Burke (2002). 

1.2. Privacy-Preserving Collaborative Filtering 

CF systems need reliable and genuine preferences of users in order to make accurate 

recommendations. However, users’ data is a valuable asset and it can be sold in case of 

bankruptcy (Canny, 2002a; 2002b). Moreover, CF is a potential threat to privacy and it 

poses different privacy risks like price discrimination, government surveillance, 

unsolicited marketing, and so on (Cranor, 2003). Cranor, Reagle and Ackerman (2000) 

conduct a survey about the privacy concerns of users. They indicate a couple of major 

results according to the survey outcomes. When users do not need to express personally 

identifiable information, they are much more enthusiastic to share their information; 

otherwise, they might hesitate to share their private data or give false information. 

Besides, users might think that some types of data are more sensitive than others. For 

example; users can share their e-mail address as their contact information whereas they 

may not want to share their phone number. They assume that their phone number is more 

confidential data than the e-mail address. Unsolicited communication is another problem. 

Users would be willing to share some personal information such as postal code, address, 

or age in order to get free coupons; however, they do not want this kind of information to 

be shared with other companies for different purposes. As seen in the survey results, 

privacy has become a major concern in CF systems. Since CF systems fail to protect 

users’ privacy, privacy-preserving collaborative filtering (PPCF) has emerged. The 

underlying approach of PPCF is to alleviate users’ or data holders’ privacy concerns while 

providing accurate recommendations.  
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In PPCF schemes, the private data is masked before users send it to the CF system. 

There are different data disguising methods used to protect individuals’ privacy. 

Anonymization is one of them, which prevents identity disclosure (Pfitzmann and Hansen, 

2010; Yang and Qiao, 2010). However, it cannot guarantee the quality of the data. The 

data set may contain some made-up information due to the anonymous communication. 

The second method is a secure multi-party computation that allows parties to perform 

distributed calculations based on their private data without revealing anything except the 

output (Canny 2002a; Bogetoft et al. 2009; Lindell and Pinkas, 2009; Li et al., 2016). 

Secure multi-party computation protocols should be efficient when large data sets are 

used for computation. Since cryptography is commonly used, it requires heavy 

calculations for very large data sets to carry out the secure multi-party computation. 

Another method is called randomized perturbation technique (RPT) (Polat and Du, 2003; 

2005a). RPT is a widespread technique in PPCF schemes, which disguises user ratings 

while allowing the data collector (or the recommender system) to perform CF services 

without knowing the original ratings and/or the rated items. 

PPCF schemes can be classified as centralized or decentralized according to the 

location of data. The main distinction between these two classifications in terms of 

privacy is that the centralized PCCF schemes receive perturbed user vectors while the 

decentralized PPCF schemes hold original user vectors. For this reason, the primary 

privacy concern for the centralized PPCF scheme is to protect individual data from the 

server, which is called individuals’ or users’ privacy. On the other hand, the objective in 

the distributed PPCF schemes is to protect original user vectors from unauthorized access 

of other parties while collaborating for CF purposes. This privacy protection effort is 

called data holder’s, institutional, or corporate privacy.  

When the data is collected on the central server, Polat and Du (2003; 2005a) first 

introduce two PPCF schemes, which utilize the neighborhood-based algorithm and 

singular value decomposition (SVD)-based algorithm, using RPTs. According to their 

schemes, users first disguise their original ratings based on the server’s instruction and 

send their concealed z-score values to the server. In this way, the server cannot learn the 

actual ratings from the disguised data while still producing accurate and reliable 

predictions. Zhang, Ford and Makedon (2006b) propose a two-way communication PPCF 

scheme which users mask their original ratings according to the server’s perturbation 
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guidance instead of the same perturbation level. Their scheme consists of two parts, 

communication, and perturbation.  In the communication part, when a user wants to send 

his private data to the server, the user first needs to send a message to the server for 

receiving the current disclosure level. The importance of each item can differ, so the 

server determines the current disclosure level. If the user agrees with the received 

disclosure level, the server sends the perturbation guide.  In the perturbation part, the user 

disguises his ratings according to the perturbation guide and sends them to the server. 

Yakut and Polat (2007) propose a modified Eigentaste-based CF algorithm utilizing k-

means clustering algorithm to produce predictions and recommendations. They employ 

randomization to perturb the private data.  Polatidis et al. (2017) propose a multi-level 

method for the centralized PPCF. Their method allows users to select their privacy level 

and ranges of random values from a fixed range of privacy level. Each rating is perturbed 

using the selected privacy level by users before the disguised rating is sent to the server. 

Five different data sets are used in the experiments, and privacy level for each data set is 

defined first. After determining a fixed range of privacy level for the data set such as the 

first two level for MovieLens, each user selects his privacy level (p) whenever he wants 

to perturb one of his ratings. In this case, the user randomly chooses either 1 or 2. Then, 

the user generates ranges of random values [-p, …,0, … p]. For each rating, a value is 

randomly selected from the range of random values [-p, …,0, … p] and the selected 

random value is added to the original data. The method is repeated until each rating is 

disguised.  Polat and Du (2007) also propose inconsistent data disguising methods in 

PPCF. They claim that each user has a different level of privacy concerns. Some users 

only want to hide their rated items’ values while some users desire to conceal their rated 

and/or unrated items. Depending on users concerns, several scenarios are introduced.  

While some users can prefer to perturb some of the unrated items together with rated 

items, some other users can perturb all unrated and rated items together. Besides, users 

can define their perturbation level independently instead of using the same perturbation 

level. Bilge and Polat (2012) propose to use discrete wavelet transform (DWT)-based 

data reduction to solve privacy issue while applying inconsistent data disguising method. 

The researchers also propose a privacy-preserving scheme based on bisecting k-means 

clustering (Bilge and Polat, 2013b). The proposed scheme includes two preprocessing 

stages. The first stage is to build a binary decision tree using bisecting k-means algorithm 
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while the second stage is to produce clones of users by inserting pseudo-self-predictions 

into the original user data. Zhang, Zhu and Zhang (2014) propose a privacy-preserving 

scheme with a new similarity function which is a modified algorithm in (Polat and Du, 

2007). They introduce a new term called privacy-preserving intensity weight to measure 

similarities. They claim that the level of perturbation can be changed based on the 

parameters (β, σ). If more perturbation is added to the original data, the accuracy 

decreases. Therefore, they propose to calculate privacy-preserving intensity weight based 

on the parameters. Users send their disguised data as in (Polat and Du, 2007) and their 

value of intensity weight to the server. The server uses the value of intensity weight with 

users’ disguised data in order to measure similarities and produces a prediction based on 

the adjusted similarity function. 

There are also different studies proposed to protect privacy in decentralized PPCF. 

Canny (2002a; 2002b) first describes a privacy term in CF systems using peer-to-peer 

protocol. The proposed scheme allows users to compute the aggregate data using their 

preferences without exposing their privacy. With the help of the homomorphic encryption 

(HE), recommendations are performed safely in distributed PPCF. Polat and Du (2005b) 

propose a privacy-preserving scheme to produce a prediction when data is vertically 

partitioned among two-parties. Their scheme consists of two stages: off-line and online. 

The parties need to exchange their data to produce an accurate prediction. While 

interchanging data, the properties of randomization, permutation, and HE are used to 

protect the data holder’s privacy. Yakut and Polat (2010) describe a new privacy-

preserving CF algorithm by utilizing SVD on partitioned (horizontally and vertically) 

data. Their experimental results show that it is likely to produce predictions while 

preserving data holders’ privacy. Zhan et al. (2010) propose an encryption-based scheme 

to provide recommendations on horizontally partitioned data (HPD). Jeckmans, Tang and 

Hartel (2012) also focus on a HE schemes with neighborhood-based CF on HPD between 

two parties. Parties use the HE to hide their private data. All users are selected as 

neighbors instead of the similar ones in their scheme. They claim that selecting all users 

as neighbors are to improve the performance in the encrypted domain.   Yakut and Polat 

(2012a) claim that data might be cross distributed (or arbitrary partitioned) which is the 

combination of vertical and horizontal partitioning between two companies. They 

propose a hybrid CF algorithm on cross distributed data to protect data holders’ privacy. 
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Their algorithms combine model-based CF and memory-based CF. After data holders’ 

mask their data, each of data holder constructs a model off-line. Then, a prediction is 

produced based on the constructed model using the proposed memory-based algorithm. 

In another study (Yakut and Polat, 2012b), researchers propose an item-based prediction 

on arbitrary distributed data between two companies to preserve data holders’ privacy. 

Kaleli and Polat (2012a; 2012b) introduce a privacy-preserving Self-Organizing Map 

(SOM)-based recommendation on horizontally (HDD) and vertically distributed data 

(VDD) among multiple companies. Their scheme is divided into two parts: off-line and 

online. In off-line part, SOM-based clustering is applied to cluster users held by parties, 

and the required aggregate data for recommendation process is computed. In order to 

compute the aggregate data, the scheme may show differences such as randomization, 

permutation and HE regarding data distribution. In the online case, after determining the 

target user’s cluster, the prediction is produced using the nearest neighbor approach based 

on the received aggregate data. Kaleli and Polat (2011) also describe a trust-based 

privacy-preserving scheme on VDD among multiple parties. Shmueli and Tassa (2017) 

introduce a secure multi-party computation for vertically distributed item-based CF 

between various parties. According to their scheme, there is a mediator, and all vendors 

communicate with the mediator. Vendors do not need to communicate with other vendors 

while producing predictions. 

1.3. Related Works 

Randomization is a conventional method to preserve individuals’ or data holders’ 

privacy. Although the idea behind randomization is simple, it is an efficient method to 

hide the private information from the third party that has no right to access the confidential 

data. There are several works focusing on using the randomization approach in the 

privacy-preserving data mining in general (Agrawal and Srikant, 2000; Agrawal and 

Aggarwal, 2001; Evfimievski et al., 2004). Randomization is also used as a data 

disguising method in PPCF methods. Polat and Du (2003; 2005a) show that the data 

collector can perform CF computations with decent accuracy without knowing the 

original ratings. All users mask their ratings before sending them to the server. Although 

the server cannot learn the actual ratings due to RPTs, it is still able to estimate 

recommendations with decent accuracy.   
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Randomization seems to be a successful privacy measure; however, some studies 

show that it is possible to derive the original data from the perturbed data that is disguised 

by randomization. A recently published survey paper presents a detailed review of 

existing reconstruction methods and shows how to derive confidential data from the 

perturbed data, which is not only masked by randomization but also various data 

disguising methods (Okkalioglu B.D. et al., 2015). Agrawal and Srikant (2000) first 

proposed a reconstruction method, which reconstructs the distribution of the original data 

from the perturbed data. However, they do not consider that the attackers might want to 

retrieve the individual data. Agrawal and Aggarwal (2001) extend the work in (Agrawal 

and Srikant, 2000) using expectation maximization (EM) algorithm for reconstructing 

data. They show that when the data is large enough, the EM algorithm provides perfect 

estimates of the original distribution. Kargupta et al. (2003; 2005) first challenge that 

randomization may not hide the private information. Researchers claim that 

randomization preserves very little data privacy. They propose a technique, called a 

random matrix-based spectral filtering, to show how the original data can be derived from 

the perturbed data. The properties of random matrices are utilized in their proposed 

technique. Random matrices have very interesting properties and they are easily 

exploited. Therefore, the properties of random matrices are applied to a noise matrix. 

With the features of random matrices, the noise part can be removed from the perturbed 

data. Their results illustrate that the spectral properties of the data allow attackers to 

extract the noise easily from the perturbed data. They also show that when the amount of 

noise added to the original data increases, it causes less accurate estimation. Huang, Du 

and Chen (2005) scrutinize why and how correlations affect privacy. They claim that the 

prominent thing causing a security breach is the correlations among attributes. They 

propose two data reconstruction methods. One of them is based on the principal 

component analysis (PCA) and the other is based on Bayes estimation (BE). Their 

experimental outcomes illustrate that the higher the correlations among attributes are, the 

more the original data can be reconstructed accurately. Guo and Wu (2006) and Guo, Wu 

and Li (2008) improve the spectral filtering method. Their purpose is to achieve optimal 

performance. They define an upper bound, which helps the attacker compare how close 

their estimate to the original data. They show that attackers can exploit some private data 

using the upper bound with the spectral filtering method. Guo, Wu and Li (2006; 2008) 
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propose SVD-based data reconstruction method to define a lower bound for the 

reconstruction error, which is helpful for users and data miners in order to evaluate how 

much noise should be added. They also show that the approach behind their SVD-based 

data reconstruction method is equal to the spectral filtering method. Therefore, the upper 

bound or lower bound can be used in both methods to achieve better performance by 

attackers or data miners. None of these reconstruction methods consider that the matrix 

is incomplete, and most of the data sets used are usually artificial. None of items or ratings 

is unrated, and all used data sets are complete. However, CF systems hold many unrated 

cells because of their nature. Zhang, Ford and Makedon (2006a) are the first to challenge 

random data perturbation in central server-based PPCF systems. Researchers divide their 

study into two parts according to the targeted studies (Polat and Du, 2003; 2005a): either 

only rated items or all items are used in the experiments. Researchers develop two data 

reconstruction methods, k-means clustering- and SVD-based scheme. Their empirical 

results exhibit that a considerable amount of original data can be derived using their 

proposed methods. 

Most existing studies utilize reconstruction methods to derive the original ratings; 

however, some recent works have offered to utilize auxiliary information and/or 

characteristic properties of CF systems to improve accuracy. Calandrino et al. (2011) 

employ auxiliary information to infer users’ transactions performed on a CF system. 

Researchers claim that fair amount of auxiliary information is enough to discover 

transaction by tracking temporal changes in the public output of CF systems. Some public 

data from popular services are used to show that their method works. They demonstrate 

that auxiliary information can be applied to discover user-related data from CF systems. 

Users’ demographic data is also employed as a source of auxiliary information to improve 

recommendation quality for existing or new users. All these studies (Vozalis and 

Margaritis, 2007; Santos, Garcia Manzato and Goularte, 2014; Gogna and Majumdar, 

2015; Al-Shamri 2016) exhibit different approaches by utilizing users’ demographic 

information to generate more accurate rating predictions. In the dissertation, users’ 

demographic information is utilized as auxiliary information like the previous studies; 

however, the aim is to improve the accuracy of reconstruction results instead of 

recommendation quality. 
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Besides deriving the original data, there are also some studies related to the 

reconstruction of the rated items from inconsistently perturbed data. Okkalioglu, Koc and 

Polat (2015a) utilize auxiliary information to discover originally rated items from 

randomly appended fake items. Okkalioglu, Koc and Polat (2015a) demonstrate how to 

reconstruct rated items among fake and rated items by utilizing only auxiliary information 

for binary ratings central data-based PPCF systems. There is one more study, which 

focuses on deriving the original rated items from the perturbed numeric data which is 

disguised by inconsistent data perturbation (Demirelli Okkalioglu, Koc and Polat, 2016). 

The authors claim that each user has different privacy concerns, so that each user may 

want to disguise his/her ratings as well as some unrated cells by employing inconsistent 

data perturbation approaches. Researchers utilize various domain-related auxiliary 

information besides existing matrix factorization methods to disclose the list of rated 

items in numeric ratings central data-based PPCF systems.  Matrix factorization methods 

are widely employed in CF systems for predictions. However, instead of offering 

predictions, Demirelli Okkalioglu, Koc and Polat (2016) utilize matrix factorization 

methods to reconstruct items are genuinely rated in the original CF data before applying 

data disguising method. 

There are also some studies that target partitioned data-based PPCF systems. 

Okkalioglu, Koc and Polat (2015b) first challenge to recover the original binary data on 

HPD. The authors propose three attack scenarios against partitioned data-based PPCF 

schemes offered by Polat and Du (2005c; 2008). Perfect match attack introduced by the 

authors tries to estimate the original data by comparing the similarity of the target query 

and the users. If the similarity score is 1 or -1, the authors agree that the perfect match is 

provided. With the perfect match, the original data can be estimated. In another study 

(Okkalioglu, Koc and Polat, 2016), the authors show how private binary data can be 

reconstructed when the data is vertically partitioned between two parties. They employ 

three attack scenarios as in (Okkalioglu, Koc and Polat, 2015b). There is also one more 

study targeting partitioned-data-based PPCF systems (Demirelli Okkalioglu, Koc and 

Polat, 2017). The study differs from the previous ones (Okkalioglu, Koc and Polat, 2015b; 

2016). The study aims to derive the real numeric data when data is partitioned vertically 

or horizontally among two parties. Researchers demonstrate that it is not possible to 

estimate the actual data from the targeted schemes for numeric ratings-based PPCF (Polat 
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and Du, 2005b; Polat, 2006) due to the precautions taken by schemes. However, if 

additional knowledge about the system is used, it can be likely to derive the private data 

based on the partitioning type.  

1.4. Problem Definitions 

PPCF has two key points to preserve privacy: (i) hiding the value of the original 

ratings and (ii) masking the rated and unrated items. In order to achieve the first key point, 

users first convert their original ratings (𝑥1, 𝑥2, … , 𝑥𝑚) into z-score values (𝑧1, 𝑧2, … , 𝑧𝑚). 

Then each user applies RPT to their confidential data. A random number (𝑟𝑖) is added to 

a z-score value (𝑧𝑖) of users and the value of  𝑧𝑖 + 𝑟𝑖 is stored by users instead of 𝑥𝑖. The 

PPCF scheme does not allow the disclosure of the original data (Polat and Du, 2003). 

However, it is likely to reconstruct actual ratings (𝑥1, 𝑥2, … , 𝑥𝑚) from the perturbed data 

(𝑧1 + 𝑟1, 𝑧2 + 𝑟2, … , 𝑧𝑚 + 𝑟𝑚). Since z-score values are used in the PPCF scheme, the 

actual ratings should be reconstructed from those values. Hence, the first problem is how 

can the random values be eliminated from the disguised data to estimate the real z-score 

values? After estimating the real z-sore values, user averages and standard deviation of 

ratings are needed to be transformed into the actual ratings. Then, the second problem 

becomes whether average and standard deviation of each user can be estimated to 

reconstruct the original ratings because those values are not known in advance? After 

the first two problems are tackled, the last issue is to improve the reconstruction 

predictions. Therefore, the third problem can be stated as: is it feasible to improve such 

reconstruction results by applying suitable auxiliary information about the targeted data 

set? 

Only perturbing the original data may not be enough for some users in order to 

preserve their privacy. Those users may not want to reveal their rated items too. Users 

might believe that items they vote are also confidential. Therefore, users desire to perturb 

the rated items as well as their real ratings. However, someone or an attacker may want 

to discover which items are voted from the perturbed data which includes real and fake 

ratings. Suppose that the user u rates p items among m items. Besides, β% of unrated 

items are selected to be filled with the random numbers. ((𝑚 − 𝑝)𝑥𝛽)/100 number of 

fake items are picked besides the original ratings before those values are sent to the server. 

The server is not informed what the value of p is or which items are voted. In addition, 
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users may choose own β value in some cases. Then, the problem can be stated as: Is it 

likely to find out the location of p real items among  (𝑝 + ((𝑚 − 𝑝)𝑥𝛽)/100)disguised 

items? 

Data in a CF system might be partitioned (vertically or horizontally) between two 

parties instead of a single server. In such cases, privacy-preserving schemes are proposed 

by researchers in order to protect data holders’ privacy. However, privacy attack scenarios 

can be planned against the proposed schemes as well. Whenever an active user asks for a 

prediction, parties need to interact with each other to produce a prediction. During the 

interaction, one of the parties may intend to discover the other party’s confidential data.  

The attack of acting as an active user is commonly performed against such schemes. The 

problem when data is partitioned between two parties can be described as: Is it possible 

to disclose the private data by performing such privacy attack? Does the auxiliary 

information help to estimate the real ratings? Besides, data may be distributed among 

multiple parties. In such cases, parties might coalesce against one party to derive its 

private data. In terms of data distribution type, parties may exchange different aggregate 

results to provide predictions. The problem when data is distributed among multi parties 

can be described as: Is it likely to estimate the targeted party’s private data from the 

interim or final results despite privacy if parties coalesce against the targeted party? 

1.5. Contributions 

Privacy has become a fundamental issue in PPCF systems. The data collectors need 

to offer more secure and straightforward services to their customers day by day to 

preserve privacy. There are a vast number of studies focused on producing accurate 

predictions and recommendations in PPCF. As mentioned before, RPTs are commonly 

used to protect individuals’ privacy in PPCF. However, the recent study (Zhang, Ford and 

Makedon, 2006a) shows that the original data can be derived from the perturbed data 

despite privacy. Malicious people or attackers may try to estimate the original data and 

want to use the private information for own advantages. There are a few studies for 

reconstructing the actual data from the perturbed data. However, some of the unrated cells 

of original data might be filled with random numbers. Besides, data might be distributed 

among two or more companies. In the dissertation, several approaches with the help of 

auxiliary information are proposed to reconstruct the private data from such mentioned 

cases. 
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The first contribution of the dissertation is to estimate the private data when the 

original data is disguised by RPT. There is one study focused on reconstructing the 

original data in central numeric data-based PPCF (Zhang, Ford and Makedon, 2006a). 

However, the results can be improved by helping auxiliary information in addition to the 

existing reconstruction methods. Everyone can easily obtain some public information; for 

example; the data range of the dataset is usually known by everyone even if RPT is used. 

In addition, the information of popular and unpopular items can be retrieved from 

prestigious websites. These websites have millions of users and provide information 

about items, such as popular or unpopular, depending on the type of datasets such as 

movies, books or music. Besides, most of CF systems contain user demographic 

information. Domain related auxiliary information together with user demographic 

information is used to contribute the reconstruction results better. The other important 

point is to estimate the original data from the disguised z-score values.  For this reason, a 

method to derive the original data from the estimated z-score values without knowing the 

users’ average rating and the standard deviation is proposed. Several experiments are 

performed to examine how much contribution achieved over the existing reconstruction 

methods using the auxiliary information. 

In addition to hiding the original data, sometimes data owners do not want to reveal 

which items they vote. Therefore, another contribution of the dissertation is to find the 

real rated items when the rated and unrated items are disguised by users independently 

and to analyze that how the reconstruction results are changed. The study is the first to 

reconstruct the rated items in central numeric data-based PPCF systems (Demirelli 

Okkalioglu, Koc and Polat, 2016). Before marking the rated items, it is required to 

estimate the number of the real ratings from the disguised data masked inconsistently. 

Two formulas are introduced to guess the number of the rated items based on the method 

to fill unrated items. The existing matrix factorization methods are used to decrease the 

effect of the noise. Matrix factorization methods are used for the reconstruction rather 

than prediction in the dissertation. Also, the joint impact of auxiliary information and the 

existing matrix factorization methods are studied. 

The last part of the dissertation is related to types of data distribution. PPCF 

algorithms can be divided into two main parts based on data distribution: central server-

based systems and decentralized-based systems. Deriving private data might be different 
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in terms of data distribution.  The partitioned-based systems are divided into two parts, 

which are vertical and horizontal partitioning among two-parties. The work is the first 

one to derive numeric data in VPD- and HPD-based PPCF systems (Demirelli 

Okkalioglu, Koc and Polat, 2017). There might be different attack scenarios based on 

targeted schemes. In the dissertation, the attack of acting as an active user is studied to 

derive the numeric data. There is no way to attack the targeted schemes (Polat and Du, 

2005b; Polat, 2006). The targeted schemes containing randomization, encryption, and 

permutation take precautions against such attacks. Therefore, it is assumed that additional 

knowledge about the system is known. The experiments show that it is likely to derive 

the private data in some circumstances when the auxiliary information is utilized. Data 

might be also distributed vertically or horizontally among multiple parties. The targeted 

schemes in the dissertation are analyzed mathematically to show whether the confidential 

data is estimated or not. Since aggregate values are used in the prediction process as in 

the partitioned-based system, analysis show it is not possible to derive data holders’ 

private data even if acting as an active user attack is employed. 

1.6. Organization of the Dissertation 

The rest of the dissertation is structured as follows: In Chapter 2, the detailed 

information about RPT and inconsistent data disguising scenarios are represented as 

preliminaries. Also, general information about prediction process regarding the targeted 

PPCF schemes is demonstrated briefly. In Chapter 3, estimating the original data from 

the disguised one in central data-based PPCF is represented. In Chapter 4, when the 

inconsistent data disguising method is chosen to protect individuals’ privacy in central 

data-based PPCF, how the real rated items from the disguised data can be reconstructed 

is studied. In Chapter 5, while data is vertically or horizontally distributed among two or 

more parties, how much accurate information can be derived is exploited. Finally, 

conclusions and future works are discussed in Chapter 6.  



16 

 

2. PRELIMINARIES 

In this chapter, preliminaries on numeric-data based PPCF systems are represented. 

There are two fundamental concepts that a PPCF system deals with. The first one is how 

the original data is disguised without disclosing private data while the second concept is 

how predictions are produced accurately. First, the data disguising methods utilizing 

randomization are introduced, and the parameters of such methods are explained 

according to individual privacy concerns. Then, the prediction process provided by the 

related PPCF systems is demonstrated. These systems employ a neighborhood-based CF 

algorithm in order to provide predictions. The prediction generation is divided into two 

parts with regard to how data is stored, either central or distributed between two or more 

parties.  

2.1. Data Disguising by Randomization 

A CF system needs adequate and real data to produce accurate predictions. 

However, users may refrain from sharing their original data because of privacy concerns. 

To alleviate users’ concerns as well as producing accurate predictions, privacy-preserving 

schemes are proposed (Polat and Du, 2003; 2007). Randomization techniques often 

utilize in the privacy-preserving schemes. Such randomization techniques allow users to 

hide the value of original ratings and ensure that the server cannot learn the real values 

from the users’ disguised data while producing predictions. Besides hiding the real values, 

it is crucial to conceal rated and unrated items of users because some users may think that 

the information which items are rated is also a privacy hole. The proposed privacy-

preserving schemes which are explained in the next sub-sections relieve all concerns 

based on user demands.   

2.1.1. Randomized perturbation techniques 

Randomization is one of the most widely used data disguising methods, which is 

first introduced by Agrawal and Srikant (2000). According to the randomization, a 

random number is added to an original data value. The random value is generated from 

either Gaussian or a uniform distribution. The basic idea behind the randomization is to 

hide sensitive information so that the server cannot learn what actual values are. On the 

other hand, the perturbed data should preserve properties of the original data. When the 
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perturbed data is big enough, meaningful estimations based on the aggregate information 

can be inferred.  

Polat and Du (2003) first introduce to utilize the RPT to develop a data disguising 

method in PPCF so that users do not need to send the actual data to the server. In the first 

proposed RPT, only the value of rated items is perturbed to protect individuals’ privacy. 

Then, different scenarios for data perturbation based on users’ privacy concerns are 

proposed (Polat and Du, 2007). The authors describe two main scenarios: (i) all users 

either use the same parameters values (distribution type, and σ) or (ii) select different 

parameters values in terms of privacy expectations. The basic and first scenario in data 

disguising method to generate random numbers is that all users use the same parameter 

values. The perturbation level of each user is the same in the proposed RPT. The first 

proposed scheme can be summarized as follows: 

i. The server first decides the value of standard deviation (σ) and the type of 

random number distribution (uniform or Gaussian), and let each user know 

them. 

ii. Users compute their mean and σ values and then calculate their z-score values 

for each rated item.  

iii. Users then generate random data based on the selected σ value and type of the 

distribution given by the server. The number of the random data should be equal 

to the number of items the user has voted. 

iv. Before sending z-score values to the server, each user adds the generated 

random numbers to his z-score values to produce disguised z-score ones. Then, 

users send their disguised z-score values instead of the original ratings to the 

server. 

It would be wrong to expect all users have the same privacy concerns. Instead of 

using the same parameters to perturb the original ratings, each user might desire to select 

the value of own σ as mentioned before. In order to meet user demands, the server only 

decides 𝜎𝑚𝑎𝑥 and sends the predefined 𝜎𝑚𝑎𝑥 value to the users. Besides, each user 

determines distribution type by coin tosses. The rest of steps of the first proposed scheme 

except the first one (i) are applied by the users to disguise their original ratings in this 

case. 
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2.1.2. Random filling 

The rated and unrated items are also crucial besides masking original ratings in 

PPCF. Polat and Du (2007) introduce several inconsistent data disguising scenarios by 

utilizing randomization based on privacy expectations of users. Individuals can fill some 

their unrated items with the random numbers independently as they wish based on the 

proposed scheme. To preserve privacy, the server determines a parameter called β which 

depicts the number of unrated cells that should be filled with the random numbers in order 

to alleviate users’ concerns. There is a similar case as in selecting σ, either the server 

selects the fixed β and each user employs the selected β value to mask their unrated items, 

or the server determines 𝛽𝑚𝑎𝑥 and each user uniformly randomly selects 𝛽𝑢,  

0 < 𝛽𝑢 ≤ 𝛽𝑚𝑎𝑥. Then, each user uniformly randomly picks the fixed β or  𝛽𝑢 percent of 

unrated items from his rating vector. According to selected σ, each user generates random 

numbers for all rated and selected unrated items. In the last step, each user adds the 

random numbers to his corresponding z-score values and the picked unrated items. Figure 

2.1 summarizes random filling scenarios in terms of selected parameters.  

2.2. Providing Predictions in PPCF 

There are various CF algorithms providing predictions based on numeric ratings in 

PPCF. In this section, one of the most widely used CF algorithms related to a 

 

Figure 2.1. Random filling scenarios 

 

Figure 2.1. Random filling scenarios 
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neighborhood-based approach is explained briefly. Herlocker et al. (1999) introduce the 

k-nearest neighbor (knn)-based CF algorithm with the z-score notations to produce 

estimations, which is commonly utilized in the PPCF systems. According to the proposed 

algorithm, an active user asks for a prediction for a target item (q), referred to as 𝑝𝑎𝑞, by 

sending own rating vector and q. Then, the server selects the most similar k users by 

calculating similarities between the active user and all users in the data set. The most 

similar k users form the neighbors of the active user. 𝑝𝑎𝑞 is estimated from the preferences 

of the selected neighbors. Figure 2.2 simply illustrates how the knn-based CF algorithm 

works. 

2.2.1. Providing predictions in the central server-based PPCF 

Due to the privacy concerns, users send their disguised data instead of the original 

ratings to the server. The data collected in the central server is used to produce predictions. 

Since the original ratings are converted into z-scores, the central server provides 

 

Figure 2.2. A general view of the knn-based CF algorithm 
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predictions by utilizing the received disguised data. The PCC algorithm is modified by 

Herlocker et al. (1999) to incorporate an item variance weight factor. Since the z-score 

values are stored in the PPCF system, the similarity weights between an active user and 

all users are calculated as in Eq. 2.1. 

 
𝑤𝑎𝑢 =

∑ 𝑧𝑎𝑖 𝑥 𝑧𝑢𝑖
𝑚
𝑖=1

𝑚
 (2.1) 

After calculating similarities between the active user and all users using Eq. 2.1 and 

selecting the most k similar users for the active user, the server needs to compute the 

prediction, 𝑝𝑎𝑞 using the knn-based CF algorithm. The algorithm proposed by Herlocker 

et al. (1999) is rearranged as seen in Eq. 2.2, 

 
𝑝𝑎𝑞 = 𝑣𝑎̅̅ ̅ + 𝜎𝑎  𝑥 𝑃 =  𝑣𝑎̅̅ ̅ + 𝜎𝑎 𝑥 

∑ 𝑤𝑎𝑢
𝑘
𝑢=1 𝑥 𝑧𝑢𝑞 

∑ 𝑤𝑎𝑢
𝑘
𝑢=1

 (2.2) 

where 𝑣𝑎 refers to a’s mean vote and 𝜎𝑎 represents to a’s standard deviation and k is the 

number selected neighbors in the prediction process. 𝑧𝑢𝑞 is the z-score value of user u for 

item q. 

2.2.2. Providing predictions in the partitioned data-based PPCF 

Private predictions are proposed (Polat, 2006; Polat and Du, 2005b) by utilizing the 

algorithm introduced by Herlocker et al. (1999) according to data partitioning. When data 

is partitioned either vertically or horizontally between two parties, Eq. 2.2 is modified to 

be utilized for such cases (Polat, 2006; Polat and Du, 2005b). Furthermore, rather than 

selecting the most k similar users for the active user, all users held by parties join the 

calculation. In this case, k refers commonly rated items between the active user and the 

user. When the data is partitioned vertically or horizontally among two parties (A and B), 

the required values for the equation are computed separately by parties to provide 

predictions. 

2.2.2.1. Providing predictions on horizontally partitioned data 

It is difficult to provide reliable and accurate recommendations when there is a 

limited number of user vectors in CF systems. Besides, these systems may encounter such 

situations that cannot even offer recommendations for some items owing to limited users 

and ratings. Although the merged data is useful for two parties, parties may not volunteer 
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to combine their data due to privacy, legal and financial issues. Polat (2006) proposes a 

scheme to overcome these issues.  

A scheme is first demonstrated for HPD to achieve private predictions while 

preserving data holders’ privacy. In HPD, two parties have disjoint sets of users’ ratings 

for the same items. The proposed scheme consists of two parts: off-line and online 

computation. Polat (2006) shows how to provide an accurate prediction using the Eq. 2.3, 

as follows: 

 

𝑃 =  
∑ 𝑧𝑎𝑘[∑ 𝑧𝑖𝑘𝑧𝑖𝑞

𝑛𝐴
𝑖=1 ]𝑘

⏞            
𝐴𝑁

+ ∑ 𝑧𝑎𝑘[∑ 𝑧𝑖𝑘𝑧𝑖𝑞
𝑛𝐵
𝑖=1 ]𝑘

⏞            
𝐵𝑁

∑ 𝑧𝑎𝑘[∑ 𝑧𝑖𝑘
𝑛𝐴
𝑖=1 ]𝑘⏟          

𝐴𝐷

+ ∑ 𝑧𝑎𝑘[∑ 𝑧𝑖𝑘
𝑛𝐵
𝑖=1 ]𝑘⏟          

𝐵𝐷

 =  
𝐴𝑁 + 𝐵𝑁
𝐴𝐷 + 𝐵𝐷

 (2.3) 

where 𝑛 = 𝑛𝐴 + 𝑛𝐵, 𝑛𝐴 refers to the number of users of Party A while 𝑛𝐵 depicts the 

number of users of Party B and n represents total number of users after merging data of 

two parties. k refers common item sets both user i and a have voted.  

Off-line Computation: Each party can compute the denominator and the 

numerator part separately as seen from Eq. 2.3. Since the data is partitioned horizontally, 

parties do not need extra data to calculate their parts. For this reason, the values of 

denominator and numerator are calculated independently using the data held by parties. 

Polat (2006) proposes that each party should compute their parts and store them into 

matrices to reduce the online computation time.  Since processes that two parties have 

done are the same, the steps that Party A performs can be explained as follows (Polat, 

2006): 

i. Party A first converts his ratings into z-score values. 

ii. For each j, j = 1, 2, …, m, party A calculates  ∑ 𝑧𝑖𝑗
𝑛𝐴
𝑖=1 . For denominator part, the 

results for each item are stored in a matrix named 𝐴𝐷,  ∑𝐴𝐷 =

 [ ∑𝐴𝐷1 , ∑ 𝐴𝐷2 , … , ∑𝐴𝐷𝑚 ]. 

iii. Then, Party A calculates the required data for numerator part. For each q, q = 1, 

2, ..., m, ∑ ∑ 𝑧𝑖𝑗𝑧𝑖𝑞
𝑛𝐴
𝑖=1

𝑚
𝑗=1  are calculated and the results for each target item are 

stored in a matrix named 𝐴𝑁, ∑𝐴𝑁 =  [ ∑𝐴𝑁1 , ∑𝐴𝑁2 , … , ∑𝐴𝑁𝑚 ]. 

Party B also performs same steps and computes the denominator and the numerator 

parts in Eq. 2.3. Then Party B stores them into ∑𝐵𝐷 and ∑𝐵𝑁 matrices. 
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Online Computation: One party is selected as a master site during the online 

computation. Assume the Party A is the master site. The algorithm steps can be 

summarized as follows (Polat, 2006): 

i. An active user sends his data and requests a prediction for a target item (q) to both 

parties. 

ii. Since Party A is the master site, Party B calculates 𝐵𝐷
′  and 𝐵𝑁

′  using the private 

scalar product computation protocol and then sends these results to Party A. 

iii. After getting the results from Party B, Party A calculates own 𝐴𝑁 and 𝐴𝐷 . Then, 

Party A produces the value of 𝑃′. 

iv. In the final step, Party A computes the prediction and compares the predefined 

threshold value and tells whether the active user likes q or not. 

Private Scalar Product Computation Protocol: The party (B) which is not the 

master site wants to protect own denominator and numerator values from the master site 

(Party A). Polat (2006) introduces a protocol to achieve secure online computation. The 

proposed protocol is summarized as follows: 

i. The total number of rated items of the active user is calculated (𝐶𝐵). 

ii. If 𝐶𝐵 is less than ⌊𝑚𝐵 2⁄ ⌋ (𝑚𝐵 refers to the total number of items of B), Party B 

finds the items that the active user does not rate and calculates (𝑚𝐵 − 𝐶𝐵).  

Party B defines a random integer (𝑆𝐵𝑎) from the range (1, 𝑚𝐵 − 𝐶𝐵). Then, 

Party B randomly selects (𝑆𝐵𝑎)  unrated items among the items it owns and fills 

those selected items in the active user’s rating vector with the corresponding 

item’s mean. 

iii. If 𝐶𝐵 is bigger than ⌊𝑚𝐵 2⁄ ⌋, in that case, Party B defines a random integer (𝑆𝐵𝑟) 

from the range (1, 𝐶𝐵). Then, Party B randomly selects (𝑆𝐵𝑟) rated items 

among the items in the active user’s rating vector and removes them. 

While Party A does not know the value of 𝑆𝐵𝑎 and 𝑆𝐵𝑟 as well as which items are 

added or removed, Party A does not estimate 𝐵𝑁 and 𝐵𝐷 values from 𝐵𝐷
′  and 𝐵𝑁

′  even if 

Party A acts as an active user. The Private Scalar Product Computation Protocol 

(PSPCP) achieves privacy while producing predictions.  

Figure 2.3 depicts how a prediction is produced on HPD. While an active user sends 

his data and q to both parties, the final prediction is calculated by the master site which 
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is Party A in this example. 

2.2.2.2. Providing prediction on vertically partitioned data 

The number of electronic websites has been increasing day by day, and users prefer 

different sites for online shopping. This situation causes vertically partitioned data (VPD) 

between parties. Two parties can offer better recommendations for their users when they 

combine vertically split data without revealing their confidentiality. Polat and Du (2005b) 

propose a scheme for VPD which consists of off-line and online computation as in HPD. 

Unlike the HPD, two parties have disjoint sets of item ratings for the same users in the 

VPD. In such a case, Eq. 2.4 is utilized to provide predictions (Polat and Du, 2005). 

 

P =  
∑ 𝑧𝑎𝑘𝐴[∑ 𝑧𝑖𝑘𝐴𝑧𝑖𝑞

𝑛
𝑖=1 ]𝑘𝐴

⏞              
𝐴𝑁

+ ∑ 𝑧𝑎𝑘𝐵[∑ 𝑧𝑖𝑘𝐵𝑧𝑖𝑞
𝑛
𝑖=1 ]𝑘𝐵

⏞              
𝐵𝑁

∑ 𝑧𝑎𝑘𝐴[∑ 𝑧𝑖𝑘𝐴
𝑛
𝑖=1 ]𝑘𝐴⏟            

𝐴𝐷

+ ∑ 𝑧𝑎𝑘𝐵[∑ 𝑧𝑖𝑘𝐵
𝑛
𝑖=1 ]𝑘𝐵⏟            

𝐵𝐷

 =  
𝐴𝑁 + 𝐵𝑁
𝐴𝐷 + 𝐵𝐷

 (2.4) 

In Eq. 2.4, 𝑘𝐴 depicts the common items both user i and a voted among items of A 

while  𝑘𝐵 refers to the common items both user i and a rated among items of B. 𝑘 = 𝑘𝐴 +

𝑘𝐵, k illustrates the total number of items of two parties and n is the total number of users 

in both parties.  

Off-line Computation: The denominator parts (𝐴𝐷  and 𝐵𝐷) can be easily computed 

as seen from Eq. 2.4. The party who does not have q needs to have 𝑧𝑖𝑞 to calculate 

∑ 𝑧𝑖𝑘𝑗𝑧𝑖𝑞
𝑛
𝑖=1 . Before the off-line computation step, each party horizontally divides its data, 

 

Figure 2.3. The horizontally partitioned data-based PPCF 
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 and then applies the algorithm independently for each part. The algorithm steps for Party 

A are summarized, as follows (Polat and Du, 2005b): 

i. All columns of each horizontally divided part are permuted using a permutation 

function ∏𝐴𝑖. 

ii. For j = 1, 2, …, mA, where mA is the number of items of Party A, the permuted 

column vector is divided into a random number of vectors so that the sum of the 

value of these random vectors are equal itself. 

iii. A new permutation function again permutes all permuted random vectors. 

iv. Party A sends all permuted random vectors to the other party (Party B). Party B 

computes the scalar products between these permuted random vectors and its 

column vectors and encrypts the scalar product results using a HE. The encrypted 

values are sent back to Party A. 

v. As Party A knows own perturbation functions and the used HE, Party A finds 

encrypted scalar results and merges all horizontal parts using the HE property to 

obtain the final encrypted scalar results 

vi. Then, Party A adds random numbers into the final encrypted scalar product results 

to protect its data from Party B and stores them into ∑ ′𝐴. 

vii. Finally, the matrix ∑ ′𝐴 is sent to Party B which decrypts the encrypted scalar 

product results and stores them into ∑ ′′𝐴. 

Online Computation: Since both parties can act as an active user and try to derive 

the data of the other party, the online calculation is done, as follows: 

i. An active user sends his rating vector and requests a prediction for a q to the party 

owning the q. 

ii. Suppose that Party A has q. When Party A calculates 𝐵𝑁
′ + 𝐴𝑁

′  and 𝐴𝐷
′  , Party A 

employs the proposed protocol (PSPCP explained in section 2.2.2.1) which helps 

Party A protect himself from Party B. Also, the active user’s new mean vote, 

standard deviation is calculated by Party A and all results are sent to the active 

user. The active user forwards them to Party B. 

iii. Party A can compute the value of 𝐵𝑁
′  using the data of the q-th row of matrix ∑ ′′𝐵 

with the active user’s data. The value of 𝐵𝑁
′  is formed as 𝐵𝑁 + 𝑅𝑞. 𝑅𝑞 is a random 

number and is added to 𝐵𝑁 while calculating ∑ ′𝐵. 
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iv. Party B subtracts the predefined random number (𝑅𝑞) from the received result 

(𝐵𝑁
′ + 𝐴𝑁

′ ) and calculates the final value and tells the active user whether he will 

like q or not. 

Figure 2.4 illustrates an example of prediction process when an active user asks for 

a prediction for item q on VPD-based PPCF. As seen from the Figure 2.4, the final 

prediction calculation is performed by Party B that does not own item q.  

2.2.3. Providing clustering-based predictions in the distributed data-based PPCF 

Data may be split between more than two companies in CF systems. Since users or 

items are divided between companies, it is important to find similar users and to generate 

a prediction using those users’ data when a new prediction is requested. Because 

determining similar users (k-nearest neighbors) is time-consuming in distributed 

environments, Kaleli and Polat (2012a; 2012b) propose to cluster users held by parties 

before producing predictions. Clustering methods are widely utilized to increase the 

performance of CF schemes. SOM clustering is one of the clustering methods used in CF 

systems and is employed by Kaleli and Polat (2012a; 2012b) for the selection of the 

similar users before the knn-based CF algorithm is implemented. A detailed information 

of SOM applied to CF is demonstrated by Roh, Oh and Han (2003). 

2.2.3.1. Providing clustering-based predictions on horizontally distributed data 

Kaleli and Polat (2012b) introduce a privacy-preserving clustering-based scheme 

for HDD to preserve data holders’ privacy. Their scheme consists of two steps as in the 

 

Figure 2.4. The vertically partitioned data-based PPCF 

 

Table 2.1. Genre preferences with age.
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partitioned data: off-line and online. After users are clustered among parties off-line, knn-

based CF algorithm is applied online to produce predictions. Eq. 2.5 illustrates how the 

prediction is provided when data are horizontally distributed among z parties. 

 
P =

∑ 𝑧𝑎𝑗
𝐽
𝑗=1 [∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞

𝑘1
𝑢=1 + ∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞

𝑘2
𝑢=1 +⋯+∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞

𝑘𝑧
𝑢=1 ]

∑ 𝑧𝑎𝑗
𝐽
𝑗=1 [∑ 𝑧𝑢𝑗

𝑘1
𝑢=1 + ∑ 𝑧𝑢𝑗

𝑘2
𝑢=1 +⋯+ ∑ 𝑧𝑢𝑗

𝑘𝑧
𝑢=1 ]

 (2.5) 

In Eq. 2.5, 𝑘1, 𝑘2, … , 𝑘𝑧 represents the number of similar users who rated q owned 

by the first, the second, …, zth party, respectively. J is the commonly rated items between 

an active user and user u. 𝑣𝑑𝑢𝑞 is the deviation from mean ratings of q and can be 

calculated, as follows: 𝑣𝑑𝑢𝑞 = 𝑣𝑢𝑞 – 𝑣𝑢̅̅ ̅, where 𝑣𝑢𝑞 is the rating of user u for item q. 

Off-line: Kaleli and Polat (2012b) first propose the Private Distributed SOM 

Clustering Protocol (PDSOM) to cluster users distributed between among z parties 

horizontally while preserving parties’ privacy. This process aims to gather similar users 

into a cluster, so these users in a specific cluster can be used as nearest neighbors in the 

prediction process. The authors claim that defining similar users off-line improves the 

performance of the prediction process. The details of PDSOM is given in Kaleli and Polat 

(2012b). Since the online computation time is critical, the parties calculate 𝑧𝑢𝑗 and 𝑣𝑑𝑢𝑞 

values and store them off-line.  

Online: Kaleli and Polat (2012b) introduce Private Distributed k-nn CF Protocol 

(PDKNN) to provide predictions while preserving the parties’ privacy. According to the 

protocol, one of the parties is selected as Master Party (MP). An active user sends his data 

and the q to the MP. The steps of the proposed protocol are explained, as follows: 

i. After receiving the active user’s rating vector and q, the MP calculates the active 

user’s cluster by computing distance between the active user and each cluster 

center. Then, the closest cluster is selected as the active user’s cluster. The MP 

lets each party know the selected cluster and the target item. After that, users in 

that cluster are utilized to produce a prediction. 

ii. The MP and each party calculate ∑ 𝑧𝑢𝑗
𝑘
𝑢=1  and ∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞

𝑘
𝑢=1  values for all items 

except the target item based on users’ data in the selected cluster. Each party sends 

its aggregate values to the MP.  

iii. The MP calculates the final prediction using Eq. 2.5 and sends the result to the 

active user. 
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Kaleli and Polat (2012b) have mentioned two drawbacks based on PDKNN. The 

first one is that if a new active user is in the same cluster with the previous ones and asks 

for a prediction for the same target item, the MP computes the final prediction results 

using the existing partial aggregate values without asking to compute the required data 

from the other parties. The second drawback is that the MP may collect the required 

aggregate values from parties using the fake active users for its interests, and then may 

use those values to derive the private data about parties. In order to overcome these 

weaknesses, a new protocol called Improved Private Distributed k-nn CF Protocol 

(IPDKNN) is proposed by Kaleli and Polat (2012b). IPDKNN is used to calculate the 

required aggregate values instead of the second step (ii) of PDKNN. The steps of 

IPDKNN are summarized, as follows: 

i. Each party selects uniformly randomly a random number (R) over the predefined 

range (0, γ]. After that, each party selects uniformly randomly R% of users who 

did not vote q. 

ii. Parties fill the selected unrated cells for q with non-personalized ratings. 

iii. Then, each party selects uniformly randomly some of the rated cells and removes 

their values before computing the required aggregate data. 

iv. Finally, each party sends its disguised aggregate values to the MP. 

IPDKNN guarantees that whenever an active user asks for a prediction, all parties 

must participate in the prediction process. Besides, the MP will not be able to store the 

partial results to offer recommendations independently in the future because of 

randomness that the parties add. 

2.2.3.2. Providing clustering-based predictions on vertically distributed data 

Kaleli and Polat (2012a) also propose a privacy-preserving scheme for VDD that 

utilizes clustering and the nearest neighbor prediction algorithm as in HDD. Their 

schemes consist of two parts as off-line and online calculations. Off-line computation 

includes different protocols to protect data holders’ privacy when the parties collaborate 

with each other. The parties need to exchange their data while producing a prediction 

because they do not own all data required to provide predictions.   

Off-line: The first prominent step in off-line computation is the clustering process. 

Hence, the first protocol which is called private SOM clustering on multi-party vertically 
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distributed data (SOMP) is employed to cluster users held by parties off-line. Then, the 

parties calculate item, user averages, and vector lengths. As each party has all the values 

of the items it holds, the item averages can be performed independently by parties. 

However, the parties need the data of each other when they want to calculate user 

averages. While exchanging the required data, the parties can derive the private data. A 

new protocol which is called data perturbation protocol (DPP) is proposed to prevent the 

parties from estimating the confidential data (Kaleli and Polat, 2012a). According to DPP, 

each party first uniformly randomly selects a random value (ϴ) over a predefined range, 

and then uniformly randomly chooses a random value (β) from the selected range (0, ϴ].  

β % of the unrated cells are picked randomly, and the picked cells are filled with 

personalized ratings. The parties can compute their personalized ratings without the help 

of the other parties.  

After parties disguise their data, they can compute user averages off-line by 

employing user mean ratings protocol (UMRP), as given in Eq. 2.6, 

 
𝑣𝑢 ̅̅ ̅̅ =  

∑ 𝑣𝑢𝑗𝑗∈𝐽1 + ∑ 𝑣𝑢𝑗𝑗∈𝐽2 +⋯+ ∑ 𝑣𝑢𝑗𝑗∈𝐽𝑧

|𝐽1| + |𝐽2| + ⋯+ |𝐽𝑧|
 (2.6) 

where  𝐽1, 𝐽2, …, 𝐽𝑧 are the number of ratings of user u held by the first, the second, …, 

the zth party. As seen from Eq. 2.6, each party computes ∑ 𝑣𝑢𝑗𝑗∈𝐽𝑖
 and |𝐽𝑖| values based 

on its disguised data. Then, each party exchanges them with other parties to compute the 

overall user mean. 

According to the adjusted cosine measure used for computing similarities, vector 

lengths of users are needed. The parties can compute vector lengths off-line using vector 

length protocol (VLP) (Kaleli and Polat, 2012a). Vector lengths of user u, (𝑉𝐿‖𝑋𝑢‖) can 

be calculated with Eq. 2.7 when the data is distributed vertically among z parties. 

 
‖𝑋𝑢‖ =  √∑(𝑣𝑢𝑗 − 𝑣𝑗̅)

2

𝑗∈𝐽1

+ ∑(𝑣𝑢𝑗 − 𝑣𝑗̅)
2

𝑗∈𝐽2

+⋯+ ∑(𝑣𝑢𝑗 − 𝑣𝑗̅)
2

𝑗∈𝐽𝑧

 (2.7) 

Since the parties are able to compute their item averages, they can quickly 

normalize their ratings by subtracting them. Then, each party calculates ∑ (𝑣𝑢𝑗 − 𝑣𝑗̅)
2

𝑗∈𝐽𝑧  

values and exchanges them with other parties. For all n users, the steps of VLP are 

repeated.  
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After demonstrating how to calculate item and user averages and vector lengths, the 

next step is to show how to produce a prediction in VDD. Kaleli and Polat (2012a) 

describe a new equation to provide a prediction when data is vertically distributed among 

z parties, as given Eq.2.8,  

P =  
∑ 𝑣𝑎𝑗

′′ [∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ]⏞        

𝑃𝑁1

𝑗∈𝐽1 + ∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ]⏞        

𝑃𝑁2

𝑗∈𝐽2 +⋯+ ∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ]⏞        

𝑃𝑁𝑧

𝑗∈𝐽𝑧

∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 ]⏟      
𝑃𝐷1

𝑗∈𝐽1 + ∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 ]⏟      
𝑃𝐷2

𝑗∈𝐽2 +⋯+ ∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 ]⏟      
𝑃𝐷𝑧

𝑗∈𝐽𝑧

 (2.8) 

where  𝑣𝑢𝑗
′′   and 𝑣𝑎𝑗

′′  depict the normalized ratings of user u and a which can be obtained 

by first subtracting the item averages, and then dividing the result of user’s vector lengths. 

𝑣𝑑𝑢𝑞 is a deviation from mean ratings of q as in Eq. 2.5, and S is the users who voted q in 

the selected cluster.  

In order to decrease online computation time, parties can compute 𝑃𝑁 and 𝑃𝐷 values 

for all target items off-line. Parties need to exchange their partial results to compute 𝑃𝑁 

values without violating their privacy. Therefore, Kaleli and Polat (2012a) propose a new 

protocol called 𝑃𝑁 protocol (𝑃𝑁𝑃). Their protocol ensures that parties compute their 𝑃𝑁 

values in a private way. Since the items are divided vertically among the parties, each 

party should be selected as a MP in turn to compute 𝑃𝑁 values for all target items belonged 

to itself. The steps of 𝑃𝑁𝑃 are repeated for each selected MP.  Note that the party with 

item q is chosen as the MP. The steps of 𝑃𝑁𝑃 are summarized, as follows: 

i. For each target item, q = 1, 2, 3, …, 𝑚𝑖, where 𝑚𝑖 is the number of item sets 

owned by the MP, the MP first encrypts each value of item q with a HE, which 

contains real and fake ratings because of DPP. Note that the public key is only 

known by the MP.  

ii. The MP sends those encrypted values to the other parties. 

iii.  Then, for all items j = 1, 2, 3, 𝑚𝑖 held by each party, the encrypted values are 

multiplied by the values of jth item using the property of HE, respectively. 

iv.  Since only the MP has the public key, it can derive the confidential data of the 

parties by decrypting the received values. Permutation functions are employed by 

parties to protect their private data. Each party first permutes the computed values 

of each item using a row permutation function.  
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v. Then, all items’ vectors are permutated by a column permutation function. The 

permutated results are sent to the MP.  

vi. After the MP decrypts the received permuted results, it finds column sums 

(∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ). The aggregate data is sent back to the corresponding party. 

vii. Since each party knows its column permutation function, it can easily order the 

received aggregate values (𝑃𝑁). 

Parties also need to compute and store 𝑃𝐷 values off-line. Since item averages and 

user vector lengths are computed previously, the parties easily calculate the normalized 

ratings (𝑣𝑢𝑗
′′ ) for each q independently. To compute ∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 , parties have to know which 

users rated q (denoted S) in advance because they have to use those users’ data in the 

prediction process. With the help of 𝑃𝑁𝑃, each party derives the location of users from 

the encrypted values. After identifying which users are joined to the prediction process, 

their data is used to compute 𝑃𝐷 values for each item.  

All the protocols mentioned so far are to create a model off-line. Parties can produce 

a prediction using the constructed model anymore according to the active user requests. 

Online: After an active user sends his rating vector and q to the MP, it first 

determines the active user’s cluster and assigns the active user to the closest cluster as in 

HDD. Kaleli and Polat (2012a) introduce private recommendation protocol (PRP) to 

perform the prediction generation online. The steps of PRP is explained, as follows:  

i. The MP disguises the active user’s rating vector using DPP. The purpose here is 

to prevent other parties from deriving the data of the MP by acting as an active 

user.  

ii. Then the MP calculates the normalized ratings (𝑣𝑎𝑗
′′ ). Using the HE, each value of 

the normalized ratings of the active user is encrypted (𝐸𝐾𝑃𝐶(𝑣𝑎𝑗
′′ )) before the 

corresponding part of encrypted items’ values are sent to the corresponding party.  

iii. Each party also fills some unrated cells of the received normalized data to protect 

itself from the MP. 

iv. Then, each party computes encrypted aggregate results of 𝐸𝐾𝑃𝐶(𝑣𝑎𝑗
′′ )*𝑃𝐷 and 

𝐸𝐾𝑃𝐶(𝑣𝑎𝑗
′′ )*𝑃𝑁 using the constructed model off-line for all rated items in the active 

user’s rating vector including fake ones. 
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v.  Each party permutes all encrypted aggregate results with a new permutation 

function for numerator and denominator separately. Then, all permuted encrypted 

aggregate results are sent back to the MP. 

vi. The MP decrypts all permuted encrypted aggregate results received from other 

parties. It computes the final prediction using Eq. 2.8 and sends it to the active 

user.  
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3. DERIVING THE ORIGINAL DATA PERTURBED BY RANDOMIZATION 

IN CENTRAL DATA-BASED PRIVACY-PRESERVING 

COLLABORATIVE FILTERING SYSTEM 

In this chapter, two data reconstruction methods are applied to derive the original 

data from the perturbed one. Then, auxiliary information such as popular items, unpopular 

items, rating range, and users’ demographic information is utilized for the improvement 

of the reconstruction results. Besides, a new method is proposed to derive the original 

ratings from the estimated z-score values by utilizing only the rating range. The proposed 

approaches are evaluated by performing several experiments with a real data set. 

Empirical outcomes show that the proposed approaches and auxiliary information with 

the existing reconstruction methods help attackers derive a meaningful amount of the 

original data.   

3.1. Introduction 

Privacy-preserving collaborative filtering schemes have emerged to preserve 

individuals’ privacy. For this reason, there are different methods proposed to overcome 

the privacy problem such as anonymization (Pfitzmann and Hansen, 2010; Yang and 

Qiao, 2010), cryptography (Canny 2002a; Li et al., 2016), RPT (Polat and Du, 2003; 

2005a; Polatidis et. al, 2017) and so on. RPT is a conventional method to preserve privacy 

in PPCF schemes. Although the idea behind RPT is simple, it is a robust method to hide 

the private information from the third party that has no right to access the confidential 

data. There are several works focusing on using the randomization approach as a data 

disguising method in PPCF methods (Polat and Du, 2003; 2005a). Even though 

randomization is a widespread technique to preserve the confidential data, the existing 

studies show that the original data can be reconstructed from the disguised one (Kargupta 

et al., 2005; Huang, Du and Chen, 2005; Zhang, Ford and Makedon, 2006a). 

In this chapter, the methods proposed by Zhang, Ford and Makedon (2006a) are 

investigated to improve the reconstruction of private data. There might be some public 

information depending on the data set such as the rating range, popular or unpopular 

items, prestigious awards, and demographic information of users, which help attackers or 

non-expert adversaries improve the reconstruction results. Polat and Du (2003; 2005a) 

operate RPT on z-scores instead of original ratings. Therefore, original z-scores must be 

reconstructed first. Deriving the original ratings from the reconstructed z-score values is 
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also a significant issue. It is difficult to estimate the original ratings from the disguised z-

scores values without knowing the average and the standard deviation of ratings for each 

user. Hence, a new method is proposed to derive the actual values from the estimated z-

scores using rating range of the data set, which can be considered as auxiliary information 

as well, without knowing the values of such parameters. Finally, how much contribution 

over the existing methods using the proposed approaches can be achieved is analyzed by 

conducting several experiments. 

3.2. Data Reconstruction Methods 

In this section, two existing data reconstruction methods, k-means clustering-based 

reconstruction scheme and SVD-based reconstruction with EM procedure, are explained 

briefly. These two methods have been used to derive the original data from the disguised 

z-score data in (Zhang, Ford and Makedon, 2006a). 

3.2.1. k-means clustering-based reconstruction 

k-means clustering is one of the most widely used clustering algorithms. The 

algorithm is mostly utilized for predictions in PPCF systems. However, the aim of the k-

means clustering-based reconstruction method in the dissertation is to extract the original 

ratings from the perturbed ratings. In the discrete-valued rating scenario, there are k 

unique ratings in the recommendation system. Thus, the number of the unique ratings is 

selected as a cluster number. One crucial point in the k-means clustering algorithm is to 

determine the initial cluster centroids. Selecting different initial cluster centroids each 

time causes different results of the k-means clustering algorithm. While the initial cluster 

centroids can be identified randomly, an algorithm can be employed to pick them. 

Therefore, it is essential to determine how the initial cluster centroids should be selected. 

In the dissertation, the initial centroid positions are picked by applying an algorithm 

instead of choosing them randomly. The steps of the selected algorithm can be explained, 

as follows. After sorting all disguised z-score values for each user, the mean of the lowest 

x% of all disguised z-score values is assigned as the first cluster centroids, and the mean 

of the highest x% of all disguised z-score values is assigned as the kth cluster centroids. 

Then, k-2 equidistant centroids to each other are selected as the rest of centroids. After 

applying a k-means clustering algorithm to the disguised z-score values, the jth cluster is 
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assigned as the jth original value.  Pseudocode for selecting the initial cluster centroids is 

listed as Algorithm 1.  

Algorithm 1: Identifying the initial centroid positions 

Input: 

        𝐷 = {𝑑1, 𝑑2,… , 𝑑𝑚} set of m items 

        k // number of clusters 

Output: 

        A set of k initial centroid positions 

Steps: 

        1. Sort all disguised z-score values of the user 

        2. The mean of the lowest x% of all disguised z-score values is assigned as the first 

cluster centroid 

        3. The mean of the highest x% of all disguised z-score values is assigned as the 𝑘𝑡ℎ 

cluster 

        4. Then, k-2 equidistant centroids to each other are defined the rest of centroids 

 

3.2.2. SVD-based reconstruction with expectation-maximization 

SVD-based reconstruction is also applied to derive the original z-score values from 

the disguised z-score values. Zhang, Ford and Makedon (2006a) indicate that one of the 

dominant methods for describing the rating matrix is a low-dimensional linear model. 

Hence, the sum of a low-dimensional linear model (denoted as X) and a Gaussian 

distributed noise matrix (Z) constitute a normalized matrix (𝑌𝑛𝑜𝑟𝑚). R is generated using 

a Gaussian distribution. The disguised data matrix can be represented as: 

 𝑌 = 𝑌𝑛𝑜𝑟𝑚  +  𝑅 = 𝑋 + 𝑍 + 𝑅 (3.1) 

The log-likelihood of the z-scores of the perturbed data given X, logPr(Y|X), helps 

discover X, because X maximizes the log-likelihood, logPr(Y|X). The solution to finding 

out X, which maximizes logPr(Y|X), is a low-rank approximation. If the rank of the linear 

model assumes r, then the top r right singular vectors of Y can be produced by applying 

SVD.  

In the real-world recommendation systems, most of the rating matrices are usually 

sparse. Users usually vote a small number of items as compared with all items in the data 

set. On the other hand, SVD-based reconstruction needs complete data to be applied. 

Unrated entries are usually filled by user averages or item averages to cope with the sparse 
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matrix and to find out the linear model, which fits the filled-in rating matrix. Nevertheless, 

it is not a right way to employ user averages or item averages as a value for unrated 

entries. 

 A better way to find out X, which maximizes the log-likelihood of the disguised z-

scores or the original z-scores of the rated entries using, is to utilize an EM procedure 

(Srebro and Jaakkola, 2003; Zhang et al., 2005). In the EM procedure, the first step is the 

expectation step that fills zero for each unrated entry in the first iteration. When the 

iteration number is greater than or equal to two, the expectation step calculates each 

unrated entry in the disguised z-scores matrix by replacing with 𝑋𝑖𝑗
(𝑡−1)

 to construct a 

filled-in rating matrix. In the maximization step, SVD is applied to the updated model 

𝑋(𝑡) to find a new low-dimensional linear model X. 

3.3. Utilizing Auxiliary Information to Improve Data Reconstruction Methods 

Auxiliary information in PPCF systems might help the reconstruction schemes to 

improve the outcomes. Recommender systems can be applied in different domains such 

as movies, books, music, news, restaurants, e-commerce, e-learning, and tourism 

recommendations. Auxiliary data, which is usually public, can be obtained depending on 

the data set. For example; if the data set is related to books, Amazon or Barnes & Noble 

e-commerce sites help anyone derive auxiliary information to determine such as which 

books are popular or in top 100. The application domain may be related to tourism in 

another example. The data set might consist of restaurants, hotels, countries, sightseeing 

tour, historical places, or activities. When the private information from a tourism-related 

data set is estimated, all related information from restaurants, hotels or activities becomes 

essential. For instance, most of the people enjoy visiting favorite historical places or 

eating the regional foods. If an attacker wants to estimate where a person visits or likes, 

the list of popular places can be utilized, which can be obtained from the websites or even 

tourist map guides. Assume that most of the people like to visit these places and they 

likely give higher ratings. For example, if a person goes to Rome where is one of the 

world’s most visited cities, it is expected that the person goes to and likes The Colosseum, 

Trevi Fountain, Pantheon and Vatican museums, where all the most famous places are in 

Rome. Besides, income ranges, which can be one of the users’ demographic information, 

guides to estimate the visited places or age ranges give someone an opinion about the 
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activities that users like or perform. Several demographic information can be stored in 

recommender systems and some of them might be utilized to guess user interests. 

Selecting correct user demographic information in the reconstruction method depends on 

the used data set. Recommender systems usually contain demographic data in addition to 

ratings. Even if the recommender system does not have any demographic data, obtaining 

the demographic information from the users would not be a difficult job for companies. 

Every user needs to sign in a new system before logging in. During this process, the user 

usually enters birthdate, sex, income, address, or some trivial information related to 

himself. The user may think that this information is harmless; however, this kind of 

information is prominent for companies, and it can be used to derive the private 

information. Many auxiliary information examples can vary based on the selected data 

set, and they are usually obtained easily.  

Nowadays, with the rapid development of technology, social networks, such as 

Facebook, Twitter, or YouTube are widespread and popular among people. Most existing 

studies in the literature use social networks as a source of axillary information (Konstas, 

Stathopoulos and Jose, 2009; Yuan et al., 2015; Yu et al., 2015; Jiang et al., 2015). 

Companies or researchers match users among different domains and use their comments 

or tweets as auxiliary information owing to social networks. As most of the studies in the 

literature are interested in movie recommendation, a movie-related data set is selected to 

evaluate the proposed approaches. However, the selected data set does not contain users’ 

social data. Therefore, social networks data cannot be integrated into the experiments. If 

another type of data set were chosen to show the effect of auxiliary information, the 

auxiliary information could differ as mentioned in the previous examples according to the 

selected data set.  

Various public information might have a different contribution to the existing 

reconstruction results. Different public information for k-means clustering-based and 

SVD-based reconstruction methods is utilized to determine how much their effect is. In 

general, there might be several public information that can be exploited to improve the 

reconstruction results. In this dissertation where the movie-related data set is used, the 

auxiliary information is categorized into four main groups, popularity and unpopularity, 

prestigious award-winners, user demographic information, and prior knowledge about the 

mean of each item or user.  
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3.3.1. Popular and unpopular movies 

The auxiliary information can be gathered online depending on the data sets. If a 

targeted data set contains well-known items such as movie, music, or books, discovering 

auxiliary information about its items will not be difficult for an attacker or a non-expert 

person. The Internet has been building countless communities with the contribution of 

people all over the world. There are many prestigious websites with millions of registered 

users. Such websites collect user preferences based on its topic of interest (movie, music, 

or books). The reviews and ratings made by a significant number of people is a serious 

source of auxiliary information. For example, the Internet Movie Database (IMDb, 

www.imdb.com) is a reference website accepted by movie lovers and authorities. 

Websites like IMDb reveal many useful public auxiliary information about items in a 

related targeted data set. The most obvious public information that can be inferred as 

auxiliary information is popular and unpopular items obtained from such specialized 

websites. In general, such websites provide ratings or list of popular and unpopular items 

to inform its users. If one can find a public and online source of trusted information, then 

he can collect popular and unpopular items and match this auxiliary information with the 

items of the targeted data sets. Hence, such auxiliary information can be utilized to 

improve the results of a reconstruction method. After a reconstruction method is applied, 

public information of popular and unpopular items related to the targeted data set is 

exploited to improve the reconstruction results. Algorithm 2 is proposed to utilize popular 

(or unpopular) movies public information: 

3.3.2. Prestigious awards 

Another trusted source of auxiliary information can be prestigious awards. For 

instance, winning an Oscar award for a movie, Nobel Prize for a book, or a Grammy 

award for a song is an indicator that many of the people will like that item. In other words, 

it is likely a favorable rating for award winner items in the data set. When an item wins a 

prestigious award, users might be biased toward liking that item. Considering all these 

assumptions, it would be reasonable to integrate them into the dissertation. IMDb also 

provides awards for movies. Awards for each item in the targeted data set are collected. 

The approach is the same as popular items. It is anticipated that users like items more as 

well as vote items higher. An algorithm illustrating abovementioned notion is given in 

Algorithm 3. 
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Algorithm 2: Utilizing the popular (or unpopular) movies 

        𝑃 = {𝑝1, 𝑝2,… , 𝑝𝑚}, rating value for each item in the targeted data set is collected 

from IMDb 

        A predefined value to assume a movie is popular (or unpopular) in P 

        A threshold value for popular (or unpopular) set 

Output: 

        Movies with a rating greater than or equal to the threshold value are considered as 

popular 

Steps:  

       1. Reconstruct the perturbed data 

        2. For each popular (or unpopular) items, compare the estimated rating with its 

threshold 

              a. If the estimated rating is less than the threshold, add (or decrease) one to the 

estimated rating 

              b. Otherwise, let the estimated rating remain the same 

 

 

Algorithm 3: Utilizing the prestigious award winner set 

Input: 

        𝑂 = {𝑜1, 𝑜2,… , 𝑜𝑘}, awards for each item in the targeted data set are collected from 

IMDb 

        A threshold value for prestigious award winner set 

Output: 

        Movies with a rating greater than or equal to the threshold value are considered as 

a prestigious award winner 

Steps:  

        1. Reconstruct the perturbed data 

        2. For each prestigious award winner items, compare the estimated rating with its 

threshold 

              a. If the estimated rating is less than the threshold, add one to the estimated rating 

              b. Otherwise, let the estimated rating remain the same 

 

3.3.3. Users’ demographic information 

A recommender system might hold user-related information such as age, gender, 

and occupation in addition to ratings. Such information can be utilized to exploit users’ 

demographic data and item relationship (Vozalis and Margaritis, 2007; Santos, Garcia 

Manzato and Goularte, 2014; Gogna and Majumdar, 2015; Al-Shamri 2016). Imagine a 

data set including votes for various items like jewelry. Females are expected to rate higher 

than males for jewelry because males are usually not interested in jewelry like necklace, 

ring, and bracelet. Thus, demographic information can be a factor to improve the 
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reconstruction results as auxiliary information. Since the reconstruction method is tested 

on a movie-related data set, users’ demographic information with movie genre 

preferences is combined. 

British Film Institute conducted an online survey of 2,036 UK adults whose ages 

are between 15 and 74 to illustrate the contribution of movies to British culture (Alliance, 

2011). Table 416 in the report depicts the movie genre preferences with age and gender. 

The hypothesis is that age, or gender preference of a specific movie genre can differ so 

that sub-matrices based on gender-genre or age-genre are created. Thus, the impact of 

gender-genre sub-matrix is first examined. Based on the survey results, top genre 

preferences for each gender are selected. A threshold value is determined for movies in 

top genres. If any estimated movie rating in the top genre is less than the threshold, the 

estimated rating is increased by one as in the previous approaches. Some movies might 

have more than one genres; however, they are only increased once. The same process is 

repeated for age-genre sub-matrix, as well. For age-genre sub-matrix, the age in Table 

416 (Alliance, 2011) is divided into five groups, which are 15-24, 25-34, 35-44, 45-54, 

and 55+. Since the targeted data set includes users that is younger than 15, those users are 

added into the first group. An excerpt from Table 416 (Alliance, 2011) displaying the 

distribution of top movie genres is seen in Table 3.1 based on different age groups.  

3.3.4. Prior knowledge about mean of each item 

Another considered auxiliary information is prior knowledge about the mean of 

each item. The idea is that item means may not violate individuals’ privacy. Assume that 

the mean of each item is known although the original data is disguised by RPT.  The 

question is whether this information is enough to make a better estimation. After the 

estimated data is obtained using the reconstruction method, the mean of an estimated item 

with the related original item’s mean can be compared, which is known in advance. If the 

mean of an estimated item is less than the original one, some of the estimated items’ 

ratings are randomly increased by one; otherwise, they are decreased by one. The purpose 

Table 3.1. Genre preferences with age. 

Until 25 25-34 35-44 45-54 55+ 

Comedy 

Action 

Adventure 

Comedy 

Action 

Adventure 

Comedy 

Drama 

Comedy 

Thriller 

Drama 

Thriller 

 

 

 

Table 3.1. The computational complexity of auxiliary information 

The auxiliary information Computational complexity 

Popular movies (assume that p is the number of 

popular items) 
O(np) 

Unpopular movies (assume that u is the number 

of unpopular items) 
O(nu) 

Prestigious awards (assume that a is prestigious 

award winner set of items) 
O(na) 

Users’ demographic information O(nd) 

Prior knowledge about mean of each item O(m) 

Prior knowledge about mean of each user’s 

ratings 
O(nm) 
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of this process is to close the gap between the mean of estimated and original items so 

that the reconstruction results get better. 

3.3.5. Prior knowledge about mean of each user’s ratings 

What if are the mean of each user’s ratings known publicly? It is clear that the mean 

of each user’s ratings is invaluable auxiliary information to enhance the outcome after the 

reconstruction method is applied. Assume that the mean of each user’s ratings is publicly 

available. If the mean is known, the only essential element to calculate the original ratings 

is to estimate the standard deviation for each user.  Below is the equation displaying how 

the estimated standard deviation (𝜎̃) is calculated in terms of the estimated minimum 

(𝑥̅𝑚𝑖𝑛) and maximum (𝑥̅𝑚𝑎𝑥) rating calculated from k-means clustering algorithm. 

Maximum ( 𝑧̃𝑚𝑎𝑥) and minimum ( 𝑧̃𝑚𝑖𝑛) z-score values are obtained from the disguised 

matrix. Eq. 3.2 shows how the standard deviation of a user is estimated. 

 
𝜎 ̃ =  

(𝑥̅𝑚𝑎𝑥 − 𝑥̅𝑚𝑖𝑛)

(𝑧̃𝑚𝑎𝑥 − 𝑧̃𝑚𝑖𝑛)
 (3.2) 

In Eq. 3.2, the disguised z-score values are used due to having only the disguised 

matrix. Using z-score values from the disguised matrix instead of the original z-score 

values might cause an error. However, knowing the mean of each user can make a 

significant contribution to the reconstruction result, and the error can be acceptable. 

3.4. The Proposed Method, Reconstruction from the Estimated z-score Values 

After recovering the estimated z-score data from SVD EM-based reconstruction, 

the original ratings must be predicted. Zhang, Ford and Makedon (2006a) only show how 

to derive the estimated z-score values from the disguised data using SVD-EM algorithm. 

They assume that the average and standard deviation for each user are known. Then, the 

error rate between the original ratings and the estimated ratings are calculated using prior 

knowledge. However, it is not a realistic assumption to have both of prior knowledge 

about averages and standard deviations of the user ratings while reconstructing the 

original ratings from the estimated z-score values because these parameters are not made 

available by users. Therefore, a new method is offered to estimate the original ratings 

when averages and standard deviations are unknown.  

A proposed method utilizes the extreme values, which are the upper and lower 

bound of the rating scale, of the targeted data set. The extreme values or rating range of 
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the data set is public information and is explicitly known by the server. For example, the 

maximum and minimum rating for MovieLens data set, which is used in the experiments, 

are 5 and 1, respectively. Although the server holds only the disguised z-score values, the 

server can easily find the extreme values of the targeted data set. Moreover, even if a data 

set is disguised by any data disguising methods, the rating range of data set is the most 

common public information that is known by everyone. 

The proposed method estimates the average and the standard deviation of the user 

ratings after the reconstructed data is obtained by SVD-EM. The proposed method utilizes 

the original formula of z-score. As seen from Eq. 3.3, if the original rating and its z-score 

value are known, the average and standard deviation can be computed. However, the 

server has neither original ratings nor their z-score correspondences. 

 𝑧 =  
𝑥 −  𝜇

𝜎
 (3.3) 

When the extreme values belonging to the data set are utilized, two z-score 

equations are obtained, one for the minimum and one for the maximum extreme values. 

The problem is turned into two equations with two unknowns as seen from Eq. 3.4. All 

that is necessary is to solve these two equations to find out the estimated average and the 

standard deviation of the user. 

 𝑥𝑚𝑖𝑛 = 𝑧̃𝑚𝑖𝑛  ×  𝜎̃ + 𝜇̃ 

𝑥𝑚𝑎𝑥 = 𝑧̃𝑚𝑎𝑥  ×  𝜎̃ + 𝜇̃ 
(3.4) 

The values of  𝑧̃𝑚𝑖𝑛 and 𝑧̃𝑚𝑎𝑥 are available in the reconstructed data. Also, using 

the extreme values, the lowest value in the rating range is assigned to 𝑥𝑚𝑖𝑛 and the highest 

value in the rating range is assigned to 𝑥𝑚𝑎𝑥. The hypothesis is that the minimum z-score 

(𝑧̃𝑚𝑖𝑛) among the estimated z-score values is likely to belong to the minimum rating of 

the original data. Likewise, the maximum rating of the original data is expected to be 

associated with the maximum z-score (𝑧̃𝑚𝑎𝑥). Since the estimated 𝑧̃𝑚𝑖𝑛 and 𝑧̃𝑚𝑎𝑥 values 

are employed in Eq. 3.4, the results might differ from the original ones.  

When there are two equations with two unknown parameters, which are the 

estimated standard deviation and the estimated average, there is only one solution. This 

method makes the calculation of the estimated average and standard deviation easy. The 

proposed method demonstrates that even if the average and standard deviation for each 

user is not known, it is not difficult to roughly estimate them.   
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3.5. Complexity Analysis 

Complexity analysis of the reconstruction of the original data from the disguised 

one is given briefly.  There are two key steps in the complexity analysis. The first one 

explains the computational complexity of the reconstruction methods, and the second step 

shows how much computational complexity is required when auxiliary information is 

utilized to improve the reconstruction results. 

Complexity analysis begins with reconstructing the original ratings from the 

disguised data. Assume that a matrix consists of n rows (users) and m columns (items).  

i. The computational complexity of a full SVD is 𝑂 = (𝑚2𝑛). However, in the 

reconstruction method, SVD is divided into two steps which are expectation and 

maximization. In the expectation step, each unrated item is filled with the 

corresponding previous reconstruction result, hence, the computational 

complexity is 𝑂 = (𝑛𝑚). In the maximization step, SVD is applied. Since top k 

singular values are selected to reconstruct the data, the computational time of the 

SVD is calculated as 𝑂 = (𝑛𝑚𝑘). The iteration number is also an important factor 

to calculate the total complexity time.  As a result, the total computational 

complexity of SVD-EM algorithm is 𝑂 = (𝑡(𝑛𝑚 + 𝑛𝑚𝑘)), where t is the 

iteration number in the reconstruction method. The computational complexity of 

SVD-EM requires more time compared with only the SVD taking 𝑂(𝑛𝑚𝑘); 

however; the success of SVM-EM algorithm to reconstruct the original data is 

remarkable.  

ii. The complexity of k-means clustering algorithm is analyzed. The operations in 

each step should be evaluated correctly. The algorithm takes 𝑂 = (𝐼𝑘𝑚𝑡), where 

k is the number of clusters, m is the number of data points (items), t is the time to 

calculate the distance between items and centroids, and I is the number of 

iterations until the clustering does not change. In the data set, since there are n 

rows (users), the total computational complexity of k-means is  𝑂 = (𝐼𝑘𝑚𝑡𝑛). 

Complexity analysis of auxiliary information utilized to improve the results of the 

existing reconstruction methods should also be considered briefly. The proposed 

approaches such as popular and unpopular items, prestigious awards, or prior knowledge 

about the mean of each item run in linear time. In other words, the time complexity grows 
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linearly based on the number of users or items. The time complexity of auxiliary 

information is summarized in Table 3.2. 

It is also analyzed the complexity of the proposed method which estimates the 

average and the standard deviation of the user ratings from the reconstructed z-score 

values. These values are calculated from the proposed method for each user. Therefore, 

the complexity of the estimating the average and standard deviation of the users take 𝑂 =

(𝑛). After estimating these values, complexity analysis of the predicting the original 

ratings is 𝑂 = (𝑛𝑚). Overall complexity of the proposed method is 𝑂 = (𝑛𝑚).    

3.6. Experiments 

Throughout the experiments, the proposed and existing reconstruction methods are 

analyzed to display whether auxiliary information can improve the reconstruction results. 

Various public information is available and can be utilized to get better the reconstruction 

results. Different experiments are conducted to test the proposed approaches and 

demonstrate how different kinds of auxiliary data can contribute to the results of the data 

reconstruction. 

3.6.1. Data set and evaluation metric 

A well-known recommender system data set, MovieLens is used in the experiments. 

MovieLens is a movie recommendation website (www.grouplens.org), and each rating is 

Table 3.2. The computational complexity of auxiliary information 

The auxiliary information Computational complexity 

Popular movies (assume that p is the number of 

popular items) 
O(np) 

Unpopular movies (assume that u is the number 

of unpopular items) 
O(nu) 

Prestigious awards (assume that a is prestigious 

award winner set of items) 
O(na) 

Users’ demographic information O(nd) 

Prior knowledge about mean of each item O(m) 

Prior knowledge about mean of each user’s 

ratings 
O(nm) 

 

 

Table 3.3. k-means clustering-based reconstruction results with popular moviesTable 3.4. The 

computational complexity of auxiliary information 

The auxiliary information Computational complexity 

Popular movies (assume that p is the number of 

popular items) 
O(np) 

Unpopular movies (assume that u is the number 

of unpopular items) 
O(nu) 

Prestigious awards (assume that a is prestigious 

award winner set of items) 
O(na) 

Users’ demographic information O(nd) 

Prior knowledge about mean of each item O(m) 

Prior knowledge about mean of each user’s 

ratings 
O(nm) 
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based on a 5-star scale. The standard 100K MovieLens data set including 943 users and 

1862 items is selected. At least 20 items have been rated by users.   

Mean Absolute Error (MAE) is used to measure the reconstruction accuracy for k-

means clustering- and SVD EM-based reconstruction, which is denoted MAE and zscore-

MAE, respectively. MAE measures how close the estimated ratings are the original 

ratings. Eq. 3.5 shows how to calculate MAE, as follows: 

 
MAE =

1

𝑅
∑|𝑒𝑖 − 𝑜𝑖|

𝑅

𝑖=0

 (3.5) 

where 𝑒𝑖 is the estimated rating, 𝑜𝑖 is the original rating, and R is the number of all rated 

items. 

 In addition, the ratio of correct estimated ratings to the original ratings is calculated 

for only k-means clustering-based reconstruction and denoted as accuracy in Eq. 3.6. 

 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑎𝑡𝑖𝑛𝑔𝑠

𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑎𝑡𝑖𝑛𝑔𝑠 𝑖𝑛 𝑀𝑜𝑣𝑖𝑒𝐿𝑒𝑛𝑠
 (3.6) 

3.6.2. Methodology 

Several experiments are performed to show how MAE changes with the varying 

value of parameters based on uniform or Gaussian distribution using k-means clustering 

based and SVD EM-based reconstruction. The experiments are run 100 times. The 

number of clusters is set to 5 in k-means clustering-based method since MovieLens data 

set has five distinct ratings. The number of dimensions is set to 10 in the SVD-EM 

reconstruction. The estimated ratings are compared with the real ratings to see how 

auxiliary information affects the results. 

3.6.3. Experimental results 

Experiment 1 – k-means clustering-based reconstruction results with popular 

movies. This experiment evaluates how popular items (or movies in the data set) affect 

the results after k-means clustering-based algorithm is applied. The hypothesis is that 

some popular movies from the public and trusted sources can contribute to the data 

reconstruction results, and better results will be achieved by increasing number of popular 

movies. In this regard, all movie information in MovieLens data set is collected from 

IMDb website, where people all around the world vote for movies. Movies are put in 
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descending order by their ratings from IMDb, movies with a rating greater than or equal 

to 8 are considered popular in the assumption. The threshold value is set to 4. After the 

existing method is applied, a method of improving the results is to increase the estimated 

popular movies’ ratings by one if the related popular movie is estimated less than the 

threshold. If the related popular movie is estimated either 4 or 5 in the experiment, its 

rating is preserved because it is already considered popular. In brief, the purpose of this 

process is to increase the estimated popular movies’ rating because it is anticipated that 

these movies are voted higher. Three cases are defined to test how a different number of 

movies affects the result. The first, second, and third case for this experiment include top 

62, 112, and 188 popular movies whose IMDb ratings are higher than or equal to 8.4, 8.2, 

and 8.0, respectively. MAE and accuracy are calculated. MAE-8_4, MAE-8_2, and 

MAE-8 illustrate the results when popular movies whose ratings are higher than or equal 

to 8.4, 8.2, and 8.0 in IMDb, respectively are used. Similar notation is used for accuracy. 

Note that the original data is masked using either Gaussian or uniform distributions with 

varying the standard deviation (σ) values. After estimating overall averages of the values, 

Table 3.3 displays the results.  

Table 3.3. k-means clustering-based reconstruction results with popular movies 

 σ MAE Acc MAE-8_4 Acc-8_4 MAE-8_2 Acc-8_2 MAE-8 Acc-8 

Gaussian  

Dist. 

0.33 0.38972 0.79202 0.38206 0.78030 0.37697 0.77464 0.37204 0.77161 

0.5 0.51328 0.62423 0.50123 0.63690 0.49177 0.62571 0.48284 0.62964 

0.67 0.61605 0.52685 0.59757 0.53595 0.58641 0.54101 0.57518 0.53089 

0.83 0.69924 0.46702 0.67609 0.48327 0.66256 0.48500 0.64812 0.48714 

1 0.77149 0.41190 0.74584 0.43560 0.72998 0.44173 0.71457 0.43940 

2 1.01822 0.30839 0.97997 0.32762 0.95782 0.33280 0.93714 0.33381 

3 1.11984 0.27661 1.07730 0.30018 1.05256 0.29970 1.03020 0.29786 

4 1.17210 0.26530 1.12729 0.28083 1.10155 0.27976 1.07866 0.28411 

Uniform  

Dist. 

0.33 0.39616 0.69351 0.39158 0.68381 0.39022 0.68940 0.38747 0.69304 

0.5 0.49549 0.54405 0.48684 0.56482 0.48171 0.57339 0.47639 0.56964 

0.67 0.60111 0.46750 0.58638 0.48036 0.57842 0.48399 0.56963 0.48542 

0.83 0.68991 0.41054 0.67082 0.42565 0.65839 0.42673 0.64725 0.43244 

1 0.77201 0.37030 0.74775 0.38994 0.73341 0.39548 0.71857 0.39548 

2 1.06181 0.28143 1.02297 0.29024 1.00069 0.30411 0.97891 0.30440 

3 1.19372 0.25750 1.14977 0.27125 1.12401 0.27446 1.10246 0.27256 

4 1.26793 0.24268 1.22186 0.25685 1.19458 0.24893 1.17058 0.25815 

 

 

Table 3.5. k-means clustering-based reconstruction results with popular movies 

 σ MAE Acc MAE-8_4 Acc-8_4 MAE-8_2 Acc-8_2 MAE-8 Acc-8 

0.33 0.38972 0.79202 0.38206 0.78030 0.37697 0.77464 0.37204 0.77161 
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Table 3.3 shows that auxiliary information, popular movies in the experiment, is 

helpful for deriving the original ratings from the masked ratings. As the number of 

popular movies increases, the results are getting better. Likewise, the improvement is 

much more for larger σ values. For example, MAE for Gaussian distribution when σ is 1 

is 0.77149 while MAE-8 for the same distribution with the same σ is 0.71457 when 188 

movies, which are rated greater than or equal to 8 are used as popular. Similar 

achievement for the uniform distribution is found. 

Figure 3.1. illustrates the comparison of the existing k-means clustering-based 

reconstruction results with the popular movies. MAE-8 is selected because its 

contribution is more significant than others as can be seen in Table 3.3. MAE-8 represents 

the results for k-means clustering with popular movies while MAE shows the results of 

the existing k-means clustering-based reconstruction algorithm. As seen from Figure 3.1, 

k-means with popular movies provides better results for both types of distribution for each 

value of σ.  

 

Figure 3.1. Comparison of the existing k-means clustering-based reconstruction  

 

Table 3.6. k-means clustering-based reconstruction results with unpopular movies
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Experiment 2 - k-means clustering-based reconstruction results with unpopular 

movies. This experiment assesses whether unpopular movies improve the results or not. 

In this case, it is expected that users rate movies that are not popular with a lower rating. 

IMDb has a movie list, which shows IMDb Bottom 100 movies voted by users as 

unpopular movies. However, there are a few movies in MovieLens from IMDb Bottom 

100 list. Thus, IMDb ratings are used in place of IMDb Bottom 100 list to define 

unpopular movies. Unlike Experiment 1, movies are put in ascending order by their 

ratings from IMDb. Movies with ratings less than or equal to 5 are considered unpopular 

in the experiments. Also, the number of unpopular movies is increased to see how results 

change as is the Experiment 1. Three groups are defined, called unpopular movies, for 

this experiment which includes 41, 83, and 154 movies with ratings are less than or equal 

to 4.0, 4.5, and 5 in IMDb, respectively.  

The assumption is that the ratings of unpopular movies should be gathered around 

the values of 1, 2, and 3. Thus, the threshold value is selected 3. The strategy is to decrease 

unpopular movies’ ratings by one if the estimated unpopular movie’s rating is found 

greater than the threshold by the k-means clustering algorithm. The results for movies 

with ratings are less than or equal to 4, 4.5, and 5 are displayed as MAE-U4, MAE-U4_5, 

Table 3.4. k-means clustering-based reconstruction results with unpopular movies 

 σ MAE Acc MAE-U4 Acc-U4 MAE- U4_5 Acc-U4_5 MAE-U5 Acc-U5 

Gaussian  

Distr. 

0.33 0.38972 0.79202 0.38973 0.78744 0.39074 0.78893 0.39247 0.78780 

0.5 0.51328 0.62423 0.51439 0.62315 0.51495 0.62470 0.51650 0.62696 

0.67 0.61605 0.52685 0.61617 0.52000 0.61706 0.52583 0.61729 0.52274 

0.83 0.69924 0.46702 0.69808 0.47012 0.69861 0.46387 0.69959 0.47030 

1 0.77149 0.4119 0.77248 0.42125 0.77201 0.42399 0.77225 0.41500 

2 1.01822 0.30839 1.01765 0.30655 1.01754 0.31202 1.01538 0.31530 

3 1.11984 0.27661 1.11896 0.27702 1.11773 0.28411 1.11501 0.27720 

4 1.17210 0.26530 1.17145 0.26095 1.17080 0.25869 1.16728 0.26113 

Uniform  

Distr. 

0.33 0.39616 0.69351 0.39587 0.69976 0.39660 0.69000 0.39774 0.68774 

0.5 0.49549 0.54405 0.49595 0.55423 0.49527 0.54399 0.49734 0.55179 

0.67 0.60111 0.46750 0.60093 0.45524 0.60086 0.46869 0.60108 0.46089 

0.83 0.68991 0.41054 0.68987 0.40685 0.68992 0.40988 0.69000 0.40946 

1 0.77201 0.37030 0.77208 0.37274 0.77154 0.37923 0.77115 0.36958 

2 1.06181 0.28143 1.06019 0.28137 1.05987 0.28369 1.05706 0.29018 

3 1.19372 0.25750 1.19201 0.26143 1.19133 0.26256 1.18770 0.25571 

4 1.26793 0.24268 1.26654 0.23946 1.26583 0.23750 1.26219 0.24238 

 

 

Table 3.7. k-means clustering-based reconstruction with popular movies, the Oscars, and merged 

moviesTable 3.8. k-means clustering-based reconstruction results with unpopular movies 

σ MAE Acc MAE-U4 Acc-U4 MAE- U4_5 Acc-U4_5 MAE-U5 Acc-U5 
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and MAE-U5, respectively. Similar notation is used for accuracy.  The overall averages 

are shown in Table 3.4. A similar improvement is expected as in Experiment 1. However, 

Table 3.4 illustrates that the reconstruction results for three groups in this experiment are 

almost the same although increasing the number of unpopular movies is used. This 

approach fails because the number of votes given for unpopular movies is small in 

comparison to the number of votes given popular movies. Therefore, the impact of 

unpopular movies is not significant as much as believed. 

Experiment 3 - k-means clustering-based reconstruction results with a 

prestigious award. This experiment is conducted to test the assumption about prestigious 

award. Since the data set is about movies, the Oscar winner movies are used as auxiliary 

information. The Oscars winner movies like the popular movies are expected to be liked 

by most of the users who watch them. In other words, it is likely these movies have 

favorable ratings. When a movie wins the Oscars, users might be willing to watch it and 

think positive about the movie before watching it. There are 172 movies among all 

MovieLens data set, which won the Oscars. After reconstructing data using the k-means 

clustering algorithm, the Oscars winner movies are determined. The threshold value is set 

to 4 as in Experiment 1. If the movie marked as the Oscars winner is estimated less than 

the threshold, its rating is increased by one. Otherwise, its rating remains the same. For 

the comparison, Table 3.5 shows the result for k-means clustering algorithm without 

auxiliary information and popular movies rated higher than or equal to 8 in the IMDb, 

MAE, and MAE-P, respectively. MAE-O denotes the result for only the Oscar winner 

movies’ ratings updated after k-means clustering algorithm. Besides, popular and Oscar 

winner movies are used together as auxiliary information to get better results. After 

merging these two set of auxiliary movie information, 277 movies are obtained which are 

popular and the Oscar winner movies. The result is demonstrated as MAE-P_O. Similar 

notation is used for accuracy. As seen from Table 3.5, the results for popular movies and 

the Oscars winner movies are similar. The results support the hypothesis about the Oscars 

winner movies. Moreover, when two pieces of auxiliary information (popular and Oscar 

winners) are combined, the combined set of movies give better results than using only 

one piece of auxiliary information.  

Figure 3.2 gives a picture of three kinds of k-means clustering algorithms’ results. 

Since popular movies give almost same results with the Oscar winners, the results of the 
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Table 3.5. k-means clustering-based reconstruction with popular movies, the Oscars, and merged movies 

 σ MAE Acc MAE-P Acc-P MAE-O Acc-O MAE-P_O Acc P_O 

Gaussian  

Distr. 

0.33 0.38972 0.79202 0.37204 0.77161 0.37524 0.74827 0.36797 0.74333 

0.5 0.51328 0.62423 0.48284 0.62964 0.48510 0.61161 0.47233 0.61089 

0.67 0.61605 0.52685 0.57518 0.53089 0.57685 0.52101 0.55909 0.53488 

0.83 0.69924 0.46702 0.64812 0.48714 0.65063 0.47220 0.62932 0.47750 

1 0.77149 0.41190 0.71457 0.43940 0.71611 0.43673 0.69287 0.44095 

2 1.01785 0.30399 0.93787 0.33079 0.93850 0.32952 0.90673 0.34086 

3 1.12020 0.27596 1.03144 0.30198 1.03173 0.30089 0.99666 0.31186 

4 1.17238 0.26274 1.07924 0.28834 1.07972 0.28720 1.04297 0.29807 

Uniform  

Distr. 

0.33 0.39616 0.69351 0.38747 0.69304 0.39287 0.65958 0.38889 0.67268 

0.5 0.49549 0.54405 0.47639 0.56964 0.48004 0.55232 0.47222 0.56345 

0.67 0.60111 0.46750 0.56963 0.48542 0.57267 0.47298 0.55932 0.47958 

0.83 0.68991 0.41054 0.64725 0.43244 0.64874 0.42548 0.63171 0.43548 

1 0.77201 0.37030 0.71857 0.39548 0.71939 0.39292 0.69805 0.40357 

2 1.06180 0.28039 0.97967 0.30468 0.97860 0.30435 0.94577 0.31478 

3 1.19477 0.25268 1.10282 0.27483 1.10147 0.27450 1.06482 0.28404 

4 1.26692 0.23923 1.17071 0.26051 1.16902 0.26028 1.13058 0.26946 

 

 

Figure 3.2. Comparison of the existing k-means clustering-based reconstruction with the Oscars 

winner movies and the Oscars winner and popular movies 

 

 

Table 3.9. k-means clustering based reconstruction results with items’ meanTable 3.10. k-means 

clustering-based reconstruction with popular movies, the Oscars, and merged movies 
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Oscars winners (MAE-O) is only selected to illustrate in Figure 3.2. In other respects, 

using two sets of auxiliary information together (MAE-P-O) makes a significant influence 

on the results by comparison with k-means clustering without auxiliary information 

(MAE). 

Experiment 4- k-means clustering-based reconstruction results with prior 

knowledge about the mean of each item. Another auxiliary information is prior 

knowledge about the mean of each item. Assume that MovieLens data set is disguised 

and the mean of each item is known. MAE and accuracy are again used in the same 

manner. MAE-I and Acc-I denote if the mean is known. The results are compared with 

MAE. Table 3.6 illustrates the results. One can realize in Table 3.6 that the approach of 

item means does not work when σ has a small number. However, when it gets larger, the 

assumption can be valuable to improve the performance. In brief, if the mean of items is 

known, it can make a substantial contribution to the results for larger σ values for both 

Gaussian and uniform distribution. For example, when it is 1 for the Gaussian 

distribution, MAE-I is 0.72484 while MAE is 0.77149 without applying the approach. 

Experiment 5- k-means clustering-based reconstruction results with prior 

knowledge about the mean of each user’s ratings. An experiment is also conducted 

Table 3.6. k-means clustering based reconstruction results with items’ mean 

 σ MAE Acc MAE-I Acc-I 

Gaussian  

Distr. 

0.33 0.38972 0.79202 0.43483 0.64887 

0.5 0.51328 0.62423 0.52950 0.54488 

0.67 0.61605 0.52685 0.60707 0.48357 

0.83 0.69924 0.46702 0.66883 0.45024 

1 0.77149 0.41190 0.72484 0.41911 

2 1.01822 0.30839 0.91603 0.33458 

3 1.11984 0.27661 0.99882 0.31048 

4 1.17210 0.26530 1.04120 0.29310 

Uniform  

Distr. 

0.33 0.39616 0.69351 0.43535 0.61768 

0.5 0.49549 0.54405 0.51601 0.52262 

0.67 0.60111 0.46750 0.60207 0.46464 

0.83 0.68991 0.41054 0.67500 0.42220 

1 0.77201 0.37030 0.73992 0.39024 

2 1.06181 0.28143 0.96309 0.30911 

3 1.19372 0.25750 1.06265 0.27815 

4 1.26793 0.24268 1.11899 0.27155 

 

 

Table 3.11. k-means clustering-based reconstruction results with users’ meanTable 3.12. k-means 

clustering based reconstruction results with items’ mean 

 σ MAE Acc MAE-I Acc-I 

0.33 0.38972 0.79202 0.43483 0.64887 

0.5 0.51328 0.62423 0.52950 0.54488 
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based on different σ values in order to observe how MAE changes when the mean of each 

user’s rating is known. Similar to previous experiments, MAE and Accuracy results are 

shown in Table 3.7 to be compared with the results of the new assumption. MAE-U and 

Acc-U show the results when the users’ means are known publicly. As seen from Table 

3.7, this approach outputs the best results among all experiments conducted so far. It 

means that using mean of each user’s ratings as publicly available data definitely 

enhances reconstruction outcomes. As mentioned before, the standard deviation of users 

remains the only required parameter to estimate the original ratings while users’ mean is 

known in advance. Users’ standard deviation can be quickly estimated utilizing available 

data as explained in Section 3.3.5. 

Experiment 6- k-means clustering-based reconstruction results with user 

demographic information. User demographic information can be utilized as auxiliary 

information as well. MovieLens data set contains user demographic information such as 

gender and age besides ratings of all movies. In addition, each movie has at least one 

movie genre such as drama, action, thriller, or comedy with its name, release date, and 

other extra information. User demographic information is combined with genre 

preferences of movies in this experiment. Movie preference is compared with gender and 

Table 3.7. k-means clustering-based reconstruction results with users’ mean 

 σ MAE Acc MAE-U Acc-U 

Gaussian  

Distr. 

0.33 0.38972 0.79202 0.16255 0.83805 

0.5 0.51328 0.62423 0.29751 0.70733 

0.67 0.61605 0.52685 0.39969 0.61611 

0.83 0.69924 0.46702 0.47429 0.55670 

1 0.77149 0.41190 0.53754 0.51171 

2 1.01822 0.30839 0.74032 0.39903 

3 1.11984 0.27661 0.82335 0.36394 

4 1.17210 0.26530 0.86624 0.34781 

Uniform  

Distr. 

0.33 0.39616 0.69351 0.14548 0.85479 

0.5 0.49549 0.54405 0.31357 0.68812 

0.67 0.60111 0.46750 0.42929 0.57963 

0.83 0.68991 0.41054 0.50659 0.51452 

1 0.77201 0.37030 0.57168 0.46748 

2 1.06181 0.28143 0.81240 0.35207 

3 1.19372 0.25750 0.93115 0.31408 

4 1.26793 0.24268 0.99891 0.29545 

 

 

Table 3.13. k-means clustering-based results with genre preferences with genderTable 3.14. k-means 

clustering-based reconstruction results with users’ mean 

 σ MAE Acc MAE-U Acc-U 

Gaussian  

Distr. 

0.33 0.38972 0.79202 0.16255 0.83805 

0.5 0.51328 0.62423 0.29751 0.70733 

0.67 0.61605 0.52685 0.39969 0.61611 

0.83 0.69924 0.46702 0.47429 0.55670 

1 0.77149 0.41190 0.53754 0.51171 

2 1.01822 0.30839 0.74032 0.39903 

3 1.11984 0.27661 0.82335 0.36394 

4 1.17210 0.26530 0.86624 0.34781 
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age. The relationship between movie genre and gender is investigated first. Top two genre 

preferences for each gender are chosen to constitute gender-genre sub-matrix. In the 

experiment, comedy and drama are chosen for female; while comedy, action, and 

adventure are selected for a male. Adventure and action are clustered in one group in the 

survey (Alliance, 2011); however, they are different genres in the MovieLens data set. 

Therefore, three movie genres are selected for the male group. The hypothesis is that a 

male votes the specific type of movies higher, as a female does. Like the previous 

experiments, a threshold value is first selected. Its value is three for this experiment. Thus, 

if the estimated movie rating is below than the threshold based on movie genres, the 

estimated rating is increased by one. As mentioned before, some movies might have more 

than one genres, but their ratings are increased once. The results are seen in Table 3.8. 

MAE-D and Acc-D are the results when genders are divided in terms of genre preferences 

of movies. The assumption provides an advantage when compared with the 

implementation of k-means clustering algorithm’s result.  

Another experiment is also performed to show the result based on different age 

groups. Note that Table 3.1 shows the age range, divided into five groups that are until 

Table 3.8. k-means clustering-based results with genre preferences with gender 

 σ MAE Acc MAE-D Acc-D 

Gaussian  

Distr. 

0.33 0.38972 0.79202 0.37459 0.65429 

0.5 0.51328 0.62423 0.48564 0.54274 

0.67 0.61605 0.52685 0.57642 0.46798 

0.83 0.69924 0.46702 0.64915 0.41506 

1 0.77149 0.41190 0.71328 0.38387 

2 1.01822 0.30839 0.92766 0.30036 

3 1.11984 0.27661 1.01706 0.27411 

4 1.17210 0.26530 1.06293 0.25458 

Uniform  

Distr. 

0.33 0.39616 0.69351 0.39620 0.58863 

0.5 0.49549 0.54405 0.48536 0.48446 

0.67 0.60111 0.46750 0.57521 0.42696 

0.83 0.68991 0.41054 0.65092 0.38167 

1 0.77201 0.37030 0.71844 0.35446 

2 1.06181 0.28143 0.95632 0.27768 

3 1.19372 0.25750 1.06793 0.25768 

4 1.26793 0.24268 1.13206 0.24286 

 

 

 

 

 

 

Table 3.15. k-means clustering-based results with genre preferences with ageTable 3.16. k-means 

clustering-based results with genre preferences with gender 
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25, 25-34, 35-44, 45-54, and 55+, and movie genre based on various age group. The 

proposed assumption is the same with the previous one. The previous assumption is 

applied to the different age groups rather than genders. The outcomes are displayed in 

Table 3.9. Two experiments, as seen from Table 3.8 and Table 3.9, demonstrate very 

similar results. Therefore, either of two approaches can be utilized to improve the 

reconstruction results. 

Experiment 7- k-means clustering-based reconstruction results with 

combining different auxiliary information. Up to now, the approach, mean of each 

user’s ratings, shows the best results in Experiment 5. However, that approach may be 

considered as a privacy breach and obtaining the users’ mean is thought to be difficult. 

On the other hand, obtaining the mean of each item may not be a big issue. Taking this 

approach into consideration, assume that mean of items is known as in Experiment 4. In 

this experiment, some previous approaches are selected to show how MAE changes. 

Three approaches, which improve the results alone, are chosen whether using two or more 

auxiliary information together influence the results. First, an experiment related popular 

movies and mean of items is conducted. The results are represented by MAE-I_P and 

Acc-I_P. After the steps of Experiment 1 are performed, popular movies from all movies 

Table 3.9. k-means clustering-based results with genre preferences with age 

 σ MAE Acc MAE-D Acc-D 

Gaussian  

Dist. 

0.33 0.38972 0.79202 0.37465 0.65482 

0.5 0.51328 0.62423 0.48547 0.53815 

0.67 0.61605 0.52685 0.57572 0.46429 

0.83 0.69924 0.46702 0.64770 0.41875 

1 0.77149 0.41190 0.71173 0.38048 

2 1.01822 0.30839 0.92507 0.30131 

3 1.11984 0.27661 1.01258 0.26899 

4 1.17210 0.26530 1.05913 0.25595 

Uniform  

Dist. 

0.33 0.39616 0.69351 0.39567 0.58619 

0.5 0.49549 0.54405 0.48460 0.48554 

0.67 0.60111 0.46750 0.57437 0.42619 

0.83 0.68991 0.41054 0.64987 0.39012 

1 0.77201 0.37030 0.71730 0.36143 

2 1.06181 0.28143 0.95247 0.28012 

3 1.19372 0.25750 1.06445 0.26024 

4 1.26793 0.24268 1.12804 0.24530 

 

 

 

 

 

 

Table 3.17. k-means clustering-based reconstruction results with combined auxiliary informationTable 

3.18. k-means clustering-based results with genre preferences with age 

 σ MAE Acc MAE-D Acc-D 

Gaussian  

Dist. 

0.33 0.38972 0.79202 0.37465 0.65482 

0.5 0.51328 0.62423 0.48547 0.53815 

0.67 0.61605 0.52685 0.57572 0.46429 

0.83 0.69924 0.46702 0.64770 0.41875 

1 0.77149 0.41190 0.71173 0.38048 

2 1.01822 0.30839 0.92507 0.30131 

3 1.11984 0.27661 1.01258 0.26899 

4 1.17210 0.26530 1.05913 0.25595 
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are removed. Mean of items approach is applied to the rest of the movies. The second 

experiment is like the previous one except three approaches are used together. In this 

case, popular movies, the Oscars winner movies and mean of items are used, denoted 

MAE-I_PO and Acc-I_PO. Popular movies with the Oscars winners are first performed 

as the Experiment 2, and then mean of items approach is applied to movies, which are 

neither popular movies nor the Oscars Winners. Table 3.10 represents the different 

auxiliary information make a significant contribution to the results. For instance, MAE 

for k-means algorithm when σ is 1, and Gaussian distribution is used is 0.77149 without 

any auxiliary information whereas MAE-I_PO for the same situation using three auxiliary 

information is 0.68784. 

Until now, different auxiliary information is tested after performing the existing k-

means clustering based reconstruction. As mentioned before, prior knowledge about users 

mean approach displays the best results among the others. Both popular movies with the 

Oscars approach and popular, the Oscars movies, and items mean approach gives 

favorable results within all experiments. Figure 3.3 gives a picture of three best results 

amongst all experiments for k-means clustering based reconstruction. 

Table 3.10. k-means clustering-based reconstruction results with combined auxiliary information 

 σ MAE Acc MAE-I_P Acc- I_P MAE- I_PO Acc-I_PO 

Gaussian  

Dist. 

0.33 0.38972 0.79202 0.40999 0.65881 0.40076 0.64375 

0.5 0.51328 0.62423 0.50436 0.55750 0.49200 0.55482 

0.67 0.61605 0.52685 0.58271 0.50304 0.56971 0.49190 

0.83 0.69924 0.46702 0.64568 0.45369 0.63092 0.44982 

1 0.77149 0.41190 0.70283 0.42149 0.68784 0.42042 

2 1.01822 0.30839 0.89849 0.32905 0.88230 0.33452 

3 1.11984 0.27661 0.98115 0.30595 0.96439 0.29970 

4 1.17210 0.26530 1.02455 0.29179 1.00677 0.29530 

Uniform  

Dist. 

0.33 0.39616 0.69351 0.41839 0.62875 0.41562 0.61470 

0.5 0.49549 0.54405 0.49735 0.53506 0.49078 0.52768 

0.67 0.60111 0.46750 0.57932 0.47119 0.56853 0.46911 

0.83 0.68991 0.41054 0.64843 0.43667 0.63502 0.43548 

1 0.77201 0.37030 0.71173 0.39988 0.69542 0.39512 

2 1.06181 0.28143 0.93801 0.30935 0.91844 0.30851 

3 1.19372 0.25750 1.04183 0.27649 1.02261 0.28548 

4 1.26793 0.24268 1.09981 0.26786 1.08102 0.26887 

 

 

Table 3.19. k-means clustering-based reconstruction results with combined auxiliary information 

 σ MAE Acc MAE-I_P Acc- I_P MAE- I_PO Acc-I_PO 

Gaussian  

Dist. 

0.33 0.38972 0.79202 0.40999 0.65881 0.40076 0.64375 

0.5 0.51328 0.62423 0.50436 0.55750 0.49200 0.55482 

0.67 0.61605 0.52685 0.58271 0.50304 0.56971 0.49190 

0.83 0.69924 0.46702 0.64568 0.45369 0.63092 0.44982 

1 0.77149 0.41190 0.70283 0.42149 0.68784 0.42042 

2 1.01822 0.30839 0.89849 0.32905 0.88230 0.33452 

3 1.11984 0.27661 0.98115 0.30595 0.96439 0.29970 

4 1.17210 0.26530 1.02455 0.29179 1.00677 0.29530 

0.33 0.39616 0.69351 0.41839 0.62875 0.41562 0.61470 
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Experiment 8 – Comparing error rates of true ratings after SVD EM-based 

reconstruction. The aim of this experiment is to evaluate the error rate between real 

ratings and the estimated ratings, which are extracted from the SVD-based reconstruction. 

After applying the SVD-EM algorithm, the estimated z-score values are obtained. zscore-

MAE represents the error rate between the estimated z-score values and the original z-

score values. However, it is essential to predict the original ratings. Zhang, Ford and 

Makedon (2006a) only show how to reconstruct the estimated z-score values from the 

disguised data using SVD-EM algorithm. They assume that the average and the standard 

deviation for each user are known to calculate the error rate between the original ratings 

and the estimated ones. P-MAE shows their assumption’s results in Table 3.11. However, 

their assumption is not realistic. Since user averages approach produces promising results 

in Experiment 5 this information is utilized in this experiment instead of utilizing both 

user averages and standard deviations. The results in Table 3.11 depict when only users’ 

average is known, denoted as M-MAE. Moreover, an experiment is also conducted when 

 

Figure 3.3. Comparison of the existing k-means based reconstruction with different auxiliary 

information 

 

 

Table 3.20. Error rates of true ratings after SVD-based reconstruction is applied

 

Figure 3.3. Comparison of the existing k-means based reconstruction with different auxiliary 
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users’ average and standard deviation are not known, as in the real world. The proposed 

method estimates the original ratings from the reconstructed z-score values without 

information about averages and standard deviations of users by utilizing the rating range 

of the MovieLens data set. The results are represented as Z-MAE. In this case, the 

iteration number for the expectation step in the SVD-EM algorithm is 50. The overall 

averages are displayed in Table 3.11. 

As seen from Table 3.11, the proposed method (Z-MAE) beats the approach (P-

MAE) for larger σ values although the average and standard deviation of users are not 

known. Surprisingly, while P-MAE is 1.72164, Z-MAE is 1.10099 when the σ is 4. Of 

course, knowing the average of users (M-MAE) again gives better results. 

Experiment 9- SVD EM-based reconstruction results with different auxiliary 

information. The experiment is conducted to improve the results of the existing SVD-

EM algorithm using auxiliary information like k-means clustering algorithm. In the 

existing SVD-EM algorithm, the average and standard deviation are known publicly and 

used to derive the original ratings after reconstructing the estimated z-score values. In this 

experiment, it is tested whether auxiliary information improves the existing work’s 

results. In order to improve the reconstruction results, different public information, which 

Table 3.11. Error rates of true ratings after SVD-based reconstruction is applied 

 σ zscore-MAE P-MAE M-MAE Z-MAE 

Gaussian  

Dist. 

0.33 0.57250 0.52998 0.55417 0.70699 

0.5 0.59043 0.55085 0.57836 0.74491 

0.67 0.61580 0.58004 0.60406 0.76026 

0.83 0.64384 0.61083 0.62858 0.78444 

1 0.68455 0.65611 0.66291 0.83169 

2 0.97488 0.99561 0.79741 0.98624 

3 1.32010 1.34974 0.86717 1.05861 

4 1.68385 1.72164 0.90654 1.10099 

Uniform  

Dist. 

0.33 0.57314 0.53133 0.55666 0.70841 

0.5 0.59081 0.55148 0.57861 0.73308 

0.67 0.61562 0.57938 0.60476 0.76406 

0.83 0.64524 0.61259 0.63204 0.79422 

1 0.68333 0.65510 0.66231 0.82969 

2 0.97973 0.97203 0.80141 0.98475 

3 1.32968 1.33916 0.87639 1.06378 

4 1.70239 1.72443 0.91858 1.10617 

 

 

Table 3.21. Error rates of true ratings after SVD-based reconstruction is applied based on different 

auxiliary informationTable 3.22. Error rates of true ratings after SVD-based reconstruction 

is applied 

 σ zscore-MAE P-MAE M-MAE Z-MAE 

Gaussian  

Dist. 

0.33 0.57250 0.52998 0.55417 0.70699 

0.5 0.59043 0.55085 0.57836 0.74491 

0.67 0.61580 0.58004 0.60406 0.76026 

0.83 0.64384 0.61083 0.62858 0.78444 

1 0.68455 0.65611 0.66291 0.83169 

2 0.97488 0.99561 0.79741 0.98624 

3 1.32010 1.34974 0.86717 1.05861 

4 1.68385 1.72164 0.90654 1.10099 

Uniform  

0.33 0.57314 0.53133 0.55666 0.70841 

0.5 0.59081 0.55148 0.57861 0.73308 

0.67 0.61562 0.57938 0.60476 0.76406 

0.83 0.64524 0.61259 0.63204 0.79422 
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gives better results for k-means clustering algorithm, is evaluated. Therefore, the items 

mean approach is implemented, which is used in Experiment 4, to the results of the 

existing method. The results are demonstrated as I-MAE in Table 3.12. The second 

experiment is to apply the approach of popular movies and the Oscar winner movies. 

Finally, the results represent when all three approaches, which are items mean, popular 

movies and the Oscar winner movies are used together as in Experiment 7. P_O-MAE 

and I_PO-MAE denote the result of second and third experiments, respectively. The 

iteration number for the expectation step in the SVD-EM algorithm is 20 in the 

experiment. 

Table 3.12 shows that auxiliary information cannot contribute to the results as much 

as the other experiments for small σ values and the results decline for those values. The 

main reason is that the effect of randomization is the minimum for small σ values, and 

knowing the average and standard deviation already provide a huge advantage for small 

σ values. For example, when σ is 0.5 for the Gaussian distribution, P-MAE is 0.56673 

while P_O-MAE is 0.60599 and I_PO-MAE is 0.61785, respectively.  However, as the σ 

values get bigger and the randomization increases, the estimated z-score values by SVD-

Table 3.12. Error rates of true ratings after SVD-based reconstruction is applied based on different 

auxiliary information 

 σ zscore-MAE P-MAE I-MAE P_O-MAE I_PO-MAE 

Gaussian  

Dist. 

0.33 0.59087 0.55206 0.58193 0.59608 0.60725 

0.5 0.60425 0.56673 0.59630 0.60599 0.61785 

0.67 0.62443 0.58950 0.61605 0.62064 0.63301 

0.83 0.64862 0.61673 0.64121 0.63961 0.65222 

1 0.67959 0.65062 0.67027 0.66108 0.67471 

2 0.92377 0.91302 0.89168 0.84463 0.85450 

3 1.21849 1.22178 1.14644 1.08301 1.08453 

4 1.53521 1.55117 1.42705 1.36198 1.35267 

Uniform  

Dist. 

0.33 0.59086 0.55169 0.58271 0.59634 0.60735 

0.5 0.60477 0.56779 0.59706 0.60637 0.61838 

0.67 0.62485 0.59023 0.6173 0.62137 0.63371 

0.83 0.64868 0.61664 0.64091 0.63846 0.65137 

1 0.68028 0.65175 0.67008 0.66129 0.67417 

2 0.92636 0.91584 0.89464 0.84745 0.85643 

3 1.2257 1.23023 1.15644 1.09173 1.09272 

4 1.54633 1.56293 1.43683 1.3703 1.36102 

 

 

Table 3.23. Error rates of true ratings after the proposed method is applied to SVD-based reconstruction 

with different auxiliary informationTable 3.24. Error rates of true ratings after SVD-based 

reconstruction is applied based on different auxiliary information 

 σ zscore-MAE P-MAE I-MAE P_O-MAE I_PO-MAE 

Gaussian  

Dist. 

0.33 0.59087 0.55206 0.58193 0.59608 0.60725 

0.5 0.60425 0.56673 0.59630 0.60599 0.61785 

0.67 0.62443 0.58950 0.61605 0.62064 0.63301 

0.83 0.64862 0.61673 0.64121 0.63961 0.65222 

1 0.67959 0.65062 0.67027 0.66108 0.67471 

2 0.92377 0.91302 0.89168 0.84463 0.85450 

3 1.21849 1.22178 1.14644 1.08301 1.08453 

4 1.53521 1.55117 1.42705 1.36198 1.35267 
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EM become less accurate. On the other hand, Table 3.12 shows that the integration of 

auxiliary information improves the results when the original data is disguised by larger σ 

values.  As seen from Table 3.12, when the σ value greater than or equal to two, auxiliary 

information makes a significant contribution to the results. For example, when σ is 2 for 

the Gaussian distribution, P-MAE is 0.91302 while P_O-MAE is 0.84463 and I_PO-MAE 

is 0.85450, respectively.  

Experiment 10- The proposed method with SVD EM-based reconstruction 

results based on the different auxiliary information. Another experiment is performed 

to improve the results of the SVD-EM algorithm using auxiliary information when the 

averages and standard deviations of users are not available. After the estimated z-score 

values are reconstructed by the SVD-EM algorithm (zscore-MAE), the proposed method, 

reconstruction from the estimated z-score values, is used to predict the original ratings 

when averages and standard deviation are not known (Z-MAE). Experiment 10 is the 

same as Experiment 9 except the proposed method is used. In this experiment, it is tested 

whether the reconstruction results estimated from the proposed method can be improved 

by utilizing some of the proposed auxiliary information. Three different auxiliary 

Table 3.13. Error rates of true ratings after the proposed method is applied to SVD-based reconstruction 

with different auxiliary information    

 σ zscore-MAE Z-MAE I-MAE P_O-MAE I_PO-MAE 

Gaussian  

Dist. 

0.33 0.59079 0.75823 0.77110 0.75504 0.73693 

0.5 0.60478 0.78057 0.78693 0.77066 0.75083 

0.67 0.62445 0.81111 0.80642 0.79241 0.76849 

0.83 0.64856 0.84273 0.82528 0.81487 0.78577 

1 0.67956 0.87041 0.84702 0.83927 0.80689 

2 0.92346 1.00934 0.92969 0.93959 0.89456 

3 1.21933 1.07688 0.97282 0.99095 0.94043 

4 1.53616 1.11091 0.99612 1.01671 0.96554 

Uniform  

Dist. 

0.33 0.59081 0.75920 0.77145 0.75608 0.73749 

0.5 0.60438 0.78067 0.78658 0.77102 0.75057 

0.67 0.62436 0.81054 0.80609 0.79193 0.76769 

0.83 0.64874 0.83910 0.82659 0.81644 0.78637 

1 0.67880 0.87032 0.84571 0.83683 0.80552 

2 0.92712 1.01249 0.93338 0.94412 0.89826 

3 1.22681 1.08134 0.97612 0.99461 0.94359 

4 1.54663 1.11314 1.00124 1.02107 0.96994 

 

 

Table 3.25. Error rates of true ratings after the proposed method is applied to SVD-based reconstruction 

with different auxiliary information    
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information approaches are run, which demonstrate better results in the experiments of k-

means clustering-based reconstruction.  

As shown in Table 3.13, zscore-MAE demonstrates the error rate between the 

estimated z-score values and the original z-score values as in the previous experiment. Z-

MAE shows the results when the proposed method is applied.  In the experiment, 

estimating the original ratings are more prominent rather than estimating the actual z-

score values when user averages and standard deviations are unknown.  As seen from 

Table 3.13, the auxiliary information is valuable to improve the results. When σ values 

are increased, the effect of auxiliary information to improve the reconstruction results is 

more obvious. The best result is demonstrated when all three approaches are used together 

as in the other experiments. For example, when σ is 1 for the Gaussian distribution, Z- 

MAE is 0.87041 while I_PO-MAE is 0.80689.  

Up to now, it is demonstrated how the reconstruction results derived from the SVD-

EM algorithm can be enhanced by using various auxiliary information. Figure 3.4 gives 

  

Figure 3.4.  Comparison of estimation of true ratings after the proposed method is applied to 

SVD-based reconstruction with different auxiliary information    

 

Table 3.26. The computational complexity of the proposed solution
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a picture of the selected auxiliary information results with the proposed method. Figure 

3.4 first displays the results of the proposed method (Z-MAE). Then, items’ mean 

approach (I-MAE), popular movies with the Oscars winner movies (P_O-MAE), and the 

combination of these two approaches (I_PO-MAE) are illustrated, respectively. As seen 

from Figure 3.4, using more than one approach gives better results as is k-means 

clustering algorithm. When σ gets larger, even one piece of the auxiliary information 

provides more contribution than the proposed approach. Although items’ mean approach 

is the only auxiliary information and starts with a little worse result as compared with 

others, it beats the proposed method alone and the proposed method with two pieces of 

auxiliary information, the popular and Oscars winner movies, for larger σ values. On the 

other hand, the combination of three pieces of auxiliary information, which are the 

popular, Oscars winner movies and items’ mean, produce the best results for each value 

of σ.  

3.7. Conclusions 

In this chapter, it is represented how to derive the original ratings from the disguised 

z-score values. First, the results of existing methods are demonstrated, which are k-means 

clustering-based and SVD-based reconstruction. Throughout all experiments with regards 

to these existing methods, the only question is how much contribution to the existing 

methods can be made by utilizing several types of auxiliary information. To answer this 

question, different auxiliary information such as popular movies, the Oscars winner 

movies, unpopular movies, prior knowledge about the mean of each item or each user, 

and demographic information has been tested to improve the reconstruction results. k-

means clustering algorithm with auxiliary information produces better results than the 

existing k-means clustering. When three types of auxiliary information, which are popular 

movies, the Oscars winner movies, and mean of each item, are used together, the results 

are the best among all experiments for k-means clustering algorithm.  

In addition, the experiments for SVD-based reconstruction with EM using auxiliary 

information, which gives better results for k-means clustering algorithm, are carried out. 

k-means clustering algorithm beats the SVD-EM reconstruction when the standard 

deviation is less than two; however, when such values get larger than two, SVD-EM 

reconstruction starts to beat k-means clustering algorithm. However, SVD-based 

reconstruction method requires that both user and item averages be known, which are 
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very strong assumptions to be true in a real-world scenario. The proposed reconstruction 

method in this study handles this problem to reconstruct original ratings from estimated 

z-scores by considering the extreme values of the rating scale. The proposed approach is 

not only more realistic but also achieves better results for larger standard deviation values.   
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4. RECONSTRUCTING RATED ITEMS FROM INCONSISTENTLY 

PERTURBED DATA IN CENTRAL DATA-BASED PRIVACY-

PRESERVING COLLABORATIVE FILTERING SYSTEM 

The basic idea behind privacy-preserving collaborative filtering schemes is to 

prevent data collectors from deriving the actual rating values and rated items. Different 

data perturbation methods are proposed to protect individual privacy.  Due to different 

privacy concerns, users might disguise their data inconstantly to meet their own privacy 

concerns. Malicious data collectors might try to derive both original rating values and 

rated items.  

The goal of this chapter is to show how to reconstruct the rated items with the help 

of auxiliary information when users inconsistently mask their confidential data in 

privacy-preserving collaborative systems. First of all, the number of the rated items need 

to be estimated. Then, the ones which are rated should be identified. To do so, existing 

methods are initially used to eliminate noise from the disguised data. After noise is 

eliminated, the auxiliary information is utilized to improve the reconstructions. 

Experiments with a real data set show that the proposed approaches can derive the rated 

items with decent accuracy in spite of variable data masking. 

4.1. Introduction 

Randomization is one of the primary methods in PPCF to protect individual privacy. 

In the first RPT in PPCF (Polat and Du, 2003), users disguise their data by employing 

same parameters. However, some studies have shown that the randomization scheme may 

not keep individual privacy safe as desired (Kargupta et al., 2003; Huang, Du and Chen, 

2005; Zhang, Ford and Makedon, 2006a). To improve the level of privacy, Polat and Du 

(2007) introduce a new data disguising method which allows users to disguise their data 

inconsistently. The first proposed randomization scheme may not sufficiently preserve 

the individual privacy because this scheme only hides the real values of rated items from 

the server or CF system. However, the information of whether an item is rated or not is 

also crucial for users. Users may not want to reveal items they rate. To alleviate privacy 

concerns, inconsistent data disguising method is proposed (Polat and Du, 2007). 

According to the proposed scheme, each user disguises his rated items along with some 

unrated items to protect own original data. Different scenarios are presented how unrated 

items are filled based on users’ demands.   
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In this chapter, two problems are to be faced to reconstruct the rated items from 

inconsistently perturbed data. The first problem is to estimate the number of rated items 

because users fill some unrated items with the original rated items. Two formulas are 

proposed to estimate the number of the real items from inconsistently perturbed data 

based on the selected scenario. Then, the rated items are identified using some of the 

matrix factorization methods. Although matrix factorization methods are usually used for 

prediction in PPCF, in this case, the effects of the noise data are decreased with the help 

of matrix factorization methods. Besides, the joint effect of auxiliary information and CF 

system’s properties are investigated in addition to existing noise elimination methods. 

4.2. Noise Elimination Methods 

The first step to identify rated items is to filter out the noise associated with the 

original data. Since noise is added to the original z-scores, some of the originally unrated 

items become rated in the perturbed data. These rating values residing in unrated cells are 

the noise introduced by the randomization process. Thus, unrated items can be 

differentiated from rated items after the noise elimination because the estimated value for 

unrated items approaches to 0. While unrated items lack prior z-scores before the 

randomization process, rated items have z-scores. Therefore, the estimated cells for the 

rated items are expected to have relatively greater absolute values than the unrated ones 

after the noise elimination. As a result, greater absolute values will assist in determining 

the rated cells. 

Four different noise elimination methods are explained briefly in this subsection. 

The aim of the selected methods is to eliminate noise from the disguised data. Note that 

random numbers are added to all rated and some unrated items. If the noise is removed, 

the filtered data can be used to predict the real rated items. 

4.2.1. Singular value decomposition 

SVD is commonly employed in pattern recognition, atmospheric sciences, signal 

processing, statistics, and recommender systems for compression, noise reduction, and 

recommendation. The purpose of the SVD is to decompose a matrix an into three matrices 

called U, S, and V: U is an orthogonal matrix called the left singular vectors, S is a 

diagonal matrix with all singular values, and V is the transpose of an orthogonal matrix, 

which is called the right singular vectors. SVD is defined as follows: 
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 𝐴𝑛𝑥𝑚 = 𝑈𝑛𝑥𝑛𝑥𝑆𝑛𝑥𝑚𝑥𝑉𝑚𝑥𝑚
𝑇  (4.1) 

SVD theorem has an interesting and useful property. SVD allows users to transform 

the data into low-rank (or reduced) matrix. The dimensionality reduction approach in 

SVD is important for noise reduction. When all singular values are sorted in descending 

order, small singular values represent noise. If the small singular values are discarded, the 

top singular values are used to reconstruct the original data. SVD is a conventional 

method in PPCF. Also, there are studies to reconstruct the original data from the disguised 

one (Zhang, Ford and Makedon, 2006; Guo, Wu and Li, 2006; 2008). 

4.2.2. Discrete cosine transformation  

Discrete cosine transformation (DCT) is usually used for Wiener filtering, pattern 

recognition, video and image compression. The purpose of the DCT is to transform data 

to a frequency domain so that the redundancy can be removed (Ahmed, Natarajan and 

Rao, 1974). DCT provides a transformation like SVD and PCA. The basic approach 

behind the DCT is to transform correlated data into the discrete (uncorrelated) cosine 

transform coefficients. In other words, the purpose is to define low and high-frequency 

coefficients because low-frequency coefficients are more significance than high-

frequency ones. In the experiment, DCT is used for noise reduction from the disguised 

data. High-frequency coefficients’ values are accepted as noise and ignored when the data 

is reconstructed using the inverse DCT function. Since the data (m×n) is two-dimensional, 

there are m×n coefficients, so 2D-DCT is applied in the experiment.    

4.2.3. Principal component analysis 

PCA has many applications in pattern recognition, image compression, 

neuroscience, economics, finance, geology, genetics, meteorology, etc. The basic 

approach is to transform a large number of correlated attributes into a small number of 

uncorrelated attributes so that predictions or operations in data can be easily done (Huang, 

Du and Chen, 2006). In order to apply PCA, the covariance matrix must be computed 

first. Assume that the original data set is A, the covariance matrix is calculated as 𝐴𝑇𝐴. 

The eigenvalues (Λ) and eigenvectors (U and VT) are calculated from the covariance 

matrix after computing covariance matrix, PCA is defined as follows: 

 𝐴𝑇𝐴 = 𝑈𝑥Λ𝑥𝑉𝑇 (4.2) 
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PCA is similar to SVD. The primary approach in PCA is the dimensionality 

reduction as in SVD. While top singular values are chosen in SVD, top uncorrelated 

principal components are selected in PCA. To show the relationship between two 

methods, Eq. 4.1 is substituted for A, in Eq.  4.2, as follows (Johnson, 2010): 

 𝐴𝑇𝐴 = (𝑈𝑆𝑉𝑇)𝑇(𝑈𝑆𝑉𝑇) 

𝐴𝑇𝐴 = 𝑉𝑆𝑈𝑇𝑈𝑆𝑉𝑇 

𝐴𝑇𝐴 = 𝑉𝑆2𝑉𝑇 

(4.3) 

Eq. 4.3 is like that is shown in Eq. 4.2. Since the singular values can be calculated 

by taking the square roots of the eigenvalues of matrix 𝐴𝑇𝐴, the eigenvalues can be 

represented as the squares of the singular values of A, in Eq. 4.3. 

4.2.4. QR factorization 

QR factorization (or QR decomposition) is one of the most important matrix 

decomposition methods. QR decomposes a matrix A into two matrices called Q and R. 

𝐴 = 𝑄𝑅, where Q is an orthogonal matrix and R is an upper triangular matrix. The main 

idea of QR factorization is the calculation of the eigenvalues. There are different methods 

to compute QR factorization. Two of the most popular methods are Graham-Schmidt 

process and Householder transformation. The purpose of the QR is similar to SVD or 

PCA. Briefly, all used data reconstruction methods in this chapter transform the data into 

a reduced matrix to eliminate noise. 

4.3. Filling the Missing Entries 

Data reconstruction methods given in this section can be utilized only if data does 

not contain any unrated items. Thus, all unrated cells should be filled with appropriate 

default values to obtain complete data. Three methods are available to fill unrated cells. 

The first method is to fill with zero ratings, as the name implies, all unrated cells are filled 

with zero. This way of filling unrated cells is convenient for the reconstruction because 

filled items are already unrated. The second approach is to fill empty cells with 

corresponding user averages. According to the data disguising method, users convert their 

ratings into z-score values and add random numbers to the rated and some unrated cells. 

Hence, the server first estimates the user averages from the disguised data. Bilge and Polat 

(2010) show how to guess such values from the disguised data to obtain a denser data. 

The average z-scores for each user can be estimated from the disguised data as follows: 
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 (4.4) 

As the data set contains the disguised z-scores instead of the real ratings, the average 

of z-scores for each user can be calculated roughly using Eq. 4.4. The average of items is 

also preferred to fill all empty cells as the third approach. In this case, the server tries to 

guess the item averages from the disguised data. Due to the random data distribution with 

µ being zero, it is expected that the average of random numbers approximates zero as in 

the case of the average user estimation. In that case, Eq. 4.5 can be used to estimate the 

averages of each item’s z-scores as follows: 
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 (4.5) 

4.4. Estimating Number of Real Ratings from Inconsistently Perturbed Data 

It is prominent to compute the number of real rated items from the perturbed data 

before marking those real rated items. After the random filling process, the number of 

rated items increases because some unrated items are filled as discussed in the previous 

part. However, the data holder will not tell whether a rated item in the perturbed data set 

is indeed rated or unrated in the original data set because each user disguises his ratings 

and unrated items with random numbers. It is still unknown how many cells need to be 

picked as rated cells. Hence, the process of identifying rated items in the original data 

starts with estimating the number of items rated by users. First, the data holder must 

predict the number of the real ratings in the disguised data before estimating which one 

is genuinely rated.  

Two formulas are defined to estimate the number of the real ratings based on the 

how β is selected. Users use either the fixed or random β from the range (0, 𝛽𝑚𝑎𝑥] while 

filling unrated cells. When each user employs the fixed β to fill unrated cells with the 

random numbers, the server can estimate the number of rated items very close to the 

original number of rated items. The server knows the β and the total rated items from the 

disguised data. The number of rated items for each user can be easily estimated using the 

following equation, Eq. 4.6. nItems depicts the number of total items. It is known publicly. 

nRated denotes the total number of the rated items, which can be calculated from the 
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disguised data. β is already known by the server. 𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠 depicts the number of true 

rated items in the original data. 𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠 is estimated for each user, as follows. 

 𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠 + (𝑛𝐼𝑡𝑒𝑚𝑠 − 𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠) ∗ 𝛽 = 𝑛𝑅𝑎𝑡𝑒𝑑 (4.6) 

After rearranging the given formula, Eq. 4.7 is obtained. The result is rounded to 

find an integer number. Eq. 4.7 shows that the server can estimate the number of rated 

items for each user although users disguise their rated and some unrated items. 

 
𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠 ≅ 𝑟𝑜𝑢𝑛𝑑 (

𝑛𝑅𝑎𝑡𝑒𝑑 − (𝑛𝐼𝑡𝑒𝑚𝑠 ∗ 𝛽)

1 −  𝛽
) (4.7) 

Users can also employ different β values (from 0 to 𝛽𝑚𝑎𝑥) to fill unrated cells with 

random numbers. In this case, Eq. 4.6. and 4.7. should be modified to estimate 

𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠. Each user determines the value of β independently; therefore, the server 

does not know the value set by each user. It only knows the range (0, 𝛽𝑚𝑎𝑥], where β can 

be selected. Since the server does not know individual β values, it is proposed that the 

server use the expected value of β (𝛽𝑒𝑥𝑝).  Eq. 4.8. displays how the total number of users 

rating an item, known by the server, in the perturbed data set by exploting 𝛽𝑒𝑥𝑝. Notice 

that 𝛽𝑒𝑥𝑝 is an estimation in this equation.  nUsers depicts the total number of users in the 

data set and is known publicly. nRated is calculated from the disguised data and depicts 

how many users vote the item. Real and fake users who vote the item are constituted the 

value of nRated. The value of 𝛽𝑒𝑥𝑝 is calculated as β/2. The purpose is to estimate how 

many users truly rate the item, 𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠. 

 𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠 + (𝑛𝑈𝑠𝑒𝑟𝑠 − 𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠) ∗ 𝛽𝑒𝑥𝑝 = 𝑛𝑅𝑎𝑡𝑒𝑑 (4.8) 

After rearranging the Eq. 4.8 the following Eq. 4.9 is attained: 

 
𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠  ≅ 𝑟𝑜𝑢𝑛𝑑 (

𝑛𝑅𝑎𝑡𝑒𝑑 − (𝑛𝑈𝑠𝑒𝑟𝑠 ∗ 𝛽𝑒𝑥𝑝)

1 − 𝛽𝑒𝑥𝑝
) (4.9) 

4.5. Utilizing Auxiliary Information 

The concentration in this chapter is to derive the rated items from the disguised 

data; however, utilizing some auxiliary information can help a malicious server improve 

the accuracy while recovering real rated items. The fundamental approach, given in the 

next part, in the dissertation to reconstruct rated items is to benefit from the features of 
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distribution types. Based on the distribution type, some data lie out the range, and those 

help attackers reconstruct the rated items. Since the data set is a movie-related, another 

auxiliary information except popular and award-winning movies from Internet Movie 

Database (www.imdb.com) is the total number of votes. This auxiliary information guides 

attackers to identify the real rated items from the disguised data. Most of the CF system 

contain user-related information in addition to ratings. The data set used in this 

dissertation contains user-related demographic information as well and used as auxiliary 

information. The relationship between user demographic information and items assist a 

malicious server in reconstructing the rated items. 

4.5.1. Features of random data distributions 

Uniform and Gaussian distribution have unique characteristics. When Gaussian 

distribution is used, it is known that 99.7% of data fall within the range of 

[𝜇 − 3𝜎, 𝜇 + 3𝜎]. On the other hand, if the distribution type is chosen as uniform, all data 

lie within the range of [𝜇 − √3𝜎, 𝜇 + √3𝜎]. Each user fills selected unrated items with 

his mean based on the chosen data distribution type. After transforming the original 

ratings to z-score values, each selected unrated item’s z-score value is calculated as 0. 

Therefore, if the random numbers are eliminated based on the distribution type, points, 

which lie out of the range, are considered as rated items. Zhang, Ford and Makedon 

(2006a) used this idea to identify the originally rated items when data set is complete, in 

other words all items filled with random numbers. This approach alone is not efficient 

enough to discover rated items because it fails to notice many rated items as pointed out 

by the authors. Another problem with this approach is that its reconstruction effect 

diminishes when σ gets larger. This approach is used together with auxiliary information 

with main data reconstruction method in the experiments. If values lie out of the 

predefined range, those are chosen as rated items. 

4.5.2. Total number of votes 

The focus of this chapter is to discover the rated items in the original data when 

users perturb their rated and unrated items. The hypothesis is that auxiliary information 

could be beneficial to improve the reconstruction accuracy when utilized with data 

reconstruction methods to identify rated items. As stated before, the auxiliary information 

is collected from the Internet Movie Database (IMDb), which is a famous movie website 
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and has millions of registered users all around the world. The information in IMDb is 

consistent and reliable. The IMDb offers different statistics about movies based on 

registered users’ opinions. The IMDb serves not only the total number of votes of each 

movie by registered users but also average ratings, awards, popular and unpopular 

movies. The total number of votes about movies are considered as a prominent auxiliary 

information to discover which items might be rated when users disguise rated and some 

unrated items. Auxiliary information such as popularity, unpopularity or the average 

rating is not as important as the number of total votes for each movie because the objective 

is to identify which items might be rated. Such auxiliary information would be more 

meaningful than the total number of votes if the intention were to derive original rating 

values. For example, if the movie is rated by a predefined number of registered users, the 

movie can be chosen as a rated item even if a movie is rated with a lower rating. The 

lower rating only shows users do not like the movie. The values of ratings are not 

important in this case. The vital point is to make a distinction between originally rated 

items and fake items. Therefore, the total number of votes is a more distinctive parameter 

at this point. To recognize rated items, a threshold value of the total number of votes is 

defined in the experiments to choose rated items. If the number of total votes of a movie 

in the IMDb is greater than the threshold, this movie is accepted as rated by the users in 

the experiments. The purpose of the approach is to make a decision about which items 

are rated. The main idea is that the more users vote a movie in the IMDb, the likelier that 

movie is rated by users in the data set no matter what its rating is.   

4.5.3. User demographic information 

A CF system usually keeps user demographic information such as age, gender, 

occupation, addresses besides items’ properties and ratings. This kind of information can 

sometimes be related to the ratings. For example, gender can be important demographic 

information to estimate which items might be enjoyed by users. Female users might be 

interested in female-specific items although male users might be fascinated by items 

female users do not like. Likewise, the age range is also prominent demographic 

information for CF systems. Since the movie-related data set is used in the experiments. 

It is expected that younger users usually like comedy or action movies while older users 

enjoy drama movies. The hypothesis is that user demographic information especially age 

range helps attackers reconstruct the rated items from the rated and fake items in the 
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experiments. The ages are divided into five groups, which are 0-24, 25-34, 35-44, 45-54, 

and 55+ and a movie genre is defined to each group. The hypothesis is combined with the 

main method to test whether the approach is suitable to guess the rated items. 

4.6. Complexity Analysis 

Complexity analysis of the proposed solution is given by laying out the main steps 

of the reconstruction algorithm. The algorithm includes four main steps:  

i. It starts with eliminating noise by widely-used methods (SVD/PCA/QR/2D-

DCT). For a matrix of n rows (users) and m columns (items), the 

computational complexity of a full SVD is O(𝑚2𝑛). However, when top k 

singular values are selected instead of all to eliminate the noise, SVD matrix 

can be computed in O(nmk). Likewise, the computational complexity of QR 

is approximately same as SVD. On the other hand, PCA requires more time 

than SVD because PCA first needs to compute covariance matrix taking 

O(𝑚𝑛2) and then apply the dimension reduction taking O(mnk). The total 

computational complexity of PCA is O(𝑚𝑛2+mnk). The computational 

complexity of 2D-DCT and inverse 2D-DCT is the same and is O(𝑚3 +

𝑛3). 

ii.  In the second step, the number of the real ratings is estimated from the 

disguised data for each user or item based on β selection 

(𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠/𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠). Estimating the number of real ratings from the 

disguised data is explained in detail in section 4.4.  

iii.  Sorting has been accomplished because it is claimed that larger values 

demonstrate the real rated items.  

iv.  In the last step, top 𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠/𝑛𝑅𝑎𝑡𝑒𝑑𝑢𝑠𝑒𝑟𝑠 items/users are selected 

from the sorted data. There is a small difference between total 

computational complexities of the proposed method based on β selection. 

When each user selects β in the same way, estimating the real rated number 

calculation is performed for each user. All items for each user should be 

sorted, which takes O(mlogm). When β is selected randomly by each user, 

estimating the real rated number is performed for each item and the 

algorithm iterates among items. This time, the ratings of each item are sorted 
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taking O(nlogn). There are m items in the matrix, so the total time is 

O(mnlogn). The complexity analysis is summarized in Table 4.1. 

Complexity analysis of the proposed method with the auxiliary information should 

also be considered briefly. The computation complexity of the random data distribution 

is O(nm) because, for each user, all items are checked whether an item lies out of the 

predefined range or not. Total votes approach is analogous to the main method. In that 

case, after estimating the number of the real rated items for each user, total votes approach 

is applied instead of SVD decomposition. The summary of the computational complexity 

is given in Table 4.2. 

The computational complexity of the main method given in Table 4.1 and using 

total votes approach only given in Table 4.2 are similar. When the main method and 

auxiliary information are used together, their computational time is taken into 

consideration separately to compute total computation time. 

4.7. Experiments 

Experiments are conducted to show how much accuracy can be maintained by the 

proposed approaches to derive actual rated items from the disguised data. In the 

experiments, the auxiliary information is also utilized with data reconstruction methods 

Table 4.1. The computational complexity of the proposed solution 

The main steps of proposed solution Computational complexity 

Eliminating noise (SVD) O(nmk) 

# of the real ratings (t) are estimated based on β selection O(nm) or O(mn) 

Sorting the item or users O(nmlogm) or O(mnlogn) 

Selecting top t items or users from the sorted data O(nt) or O(mt) 

Total estimated 

O(nmk +n(m+mlogm+t)) 

or 

O(nmk +m(n+nlogn+t)) 

 

 

Table 4.1. The computational complexity of used auxiliary informationTable 4.2. The computational 

complexity of the proposed solution 

The main steps of proposed solution Computational complexity 

Eliminating noise (SVD) O(nmk) 

# of the real ratings (t) are estimated based on β selection O(nm) or O(mn) 

Sorting the item or users O(nmlogm) or O(mnlogn) 

Selecting top t items or users from the sorted data O(nt) or O(mt) 

Total estimated 

O(nmk +n(m+mlogm+t)) 

or 

O(nmk +m(n+nlogn+t)) 

 

Table 4.2. The computational complexity of used auxiliary information 

The main steps of proposed approach Computational complexity 

# of the real ratings (t) are estimated O(nm) 

Taking IMDb data (m) based on rated items (assume p) O(npm) 

Sorting the items (p) O(nplogp) 

Selecting top t items from the sorted data O(nt) 

Total estimated O(n(m+pm+plogp+t) 

 

 

Table 4.3. The computational complexity of used auxiliary information 

The main steps of proposed approach Computational complexity 

# of the real ratings (t) are estimated O(nm) 

Taking IMDb data (m) based on rated items (assume p) O(npm) 

Sorting the items (p) O(nplogp) 

Selecting top t items from the sorted data O(nt) 

Total estimated O(n(m+pm+plogp+t) 
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to improve the accuracy results. Auxiliary information is a very strong tool to estimate 

the rated items. In some cases, the contribution of only auxiliary information is equal to 

the main data reconstruction method (such as the SVD-based method). 

4.7.1. Data set and evaluation metric 

The standard 100K MovieLens data set is used in the experiments. Precision and 

recall results of the experiments are measured. Note that precision is the ratio of the 

number of the correctly reconstructed rated items to the number of marked rated items. 

The recall is the ratio of the correctly reconstructed rated items to the number of rated 

items. 

4.7.2. Methodology 

Each experiment is conducted 100 times to obtain average precision and recall 

results. To generate random numbers, different σ values are used. 0.33, 0.67, 1, 2, and 3 

are chosen as σ the values. Different σ values are used to show how results change when 

the σ values get larger. Also, experiments are conducted based on different β values. The 

density of MovieLens is 6%. A priori knowledge about MovieLens is used while choosing 

how many unrated cells are filled. If larger values are selected, the data set turns into 

random data set. In that case, predicting the real ratings from large random data might be 

illogical. Therefore, the value of β is limited to the density of the data set. The density, 

6%, is depicted d. Different density values both less and greater than d are picked. The β 

values are set d/4, d/2, d, and 2d to test how precision and recall results change based on 

different density values. 

4.7.3. Experimental results 

Experiment 1: Since MovieLens is a sparse data set, the first step is to investigate 

a suitable default value to fill all empty cells. As mentioned before, zero ratings, user 

average, and item average can be commonly used to obtain a denser data set. Different 

trials are carried out for each noise elimination method with varying σ and β. A small part 

of the results for each reconstruction method is shown in Figure 4.1 when the Gaussian 

distribution is selected. The recall results differ for various σ and β; however, the figure 

shows similar trends for different σ and β. It is clear in Figure 4.1. that filling unrated 

items with zero ratings rather than the user or item average gives the best results for 
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different noise elimination methods. Because larger absolute ratings are considered as the 

rated items assigning zero ratings to all unrated cells is the best way to estimate the rated 

items from the disguised data. Therefore, one can conclude that filling all unrated cells 

with zero helps attackers ignore small absolute ratings, which indicate unrated and 

random ratings. Consequently, the approach is selected as the default value to fill in all 

unrated cells for the rest of the experiments. 

After determining which default value should be used to obtain a denser data set for 

better reconstruction results, the next objective is to find out the best noise elimination 

method among four different methods. The hypothesis is that the fake rated items might 

be considered as the noise. If the noise is eliminated, the rest can indicate the real rated 

items. However, it is clear that the noisy data cannot be eliminated completely; hence, the 

data, which is close to zero, is considered as the noise. To test the approach, the value of 

β is picked 6%. It means that all users randomly select 6% of their unrated items to fill 

random numbers. To generate random numbers based on the Gaussian distribution in 

Table 4.3, different σ values are selected. The number of dimensions/principals is set to 

10 for SVD, PCA, and QR. A threshold value for 2D-DCT is defined to eliminate high-

frequency coefficients, which indicate the noise in the experiment and set values less than 

the threshold to zero. The selected threshold value is 0.01. Then, data is reconstructed 

using the inverse 2D-DCT function. After reconstructing data using one of the four 

methods, the estimation of the real rated items process has begun. Since the number of 

the real rated items is predicted for each user, the greater ratings are marked as the rated 

one from the reconstructed data. The purpose is to discard the smaller data because the 

smaller data is considered as the noise. Table 4.3 shows recall and precision for each 

 

Figure 4.1. Recall with different default values 

 

Table 4.4. Recall and precision results for different reconstruction methods when β = 

6% 

Figure 4.1. Recall with different default values 
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method. The best results are given in bold font for convenience for each row of the table. 

As seen from Table 4.3, SVD is the best method when compared with others for most of 

the cases. Only DCT can achieve to beat SVD when σ is 0.33. QR is the worst when σ is 

0.33 and 0.67. It only manages to outperform DCT when σ is 1, 2 and 3. Although SVD 

beats the PCA for all σ values, the difference between these two elimination methods is 

marginal. Precision and recall consistently decline for all methods for increasing values 

of σ, which is anticipated. The more the noise is eliminated, the more the results are 

improved. Consequently, the results show that SVD outperforms all other noise 

elimination method in terms of precision and recall. After testing different methods with 

different σ values, SVD is selected as the best method among others. For following 

experiments, SVD is determined as the main method to predict the real rated items within 

the rated and fake items.  

Experiment 2: As mentioned earlier, different data disguising methods are 

proposed to protect individuals’ privacy. Thus, it is first evaluated that all users select β 

values in the same way. In terms of the results of Experiment1, SVD is chosen to estimate 

the rated items from the disguised data. In this experiment, the results of SVD are 

investigated in terms of various σ values with different β values. Table 4.4 shows that 

when the σ is 1, how different β values affect the estimation of rated items as well as fake 

items. precR and recR demonstrate the precision and recall for the estimation of rated 

items, respectively. Likewise, precU and recU display the precision and recall for the 

estimation of unrated/fake items, respectively. As seen from Table 4.4, there are two 

different cases based on selecting the σ. 

i. The first case is that the server defines σ and the distribution type and let the users 

know them. Each user employs the fixed σ value and the distribution type. Table 

Table 4.3. Recall and precision results for different reconstruction methods when β = 6% 

  SVD PCA DCT QR 
 

σ recall precision recall precision recall precision recall precision 

Gaussian  

Dist. 

(σ is 

fixed) 

0.33 0.78095 0.78507 0.77776 0.78187 0.78649 0.79065 0.71347 0.71723 

0.67 0.76435 0.76838 0.76037 0.76439 0.70394 0.70765 0.69299 0.69665 

1 0.74776 0.75171 0.74437 0.74830 0.66762 0.67115 0.68158 0.68518 

2 0.72278 0.72660 0.72021 0.72401 0.63353 0.63688 0.66275 0.66625 

3 0.71603 0.71981 0.71483 0.71861 0.62478 0.62808 0.65814 0.66162 

 

 

Table 4.5. Recall and precision results for SVD when σ is 1Table 4.6. Recall and precision results for 

different reconstruction methods when β = 6% 

  SVD PCA DCT QR 
 

σ recall precision recall precision recall precision recall precision 

Gaussian  

Dist. 

(σ is 

fixed) 

0.33 0.78095 0.78507 0.77776 0.78187 0.78649 0.79065 0.71347 0.71723 

0.67 0.76435 0.76838 0.76037 0.76439 0.70394 0.70765 0.69299 0.69665 

1 0.74776 0.75171 0.74437 0.74830 0.66762 0.67115 0.68158 0.68518 

2 0.72278 0.72660 0.72021 0.72401 0.63353 0.63688 0.66275 0.66625 

3 0.71603 0.71981 0.71483 0.71861 0.62478 0.62808 0.65814 0.66162 
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4.4 first shows the results when the uniform distribution is used and then illustrates 

the results while Gaussian distribution is chosen as the distribution type with the 

fixed σ. Their results are very close to each other. As the value of β increases, 

results of precR and recR for estimating the real rated items decreases. The simple 

reason is that β is associated with the number of unrated items that are filled and 

a small increase in β means that more unrated items are filled with the random 

numbers, which causes the reconstruction accuracy to decrease. On the other 

hand, results of precU and recU of predicting fake items are increased with larger 

β. The more randomness is added, the more accurate results are for predicting the 

fake items. It is obvious that recallR/precR and β are inversely correlated. On the 

contrary, recallU/precU and β are correlated. When β increases, accuracy for the 

fake items goes up.  

ii. In the second case (mix distribution), the server only defines 𝜎𝑚𝑎𝑥, and each user 

randomly selects own σ. The distribution type is identified randomly. This case 

performs the best results in Table 4.4. For example, when β is 6%, the results 

(recallR) for uniform, Gaussian, and mix distribution are 0.74791, 0.74825, and 

0.76751, respectively. Considering the results from the first case, the distribution 

type may not affect the reconstruction because their results are very close to each 

other. Therefore, the server does not need to know the distribution type. For 

example, recallR with β being 1.5% is 0.88686 and 0.88726 for uniform and 

Table 4.4. Recall and precision results for SVD when σ is 1 

 
σ β recallR precR recallU precU 

Uniform Dist. 

(σ is fixed) 

1 0.015 0.88686 0.8922 0.5072 0.49361 

1 0.03 0.82689 0.8314 0.6196 0.61204 

1 0.06 0.74791 0.7519 0.7217 0.71746 

1 0.12 0.64908 0.6524 0.8056 0.80328 

Gaussian Dist. 

(σ is fixed) 

1 0.015 0.88726 0.8926 0.5090 0.49537 

1 0.03 0.82729 0.8318 0.6205 0.61294 

1 0.06 0.74825 0.7522 0.7221 0.71783 

1 0.12 0.64916 0.6524 0.8056 0.80333 

Mix 

(σ is random) 

1 0.015 0.89416 0.8996 0.5408 0.52625 

1 0.03 0.83955 0.8442 0.6483 0.64042 

1 0.06 0.76751 0.7716 0.7438 0.73942 

1 0.12 0.67688 0.6803 0.8212 0.81886 

 

 

Table 4.7. Recall and precision results for SVD when β is 6%Table 4.8. Recall and precision results for 

SVD when σ is 1 

 
σ Β recallR precR recallU precU 

Uniform Dist. 

(σ is fixed) 

1 0.015 0.88686 0.8922 0.5072 0.49361 

1 0.03 0.82689 0.8314 0.6196 0.61204 

1 0.06 0.74791 0.7519 0.7217 0.71746 

1 0.12 0.64908 0.6524 0.8056 0.80328 

Gaussian Dist. 

(σ is fixed) 

1 0.015 0.88726 0.8926 0.5090 0.49537 

1 0.03 0.82729 0.8318 0.6205 0.61294 

1 0.06 0.74825 0.7522 0.7221 0.71783 

1 0.12 0.64916 0.6524 0.8056 0.80333 

Mix 

1 0.015 0.89416 0.8996 0.5408 0.52625 

1 0.03 0.83955 0.8442 0.6483 0.64042 
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Gaussian, respectively However, σ values affect accuracy because each user 

randomly picks own σ values between (0, 1] independently as seen from the mix 

distribution in Table 4.4. The σ value is fixed at 1 at the beginning of the trials in 

uniform and Gaussian distribution; however, users randomly select σ values in the 

second case (mix). Thus, for mix distribution as seen from Table 4.4, not all users 

select σ with 1 as in the first case (uniform or Gaussian dist.). Some users might 

select smaller σ values. Thus, how the σ affects the results are examined in Table 

4.5 after obtaining the results from Table 4.4. The results show that when the σ 

increases, accuracy decreases. Since a random σ is chosen by users between (0, 

𝜎𝑚𝑎𝑥] in the mix distribution, the accuracy is better in this case than the cases in 

uniform and Gaussian distributions where users utilize a fixed value of σ, which 

equals to  𝜎𝑚𝑎𝑥 in the mix distribution. For example, recallR for σ = 1 is 0.64908 

for uniform distribution with β = 12% while recallR with the same β for mix 

distribution is 0. 67688 using randomly selected σ. Table 4.5 shows the detailed 

results with different σ values when the β is fixed.  

Experiment 3: This experiment is conducted to test the auxiliary information, the 

number of total votes for each item in MovieLens. The public information is retrieved 

Table 4.5. Recall and precision results for SVD when β is 6% 

 σ β recallR precR recallU precU 

Uniform 

Dist. 

(σ is fixed) 

0.33 0.06 0.7807 0.7848 0.75861 0.75415 

0.67 0.06 0.7645 0.7686 0.74044 0.73608 

1 0.06 0.7479 0.7519 0.72171 0.71746 

2 0.06 0.7223 0.7261 0.69280 0.68873 

3 0.06 0.7153 0.7191 0.68496 0.68093 

Gaussian 

Dist. 

(σ is fixed) 

0.33 0.06 0.7806 0.7847 0.75854 0.75408 

0.67 0.06 0.7647 0.7687 0.74062 0.73626 

1 0.06 0.7483 0.7522 0.72208 0.71783 

2 0.06 0.7223 0.7261 0.69279 0.68872 

3 0.06 0.7156 0.7194 0.68528 0.68125 

Mix 

(σ is random) 

0.33 0.06 0.7850 0.7892 0.76354 0.75905 

0.67 0.06 0.7776 0.7817 0.75512 0.75068 

1 0.06 0.7675 0.7716 0.74380 0.73942 

2 0.06 0.7358 0.7397 0.70806 0.70390 

3 0.06 0.7234 0.7273 0.69411 0.69002 

 

 

Table 4.9. Recall and precision results based on IMDb data when σ is 1Table 4.10. Recall and precision 

results for SVD when β is 6% 

 σ β recallR precR recallU precU 

Uniform 

0.33 0.06 0.7807 0.7848 0.75861 0.75415 

0.67 0.06 0.7645 0.7686 0.74044 0.73608 
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from the IMDb. In other words, IMDb provides auxiliary information for each item in 

MovieLens. The aim is to predict rated items from the disguised data set. The claim is 

that a movie with more number of total votes in the IMDb is more likely to be voted in 

MovieLens data set regardless of its rating. It means that even a movie with relatively 

lower rating could achieve to be rated by users in MovieLens. The value of ratings is not 

considered important while deciding whether it is rated or not. In this experiment, 

MovieLens’s items are sorted in descending order based on public information, the total 

number of votes. For each user, the number of rated items, 𝑛𝑅𝑎𝑡𝑒𝑑𝑖𝑡𝑒𝑚𝑠,  from the 

disguised data is estimated before picking top nRateditems items from the sorted data. As 

in Experiment 2, the results are first demonstrated in Table 4.6 when the σ is 1 with 

different β values. After comparing the results of Table 4.6 with Table 4.4, Table 4.6 

achieves better results for each β values with the help of auxiliary information. Table 4.4 

gives the best result for mix distribution with β being 1.5%. The recallR is 0.89416 in 

Table 4.4 while the result for the same parameters in Table 4.6 is 0.90496 when auxiliary 

information is used. The other remarkable fact is that the results are not relevant to 

distribution type and different σ values. While distribution type is changed in Table 4.6, 

all results remain almost similar. 

Likewise, as seen from Figure 4.2, results are not affected by varying values of σ. 

Difference between them is unnoticeable slight. On the other hand, when β values 

increase in Table 4.6, recallR and precR decline because of the increased randomness. In 

Table 4.6. Recall and precision results based on IMDb data when σ is 1 

 σ β recallR PrecR recallU precU 

Uniform 

Dist. 

(σ is fixed) 

1 0.015 0.90481 0.91027 0.58979 0.57395 

1 0.03 0.85284 0.85750 0.67846 0.67019 

1 0.06 0.78079 0.78491 0.75877 0.75431 

1 0.12 0.69066 0.69415 0.82892 0.82659 

Gaussian 

Dist. 

(σ is fixed) 

1 0.015 0.90501 0.91047 0.59069 0.57483 

1 0.03 0.85278 0.85744 0.67833 0.67006 

1 0.06 0.78081 0.78493 0.75879 0.75433 

1 0.12 0.69082 0.69431 0.82901 0.82668 

Mix 

(σ is random) 

1 0.015 0.90496 0.91042 0.59045 0.57459 

1 0.03 0.85276 0.85742 0.67829 0.67002 

1 0.06 0.78083 0.78495 0.75881 0.75435 

1 0.12 0.69058 0.69407 0.82888 0.82655 

 

 

Table 4.11. Recall and precision results based on IMDb data when σ is 1 

 σ β recallR PrecR recallU precU 

Uniform 

Dist. 

(σ is fixed) 

1 0.015 0.90481 0.91027 0.58979 0.57395 

1 0.03 0.85284 0.85750 0.67846 0.67019 

1 0.06 0.78079 0.78491 0.75877 0.75431 

1 0.12 0.69066 0.69415 0.82892 0.82659 
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other words, the number of fake rated items are increased with larger β values. This 

situation affects the reconstruction results to estimate correct rated items from the 

disguised data. As seen from Table 4.6, while recallR for β = 3% is 0.90481, recallR for 

β = 12% is 0.69066 for uniform distribution. When the same parameters are chosen in 

Table 4.4, recallR for β = 3% and β = 12% is 0.82689 and 0.64908, respectively. In terms 

of recallU and precU, the number of fake rated items increase in parallel with increasing 

β; therefore, the accuracy of truly predicted fake items increases. The results show that 

auxiliary information is very strong assumption to estimate the real rated items.  

Experiment 4: The distribution type used provides another auxiliary information. 

Items that fall out of the range based on the distribution are expected to be rated. Precision 

and recall are evaluation criteria to evaluate how much this approach helps improve the 

results for each distribution type. Table 4.7 demonstrates the results. As expected, 

precision is 1 for the uniform distribution for each β value. However, the precision value 

changes for the Gaussian distribution when the β value goes up. With increasing β, the 

randomness also increases; thus, some unrated items might be selected as rated items. 

Consequently, the precision value decreases. Precision is important to understand how 

much of the items marked rated are indeed rated, but not enough to assess the approach.  

The recall results of Experiment 4 are very low when compared with Experiment 2 and 

Experiment 3. The remarkable point in this experiment for Gaussian distribution and the 

mix is that precision and β are inversely correlated. However, changing β does not affect 

the recall. The recall stays almost similar for each different β with the same σ. For 

example, Table 4.7 shows that the recall results in mix distribution are 0.12852 and 

0.12868 for β = 1.5% and 12%, respectively.  

 

Figure 4.2. Recall with β = 6% for utilizing IMDb data 

 

Table 4.12. Recall and precision results based on distribution type’s feature when σ is 1

 

Figure 4.2. Recall with β = 6% for utilizing IMDb data 
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Table 4.8 demonstrates the results for varying σ values and fixed β. Although 

different β values may not affect recall results with the same σ, changing σ values 

decrease recall results. As σ goes up, the range of random numbers added to the original 

data increases. As a result, the real rated items, which fall out of the range, become less. 

As seen from Table 4.8, recall values are 0.60348 for σ being 0.33 and 0.07791 for σ 

Table 4.7. Recall and precision results based on distribution type’s feature when σ is 1 

 σ β recallR precR 

Uniform Dist. 

(σ is fixed) 

1 0.015 0.23365 1 

1 0.03 0.23316 1 

1 0.06 0.23272 1 

1 0.12 0.23279 1 

Gaussian Dist. 

(σ is fixed) 

1 0.015 0.03257 0.98301 

1 0.03 0.03263 0.96432 

1 0.06 0.03261 0.93102 

1 0.12 0.03253 0.87217 

Mix 

(σ is random) 

1 0.015 0.12831 0.98834 

1 0.03 0.12852 0.97667 

1 0.06 0.12772 0.95293 

1 0.12 0.12868 0.91373 

 

Table 4.8. Recall and precision results based on distribution type’s feature when β is 6% 

 σ β recallR precR 

Uniform Dist. 

(σ is fixed) 

0.33 0.06 0.60348 1 

0.67 0.06 0.34506 1 

1 0.06 0.23272 1 

2 0.06 0.1164 1 

3 0.06 0.07791 1 

Gaussian Dist. (σ is fixed) 

0.33 0.06 0.35704 0.99346 

0.67 0.06 0.09169 0.97427 

1 0.06 0.03261 0.93102 

2 0.06 0.00726 0.75565 

3 0.06 0.00443 0.65177 

Mix 

(σ is random) 

0.33 0.06 0.59425 0.9898 

0.67 0.06 0.28241 0.97841 

1 0.06 0.12772 0.95293 

2 0.06 0.02771 0.81255 

3 0.06 0.01502 0.70946 

 

 

Table 4.13. Recall and precision results with σ being 1 when auxiliary information and SVD is used 

togetherTable 4.14. Recall and precision results based on distribution type’s feature when σ 

is 1 
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being 3 in the uniform distribution, respectively. As mentioned at the beginning of this 

experiment, precision results for uniform distribution are always 1 regardless of what σ 

and β values are.  

On the other hand, precision results decrease when the σ values go up for Gaussian 

and mix distribution. The reason why precision declines is that the randomness goes up 

when the σ increases. The chance of the rated items falling out of the range decreases due 

to the randomness. Thus, precision results are better for small σ values compared to the 

greater ones. For example, in Gaussian distribution, while the precision (precR) is 

0.99346 when σ is 0.33, the precision is 0.65177 when σ is 3. 

 Experiment 5: After demonstrating how recall and precision results change with 

varying methods and auxiliary information, a new experiment is performed to show joint 

effects of such approaches. In the previous experiments, the results of each method are 

illustrated separately. The proposed approach in this experiment is to integrate auxiliary 

information with noise elimination methods. In Experiment 1, SVD is selected noise 

elimination method, which produces the best results. In Experiment 4, distribution type’s 

feature is auxiliary information, and precision results are promising; however, recall is 

worse compared with Experiment 2 and Experiment 3. Therefore, using distribution 

type’s feature alone is not enough to estimate rated items, but it might be helpful as 

auxiliary information when integrated with other methods. In this experiment, the process 

of reconstructing rated items is performed in three steps. First, the approach of the 

distribution type’s feature is used as in Experiment 4. Ratings falling out of the range are 

accepted as the rated items. Second, the approach in Experiment 3 is applied on the 

reconstructed rated items from the first step. Remember that the approach in Experiment 

3 utilizes the number of total votes as auxiliary information, and it demonstrates good 

results although auxiliary information alone is used to estimate the rated items. In this 

experiment, some constraints about auxiliary information used in Experiment 3 are 

defined. If a movie is rated by at least 100,000 users in IMDb, that movie is likely to be 

rated by MovieLens’s users. If a movie is voted by less than 5,000 users in IMDb, that 

movie is ignored because it is supposed that the movie is unlikely to be rated by 

MovieLens’s users. The discarded movie is never selected as a rated item. Third, SVD in 

Experiment 2 is applied only if the number of reconstructed rated items from the first and 

second steps is less than the number of estimated rated items.  
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As seen from Table 4.9, uniform distribution results are better than others. 

Compared with the previous experiments, this experiment gives better results for greater 

β values. The results for small β values are similar. For example, in uniform distribution 

when β is 12%, recall and precision results are 0.72563 and 0.73120 in this experiment 

while those results for the same parameters in Experiment 3 are 0.69066 and 0.69415, 

respectively. In Experiment 2, recall and precision results for the same parameters are 

0.64908 and 0.65236. Integrating auxiliary information with SVD produces better results 

than utilizing these methods of reconstructions alone. The proposed approach using 

auxiliary information with SVD also gives better results for estimating the fake items, 

recallU and precU. For example, RecallU for the uniform distribution when β is 12% in 

Table 4.9, Table 4.6, and Table 4.4 are 0.85006, 0.82892, and 0.80560, respectively. 

Figure 4.3 shows the results of different methods when the uniform distribution is 

used. Experiment 2, called “SVD”, is compared with Experiment 3, depicted “Total 

votes-IMDb”, and Experiment 5, defined in the figure as “Bounds + Total votes + SVD”, 

respectively. The value of β is 6%. In this case, various σ values are tested while fixing β 

value. The results show that auxiliary information makes a great contribution rather than 

using only SVD with increasing σ. For small σ values, the contribution is much more than 

greater values of σ. For greater σ values such as 2 or 3, only using the approach in 

Experiment 3 is enough rather than using all approaches together. The only reason is that 

Table 4.9. Recall and precision results with σ being 1 when auxiliary information and SVD is used 

together 

 σ β recallR precR recallU precU 

Uniform Dist. 

(σ is fixed) 

1 0.015 0.89845 0.9169 0.62669 0.57296 

1 0.03 0.85797 0.8695 0.70811 0.68726 

1 0.06 0.79949 0.8077 0.78537 0.77649 

1 0.12 0.72563 0.7312 0.85006 0.84642 

Gaussian Dist. 

(σ is fixed) 

1 0.015 0.88518 0.9099 0.59882 0.53139 

1 0.03 0.84196 0.8565 0.68008 0.65479 

1 0.06 0.77552 0.7850 0.76051 0.7503 

1 0.12 0.68866 0.6948 0.82992 0.82584 

Mix 

(σ is random) 

1 0.015 0.89336 0.9150 0.61971 0.55821 

1 0.03 0.85315 0.8662 0.70128 0.67793 

1 0.06 0.79126 0.8002 0.77722 0.76758 

1 0.12 0.71051 0.7163 0.84178 0.83799 

 

 

Table 4.16. Recall and precision results with σ being 1 when auxiliary information and SVD is used 

together 

 σ β recallR precR recallU precU 

Uniform Dist. 

(σ is fixed) 

1 0.015 0.89845 0.9169 0.62669 0.57296 

1 0.03 0.85797 0.8695 0.70811 0.68726 

1 0.06 0.79949 0.8077 0.78537 0.77649 

1 0.12 0.72563 0.7312 0.85006 0.84642 

Gaussian Dist. 

(σ is fixed) 

1 0.015 0.88518 0.9099 0.59882 0.53139 

1 0.03 0.84196 0.8565 0.68008 0.65479 

1 0.06 0.77552 0.7850 0.76051 0.7503 

1 0.12 0.68866 0.6948 0.82992 0.82584 

Mix 

1 0.015 0.89336 0.9150 0.61971 0.55821 

1 0.03 0.85315 0.8662 0.70128 0.67793 
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the effect of distribution type (as seen from Experiment 4) decreases when σ value gets 

greater.   

Figure 4.4 displays similar results with Figure 4.3. The results for mix are slightly 

worse than the uniform distribution. However, the behavior of figures is the same. When 

the σ is larger, the gain decreases. Two figures demonstrate that either only auxiliary 

information or auxiliary information with SVD used to estimate real rated items is much 

better than only using SVD. 

Experiment 6: This experiment is conducted to display how much of real rated 

items can be reconstructed from the disguised data when each user selects the β value in 

 

Figure 4.3. Precision values for SVD, auxiliary information (total votes) and experiment 5 when 

uniform distribution with β=6% is used  

 

 

Figure 4.4. Precision values for SVD, auxiliary information (total votes) and experiment 5 when 

mix distribution with β=6% is used 

 

 

Table 4.17. Recall and precision results based on SVD with σ being 1 when the β is 

random  
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a different way. In the previous experiments, the server lets users know the fixed β value, 

and all users perturb their data using the same β value. The other option is to let each user 

fill unrated items inconsistently because privacy concerns might differ. This experiment 

lets users pick β values from the range (0, 𝛽𝑚𝑎𝑥]. Reconstruction of the real rated items 

is more challenging than the previous experiments because each user independently picks 

the number of unrated items to fill based on selected β. However, each user fills unrated 

items with the fixed predefined β in the previous experiments. The experiment is similar 

to Experiment 2. There are two different cases selecting σ values as it is explained in 

Experiment 2. Results are given in Table 4.10 for varying values of β when σ is 1. Results 

regardless of the distribution type are very similar. For small β values, the results are 

promising. As β increases, the results have gradually decreased. As seen from Table 4.10, 

the distribution type is not a factor affecting the results. Mix distribution is slightly better 

than the others. This also proves that the distribution type is inert. The only reason why 

mix distribution is better than the others is that the σ is randomly selected by each user. 

The upper bound of σ is 1 when mix distribution is employed. Users picks a random value 

of σ from the range (0, 1]. The probability of selecting σ being 1 for every user is very 

low in mix distribution as it occurs in the cases of uniform or Gaussian distribution. Note 

that Experiment 2 shows that σ and reconstruction results are inversely correlated. When 

the β is 1.5% if this experiment (Experiment 6) is compared with Experiment 2, the best 

precision for mix distribution is 0.94191 and 0.89960 for Experiment 6 and 2, 

Table 4.10. Recall and precision results based on SVD with σ being 1 when the β is random 

 σ β recallR precR 

Uniform 

Dist. 

(σ is fixed) 

1 0.015 0.93653 0.93995 

1 0.03 0.89798 0.89941 

1 0.06 0.84127 0.84062 

1 0.12 0.76292 0.76239 

Gaussian 

Dist. 

(σ is fixed) 

1 0.015 0.93640 0.94063 

1 0.03 0.89800 0.90037 

1 0.06 0.84303 0.83932 

1 0.12 0.76398 0.75806 

Mix 

(σ is random) 

1 0.015 0.93856 0.94191 

1 0.03 0.90200 0.90312 

1 0.06 0.84831 0.84967 

1 0.12 0.77899 0.77173 
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respectively. The worst precision for mix distribution is obtained when the β is 12%, 

which are 0.77173 and 0.68030 for Experiment 6 and 2, respectively. The results show 

that SVD gives better results with the approach used in this experiment. 

Figure 4.5 compares precision results for Experiment 6 and Experiment 2 when the 

β is set 6% and the σ varies. As explained at the beginning of Experiment 6, the β is 

selected by each user randomly. As seen from Figure 4.5, SVD gives better results in 

Experiment 6. The other important result is that when the σ gets larger, precisions are 

slightly worse although the fall of results in Experiment 2 is much more. 

Experiment 7: Auxiliary information is employed together with SVD to improve 

the results of Experiment 6. When β is random, Eq.4.9. is used to estimate the number of 

real rated items, and this equation requires 𝛽𝑒𝑥𝑝. In this case, the problem is to find out 

the number of users rating an item. On the other hand, when the β is fixed as in Experiment 

3 and Experiment 5, the problem is to find out the number of items rated by a user using 

the fixed β value. In those experiments, the number of total votes for each item is used to 

select rated items by users. The same approach cannot be applied in this experiment. The 

question in this experiment is to find out which users rate the specific item. In this case, 

user demographic information might help guess items. MovieLens data set contains users’ 

age. Also, each item has movie genre. The hypothesis is that different age range like 

different movie genres. Assume that the ages up to 25 like comedy movies, ages from 25 

to 34 like action and adventure movies, ages 35-44 enjoy Sci-fiction, ages 45-54 like a 

thriller, and ages 55 and older enjoy drama movies. In the experiment, SVD is first applied 

 

Figure 4.5. Precision with fixed and random β for SVD 

 

 

Figure 4.6. Precision with fixed and random β for SVD 
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as in Experiment 6, and then auxiliary information is performed to improve the 

reconstruction results. For example, if a movie’s genre is a comedy, then that movie is 

checked whether all users by the ages up to 25 are marked as rated by SVD. If there are 

users who are not marked as rated by SVD in that range, those users are marked rated and 

added to the reconstruction results because the user is assumed to rate the item based on 

his age group. After adding a new user, the last user marked in the SVD is removed from 

the reconstruction results. As seen from Figure 4.6, the assumption does not hold, as 

believed. Although some movies might have more than one genres, each movie in the 

experiment is assumed to have only one genre because SVD gives very good results as 

seen Experiment 6 compared with previous experiments. SVD has already proved itself 

to be very useful while reconstructing real rated items; therefore, it is not desirable to 

complicate the process with different movie genres to modify the promising 

reconstruction results of SVD.  

A new experiment is conducted to show how results vary with different β values. 

As seen from Figure 4.7, for small β values, the proposed approaches utilized 

demographic information are close to SVD results. For example, when the β value is 3% 

for Gaussian distribution, the precision for SVD is 0.90102 while the precision for SVD 

with demographic information is 0.89870. However, the β value gets larger; the gap 

between the proposed approach and SVD expands as seen from Figure 4.7. For example, 

 

Figure 4.6. Precision with β = 6% for SVD and demographic information with SVD 
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when the β value is set 12% for Gaussian distribution, the precision for SVD is 0.75889 

while the precision for SVD with demographic information is 0.74693. 

4.8. Conclusions 

Users might have different concerns about privacy; therefore, different data 

disguising methods are proposed to meet their expectations. In the study targeted in this 

chapter, researchers propose that users disguise their data inconsistently to preserve their 

individual privacy. In this chapter, it is hypothesized that data disguising methods may 

not protect the privacy as much as believed. Even users disguise their private data 

inconsistently, the attacker server can guess the rated items. Experiments exhibit that it is 

possible to predict rated items by employing the proposed reconstruction methods with 

auxiliary information. A common property of the selected data reconstruction methods is 

to eliminate the noise. These reconstruction methods require that the data be complete; 

therefore, three different methods of filling unrated items are evaluated. Empirical results 

show that zero rating approach beats other two, user and item averages. Besides, different 

noise elimination methods used as data reconstruction methods are evaluated and SVD, 

one of the selected methods, is chosen as the main method in the experiments due to its 

success. For σ being 1, SVD has a 65-88% recall results correctly predicting the real rated 

cells when the fixed β is used by each user in the same way. When each user picks varying 

β independently, SVD has a 76-94% recall results for choosing the real rated cells. The 

experiments demonstrate that small σ values provide better results. As β values increase 

 

Figure 4.7. Precision with σ = 1 for SVD and demographic information with SVD 

 

 

Figure 4.8. Precision with σ = 1 for SVD and demographic information with SVD 
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(the randomness increases), the results for predicting the real rated items decrease. On the 

other hand, the ratio of predicting fake items increases with increasing β. The other 

important outcome of the experimental results is that precision results are very close to 

recall results.  

It is shown that auxiliary information plays an important role to improve the 

reconstruction results. The experiments display that some powerful auxiliary information 

makes a significant contribution to the results while some auxiliary information does not. 

For example, the contribution of IMDb data (total votes for each item) is tremendous for 

the reconstruction while the user demographic information approach used in the 

experiment cannot contribute to the results that much. The distribution type’s feature also 

provides advantages. Although random filling is used to disguise the original data, values, 

which fall out the range based on the distribution type, are accepted as the rated items. It 

is demonstrated that precision and recall results are improved using auxiliary information 

with SVD. For small σ values, the contribution is much more because the effect of the 

distribution type’s feature decreases while increasing σ values. The experiments show 

that identifying correct and useful auxiliary information is an important issue because all 

auxiliary information may not help attackers as much as thought.  
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5. ESTIMATING THE PRIVATE DATA IN DISTRIBUTED DATA-BASED 

PRIVACY-PRESERVING COLLABORATIVE FILTERING SYSTEM 

Up to now, it is assumed that the entire data set is held by a central server. To 

provide accurate recommendations, CF systems require adequate data. However, 

companies, especially new ones, may not produce reliable recommendations due to 

insufficient data in some cases. Data held by a CF system might be horizontally or 

vertically distributed between two or more companies (parties). Different privacy-

preserving collaborative filtering algorithms are proposed to protect parties’ privacy when 

they collaborate with each other. Nevertheless, some type of privacy attacks can be 

performed against the proposed methods to derive the private data. In this chapter, how 

much private data can be estimated from the targeted PPCF methods is examined. For 

this reason, privacy attack scenarios are planned in terms of the number of parties joining 

a prediction process. Moreover, the contribution of the auxiliary information is studied. 

Empirical results show that a remarkable amount of private data can be derived based on 

the data partitioning type between two-parties. 

5.1. Introduction 

The data in a CF system may be distributed between two or more parties to deal 

with the problem caused by the sparse data. Different parties can come together and share 

the data they have to overcome this difficulty. The parties, especially new ones, need to 

collaborate with each other to offer better recommendations.  Thus, the data the parties 

own is enriched and becomes more inclined to accurate recommendations. The data may 

be partitioned vertically or horizontally based on the parties’ needs. In HPD, two parties 

will have different users’ ratings for the same items. Since each party obtains more user 

ratings for their items, neighborhood selection and recommendations of CF algorithms 

will be positively affected by HPD. In the case of VPD, parties share different item sets 

for the same users. In this case, as the number of items for the same users increases, it can 

be possible to find more accurate similarities among users. Besides, the data in a CF might 

be distributed vertically or horizontally among multiple parties. The data different parties 

hold can be merged to accurate more reliable predictions as in the partitioned data. 

Although the data may be split between two parties, it may be divided into several parties. 

On the other hand, parties must protect their data against each other. They may not 

be eager to share their data with the others because of privacy, financial and legal 
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concerns. There are different algorithms proposed in distributed data-based PPCF 

systems to deal with all concerns. The aim of these algorithms is to hide real ratings and 

rated items of users as well as generate accurate recommendations. The existing 

algorithms protect the privacy of parties and their confidential data. There may be 

different attack scenarios to derive the private data, however; existing algorithms have 

not been analyzed in terms of estimating the private data from the disguised one.  

In this chapter, the problem of how much the private data can be derived when the 

numeric rating-based data is distributed vertically and horizontally among two or more 

parties is studied. Furthermore, the contribution of the auxiliary information is also tested 

to improve the accuracy rates. Experiments with the real data set demonstrate that it is 

likely to estimate a considerable amount of private data based on the partitioning type and 

the density of the data set. 

5.2. Privacy Attack Scenarios on Partitioned Data 

When the data in a CF system is partitioned between two parties, possible privacy 

attack scenarios have been examined. Privacy attack scenarios are divided into two parts 

according to the data partition. First, privacy attack scenarios on HPD are explained, then 

when the data is partitioned vertically, the kind of attacks that can be performed are 

scrutinized. 

5.2.1. Privacy attack scenarios on horizontally partitioned data 

The most common type of the privacy attack is to act as an active user. The attack 

of acting as an active user is performed as follows: A party which acts as an active user 

creates a fake rating vector and sends it to the other party to ask for a prediction for an 

item, q. The attacker party changes only one item’s value in his rating vector and the 

attacker deduces the real rating value of that item. The purpose is to derive intermediate 

results from the other party by changing the value of one item at a time. Consequently, 

the difference between the first result and the result obtained by changing the value of an 

item in the rating vector ensures the value of that item to be deduced. The attacker party 

repeats this process until deriving information about all items. In terms of the privacy of 

the proposed scheme, Polat (2006) proposes to employ PSPCP (as explained in Section 

2.2.2.1) to protect parties’ privacy against this kind of attack. According to the protocol, 

the active user’s rating vector is changed by the parties by adding fake items into the 
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active user’s rating vector or removing some rated items from his rating vector. For a 

better understanding of this protocol, the protocol can be explained with an example. Both 

parties collect rating values of all items from their users and create user-item matrices. 

Then, these ratings are transformed into z-score values. Assume that party B has five users 

and ten items. After Party B receives the ratings from its five users, B converts all ratings 

to z-score values as is seen from Figure 5.1.  

The protocol proposed by Polat (2006) is shown in an example in Figure 5.2. It is 

assumed that Party A wants to derive the data of Party B.  In this example, it is shown that 

the active user would like to ask for a prediction for the same item (item 9) twice.At the 

request of the first prediction, the active user’s rating vector and the requested item (item 

9 in the example) are sent to Party B. Party B selects some of the unrated items of the 

active user's rating vector randomly. Assume that the second and seventh cells are 

selected in this example. The selected cells of the active user’s rating vector are then filled 

with the averages of these items.  

In Figure 5.2, the average of the second item is calculated as (4+4+2+2)/4 =3, and 

the average of the seventh item is 4/1 = 4. After that, B converts the active user’s rating 

vector into z-score values and calculates the values of 𝐵𝐷
′  and 𝐵𝑁

′ . Finally, B sends these 

values (𝐵𝐷
′  and 𝐵𝑁

′ ) to the active user. The active user requests a prediction for the same 

 

Figure 5.1. A sample of transforming the original matrix 

 

 

Figure 5.1. A sample of transforming the original matrix 
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item again by simply changing the value of the first item. However, since B chooses 

different unrated cells every time to fill them with the average of the items (the second, 

the sixth, and the tenth items), the active user cannot derive a meaningful outcome from 

these intermediate results (𝐵𝐷
′  and 𝐵𝑁

′ ), even if he requests a prediction many times for 

the same item. 

Using the example, it can be demonstrated if the private data can be derived 

mathematically or not. Assume that Party A acts an active user and wants to derive 

information from Party B. B calculates 𝐵𝑁 and 𝐵𝐷 values by utilizing PSPCP and sends 

them back to A. Party A tries to deduce a result from the intermediate results. This 

situation is explained briefly in terms of 𝐵𝐷 values. Eq. 5.1. shows how 𝐵𝐷 is calculated 

as follows: 

 
𝐵𝐷 = 𝑧𝑎1∑ 𝑧𝑖1

𝑛𝐵

𝑖=1
+ 𝑧𝑎2∑𝑧𝑖2

𝑛𝐵

𝑖=1

+⋯+ 𝑧𝑎𝑚∑𝑧𝑖𝑚

𝑛𝐵

𝑖=1

 (5.1) 

 

Figure 5.2. An example of the targeted protocol 
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If the PSPCP is not applied, Party B only uses the items which the active user voted 

to compute 𝐵𝐷. The active user obtains the results in Eq. 5.2. 

 

𝐵𝐷1 = 𝑧𝑎1∑𝑧𝑖1

𝑛𝐵

𝑖=1

+ 𝑧𝑎3∑𝑧𝑖3

𝑛𝐵

𝑖=1

+ 𝑧𝑎4∑𝑧𝑖4

𝑛𝐵

𝑖=1

+ 𝑧𝑎8∑𝑧𝑖8

𝑛𝐵

𝑖=1

 (5.2) 

However, since the PSPCP is applied, as shown in Figure 5.2, B randomly selects 

some items, the second and the seventh items in the example, and fills them with the mean 

of the corresponding item. Consequently, the result derived by the active user is shown 

in Eq. 5.3. 

𝐵𝐷1
′ = 𝑧𝑎1∑𝑧𝑖1

𝑛𝐵

𝑖=1

+ 𝑧𝑎2∑𝑧𝑖2

𝑛𝐵

𝑖=1

+ 𝑧𝑎3∑𝑧𝑖3

𝑛𝐵

𝑖=1

+ 𝑧𝑎4∑𝑧𝑖4

𝑛𝐵

𝑖=1

+ 𝑧𝑎7∑𝑧𝑖7

𝑛𝐵

𝑖=1

+ 𝑧𝑎8∑𝑧𝑖8

𝑛𝐵

𝑖=1

 (5.3) 

Even if the active user changes the value of a single item of the same rating vector 

each time, the PSPCP applied by Polat (2006) prevents a disclosure from the total results 

because Party B selects different unrated cells and fills them with the selected items’ mean 

each time. For example, the active user would like to ask for a prediction for the ninth 

item twice as seen from Figure 5.2, in that case, since B chooses different unrated cells 

(the second, the sixth, the tenth items) to apply the protocol, the value of 𝐵𝐷 is calculated 

as in Eq. 5.4. 

𝐵𝐷2
′ =  𝑧𝑎1∑𝑧𝑖1

𝑛𝐵

𝑖=1

+ 𝑧𝑎2∑𝑧𝑖2

𝑛𝐵

𝑖=1

+ 𝑧𝑎3∑𝑧𝑖3

𝑛𝐵

𝑖=1

+ 𝑧𝑎4∑𝑧𝑖4

𝑛𝐵

𝑖=1

+ 𝑧𝑎6∑𝑧𝑖6

𝑛𝐵

𝑖=1

+ 𝑧𝑎8∑𝑧𝑖8

𝑛𝐵

𝑖=1

+ 𝑧𝑎10∑𝑧𝑖10

𝑛𝐵

𝑖=1

 

(5.4) 

The PSPCP ensures that the active user does not estimate anything even if he asks 

for a prediction for the same target item because B randomly selects some items that are 

not rated by the active user and fills them with the corresponding item’s mean at every 

turn. The protocol protects B from the party acting as an active user to estimate 

information from the intermediate results.  Even if the active user sends the same rating 

vector over and over, B chooses different unrated cells every time. Therefore, an inference 

cannot be made. While the proposed protocol increases privacy, filling the unrated cells 

may decrease the accuracy of the prediction. Since privacy and accuracy are conflicting 
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goals, it is crucial to scrutinize how much accuracy is sacrificed for the sake of privacy 

improvements. On the other hand, the originality of the active user’s ratings is also 

significant. When filling unrated cells, the original value of the active user’s ratings is 

distorted, and consequently, accuracy is affected.  Assuming that the accuracy rate is 

prominent, it is anticipated that no randomization has been added to the rating vector to 

which the active user has sent. In such a case, it is necessary to examine whether the 

active user can derive private information from the intermediate results. Since the parties 

use z-score values instead of the original rating values, it is supposed that the active user 

sends own z-score values to the parties rather than his real rating values. When the active 

user sends z-score values instead of his real ratings to Party B, B calculates the final result 

(𝐵𝐷1) from Eq. 5.2. using only items that the active user is rated, and sends it back to the 

active user. Since the active user converts his real values into z-score values, he tries to 

derive a result from Party B only by increasing or decreasing the z-score value of the 

related item without changing the z-score values of the rest of the items. The active user 

requests a prediction for the first item again by only changing the z-score value of the 

first item, he gets the result (𝐵𝐷2) in Eq. 5.5. 

 
𝐵𝐷2 = 𝑧𝑎1′∑𝑧𝑖1

𝑛𝐵

𝑖=1

+ 𝑧𝑎3∑𝑧𝑖3

𝑛𝐵

𝑖=1

+ 𝑧𝑎4∑𝑧𝑖4

𝑛𝐵

𝑖=1

+ 𝑧𝑎8∑𝑧𝑖8

𝑛𝐵

𝑖=1

 (5.5) 

Looking at the Eq. 5.5, it is seen that the multiplication of the items that the active 

user has not changed is the same as Eq. 5.2. If Eq. 5.2 is subtracted from Eq. 5.5, the 

difference can help the active user derive a result about the first item. Using the result of 

Eq. 5.2 and Eq. 5.5, the following equations, Eq. 5.6, is obtained.  

 

𝐵𝐷2 − 𝐵𝐷1 =       𝑧𝑎1′∑𝑧𝑖1

𝑛𝐵

𝑖=1

+ 𝑧𝑎3∑𝑧𝑖3

𝑛𝐵

𝑖=1

+ 𝑧𝑎4∑𝑧𝑖4

𝑛𝐵

𝑖=1

+ 𝑧𝑎8∑𝑧𝑖8

𝑛𝐵

𝑖=1

− 𝑧𝑎1∑𝑧𝑖1

𝑛𝐵

𝑖=1

− 𝑧𝑎3∑𝑧𝑖3

𝑛𝐵

𝑖=1

− 𝑧𝑎4∑𝑧𝑖4

𝑛𝐵

𝑖=1

− 𝑧𝑎8∑𝑧𝑖8

𝑛𝐵

𝑖=1

 

𝐵𝐷2 − 𝐵𝐷1 = 𝑧𝑎1′∑𝑧𝑖1

𝑛𝐵

𝑖=1

− 𝑧𝑎1∑𝑧𝑖1

𝑛𝐵

𝑖=1

 

𝐵𝐷2 − 𝐵𝐷1 = ∑𝑧𝑖1

𝑛𝐵

𝑖=1

 (𝑧𝑎1′ − 𝑧𝑎1 ) 

(5.6) 
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When the result of Eq. 5.6 is evaluated, the active user has the values of 𝐵𝐷2and 

𝐵𝐷1. Besides, he can easily obtain the value of ∑ 𝑧𝑖1
𝑛𝐵
𝑖=1  since the active user knows his z-

score values. In other words, the active user may find the total value of the item of the 

users who rate the first item. However, the active user does not access the information 

about how many or which users rated the first item from the aggregate value. 

 
∑𝑧𝑖1

𝑘

𝑖=1

= 𝑧11 + 𝑧21 +⋯+ 𝑧𝑘1 (5.7) 

In Eq. 5.7, the active user cannot guess the number of k because he does not know 

the number of users who rate the first item. Even if he estimates the number of k, there is 

no way to guess which users rate that item. The active user only deduces from the results 

whether users voted the item or not. If the result is zero, it can be inferred that no user has 

never voted that item. 

Polat and Du (2006) define two conditions for privacy. The first one is to hide the 

real values of items.  When exchanging the data, parties cannot infer the real values from 

the data they receive. The other condition is to hide which items are rated. Parties cannot 

guess the list of the rated items. As shown in the previous example, users’ real rating 

values and which items rated are not estimated because of the proposed protocol. If the 

second privacy condition is violated, and the information of which items are rated by 

users is assumed as auxiliary information, it is examined whether the private data of the 

users can be predicted or not. 

 Some information can be estimated if the locations of the items that are rated by 

only one user are known as auxiliary information. In Figure 5.3, it assumed that the fourth, 

seventh and tenth items are rated once, and their locations are known as auxiliary 

information. Then, the active user derives the value of these items from 𝐵𝐷 values. It is 

then estimated the value of all rated items of these users (the first, the second and the fifth 

users) using the active user’s rating vector. The important part in this attack is to change 

the value of one item at a time and determine whether that item is rated or unrated and 

the value of it if rated based on the 𝐵𝑁 values. 

Likewise, if the locations of the items that are rated by only two users are known as 

an auxiliary information, the values of these items are estimated using the data obtained 

from the intermediate results and the data derived before. For example, suppose that the 
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fifth item is rated by two users (the second and fourth users) in Figure 5.4, and the figure 

depicts the locations of the items which are rated twice. Only the sums of the z-score 

values of these two users are derived from 𝐵𝐷 values. It is impossible to predict the z-

score values of these users from the total values. Since there is an equation and two 

unknowns, there exists infinitively many solutions. However, if the proposed assumption, 

where the locations of items are known as in Figure 5.3, is used to predict the real z-score 

values of the rated items, the value of the fifth item rated by the fourth user is easily 

estimated since the value of the fifth item which is rated by the second user is known. 

Applying the same privacy attack, if the value of the fifth item rated by the fourth user is 

estimated, all z-score values of the fourth user are simply derived without any other 

auxiliary information. As the amount of auxiliary information increases, the information 

derived also increases. 

5.2.2. Privacy attack scenarios on vertically partitioned data 

When the data is partitioned vertically between two parties, the active user asks for 

a prediction for q and sends his rating vector to the party which owns q. One of the parties 

can act as an active user and seek to derive the data of the other party. Assume that Party 

B owns q, and Party A acts as an active user. B computes the values of 𝐴𝑁
′ + 𝐵𝑁 and 𝐵𝐷, 

then sends them back to Party A according to the proposed scheme in Section 2.2.2.2. The 

final computation is done by Party A. Since Party B wants to protect his data from Party 

 

Figure 5.3. Auxiliary information: locations of the one-time-rated items 

 

 

 

Figure 5.3. Auxiliary information: locations of the one-time-rated items 
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A, Party B applies the PSPCP as mentioned in HPD. With this protocol, Party A never 

estimates Party B’s private data because every time the active user asks for a new 

prediction, Party B adds/removes some randomly items to/from the active user’s rating 

vector before computing the desired values (𝐴𝑁
′ + 𝐵𝑁

′  , 𝐵𝐷
′  ). As explained in Section 

5.2.1, the addition or subtraction of different items from the active user’s rating vector 

while producing a new prediction in each time ensures that the attacker cannot estimate 

the private data from the intermediate sums.   

When the off-line computation is applied in VPD, two parties need to exchange 

some data due to owning the half of the items. Since the parties have half of the items, 

the values of the items in the other half are necessary for online calculations. In online 

computation process, Party B computes 𝐴𝑁
′ + 𝐵𝑁

′ . To calculate the value of 𝐴𝑁
′ , Party B 

needs to compute it during the off-line computation and stores into ∑ ′′𝐴. However, both 

the use of permutation function and HE to store the required data off-line prevent to 

disclose the private data during exchanging the data. Besides, parties add random 

numbers to the encrypted scalar product results (∑ ′𝐴 𝑜𝑟 ∑ ′𝐵) to ensure their data cannot 

be derived. While decrypting these results, the other party cannot derive the real values 

because of the inserted random numbers. 

 

Figure 5.4. Auxiliary information: locations of the two times-rated items 

 

 

Figure 5.4. Auxiliary information: locations of the two times-rated items 
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5.3. Privacy Attack Scenarios on Distributed Data 

In distributed PPCF systems, parties may become targets of some privacy attacks 

when they merge their data. The other parties work together to derive the main party's 

data just as the MP can infer the private data from the other parties. In this section, these 

types of privacy attack scenarios are examined in the horizontal or vertical division of the 

data among z parties. 

5.3.1. Privacy attack scenarios on horizontally distributed data 

The attack of acting as an active user does not work on HDD because the active 

user only sends his data to the MP. Since the MP does not send the active user’s data to 

the other parties, the MP cannot perform an attack by manipulating the active user’s data. 

On the other hand, the MP may infer some information from the other parties’ interim 

results while asking for a calculation for the targeted item. Besides, the MP may collect 

the interim results for some items from users to produce recommendations to a new active 

user who will be in the same cluster in the future. Kaleli and Polat (2012b) propose 

IPDKNN protocol to deal with similar privacy attacks as explained in Section 2.2.3.1. 

According to the protocol, each party randomly fill some cells of the users who did not 

vote q with non-personalized ratings. Moreover, each party replaces some of the z-score 

values with zero before calculating the required data. Therefore, each party must calculate 

the required aggregate data values whenever the active user asks for a prediction even if 

q and the cluster of the active user do not change. The authors ensure that the MP cannot 

deduce any information from the interim results. Whenever the MP requests aggregate 

values from the other parties for the same q, different interim results are received because 

of fake users, who did not actually rate q and the removal of some z-score values in users’ 

rating vector.  

On the other hand, if all parties except the MP coalesce against the MP, the private 

data may be estimated from the final prediction (Kaleli and Polat, 2012b). The authors 

argue that such a privacy attack is possible, but they do not elaborate how it can be 

accomplished, so the details of this attack remain unclear. Therefore, the question is if it 

is likely to estimate the MP’s private data from the final prediction since all parties except 

the MP merge their aggregate data and work together? To answer this question, the final 

prediction formula is given in Eq. 5.8. 
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 𝑝𝑎𝑞 = 𝑃 + 𝑣𝑎 (5.8) 

In fact, it is difficult to obtain information from the value of 𝑝𝑎𝑞. Since the MP does 

not send the active user rating vector to the other parties, the average value of the active 

user rating vector (𝑣𝑎) is not calculated. However, if parties correlate among themselves, 

and one of the parties acts as an active user, the average value of the active user will be 

known in advance. In this case, the parties derive the value of P, (𝑃 = 𝑝𝑎𝑞 − 𝑣𝑎). P is 

rewritten in Eq. 5.9 in terms of values held by parties. Since one of the parties acts as an 

active user, the value of P and z-score values of the active user (∑ 𝑧𝑎𝑗
𝐽
𝑗=1 ) are known by 

parties. Besides, each party has his aggregate values (∑ 𝑧𝑢𝑗
𝑘𝑧
𝑢=1  𝑎𝑛𝑑 ∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞

𝑘𝑧
𝑢=1 ), the 

only unknown values belong to the MP in Eq. 5.9.  

 

P⏞
𝑘𝑛𝑜𝑤𝑛

=

∑ 𝑧𝑎𝑗
𝐽
𝑗=1
⏞    
𝑘𝑛𝑜𝑤𝑛

 [∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞
𝑘1
𝑢=1
⏞        

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

+ ∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞
𝑘2
𝑢=1
⏞        

𝑘𝑛𝑜𝑤𝑛

+⋯+∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞
𝑘𝑧
𝑢=1
⏞        

𝑘𝑛𝑜𝑤𝑛

]

∑ 𝑧𝑎𝑗
𝐽
𝑗=1⏟    
𝑘𝑛𝑜𝑤𝑛

[∑ 𝑧𝑢𝑗
𝑘1
𝑢=1⏟    

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

+ ∑ 𝑧𝑢𝑗
𝑘2
𝑢=1⏟    
𝑘𝑛𝑜𝑤𝑛

+⋯+∑ 𝑧𝑢𝑗
𝑘𝑧
𝑢=1⏟    
𝑘𝑛𝑜𝑤𝑛

]

 (5.9) 

Before trying to estimate unknown values in Eq. 5.9, the protocol proposed by 

Kaleli and Polat (2012b) is shown in an example in Figure 5.5 for a better understanding 

of it. Figure 5.5 illustrates how the targeted distributed PPCF protocol works briefly. After 

an active user sends his rating vector and q to the MP, the MP calculates active user’s 

cluster and sends active user’s cluster and q to the other parties.  Final prediction is 

performed by the MP. 

As seen from Figure 5.5, the active user rated the third, fourth and eighth items and 

asked for a prediction for the first item. Because z-score values of the rated items of the 

active user are known by the coalesced parties, P can be rewritten in terms of Figure 5.5 

in Eq.5.10., as follows: 

 

P =  
𝑧𝑎3 (∑ 𝑧𝑢3𝑣𝑑𝑢𝑞

𝑘1
𝑢=1 )

⏞          
𝑛1

+ 𝑧𝑎4 (∑ 𝑧𝑢4𝑣𝑑𝑢𝑞
𝑘1
𝑢=1 )

⏞          
𝑛2

+ 𝑧𝑎8 (∑ 𝑧𝑢8𝑣𝑑𝑢𝑞
𝑘1
𝑢=1 )

⏞          
𝑛3

+𝑁

𝑧𝑎3 (∑ 𝑧𝑢3
𝑘1
𝑢=1 )⏟      
𝑑1

+ 𝑧𝑎4 (∑ 𝑧𝑢4
𝑘1
𝑢=1 )⏟      
𝑑2

+ 𝑧𝑎8 (∑ 𝑧𝑢8
𝑘1
𝑢=1 )⏟      
𝑑3

+ 𝐷
 (5.10) 

where N is total values of numerator part of P (∑ 𝑧𝑎𝑗
𝐽
𝑗=1 [∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞

𝑘2
𝑢=1 , . .,

∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞
𝑘𝑍
𝑢=1 ]) and D is total values of denominator part of P held by the coalesced 
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parties (∑ 𝑧𝑎𝑗
𝐽
𝑗=1 [∑ 𝑧𝑢𝑗

𝑘2
𝑢=1 , . ., ∑ 𝑧𝑢𝑗

𝑘𝑧
𝑢=1 ]). 𝑑1, 𝑑2, 𝑑3 and 𝑛1, 𝑛2, 𝑛3illustrate unknown 

values belonging to the MP.  

As seen from Eq. 5.10, there is one equation with six unknown parameters. To solve 

the problem, six equations are needed according to the active user’s rating vector in Figure 

5.5. If the active user asks for a prediction for the same item (item 1) six times with the 

same rating vector, six equations are obtained. Otherwise, if the active user changes any 

rating in his vector, all z-score values would change in Eq. 5.10, so there would be no 

way to solve the problem. Therefore, it is assumed that the active user sends the same 

rating vector in a repeated manner until the private unknowns of the MP is estimated. In 

each prediction process, although the values of P, N, and D change, there is no problem 

to derive the private unknowns because the coalesced parties know their disguised 

aggregate values (∑ 𝑧𝑢𝑗𝑣𝑑𝑢𝑞
𝑘𝑧
𝑢=1  and ∑ 𝑧𝑢𝑗

𝑘𝑧
𝑢=1 ). After the active user receives the final 

prediction results, the partial results of the MP in Figure 5.5 can be derived by solving 

Eq. 5.11.  

 

Figure 5.5. An example of the targeted distributed PPCF protocol 

 

 

Figure 5.5. An example of the targeted distributed PPCF protocol 
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𝑃1 = 

𝑧𝑎3𝑛1 + 𝑧𝑎4𝑛2 + 𝑧𝑎8𝑛3 +𝑁1
𝑧𝑎3𝑑1 + 𝑧𝑎4𝑑2 + 𝑧𝑎8𝑑3 + 𝐷1

 

𝑃2 = 
𝑧𝑎3𝑛1 + 𝑧𝑎4𝑛2 + 𝑧𝑎8𝑛3 +𝑁2
𝑧𝑎3𝑑1 + 𝑧𝑎4𝑑2 + 𝑧𝑎8𝑑3 + 𝐷2

 

𝑃3 = 
𝑧𝑎3𝑛1 + 𝑧𝑎4𝑛2 + 𝑧𝑎8𝑛3 +𝑁3
𝑧𝑎3𝑑1 + 𝑧𝑎4𝑑2 + 𝑧𝑎8𝑑3 + 𝐷3

 

𝑃4 = 
𝑧𝑎3𝑛1 + 𝑧𝑎4𝑛2 + 𝑧𝑎8𝑛3 +𝑁4
𝑧𝑎3𝑑1 + 𝑧𝑎4𝑑2 + 𝑧𝑎8𝑑3 + 𝐷4

 

𝑃5 = 
𝑧𝑎3𝑛1 + 𝑧𝑎4𝑛2 + 𝑧𝑎8𝑛3 +𝑁5
𝑧𝑎3𝑑1 + 𝑧𝑎4𝑑2 + 𝑧𝑎8𝑑3 + 𝐷5

 

𝑃6 = 
𝑧𝑎3𝑛1 + 𝑧𝑎4𝑛2 + 𝑧𝑎8𝑛3 +𝑁6
𝑧𝑎3𝑑1 + 𝑧𝑎4𝑑2 + 𝑧𝑎8𝑑3 + 𝐷6

 

(5.11) 

In Figure 5.5, the active user has only three rated items in his rating vector in order 

to show how the unknown values can be estimated by employing the proposed privacy 

attack. 6% of the data is filled in the real dataset, MovieLens. Therefore, an average active 

user rating vector is expected to have a density of 6%. As a result, approximately 100 

items should be rated in the active user’s rating vector. As seen from Eq. 5.10, two 

unknown parameters emerge for each item rated in the active user’s vector. To solve the 

problem as explained in Eq. 5.11, at least 200 repeated prediction requests are required 

for 200 equations with 200 unknowns for a query of an active user with 100 rated items. 

Eq. 5.12 shows a general solution and lists the number of equations needed in terms of 

the number of rated items in an active user rating vector. Assume that the active user rates 

J items in his rating vector.  The active user sends the same rating vector for only one 

target item to the MP at least 2×J times. When the complexity of the proposed solution 

is considered, it seems that it is inapplicable. 

 
𝑃1 = 

𝑧𝑎1𝑛1 + 𝑧𝑎2𝑛2 + 𝑧𝑎3𝑛3 + …+ 𝑧𝑎𝐽𝑛𝐽 +𝑁1
𝑧𝑎1𝑑1 + 𝑧𝑎2𝑑2 + 𝑧𝑎3𝑑3 +⋯+ 𝑧𝑎𝐽𝑑𝐽 + 𝐷1

 

𝑃2 = 
𝑧𝑎1𝑛1 + 𝑧𝑎2𝑛2 + 𝑧𝑎3𝑛3 + …+ 𝑧𝑎𝐽𝑛𝐽 +𝑁2

𝑧𝑎1𝑑1 + 𝑧𝑎2𝑑2 + 𝑧𝑎3𝑑3 +⋯+ 𝑧𝑎𝐽𝑑𝐽 + 𝐷2
 

… 

… 

𝑃2𝐽−1 = 
𝑧𝑎1𝑛1 + 𝑧𝑎2𝑛2 + 𝑧𝑎3𝑛3 + …+ 𝑧𝑎𝐽𝑛𝐽 +𝑁2𝐽−1
𝑧𝑎1𝑑1 + 𝑧𝑎2𝑑2 + 𝑧𝑎3𝑑3 +⋯+ 𝑧𝑎𝐽𝑑𝐽 + 𝐷2𝐽−1

 

𝑃2𝐽 = 
𝑧𝑎1𝑛1 + 𝑧𝑎2𝑛2 + 𝑧𝑎3𝑛3 + …+ 𝑧𝑎𝐽𝑛𝐽 +𝑁2𝐽

𝑧𝑎1𝑑1 + 𝑧𝑎2𝑑2 + 𝑧𝑎3𝑑3 +⋯+ 𝑧𝑎𝐽𝑑𝐽 + 𝐷2𝐽
 

(5.12) 



101 

 

 As seen from Eq. 5.10 and Eq. 5.11, even if the values of unknowns are derived, 

the coalesced parties can only estimate aggregate values of the MP 

(∑ 𝑧𝑢3
𝑘1
𝑢=1 𝑜𝑟 ∑ 𝑧𝑢3𝑣𝑑𝑢𝑞

𝑘1
𝑢=1 ). As explained in Eq. 5.7, the coalesced parties do not know 

how many users rate an item. Even if the parties know the number of users rated that item, 

they do not know which users rated that item. The proposed approach as in Figure 5.3 in 

the partitioned data can be used to estimate  ∑ 𝑧𝑢3
𝑘1
𝑢=1 . Assume that the target item on the 

active user’s cluster is rated once and this auxiliary information is known publicly as in 

Figure 5.3. In such a case, after the equations are solved and unknown values are 

estimated, their z-score values are derived only if one user votes them. Since only one 

user rates those items, rated items and their z-score, values are estimated.    

5.3.2. Privacy attack scenarios on vertically distributed data 

Since the data is vertically distributed among z parties, each party owns a part of 

items and needs to exchange some required data with each other off-line to improve the 

performance of online prediction process. Parties can compute their item averages 

privately because they only use their own ratings while computing item averages. 

However, each party needs the other parties’ data to calculate user averages due to vertical 

distribution. While exchanging the required data, parties may derive confidential data. 

For example, if the partial result of a user is zero, it means that the user does not rate any 

item or if the user only rates one item, the user’s real value is derived from the partial 

data. Kaleli and Polat (2012) offer parties to disguise their data before computing user 

averages to overcome these shortcomings. Since parties add fake ratings into users’ 

vector, the real values and the number of rated items of users cannot be predictable. Even 

if someone manages to guess the location of the real rated items, only the aggerate data 

of the rated items can be obtained. There is no way to derive the real value of any item 

from the received aggregate data. The parties also change the partial data while computing 

vector lengths of users. Due to the randomness, the parties fill fake ratings into their 

original data; no one can derive the confidential data from the received vector lengths.   

In order to enhance the performance of online computation, 𝑃𝑁 and 𝑃𝐷 values (as 

seen from Eq. 2.8) are stored by all parties off-line. Parties have to exchange the partial 

results while computing 𝑃𝑁 values. Since the MP has only values of q, it has to send these 

values to the other parties in order that they compute their 𝑃𝑁 values. However, the MP 
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encrypts the values of q so that the other parties cannot guess the private data. Parties 

cannot decrypt the received data because only the MP has the public key. On the other 

hand, the MP cannot deduce any information from the received permuted data even if it 

decrypts them. The MP obtains only the sums of each item to compute the value of 

∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 . This deduction is useless because the parties use the column permutation 

function to permute their items. Therefore, it is not likely that the MP can estimate the 

order of items. Even if the MP manages to estimate the order of the items, it cannot guess 

which users rate those items due to the row permutation function employed by parties. 

Parties compute 𝑃𝐷 values without exchanging the private data except vector lengths of 

users. As explained before, it is not possible to derive the private data from the process 

of vector lengths, no one can deduce information from this computation. 

In online computation, an active user sends his data to the MP and asks for a 

prediction for q. Since only the MP has the active user rating vector, it may manipulate 

the active user data to derive private data from the other parties. However, each party 

randomly fills some of the unrated cells whenever the active user asks for a new 

prediction; the MP cannot guess the faked filled cells. Besides, each party permutes their 

𝑃𝑁 and 𝑃𝐷 values; the MP cannot estimate the private data after decrypting the received 

permuted values.  On the other hand, the other parties can coalesce against the MP as in 

HDD. Assume that one of the parties is picked as an active user, and the selected party 

sends fake data to the MP to derive the MP’s confidential data. All parties except the MP 

are assumed to know the active user’s data. Although the MP inserts fake ratings into the 

active user’s data to protect the active user’s privacy, the coalescing parties have the 

information about the rated items of the active user. The coalescing parties try to derive 

the private data of the MP from the final prediction result. Eq. 2.8 can be rewritten with 

unknown parameters as in 5.13.: 

P =  
∑ 𝑣𝑎𝑗

′′ [∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ]⏞        

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑗∈𝐽1
+ ∑ 𝑣𝑎𝑗

′′ [∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ]⏞        

𝑘𝑛𝑜𝑤𝑛

𝑗∈𝐽2
+⋯+ ∑ 𝑣𝑎𝑗

′′ [∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆 ]⏞        

𝑘𝑛𝑜𝑤𝑛

𝑗∈𝐽𝑧

∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 ]⏟      

𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑗∈𝐽1 + ∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 ]⏟      
𝑘𝑛𝑜𝑤𝑛

𝑗∈𝐽2 +⋯+ ∑ 𝑣𝑎𝑗
′′ [∑ 𝑣𝑢𝑗

′′
𝑢∈𝑆 ]⏟      
𝑘𝑛𝑜𝑤𝑛

𝑗∈𝐽𝑧

 (5.13) 

As seen from Eq. 5.13, the only unknown values pertain to the MP as in HDD.  Like 

HDD, for each rated items of the active user, two unknown values are obtained. If the 

active user asks for a prediction for the same target item until the required equations are 
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reached as in Eq. 5.12, unknown values may be estimated. Since items are divided 

between parties unlike as in HDD, the required equations to solve unknowns are partially 

smaller than the case in HDD. The coalescing parties can derive only ∑ 𝑣𝑢𝑗
′′ 𝑣𝑑𝑢𝑞𝑢∈𝑆  and 

∑ 𝑣𝑢𝑗
′′

𝑢∈𝑆  aggregate values after solving all equations with unknowns. The correlated 

parties do not obtain which users really rated q because of DPP. If the parties including 

the MP do not apply the proposed DPP protocol to disguise their data, the correlated 

parties can guess the users who rated q from 𝑃𝑁𝑃. As mentioned in the steps of 𝑃𝑁𝑃 in 

Section 2.2.3.2, the MP sends each value of q by encrypting to the corresponding party. 

Even if the correlated parties guess the users who rated q ignoring DPP, they never 

estimate the real values of users from the aggregate values. Besides, even the value of 𝑣𝑢𝑗
′′  

would be derived somehow, it is not likely to estimate the real value (𝑣𝑢𝑗) because the 

correlated parties cannot estimate the item averages of the MP. Parties never exchange 

their item averages during the prediction process. 

5.4. Experiments 

How the private data can be derived when the partitioned systems are used is 

evaluated during the experiments. According to the partitioning type such as vertical or 

horizontal, the result can be different. Moreover, the auxiliary information is utilized to 

estimate the private data. 

5.4.1. Data set and evaluation metric 

The standard 100K MovieLens, a well-known movie data set, is used in the 

experiments. Accuracy rate is measured, which is the ratio of the number of the correctly 

estimated ratings to the number of total ratings. 

5.4.2. Methodology 

MovieLens data set is vertically and horizontally partitioned between two parties 

(A and B). In HPD, Party A has 471 users and 1,682 items, although Party B has 472 users 

and 1,682 items. In VPD, both parties contain 943 users and 841 items. The active user’s 

rating vector is formed by the attacking party, which contains randomly 100 items with 

random ratings’ value. 



104 

 

5.4.3. Experimental results 

Experiments are divided into two sections. First, it is examined how much data the 

parties can derive when the data is partitioned horizontally. Then, experiments are 

conducted to show how the accuracy rates change when the data is partitioned vertically. 

Experiment 1:  The first experiment evaluates that how much data of Party B is 

estimated by Party A when the data is horizontally partitioned. Likewise, Party B aims to 

derive the data of Party A while acting as an active user. MovieLens is horizontally 

partitioned between two parties. One of the parties obtains the upper first half and the 

other holds the lower second half. While A holds 53219 ratings, B owns 46781 ratings. 

Note that the number of users is smaller than the number of items. As seen from the results 

in Figure 5.6, the accuracy rate of deriving the data of the Party B is higher than that of 

the Party A for the small number of rated items’ locations known by the malicious party 

as auxiliary information.  

As the number of locations of rated items known as auxiliary information in the 

experiment increases, the results are getting better and closer, and 96% of the data is 

estimated correctly for both parties. For example; if B acts in a malicious manner and 

knows the locations of 54 different items that are rated only once in A, 13251 ratings are 

estimated. This means 25% of data is correctly estimated. Likewise, while 165 items of 

Party A are rated once, and their locations are known as an auxiliary information, 25% of 

all the data of the Party A, equal to 13251 ratings, is estimated correctly. In fact, the same 

result can be derived when the locations of 54 items of Party A are known instead of the 

locations of 165 items. Once time-rated items are voted by the specific users, so knowing 

 

Figure 5.6. Accuracy on horizontally partitioned data 

 

 

1 2 3 4 5 6 7 8 9 10 15 20 25 30 40 50 80 120 160 200 240 280

A 0.249 0.365 0.477 0.545 0.600 0.627 0.668 0.704 0.720 0.744 0.814 0.854 0.883 0.905 0.928 0.943 0.956 0.961 0.963 0.964 0.964 0.964

B 0.287 0.432 0.523 0.597 0.650 0.692 0.728 0.752 0.770 0.782 0.859 0.879 0.902 0.920 0.936 0.944 0.956 0.959 0.960 0.960 0.960 0.960
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a single location of the item of these users is enough to get the whole rating vector of 

those users. As a result, if the locations of 54 different items of the Party A which are 

rated once are known as an auxiliary information, 25 % of the data of Party A is 

approximately derived. 

Experiment 2:  The experiment analyzes how much private data is derived by the 

privacy attack when users are partitioned randomly among two parties instead of dividing 

the data directly into two parts. Both parties have roughly the same number of ratings. It 

is clear that the results in Figure 5.7 are similar to the results in Figure 5.6. Likewise, the 

party B gives slightly better results for the first values of the auxiliary information as in 

Experiment 1. The main reason for Figure 5.7 and Figure 5.6 to give the similar results is 

that the ratings of the parties are close to each other. In other words, since there are 

numerous items in the data set, the number of items is greater than the number of users in 

HPD, and it is expected that users may rate different items. During the privacy attack 

scenario, the proposed approach about the locations of items helps the attacking party 

derive the data as expected. Knowing the location of an item that is rated once helps the 

attacking party derive all data of the user even if the locations of the other rated items and 

their real values are not known.  If anyone has such auxiliary information about an item 

that requires being rated by only a user, other rated items of that user are estimated, and 

their real values are derived. 

Experiment 3: The experiment performs to figure out whether the parties can 

derive the private data from each other while MovieLens is vertically divided into two 

 

Figure 5.7. Accuracy on random horizontally partitioned data 
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parties. One of them keeps the first half while the other keeps the second half.  A has 

86993 ratings although B owns 13007 ratings based on the partition. In the MovieLens 

data set, there are not many ratings through the last items. For this reason, when the data 

is partitioned vertically from the midpoint, the more ratings fall on the part of Party A.  

Unlike Experiment 1 and Experiment 2, the number of users is greater than the number 

of items at each party. As in HPD, the parties act as an active user and try to derive the 

data of the opposite party from the intermediate sums. As shown in Figure 5.8, even if 

the auxiliary information is utilized, the success of deriving the data of Party A is very 

low because the data of A is very dense, and it is difficult to apply the proposed approach. 

In other words, the approach does not work here because finding the location of the items 

rated only once is almost impossible. Since only the aggregated values of items are 

derived, the real ratings of the users cannot be estimated. On the other hand, as the data 

of Party B is relatively sparse, 40 % of its data can be estimated correctly. 

Experiment 4: This experiment tests how much private data can be estimated by 

utilizing the auxiliary information when the data set is randomly vertically divided into 

two parts. Items are randomly distributed among the parties while users are the same in 

both parties. Unlike the previous experiment, both parties have roughly a half of data set 

(50000 ratings). When the data set of the Party A is very dense, it has been shown in the 

previous experiment that the accuracy obtained from the intermediate results even when 

the auxiliary information is used is very low. When the results of Figure 5.9 are examined, 

it is seen that the accuracy result that the parties derived from the each other are 

 

Figure 5.8. Accuracy on vertically partitioned data 

 

 

Figure 5.8. Accuracy on vertically partitioned data 
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approximately equal. The density of the data sets is equalized in the random vertical 

partition and the accuracy rate achieved is around 17%. Party A has slightly more ratings 

than Party B; therefore, the accuracy rate of the Party A is a little less than that of the Party 

B.    

When the results of Figure 5.8 and Figure 5.9 are compared, it is obvious that the 

sparse data is an important factor for estimating the private data. Considering CF systems, 

the data is often sparse, so the proposed approach to estimate the private data might play 

a crucial role. For example, while Party B has very sparse data set in Experiment 3, B 

contains a denser one in Experiment 4. Another important point is that the number of 

users is high while the number of items is relatively low in VPD. It is difficult to find 

rarely rated items. For this reason, the selected auxiliary information cannot succeed in 

estimating the confidential data as in Experiment 1 and Experiment 2. 

5.5. Conclusions 

The methods for deriving the private data may differ according to the partitioning 

type such as vertical or horizontal. The most common type of privacy attack to derive the 

private data is to act as an active user. However, analyzes made in partitioned data 

between two parties show that there is no deduction from the intermediate results. The 

intermediate results are derived each time as a result of arbitrary addition/subtraction 

to/from some cells of the active user's rating vector while using the proposed protocol. If 

the proposed protocol is not applied (to protect the original active user’s rating vector), 

 

Figure 5.9. Accuracy on random vertically partitioned data 
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whether the private data can be derived or not is examined. In this case, the aggregate 

data is only estimated from the parties. It is impossible to estimate how many users rate 

the item or which users rate that item. Because of all these reasons, whether the private 

data can be derived by utilizing auxiliary information is tested. Assume that only the real 

values of the users are hidden as defined in the privacy definition and the locations of 

some rated items of users are known as publicly, the private data can be estimated as 

shown in the experiments. According to the experiment results, the ratio of the estimation 

of the HPD is greater than the case of VPD. The most important reason for this result is 

that the number of items is greater than the number of users when the data is partitioned 

horizontally. The high number of items with fewer users increases the likelihood of 

different users voting for different items. If it is known that some of the users vote for 

different items, a large part of the data can be estimated. Thus, the real z-score values are 

derived by utilizing the auxiliary information. On the other hand, when the data is 

vertically partitioned, the density of the data set is an important factor in terms of the 

privacy attack. When the number of items is low, and the number of users who vote for 

these items is high, the possibility of different users voting for the same items increases. 

For this reason, even if the locations of items are known, the real z-score values of the 

users cannot be estimated from the intermediate results.   

Data may also be distributed among more than two parties in CF systems. The 

targeted PPCF protocols are analyzed in case a privacy attack is performed. Analyzes 

made to derive the private data show that it is complicated and inapplicable when data is 

distributed either vertically or horizontally among parties. Even the other parties coalesce 

against the MP; only partial aggregate results can be derived after computing a great 

number of equations. Therefore, experiments on distributed systems are not performed. 

Only mathematical analysis has been performed to show whether the private data can be 

estimated or not.  



109 

 

6. CONCLUSIONS AND FUTURE WORKS 

This dissertation scrutinizes the problem of “how much private data can be derived 

from the disguised numeric data in central or distributed data-based privacy-preserving 

collaborative filtering systems,” and some solutions are proposed by utilizing various 

methods as well as auxiliary information. In privacy-preserving collaborative filtering 

systems, it is important to provide reliable and decent predictions while protecting 

individuals’ or data holders’ privacy. There are a considerable number of collaborative 

filtering algorithms proposed in the literature. The aim of all proposed algorithms is to 

offer more reliable predictions to individuals. However, an attacker or malicious one 

might want to estimate the confidential data during the prediction process by planning 

various attack scenarios or employing existing reconstruction methods based on the 

targeted privacy-preserving collaborative filtering systems. 

In order to protect privacy, several data disguising methods such as randomized 

perturbation techniques, random filling, cryptographic methods, and permutation 

functions are utilized. However, these data disguising methods may not protect the 

privacy as much as believed. Throughout the dissertation, the targeted privacy-preserving 

collaborative filtering schemes in each chapter utilize a different disguising method. The 

question in each chapter is the same, how much can the private data be estimated from 

the masked one despite the different data disguising methods? 

Privacy-preserving collaborative filtering schemes show differences in terms of the 

location of data. Although the data is stored by a central server,  it can be partitioned or 

distributed (vertically or horizontally) among companies as well. Therefore, the 

dissertation is divided into two main parts based on how data is located to derive the 

private data from the targeted privacy-preserving collaborative filtering schemes. Chapter 

2 gives preliminaries and represents how a prediction is produced based on the targeted 

privacy-preserving collaborative filtering schemes. 

In Chapter 3, the dissertation targets central server-based privacy-preserving 

collaborative filtering schemes when individuals only hide their original values by 

employing the randomized perturbation technique. Although individuals add random 

values to their z-score values rather than the original ratings, the server or malicious one 

may derive the original ratings from the disguised z-score values. The existing study in 

the literature try to estimate the original ratings from z-score values with strong auxiliary 
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information assumptions such as the averages and standard deviations of users. Therefore, 

a method called reconstruction from the estimated z-score values is introduced to 

overcome this problem. Besides, the reconstruction results can be improved by utilizing 

some domain related auxiliary information. Various auxiliary information is employed to 

improve the reconstruction results. According to the experiments, the proposed and 

existing reconstruction methods with auxiliary information enable the server or an 

attacker to improve the reconstruction accuracy of their estimates of the original ratings 

from the disguised z-score values.  

In Chapter 4, the dissertation targets a central server-based privacy-preserving 

collaborative filtering scheme; however, in this chapter,  individuals mask their original 

values as well as the location of their rated items by employing the random filling 

technique. Random filling allows individuals to fill some unrated items with random 

numbers before disguising their data. In this chapter, which items are actually rated is 

figured out from the disguised data. The first important step is to determine the number 

of the rated items from the disguised data including the real and fake items.  To overcome 

this problem, two formulas are introduced in terms of the selected the value of the random 

filling parameter. The second prominent step is to eliminate the noise, which is added by 

users to protect their data. Different matrix factorization methods are employed to 

decrease the effect of noise, and one of them is selected as the main method according to 

the conducted experiments. Besides, various auxiliary information is introduced to 

improve the identification accuracy of the rated items. Experiments show that the 

proposed approaches help the attacker reconstruct the rated items. The other important 

outcome is that user related auxiliary information makes a great contribution to the results 

although item related auxiliary information cannot help enhance the results for a movie-

related data set used in the experiments. Thus, experiments suggest that selecting 

appropriate auxiliary information is a prominent issue to enhance the results. 

The Chapter 5 of the dissertation targets distributed privacy-preserving 

collaborative filtering schemes. First, it is examined how much of the private data can be 

derived when the data is divided into two parties either vertically or horizontally. In the 

horizontally partitioned data, parties can compute their required data off-line. Since one 

of the parties can act as an active user to derive the private data from the interim results 

calculated collaboratively, the other party employs the Private Scalar Product 
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Computation protocol to protect itself from the attacking party. The Private Scalar 

Product Computation protocol ensures that the attacking party cannot estimate the private 

data from the interim results because of the randomness the other party adds into the 

active user rating vector. On the other hand, the originality of the active user rating vector 

is also important to produce accurate predictions. Therefore, it is studied whether the 

private data can be derived unless the protocol is applied. Detailed analysis shows that 

the attacking party or malicious one cannot estimate the real rated values of users. Only 

the aggregate values are obtained, or items that are rated by no one are deduced. Because 

estimating the real rating values and where they are located is shown not to be possible, 

one of privacy definition is violated to examine whether the real rating values can be 

estimated. If the locations of some of the rated items of users are known in advance,  a 

large part of the data is estimated as seen from the experiments. On the other hand, when 

data is partitioned vertically between two parties, parties need to exchange some partial 

results for providing predictions. To protect data holders’ privacy, randomization, 

cryptographic methods, and permutation functions are employed by the target privacy-

preserving collaborative filtering scheme. It is impossible to derive the private data from 

the cryptographic and permutation methods. Therefore, it is assumed in the experiments 

that data disguising methods are not applied by the parties. Even if the parties do not 

apply any the data disguising methods, the attacking party can only derive the aggregate 

data. This inference is similar to horizontally partitioned data case. The proposed 

assumption about auxiliary information does not work as much as it does in horizontally 

partitioned data because of the data partitioning. In addition, the data can be distributed 

among more than two parties. In horizontally distributed data, parties can compute their 

required data without needing of other parties’ data. Since the master party can store and 

use the parties’ interim data to produce a prediction, some measures are taken by parties 

to protect themselves against the master party. However, the parties coalesce against the 

master party to derive its private data. As in the partitioned data, the parties may only 

estimate the aggregate data of the master party after solving a large number of equations. 

Since the parties need to exchange their partial results to produce a prediction in vertically 

distributed data, there are several strict precautions such as randomization, cryptographic 

and permutation methods that parties apply. Because of these precautions, it is impossible 

to deduce anything from the partial results in the vertically distributed data.     
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In order to stress the effect of auxiliary information more, different domains might 

be selected in the future work. There could be numerous auxiliary information based on 

the selected domains. The data set in the experiments related to the movies is widely 

utilized in collaborative filtering environments. Hence, movie-related auxiliary 

information is utilized throughout the dissertation. Although auxiliary information 

provides reconstruction enhancements, a different domain still remains an open problem. 

Besides, the type of auxiliary information may become varied with the advent of social 

networks. Different social network platforms have opened new avenues to gather great 

volumes and kinds of information. Thus, the social networks have an enormous potential 

to find like-minded people based on what they share or write in order to improve 

reconstructions.  
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