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ABSTRACT 

NEW APPROACHES TO IMPROVE PERFORMANCE OF BACKGROUND 

SUBTRACTION 

Şahin IŞIK 

Department of Computer Engineering 

Anadolu University, Graduate School of Sciences, March 2018 

Supervisor: Assoc. Prof. Dr. Kemal ÖZKAN 

Separation of the foreground from background on a processed image, namely background 

modelling, positively affects performance of certain computer vision applications. It has 

considered as preprocess for many tasks including moving object recognition, person tracking, 

traffic monitoring, motion capturing, teleconference and security surveillance systems.  Video 

backgrounds can be considered in two categories as static and dynamic backgrounds. To improve 

the performance of background subtraction, we have developed four different methods by using 

different tools in case of distance computation between test and background frame and integrating 

a feedback mechanism that works beyond dynamic controller parameters. These methods are 

called as Background Modelling Using Common Vector Approach (BMCVA), Background 

Modelling Using Common Matrix Approach (BMCMA), Sliding Window-Based Change 

Detection (SWCD) and Common Vector Approach Based Background Subtraction (CVABS). 

Various experiments have conducted on different problem types related to dynamic backgrounds 

over CDnet2014 and Wallflower datasets. Several types of metrics calculated over the results of 

True-Positive (TP), True-Negative (TN), False-Positive (FP) and False-Negative (FN) counts, 

have utilized as objective measures and the obtained visual results are judged subjectively. Once 

the obtained results inspected, it has observed that the proposed methods generate successful 

results for different challenges.  

Keywords:  Foreground Segmentation, Moving Object Segmentation, Change Detection, 

Background Subtraction, Background Modelling. 
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ÖZET 

ARKA PLAN ÇIKARMA BAŞARIMI İYİLEŞTİRMEK İÇİN YENİ 

YAKLAŞIMLAR 

Şahin IŞIK 

Bilgisayar Mühendisliği Anabilim Dalı 

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Mart 2018 

 

Danışman: Doç. Dr. Kemal ÖZKAN 

İşlenen bir görüntüde ön planın arka plandan ayrıştırılması, adıyla arka plan modelleme, bazı 

bilgisayar görme uygulamalarının performansını olumlu şekilde etkiler. Hareketli cisim tanıma, 

kişi takibi, trafik izleme, hareket yakalama, telekonferans ve güvenlik gözetim sistemleri de 

içermek üzere birçok görev için ön işlem olarak düşünülür. Video arka planları statik ve dinamik 

olarak iki kategoride değerlendirilebilir. Bu çalışmada, arka plandaki çıkarma işleminin 

performansını artırmak için, test imgesi ve arka plan imgesi arasındaki uzaklığın hesaplanmasında 

farklı araçlar kullanılarak ve dinamik denetleyici parametrelerinin ötesinde çalışan bir geri 

bildirim mekanizmasının entegrasyonuyla dört farklı yöntem geliştirilmiştir. Bu yöntemler Ortak 

Vektör Yaklaşımı Kullanarak Arka Plan Modelleme (BMCVA), Ortak Matris Yaklaşımı 

Kullanarak Arka Plan Modelleme (BMCMA), Kayan Pencere Tabanlı Hareket Tanıma (SWCD) 

ve Ortak Vektör Tabanlı Arka Plan Çıkarma (CVABS) olarak adlandırılmıştır.   CDnet2014 ve 

Wallflower veritabanları üzerinde dinamik arka planlarla ilgili alakalı farklı problem türleri 

üzerinden çeşitli deneyler yapılmıştır.  Gerçek-Pozitif (TP), Doğru-Negatif (TN), Yanlış-Pozitif 

(FP) ve Yanlış-Negatif (FN) sayıları üzerinden hesaplanan metrikler objektif ölçümler olarak 

kullanılmış ve elde edilen görsel sonuçlar nesnel olarak değerlendirilmiştir. Elde edilen sonuçlar 

incelendiğinde, önerilen yöntemlerin farklı zorluklar için başarılı sonuçlar verdiğini 

gözlemlenmiştir. 

Anahtar Kelimeler:  Ön Plan Segmentasyon, Hareketli Nesne Segmentasyonu, Hareket 

Tespiti, Arka Plan Çıkarma, Arka Plan Modelleme. 
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1. INTRODUCTION 

Moving object segmentation can be considered an important and painful procedure 

in computer vision.  Although it has been called by different names ranging from “moving 

object detection”, “foreground detection” to “change detection” in literature, but it can be 

aggregated into a unique name, which we known as “background subtraction”. A 

background subtraction algorithm is concerned about the safety of public and private 

organizations listed as road surveillance, airplane surveillance, maritime surveillance, 

boats and store surveillance systems, since these places are carrying the risks about 

hazards and threats. In order to effectively handle the security of surveillance systems, 

numerous background subtraction algorithms have been developed and applied to identify 

threats and reduce the risks.  

 

         a) Background                    b) Foreground 

 

c) Foreground segmentation after background subtraction 

Figure 1.1. A simple example to visualize the background subtraction 

The Figure 1.1 shows the background subtraction methodology. The images in 

Figure 1.1a-11b relates to copyMachine video of Shadow category, which is downloaded 

from CDnet2014 dataset [1]. The idea under a typical background subtraction algorithm, 

is updating the background regions and maintaining the moving object segmentation 

procedure without collapsing in case of revealing the foreground region. In time domain, 

the foreground regions can be unearthed by taking L1 norm distance between test frames 
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and background frame throughout video. After applying a fixed threshold, background 

regions would be marked with 0 while the foreground regions would be marked with 255, 

as shown in Figure 1.1c.  However, the fixed threshold does not work in real time 

applications due to dynamic changes including shadow, illumination changes, fountains, 

waving trees or night videos. For such reasons, there are two convenient solutions as (i) 

developing a task oriented background subtraction algorithm or (ii) a universal one. While 

the first choice is applicable and easy to realize, but the issue becomes more illness when 

selecting the second option. Moreover, the background modelling task can be projected 

into a “learning” or “classification” procedure, which means that the tool used for 

background modelling can be relied on either a supervised or an unsupervised strategy.  

1.1.  Related Works 

Until now, various background subtraction algorithms have been proposed along 

with their advantages and disadvantages.  In an example, while the subspace based 

methods generates valuable results, but they waste a huge rate of memory in case of 

processing large images. Meanwhile, there is no yet general method for background 

subtraction that gives accurate results in all scenarios, but it is widely accepted that every 

method performs well for specific categories. Some comprehensive surveys [2-4] 

presented by Bouwman to reveal the characteristic, computational and accuracy 

performance of well-known methods in background literature.  

Simple Methods: As is evident from the name, some filters and shortsighted techniques 

were considered for background modelling. These methods can be given as Mean [5], 

Median [6], Euclidean Distance [7] and Histogram [8]. With an effortless manner, the 

statistical metrics called mean, median and histogram values of N frames had taken into 

account in the studies of Mean [5], Median [6] and Histogram [8]  in case of initialization 

stage. 

Clustering Based Methods: The most known of clustering based methods can be listed 

as K-Means clustering [9] and Codebook [10]. 

Subspace Based Methods: The idea under the subspace based methods is relied on the 

assumption that it is possible to represent the background information with Eigen vectors. 

The Principal Component Analysis (PCA) comes first of main sub-space based 
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background learning series. Although the PCA is widely preferred for data compression 

and classification tasks, but it also utilized for background modelling by recovering the 

data after projected on eigenvectors related to maximum eigenvalues. However, the PCA 

algorithm consumes much of memory when calculating the eigenvectors, which is known 

as drawback of sub-space decomposition from large size of matrices.   

The discovery of using PCA for background modelling was first realized in the study of 

Olivier et. al [11]. This also paved the way for raising new methodologies based on the 

eigenvectors domains [12, 13] to improve the robustness of sub-space methods. To 

minimize computational cost of eigenvector decomposition, the L1 norm measure was 

considered instead of using l-2 norm error for eigenvectors extraction. The well-known 

methods of robust sub-space tracking methods was given as GOSUS [14] and p-ROST 

[15].  Additionally,  some methods were handled data in tensor format including 

Incremental Rank- (R1, R2, R3) [16] based tensor learning for different types of images 

as specifically, IRTSA-GBM for background modelling on gray images and IRTSA-

CBM for background modelling on color images. Moreover, the Incremental Non-

Negative Matrix Factorization (INMF) [17] was proposed for background modelling by 

deriving the eigenvectors based on l-2 norm. Again, the Independent Component 

Analysis (ICA) [18] was proposed as alternative sub-space decomposition method for 

foreground segmentation. 

Gaussian Based Methods: In the concept of Gaussian methods, the history of pixels was 

modelled with some Gaussian functions, called Gaussian models, and the similarity 

between Gaussian model of test and background frame was processed by employing a 

predefined threshold. A simple version of such methods can be observed as Single 

Gaussian [19]. However, it was observed that using single Gaussian functions don’t 

provide effective results and the multi-models were revealed as Gaussian Mixture Model 

(GMM)[20] . The drawback of Gaussian based methods comes into sight when updating 

the variance and other parameters associated to background model.  

Pixels Based Methods:  Aside from the sub-space methods, the pixels based approaches 

have been developed for real time background modelling and updated with feedback 

based mechanisms. When observing their performances on various videos, one can 

emphasize that the pixel based methods gives effective results for background modelling.  



4 

 

In an attempt to retain the background pixels, the VIsual Background Extractor (VIBE) 

[21] method retains the background pixels with smart random update strategy. Moreover, 

in the study of Pixel-Based Adaptive Segmenter (PBAS) [22], the decision threshold was 

updated instantly by introducing dynamic parameters.  The Self-Balanced SENsitivity 

SEgmenter (SuBSENSE) [23] performed some modifications on the PBAS by utilizing a 

distance metric relied on the Local Binary Similarity Patterns (LBSP) and introducing 

some new rules for updating decision threshold in a pixel-wise approach. Again, the 

Pixel-based Adaptive Word Consensus Segmenter (PAWCS) [24] method was proposed 

as an extended version SuBSENSE. In a similar way, background word consensus and 

the spatiotemporal information analysis was considered for distance computation and 

adjusting internal feedback driven parameters.  Moreover, the concept of Gaussian 

Mixture Model (GMM) was employed in the SharedModel [25] that is the best matched 

GMM model chosen with a sharable GMM mechanism. Furthermore, the Flux Tensor 

with Split Gaussian models (FTSG) method [26] developed a hybrid model for splitting 

foreground from backgrounds by (i) using the flux tensor for motion detection, (ii) 

employing the idea of GMM for background modeling and (iii) a fusion step as 

combination of chamfer matching based validation and consensus of steps (i) and (ii) for 

deciding a pixel whether foreground or background. Furthermore, the Edge based 

Foreground background segmentation with Interior Classification (EFIC) [16] method 

revealed the limitation of Local Ternary Pattern (LTP) features for foreground detection. 

However, most of FTSG and EFIC performance comes from the validation procedure that 

relied on chamfer matching of edges. Being motivated from human visual system, the 

Multimode Background Subtraction (MBS) [27] method utilizes RGB and YCbCr color 

spaces to handle challenges of dynamic backgrounds rather employing single channel. 

The final foreground map was obtained after fusing with morphological operations on 

foreground maps from RGB and YCbCr color spaces. The performance of each method 

is available on the website of CDnet2014 dataset [1]. 

Deep Learning Based Methods: Since the 2012, the breakthrough of deep neural 

network algorithms have witnessed as numerous methods developed to maximize 

strength of machines in terms of learning and processing some tasks.   
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Table 1.1. Pros and cons for each group of background subtraction methods 

Method Pros & Cons 

Simple 

-fast ✓ 

-easy to implement ✓ 

-save memory ✓ 

-save CPU ✓ 

-computationally cheap ✓ 

-low performance  ✘ 

-not robust (collapse in all events) ✘ 

Clustering 

-relatively fast ✓ 

-complex to implement ✘ 

-requires high amount of resources in memory  ✘ 

-computationally cheap ✓ 

-low performance ✘ 

-robust to illumination changes ✓ 

-not robust to night videos, dynamic, intermittent and PTZ changes ✘ 

Gaussian based Methods 

-relatively fast ✓ 

-easy to implement ✓ 

-requires high amount of resources in memory ✘ 

-computationally cheap ✓ 

-low performance ✘ 

-robust to illumination changes ✓ 

-not robust to night videos, dynamic, intermittent and PTZ ✘ 

Subspace based Methods 

-slow ✘ 

-easy to implement  ✓ 

-requires high amount of resources in memory ✘ 

-computationally expensive ✘ 

-low performance ✘ 

-robust to illumination changes ✓ 

-suffer from updating challenge ✘ 

-not robust to night videos, dynamic, intermittent and PTZ ✘ 

Pixel Based Methods 

-fast ✓ 

-complex to implement ✘ 

-requires high amount of resources in memory ✘ 

-computationally cheap  ✓ 

-high performance ✓ 

-robust to illumination changes, dynamic motions, intermittent 

motions ✓ 

-fast updating procedure  ✓ 

-not robust to Night Videos and PTZ challenges ✘ 

Deep Learning based 

Methods 

-slow (requires various convolutions in feed forward) ✘ 

-relatively complex to implement  ✘ 

-requires high amount of resources in memory✘ 

-computationally expensive ✘ 

-high performance ✓ 

-slow training procedure (requires optimization)✘ 

-robust to every circumstance ✓ 

-requires ground truth prior to training stage ✘ 
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According to its nature, the architecture of Convolutional Neural Network (CNN) learns 

through some layers, what can be called as deep layers, and gives superior results when 

compared with complex algorithms. Motivated from its robustness, the CNN 

architectures have also been employed to classify a pixel as background or foreground 

through image sequences of videos. In a study [28], the background frames library was 

obtained with the aid of SuBSENSE and FLUX tensor algorithm as FLUX tensor used 

for arranging background frames list and SuBSENSE used to reveal background regions. 

Once the Background Library obtained, a CNN architecture employed to spot foreground 

movements through video. The inputs were handled in 37x37 patch. In another study [29], 

only a set of pre-segmented ground truth and RGB samples were utilized to teach a CNN 

network processing patches with 31x31 size in pixel-wise manner. It means that a CNN 

network performed through an image and a 31x31 patch in the neighboring of each pixel 

processed to determine its label whether foreground or background. The reported results 

indicate that CNN is an efficient solution to tackle with dynamic and illumination 

changes. However, the good results were obtained after utilizing CNN on multi-scale 

inputs.  Instead of using a simple CNN model to learn each pixel, a more advanced CNN 

architecture together with encoder-decoder type network model was developed for 

moving object segmentation [30]. In referred work, the concept of VGG16 model was 

employed with multi-scale way (triplet) in case of building network and transposed 

convolutional network used for transforming features again into image space, which was 

called as decoder network. The superior results obtained on CDnet 2014 dataset. 

The advantages and disadvantages of aforementioned background subtraction 

methods are summarized with the Table 1.1.  One can observe that there is a tradeoff 

between speed and performance to decide a method as best. However, one can say that 

deep learning based ones can be utilized to train the background model with convolutional 

layers after generating the ground truths from a best unsupervised method. 

1.2. Problems Related to Background Subtraction 

The possible problems related to the background subtraction have been exhibited 

in CDnet [1] by enveloping the all cases with 11 categories. These conditions have 

determined by community of CDnet as BadWeather, LowFramerate, NightVideos, PTZ, 

Turbulence, Baseline, Dynamic Background, CameraJitter, IntermittentObjectMotion, 
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Shadow and Thermal. In this dataset, there are different types of videos vary from 4 to 6 

in size. When it comes to develop a real-time surveillance system with a background 

subtraction algorithm, then such most likely conditions have to be considered to achieve 

favorable results.  Although using supervised methods like convolutional based deep 

learning strategies gives superior results in all categories, but prior to background learning 

stage it requires a massive effort to prepare the ground truth of samples when using the 

deep learning methods. On the other side, obtaining 90% of accuracy with unsupervised 

methods can be accepted as sufficient performance in terms of moving object 

segmentation.  The details about problems on background subtraction are summarized 

with following chapters. 

BadWeather Category 

The badWeather category includes different videos associated to bad weather 

conditions which are blizzard, skating, snowfall and wetSnow. When excluding the 

wetSnow video, it is possible to obtain well-segmented results for moving objects such as 

humans and cars on aforementioned videos related to winter conditions.   

The Figure 1.2 demonstrates some videos stated on badWeather category. While 

the first row exhibits the color images, the second row denotes their associated ground 

truth samples. When the videos examined, one can observe that it would be possible to 

obtain the nice results after employing a functional method. 

                       blizzard        skating      snowFall           wetSnow                    

  

 

Figure 1.2. The videos related to badWeather category 

LowFramerate Category 

The lowFramerate category contains videos recorded with different frame rates, 

i.e., including low frame rate per second (fps). The videos are port_0_17fps, 

tramCrossroad_1fps, tunnelExit_0_35fps and turnpike_0_5fps. The fps information 

about each video was inserted into their names when recording them. 
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         port                     tramCrossroad        tunnelExit              turnpike      

  

 

Figure 1.3. The videos related to lowFramerate category 

The Figure 1.3 shows an overview of representative samples belong to each video, 

as first row denotes original images and second row exhibits related ground truths. The 

most troublesome video can be noted as port video, which includes different conditions 

of sky and shaking effects as well as small-scaled objects. When observing the 

performance of each unsupervised method in CDnet website, one can say that obtaining 

the highest result on lowFramerate category requires a great effort. What makes this 

category is so challenge to obtain valuable scores, can be explained that there are remotely 

focused images, and so, the objects in captured images have small-scale. Therefore, a 

smart segmentation procedure is greatly required to reveal the region of such small-scaled 

objects (refer to port video). 

NightVideos Category 

As is inferred by its name, the nightVideos category includes different videos 

recorded in night time.  These are bridgeEntry, busyBoulvard, fluidHighway, 

streetCornerAtNight, tramStation and winterStreet. Presented scores on CDnet website 

indicate that obtaining highest scores for this category is some troublesome.  

                  bridgeEntry         busyBoulvard        fluidHighway       streetCorner       tramStation         winterStreet 

 

 

Figure 1.4. The videos related to NightVideos category 

The samples related to the NightVideos category are presented in Figure 1.4, where 

first and second rows show original and ground images, respectively. Due to brightness 

effects of traffic lights and headlights of cars, obtaining highest scores for this category 
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can be considered as not easy. However, using an imaging system that is robust to night 

effects like SWIR, it could be produced the desirable results.  

PTZ Category 

The PTZ category includes different videos captured by a Pan Tilt Zoom camera, 

which covers wider area in a surveillance system. Some special videos of PTZ was listed 

as continuousPan, intermittentPan, twoPositionPTZCam and zoomInZoomOut in CDnet. 

When examining the performance of each method in CDnet, we can observe that the 

highest F-measure score can be achieved by utilizing a smart validation procedure that 

works beyond chamfer matching process. 

                               conti.Pan       intermit.Pan    twoPTZ         zoom                

  

 

Figure 1.5. The videos related to PTZ category 

The videos of PTZ category are given in Figure 1.5 as first and second rows denotes 

the original and ground truth samples, respectively. Since the camera captures from 

different angles and perspectives in PTZ, unsupervised methods are not able to overcome 

false positive rates, unless using a smart interference mechanism. 

Turbulence Category 

The turbulence category involves turbulence degradation in videos, which are given 

as turbulence0, turbulence1, turbulence2 and turbulence3. The obtaining F-measure 

scores over 90% can be accepted as good performance for this category. 

The samples included in Turbulence category are visualized in Figure 1.6, as the 

first and second rows shows the original and ground truth samples, respectively. Also, 

obtaining highest score for this category have usually foreseen as a cumbersome process. 
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                   turbulence0   turbulence1   turbulence2    turbulence3                    

   

 

Figure 1.6.  The videos related to Turbulence category   

Baseline Category 

As its name suggests, the videos stated on “Baseline” category are more simple than 

other ones in terms of segmenting the regions of moving objects. The videos are 

summarized as highway, office, pedestrians and PETS2006. 

                                       highway       office             pedestrians     PETS2006 

  

 

Figure 1.7. The videos related to Baseline category 

The Figure 1.7 shows samples related to the Baseline Category as first rows indicates the 

original samples and second row associated ground truth samples. After examining the 

performances presented in CDnet, one can say that acquiring highest F-measure score is 

possible with an unsupervised method. 

DynamicBackground Category 

This category contains dynamic occurrences in real time videos, which are boats, 

canoe, fall, fountain01, fountain02 and overpass. There are some dynamics movements 

including waves, fountains, shaking of leaves in windy weather, which are reasons of 

false positives. 

Again, representative samples (first row) for each dynamic video are presented in 

Figure 1.8 with their ground truth segmentations (second row). Among the videos stated 

on Figure 1.8, the boats video is more troublesome than other ones as it includes different 

conditions of sky. One can emphasize that a smart feedback is necessary for an 
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unsupervised method in order to overcome aforementioned dynamic problems in 

backgrounds.  

                     boats                 canoe               fall            fountain01       fountain02       overpass 

 

 

Figure 1.8. The videos related to the DynamicBackground category 

CameraJitter Category              

This category includes high intense of camera movements for different videos, 

which are badminton, boulevard, sidewalk and traffic. To get highest score for this 

category, an unsupervised method has to be advocated by either using feedback 

mechanism or a smart validation operation.    

The CameraJitter includes badminton, boulevard, sidewalk and traffic videos, 

where the human and car are focused points. Some samples are exhibited in Figure 1.9. 

             badminton          boulevard         sidewalk          traffic  

  

 

Figure 1.9. The videos related to the CameraJitter category   

Since these videos suffered from effects of camera motion, a precaution is 

required in case of background modelling as allowing camera motion enters to 

background whereas revealing the regions of focused objects in foreground mask. 

IntermittentObjectMotion Category 

This category includes the objects that are unwanted to enter the background frame 

and expected to disappear from background frame if their locations changed in time 

space, i.e., a parked car.   
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       abandonedBox          parking                  sofa                  streetLight          tramstop           winterDriveway 

 

 

Figure 1.10. The videos related to IntermittentObjectMotion category 

The videos are given as abandonedBox, parking, sofa, streetLight, tramstop and 

winterDriveway. Again, without some precaution measures, it is impossible to obtain 

satisfied performance for this category. When analyzing the performances of 

unsupervised methods, we can observe that employing a validation procedure would be 

give highest scores on this category. 

The Figure 1.10 exhibits some original samples (first) and their manual generated 

ground truths (second row). Although the intermittent objects can be encountered on all 

video types, but the particular conditions like “stopped cars”, “left bags” and “stopped 

tramway” are focused when constituting this category.  The backgrounds should be 

updated with a smart way that the regions of moved objects should be clean in background 

frame if their locations changed.  

Shadow Category  

       From its name, one can deduce that the Shadow category includes the high intense of 

illumination changes and shadows. There are six videos listed as backdoor, bungalows, 

busStation, copyMachine, cubicle and peopleInShade. A scarified algorithm for 

background subtraction have to capable of adopting itself to sudden illumination changes 

in time domain. Once the performance of unsupervised methods analyzed, one conclude 

that it is possible to overcome illumination changes with a good accuracy. 

There are some representative samples derived from Shadow Category and presented in 

Figure 1.11 as first and second rows denotes samples and ground truths, respectively. 

From the Figure 1.11, we can see that there is an illumination change in corridor given of 

cubicle video.  By using the fixed threshold, it is impossible to remove the illuminations 

stated on Shadow Category. Therefore, an adaptive thresholding with feedback 

mechanism is needed to reduce the false positives. 
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                 backdoor            bungalows             busStation       copyMachine          cubicle            peopleInShade 

 

Figure 1.11. The videos related to Shadow category   

Thermal Category 

In this category, the thermal videos related to different scenes are presented with 

including thermal effects, intermittent objects motions, as well as illumination changes. 

There are five videos including corridor, diningRoom, lakeSide, library and park. This 

category includes some challenges that prevent to achieve nice results.      

                            corridor                diningRoom            lakeside                  library               park 

 

 

Figure 1.12. The videos related to Thermal category 

The Figure 1.12 presents the thermal videos with some samples (first row) and their 

ground truths (second row). When analyzing the library video, achieving superior results 

for this category requires a great effort since there is a man sitting in the library until 3000 

frames, which is called as intermittent object motions.               

1.3.  Thesis Organization 

The background modelling is a fundamental step for several real time computer 

vision applications including security systems and monitoring. An accurate background 

model facilitates segmentation of moving objects in a processed video. In this work, we 

have developed some new methods for moving object segmentation with an accurate 

process. To plainly explain each proposed method, this study is organized as follows. 

In the section 1, we have presented the existing theories for background modelling. 

The idea under the traditional works are given and the improvements on previous 
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algorithms are touched by displaying the characteristics of recent methods. As a current 

trend, the studies for background modelling with deep learning strategies are explained 

together with different structures of deep neural network models. 

The section 2 provides proposed methods to improve the background subtraction 

process.  The reasons of developing such methods are also touched with more detail. 

Moreover, the contributions of utilized tools are expressed by concentrating on their 

theoretical aspects. Furthermore, the components of each method including background 

modelling, foreground detection, feedback mechanism and update of internal parameters 

are explained in the related places. 

The section 3 shows performance of each proposed method by revealing their 

success on different challenges in terms of foreground segmentation. Moreover, the 

potential impacts of each method for different video types are exhibited throughout the 

subjective and objective performance evaluation stages. What makes the employed 

datasets are feasible to develop a background subtraction algorithm, is explained by 

exhibiting the included challenges. Additionally, the information about utilized metrics 

for performance evaluation are given for readers. 

Finally, we have finalized the study with a concise conclusion. The computational 

time of proposed methods are emphasized in conclusion section. 
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2. PROPOSED METHODS ON IMPROVING BACKGROUND 

SUBTRACTION PERFORMANCE 

 

Figure 2.1. Background subtraction process 

As shown in the Figure 2.1, one can say that there are four components of a 

developed background subtraction system. These components can be given as 

background modelling, foreground detection, update of background frames and update 

of internal parameters. A simple explanation for each term is given as below. 

Step1: Background Modelling: In case of initialization stage, the background can be 

modelled with two ways; (i) estimating a single background from a few of samples or (ii) 

forming a background memory (background list) by choosing N frames related to a video. 

Selecting the N frames can be done by taking first N frames, random N frames or 

predetermined N frames among all frames. Besides, the mean or median of N frames can 

be repeated N times in case of initialization stage. In case of first way (i), the aim is 

preserving a single background from leaking of foreground regions into background 

regions and maintaining a clean and meaningful background through video. On the other 

side, in the second way, it is allowed entering foreground regions into background based 

on the probability rate. Many studies have considered the second option for background 

modelling since the using N background frames is more convenient to alleviate the 

dynamic changes and illumination changes. 

Step2: Foreground Detection: Foreground detection procedure is related to ways 

employed for moving object extraction. If one background model is considered, then only 

the difference between background frame and processed test frame are processed to reveal 
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the foreground regions. However, if there are N background frames on memory, then a 

consensus rule is taking into account. It means that a pixel has to be marked as foreground 

by the N frames, otherwise it would be background. 

Step3: Background Updating: The background updating stage is about in which way 

the background frame and pixels in background frames should be updated in order to 

allow entering of illumination and dynamic changes into background. There two policies 

in background updating process while the first policy is about which background frame 

should be updated and the other policy deals with how to update pixels of the selected 

background frame.  

Step4: Updating Internal Parameters: The other important point for a developed 

background subtraction framework, is controlling the utilized internal parameters 

including decision threshold and learning rate (probability rate) of updating process. 

Usually, a smart feedback mechanisms have utilized to monitor internal parameters. 

In this study, we have proposed four systems to improve the performance of background 

process. In the method 1, the limitation of Common Vector Approach (CVA), which is 

relied on sub-space decomposition procedure, is evaluated for background modelling, 

called as BMCVA. In the method 2, again an extended version of CVA method, namely 

Common Matrix Approach (CMA) is applied for background modelling, called as 

BMCMA. In the method 3, a new distance metric (gradient transformation) together with 

feedback mechanism is contributed to background subtraction literature. The method 3 is 

named as Sliding Window based Change Detection (SWCD) and working in a pixel-wise 

manner.  In the method 4, distance metric of SWCD is improved with CVA and also 

feedback mechanism of SWCD considered in internal stages, then the method 4 named 

as Common Vector Approach based Background Subtraction (CVABS). While in the 

BMCVA and BMCMA, a single background model, namely Common Vector or 

Common Matrix, was considered in case of the segmentation process through video, but 

in the SWCD and method CVABS, the first N background frames are hold in the memory 

in real time. 
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2.1. Method 1: Background Modelling Based on the Common Vector Approach 

(BMCVA) 

CVA is a popular subspace based classification algorithm as applied for face 

recognition [31] , spam classification [32], image denoising [33] and edge detection [34]  

tasks. The motivation of CVA is inspired from theory prompted in case of developing the 

PCA. While in PCA, the data is recovered by using eigenvectors corresponding to largest 

eigenvalues, but it has been emphasized that using null space of data gives more 

impressive accuracy in case of classification. Based on the this fact, CVA algorithm has 

been put forward with a purpose of object classification by authors of study in [35].  

Specifically, by using CVA algorithm, a frame is represented with two components, 

which are common and difference as shown in Eq. (2.1). There are two cases in CVA 

algorithm as sufficient and insufficient data cases. If the number of vectors is less than 

dimension of a vector, then it is called as insufficient data case, otherwise, it is assumed 

as sufficient data case. For this study, we have observed that the insufficient data case 

formed, since number of frames is less than the dimension of a frame. Assuming that we 

have given 35 frames and each frame is in the form of 256x256 (65536), then a matrix 

would be extracted as 65536x35 after the frames are converted into vector format and 

inserted to related columns in the matrix. The obtained matrix indicates that there is an 

insufficient data case. Thereby, common frame and difference frames can be calculated 

by using the Gram Schmidt procedure in case of insufficient data case.  

In this study, the motivation under the CVA algorithm is adopted for background 

modelling [36]. The key point of algorithm is encapsulating background information of 

different frames in order to obtain a single and meaningful background frame. Similar to 

PCA, each frame is transferred to vector form.  

Assuming that we have given n frames 1 2(a ,a , ,a )n and each frame is in the form 

of 1-D. With CVA algorithm, it has been validated that a given frame ka can be separated 

into two parts as common and difference frame, which is denoted in Eq. (2.1).  

 

,k com k diffa a a   ,                                          (2.1) 
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where the coma and ,k diffa  refers to common and difference frames, respectively. In order 

to obtain orthogonal and orthonormal basis, the concept of Gram Schmidt is carried out 

on given vector set 1 2(a ,a , ,a )n . As a first stage, the selected reference frame is 

subtracted from remain vectors as shown in Eq. (2.2). In this study, the first frame ( k 1)  

is considered as reference frame for the sake of simplicity. However, there is no restriction 

to take any frame as reference due to the characteristic of CVA method [37].       

 

1 2 1

2 3 1

1 1

....

n n

d a a

d a a

d a a

 

 

 

                                                (2.2) 

From the combination of difference vectors, a matrix  1 2 ( -1), , ... , nM d d d is obtained. 

The next stage is computing the orthonormal and orthogonal vectors with the idea of 

Gram-Schmidt procedure which is shown in Eq. (2.3) and Eq. (2.4).  

1
1 1 1

1

v
v d and u

v
                                                 (2.3) 

   

k-1

1

- , 1, ... , -1k
k i k j j k

j k

v
v d d u u and u k n

v

    ,               (2.4) 

where ,k jd u  refers to dot product of two vectors and kv denotes the l-2 norm of each 

vector. Each vector is normalized by dividing with their l-2 norm. At the end of Gram-

Schmidt orthogonalization procedure the 
1 2 ( 1)( , , , )nu u u  orthonormal and orthogonal 

1 2 ( -1)( , , , )nv v v  sets are obtained to yield difference frame. 

Once the orthonormal sets are obtained, the difference frame is determined as given in 

the below formula. Specifically, the selected reference frame is projected on orthonormal 

vectors and summed up to obtain the difference frame.  In this study, the first frame is 

taken as reference, and 1k  . 

         
, 1 1 2 2 ( -1) ( -1), , , ... , ,k diff k k k n na a u u a u u a u u                               (2.5) 
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Finally, the common vector coma  is derived by  subtracting the ,k diffa from ka .  

,com k k diffa a a                                         (2.6) 

 

Figure 2.2. Overall principles of CVA based background modelling and foreground detection 

As an improvement on the CVA method, a low noise value between 0-1 is injected 

to each difference subspace in Eq. 2.2 in terms of making high correlated data as low 

correlated form. The reason of making data low correlated is explained with idea that if 

the data is highly correlated then the rank becomes smaller than 2. As a result of small 

rank value, the obtained common vector does not become meaningful to eye. With this 

way, a background model with training data set is constructed as common frame refers to 

background frame and difference frame indicates foreground.   

The motivation behind the CVA based background modelling is exhibited in Figure 

2.2.  Although, the CVA algorithm returns a Common Vector in the means of background 

model, but we have reshaped it as matrix in case of visualization as shown in Fig. 2.2. 

Also, though there are the N different difference vectors, but we have only exhibited the 

difference vector associated with the reference frame. As we can observe from the Figure 

2.2, there are two components of a frame as: 

(1) first component provided the common frame of training set, which refers to obtained 

background model. 
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(2)  other component denotes the difference frame that exhibits details including moving 

objects and changes of training set. 

From the Figure 2.2, the ability of CVA for change detection can be observed 

clearly. Therefore, one can deduce that the CVA algorithm can be utilized for background 

modelling and change detection. In case of foreground extraction, the common vector of 

processed test frame (t) is computed by projecting the test frame onto the orthonormal 

basis generated by Gram-Schmidt procedure [34]. As a first stage, the difference vector 

corresponding to the test frame is obtained with Eq. (2.7).  

diff 1 1 2 2 ( n-1 ) ( n-1 )t t,u u t,u u , ... , t,u u                   (2.7) 

Once the difference vector is subtracted from the test vector, the common vector of 

processed test frame is determined as shown in Eq. (2.8). 

com difft t t                                              (2.8) 

The difference between the two common vectors is considered in terms of observing the 

foreground regions.  

    com com1 abs(t a ) threshold
i, j ,I i, j

0 otherwise

 
  


                 (2.9) 

As indicated in Eq. (2.9), if the absolute difference is greater than a fixed threshold 

value, then foreground mask is marked as 1, otherwise marked as 0. However, taking the 

absolute difference for Moved Object, Light Switch, Camouflage videos, produce a lot of 

erroneous pixels in foreground mask. To overcome this, only difference of two common 

vectors is put into the thresholding procedure. The utilized threshold value for each video 

are predetermined as follows; 0.1 for Camouflage, Bootstrap, Light Switch, Waving 

Trees, 0.2 for Foreground Aperture and 0.3 for Time of Day and Moved Object video, 

respectively. 

After thresholding procedure, it has been observed that some morphological 

procedure is greatly required to obtain best results. For this purpose, firstly, a 5x5 median 

filter is applied on the binary foreground mask. The size of 5x5 filter is determined by 

considering the trade-off between performance and speed. Then, the connected 

components having size of less than 20, are considered as ghosts and ignored by applying 

the area open morphological operator. To close the holes in binary region, the 

morphological closing procedure is performed with disk structural element having size of 
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5 and binary holes are filled with morphological filling operator. As a last step, 

morphological opening with disk structural element having size of 5 is performed to 

mitigate the effect of closing operator. 

2.2. Method 2: Background Modelling Based on the Common Matrix Approach 

(BMCMA) 

The Common Matrix Approach (CMA) algorithm is an extended form of Common 

Vector Approach, which is also a subspace based method proposed for classification 

tasks. However, the ability of CMA for background modelling has not been realized in 

literature of computer vision. For this purpose, we have employed the CMA algorithm 

for background modelling [38]. In case of CVA the data is handled in vector format as a 

2-D matrix is constituted from frames of training set and matrix decomposition strategy 

is applied, whereas for CMA, a tensor is generated from 2-D frames. The main idea 

behind the CMA is combining background information from different frames (matrices) 

and obtaining a single frame (common matrix), which envelopes cues about background 

locations. 

Assuming that we have given n sample frames 1 2( , , , )nS S S and the each frame is in the 

2-D form. In the context of CMA, a frame can be represented with common and difference 

frame as shown in Eq. (2.10).  

k com k,diffS S S  ,                                 (2.10) 

where the comS and ,k diffS refers to common and difference frames, respectively. To 

calculate, Common frame a tensor having 3-D structure is constructed and the concept of 

Gram Schmidt is applied to derive orthogonal and orthonormal basis. First of all, 

difference matrices are calculated by a taking a first frame as reference. Instead of first 

frame, a different frame can be chosen as reference.  

1 2 1

2 3 1

1 1

....

n n

D S S

D S S

D S S

 

 

 

                                  (2.11) 
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Once a tensor  1 2 (n 1), , ... ,DT D D  is obtained, the Gram-Schmidt procedure is 

activated on elements of T, which is shown in Eq. (2.12) and Eq. (2.13).  

1
1 1 1

1

V
V D and U

V
                              (2.12) 

1

1

, 1, ... , 1
k

k
k k k j j k

j k

V
V D D U U and U k n

V





     ,         (2.13) 

where, ,k jD U indicates dot product of two vectors and kV denotes the Frobenious 

norm of each matrix. Each of the orthogonal matrices iV  is divided by their Frobenious 

norm to make them normalized. After Gram-Schmidt orthogonalization procedure the 

orthogonal 
1 2 ( -1)( , , , )nV V V and

1 2 ( -1)( , , , )nU U U orthonormal sets are extracted to 

compute difference matrix. 

The next stage of CMA based background modelling algorithm is computing the 

difference and common matrices based upon orthonormal basis as given in the below 

equation. 

 

     
, 1 1 2 2 ( -1) ( -1), , , ... , ,k diff k k k n nS S U U S U U S U U                (2.14) 

Finally, subtracting the ,k diffS  from kS  gives difference matrix for class and comS  refers 

to common matrix of the class.  

,com k k diffS S S                                         (2.15) 

With this way, the set of background frames can be represented by a unique 2-D frame, 

which is named as, common matrix. In other side, all details including noises and outliers 

of training set are stored in difference matrix ,k diffS .  
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Figure 2.3. Overall principles of CMA based background modelling and foreground detection 

To obtain meaningful common matrix a low value of random noise is added to each 

difference subspaces obtained in Eq. (2.11). Since the rank of data becomes smaller than 

2 in case of highly correlated data and results in not meaningful common matrix that is 

undistinguishable with human eye. To overcome this problem, a low noise value between 

0-1 is injected to each difference subspace in Eq. (2.11) in terms of reducing the 

correlation ratio among the processed images.  

 

From the Figure 2.3, we can observe that the decomposed tensor generates two 

components: 

(1) first component reserves the common matrix of training set, which is the obtained 

background model. 

(2)  the other component involves the difference matrix that refers to detail features 

of training set. 

By using the CMA, we can see that foreground and changes are observed in difference 

matrix. Therefore, the strategy behind CMA provides a new way to detect moving and 

stable objects in a given dataset. In order to reveal the foreground objects, the common 

matrix of test frame (F)   is determined from the projection of incoming test frame onto 

the orthonormal basis returned by Gram-Schmidt procedure [34]. First of all, the 

difference matrix related to the test frame is calculated as shown in below equation.  
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diff 1 1 2 2 ( n-1 ) ( n-1 )F F,U U F,U U , ... , F,U U                      (2.16) 

Again, the common matrix corresponding to the test frame is computed by subtracting 

from the difference matrix. 

com diffF F F                                            (2.17) 

In case of revealing the foreground objects the difference between the common matrix of 

processed video and common matrix of processed frame is taken into account.  

    com com1 abs( F S ) threshold
i, j ,I i, j

0 otherwise

 
  


            (2.18) 

  As shown in equation above, the difference of two common matrix presents 

foreground objects. In case of Moved Object and Camouflage videos, the difference of 

two common matrices are considered to find the foreground regions for other ones the 

absolute difference taken into account. The threshold value for each video are determined 

as follows; 0.1 for Camouflage, Bootstrap and Waving Trees, 0.2 for Foreground 

Aperture, Light Switch and Moved Object, and 0.3 for Time of Day video, respectively. 

To obtain the pleasing visual results, some fixed morphological operations are 

applied on the foreground mask. Firstly, 5x5 median filter are utilized on the binary 

image. The connected components with the size of less than 20, are considered as ghost 

are removed by area open morphological operator. Then, the morphological closing 

procedure is utilized with disk structural element having size of 5 and binary holes are 

filled with morphological filling operator. Finally, morphological opening with disk 

structural element having size of 5 is performed to mitigate the effect of closing operator. 

2.3. Method 3: A Sliding Window and Self-Regulated Learning Based 

Background Updating (SWCD) 

Technically, a change detection algorithm relies on two policies; while the first 

policy is about which background frame should be updated and the other policy deals 

with how to update pixels of the selected background frame.  In the VIBE [21], PBAS 

[22] and SuBSENSE [23] algorithm, the update process partially relies on randomly 

selecting a frame among N background frames. Moreover, in referred studies, pixels of 
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selected background frame were updated with a neighbor rule where a subsampling 

factor ( )  was specified to choose the coordinate of a random pixel around the pixel to 

be updated. 

Table 2.1. Notations for SWCD algorithm 

x   denotes the position of image’s pixel value 

T   indicates the map of learning rate. As an accumulator, it counts number of foreground 

pixels over time. In this respect, it can be considered as histogram of foreground 

pixels. For a specific pixel, it is called as (x)T  

lowerT  The scalar value for lower bound of T  

upperT  The scalar value for upper bound of T  

R   is the decision threshold map, which contains the threshold information for each pixel 

value in the form of (x)R  

lowerR  The scalar value for lower bound of R  

upperR  The scalar value for upper bound of R  

scaleR  is used to monitor the decision threshold map ( R )  

p  indicates a scalar probability rate to update a pixel of background frame. 

iB  implies 
thi  background sample.  

tF  shows the (binary output) foreground map at time t  

td  shows the minimal distance map between current and background frame at time t .  

,min td  indicates the mean of minimal distance maps at time t  

,
ˆ

min td  is the normalized version of ,min td  

v  As an accumulator, it involves the histograms of blinking pixels.  

tX  is binary output of logical XOR operation between current and previous foreground 

maps at time t . 

#min  is the minimum number to classify a processed pixel of current frame as background 

or foreground. 

rE  is binary edge map of reference frame over time domain. 

cE  is binary edge map of current frame over time domain. 

tI  is the current frame at time at time t . 
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Table 2.1 (Continued). Notations for SWCD algorithm 

gxI  horizontal gradient magnitude of tI  

gyI  vertical gradient magnitude of tI  

tB  implies the mean of background samples at time t . 

gxB  horizontal gradient magnitude of 
tB  

gyB  vertical gradient magnitude of 
tB  

D  represents a cross projection tensor term. In SWCD, 11D , 22D , 12D denote cross-

projection tensor terms. 

m

tI  is the mean of short-term windowed gradient magnitudes at time t , for PBAS. 

,

m

gt tI  
refers to gradient magnitude’s transformation of current frame after applying the 

cross projection tensors at time t   

,

m

gt tB  
refers to gradient magnitude’s transformation of mean background frame after 

applying the cross projection tensors at time t  

In the VIBE [21], it was clearly emphasized that tuning the parameter to 1   is better 

for ghost suppression and that selection coincides with a diffusion rule updating strategy 

which refers to replacing the value of ( )kB x  with  ( )tI x  based on a precomputed ratio. 

On the contrary, in SuBSENSE, selection of 16   gives better results. The high value 

of   reduces the risk of false alarms, but increases the computational cost. 

Although the EFIC [39] and FTSG [26] uses chamfer transformation for validation, 

they have certain drawbacks of foreground validation based on the chamfer matching, 

such as difficulties in adjusting the threshold value for chamfer matching and obtaining 

well-localized edge segments for all video types. Particularly, extraction of edges in low 

contrast images become a challenging bottleneck.  

Considering the above-mentioned problems, we have proposed a new process for 

updating background frames. Contrary to VIBE [21], PBAS [22] and SuBSENSE [23] 

methods, we have observed that randomly updating the frames corresponding to the 

intermittent motion and dynamic videos is not a robust and effective way for preserving 

background frames through sudden and smooth changes. For this purpose, we have 

updated frames in a consecutive order over time. The introduced strategy relies on 
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sequential updating background frames, where the updating procedure is applied to the 

frames in a hierarchical order. Figure 2.5 shows an illustration of sliding window 

approach for updating the consecutive background frames. On given set, the pixels in the 

related background frame are updated according to a diffusion rule for the construction 

of a robust (but dynamic) background frame. Since we have utilized the dynamic update 

parameter, T, the foreground objects do not disappear (“eat-up”), thanks to the diffusion 

rule in updating strategy. 

2.3.1. Foreground detection                                                                                                             

Through this study, we explain foreground detection algorithm on gray-scale images. 

Therefore, if the image is a color image, first, it is converted to HSV domain, then the V 

channel is used. Considering the background pixel updating strategy, our segmentation 

mechanism is similar to the process realized in PBAS [22] and SUBSENSE [23] 

algorithms. The pixels of incoming test frame are compared with a background frame 

(from a list of background frames), based on a modified absolute distance (a special form 

of the L1 norm).  

Let’s assume that we have N  recently observed background frames, which are 

listed as  1( ) ( ), , ( ), , ( )k NB x B x B x B x   , where x  corresponds to a pixel location. 

According to the computation/accuracy trade-off recommendations from SUBSENSE 

[23], we have set the 35N  . The reason of selecting a window size of 35 will be 

explained in the section of implementation details. At the beginning of the video, the 

background list is initialized with the first 35 consecutive frames. The L1 norm distance 

between a pixel of test frame and background frames can be used for categorizing a pixel 

as foreground or background:  

 
1

1 # ( ), ( ) ( ) #
( )

0

N

t i

it

if  dist I x B x R x min
F x

otherwise



  
   

   




                  (2.19) 

In this equation, ( )tI x  refers to the processed pixel of the incoming test frame at 

time t. ( )iB x  indicates a processed background’s pixel and ( )R x  shows the threshold 

value for decision making. The ‘#’ operator is a ‘count of’ operator. For each pixel, the 
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( )R x  is steadily updated to overcome dynamic changes in time domain. Here, # min  is 

the minimum count threshold to classify a pixel as foreground. In our algorithm, the 

threshold is selected according to N as 1# min N  . Therefore, if the statistical count of 

a pixel is greater than N-1, then it is marked as foreground, else it is marked as 

background. 

All of the described parameters and comparisons depend on a proper selection and 

definition of “distance”. For example, the distance measure in SUBSENSE [23] relies on 

Local Binary Similarity Patterns (LBSP) feature extraction parameters. It defines a 

threshold ratio Tr , and constructs a prior segmented map, called Trd : 

1  ( ) ( ) ( ) 
( )

0 

t i t

Tr

if I x B x Tr I x
d x

otherwise

   
 


                                 (2.20) 

The original segmentation in SUBSENSE [23] is constructed as a binary map that 

gets a value of 1 if the absolute difference between test and background pixels is greater 

than the threshold ratio  Tr  of test pixel. The Tr  value is initialized to 0.1 and increased 

gradually according to the existence of edges. The maximum value of Tr  was specified 

as 0.3. Using this binary map, the distance is obtained as the 16-bit integer values LBSP 

between current and background frames, which is defined as: 

   
15

0

( ), ( ) ( ), ( ) ( ) 2i

t i t i Tr

i

dist I x B x LBSP I x B x d x


                      (2.21) 

As an alternative approach,  PBAS [22] uses the L1 norm distance between test 

pixel and background pixel over three color channels. For each channel, the following 

rule was applied to calculate distance.   

 ( ), ( ) ( ) ( ) ( ) ( ) ,
( )

m m

t i t i t im

t

dist I x B x I x B x I x B x
I x


                       (2.22) 

where the short-term averaged gradient, ( )m

tI x , is as explained further paragraphs. 

Typically, the SOBEL filter was utilized for gradient map estimation. The incorporation 

of gradients together with the L1 norm help PBAS [22] to cope with shadow and 
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intermittent object motions. However, this distance metric does not produce satisfactory 

results in terms of change detection and the selection of   is deterministic.    

With a purpose of eliminating such deficiencies, we have introduced a new gradient 

distance metric with an inspiration from the work in [40]. The key assumption behind our 

approach is that the shadow and illuminations can be reduced with a gradient 

transformation procedure. Particularly, a “cross-projection tensors” based gradient is 

adopted in distance calculation, which is observed to help solving the ghost problem 

caused from intermittent object motions.  

Let us assume that tI  is the “value” component of incoming HSV test frame and 

tB  is the mean background derived from background list (i.e. the average of the list 

 1,..., ,...,k NB B B B ). First, the frames are smoothed with a simple 9x9 Gaussian filter 

( =1.5). Then, the horizontal  gx  and vertical gradient  gy  maps of tI  and tB  for 

each frame are computed with SOBEL operator. Based on the procedures explained in 

[40], the cross diffusion tensor terms, called 11D , 22D  and 12D  are obtained and applied 

to gradient magnitudes of tI  and tB . Then, gradient transformations of tI  and tB  are 

computed separately as given in Eq. (2.23). 
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                           (2.23)            

Finally, a noise free gradient distance map is recovered as , ,(x) (x)m m

gt t gt tI B  which is 

incorporated into the distance definition as: 

  , ,( ), ( ) (x) (x) ( ) ( )m m

t i gt t gt t t idist I x B x I B I x B x    .                    (2.24) 
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Certain refinements were made in this new distance metric. For instance, in order 

for the gradient difference term to contribute, a condition on ( ) ( )t iI x B x  value was 

imposed as ( ) ( )t iI x B x must be greater than 5. Hence, high gradient distance responses 

caused by complex edge regions were suppressed.  

 
background input 

Grad-Diff 

SOBEL 

Grad-Diff 

SWCD 

parking 

#0001 

#1890 
    

winterDriveway 

#0001 

#2000 
    

cubicle 

#2700 

#4774 
    

turbulence0 

#1105 

#2728 
    

Figure 2.4. Visual demonstration of validated foreground maps 

Some visual gradient results are presented in Figure 2.4 The second and third 

columns indicate “background” and “input” frames, while the fourth and fifth columns 

refer to pure gradient difference (Grad-Diff) returned from SOBEL and the proposed 

gradient difference used in SWCD [41], respectively. Experimental validation results 

show that the utilized validation procedure gives plausible performance on CDnet 2014 

dataset. 

Since we have utilized an edge suppression based gradient estimation procedure, 

edges become recessive in the obtained gradient maps. Consequently, the method 

successfully overcomes the challenges of intermittent object motion in winterDriveway 

and parking videos. Moreover, a clean background model is estimated in case of parking 

and winterDriveway videos, even after the parked car and stationary car moves and 

displace their locations. It is concluded that the validation procedure with cross-projection 

tensors successfully eliminate shadows, reflections and abrupt illumination changes, 

which are common problems for all background subtraction methodologies. However, it 

must be noted that the overall performance of the proposed method does not solely rely 

on the above distance computation. 
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2.3.2. Updating background frames 

The performance of a background modelling algorithm significantly improves 

under low or no noise conditions. Therefore, noise effects have to be minimized by 

carefully setting the parameters. Then, as widely used, updating decision threshold ( )R  

and learning rate ( )T  of a background subtraction algorithm are two important parameters 

for adaptation to gradual changes in test frames. There are two policies related to the 

background updating procedure over time; selection policy and update policy.  The 

selection policy deals with (i) “which background frame should be selected to update 

among the N background frames?” and (ii) “which pixel of selected background frame is 

needed to update when a processed pixel of current frame is classified as background or 

foreground?”. Conversely, the update policy seeks the answer to (iii) “which way should 

the processed pixel of selected background frame be updated?”.     

The selection procedure of VIBE [21], PBAS [22] and SuBSENSE [23] works by 

randomly selecting a frame among N background frames in case of selecting background 

frame. Moreover, a random neighboring rule was considered in order to select pixel to be 

updated. In other words, a random index among the surrounding pixels of processed pixel 

was selected in case of updating stage. Again, the strategies to update the picked pixel 

among the surrounding pixels are classified into two policies: (i) conservative, and (ii) 

blind [21]. In conservative update policy, only the pixels marked as background in the 

current frame are considered to be updated. The adverse points of conservative policy are 

the deadlocks and ghost artifacts (which form due to intermittent object changes). 

Therefore, an alternative solution is devised, known as the blind policy. The blind policy 

is less sensitive to deadlocks and ghosts since the pixel of background frame 

corresponding to current frame is updated regardless of considering whether its label is 

foreground or background.  The updating strategy of VIBE [21], PBAS [22] and 

SUBSENSE [23] relies on the conservative policy as only the pixels marked as 

background are updated.  

Contrary to VIBE [21], PBAS [22] and SuBSENSE [23], we have carried out a sliding 

window approach while selecting a background frame among the set of background 

frames. With an iterative selecting rule, background frames are selected in a sequential 

order. Furthermore, a probabilistic diffusion rule is applied where a current frame’s pixel 
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replaces one of the background images pixel at the same location according to a 

probability rate of p. An advantage of diffusion rule is that extra efforts aren’t required to 

select a random pixel among neighboring pixel of a processed pixel. On top of these, 

unlike to VIBE [21], PBAS [22] and SuBSENSE [23], a blind update policy is applied in 

our method in case of updating selected pixel of background frame. 

 

Figure 2.5. An illustration of sliding window based background updating procedure 

Similar to PBAS [22] and SuBSENSE [23], an accumulator ( )T  is considered to 

keep the histogram of foreground pixels over time in our algorithm. Then, the updating 

probability rate (which is approximately 1/ ( )p T x ) is calculated for each pixel in case 

of blind updating stage. From the formulation, we can see that the probability rate refers 

to inverse of histogram as 
1( )T 

. One can notice that the value of probability rate becomes 

close to zero in case of static foreground regions (steadily marked as foreground over 

time – please refer to static scenes of standard videos: copyMachine, library and office). 

On the other hand, for non-stable foreground regions, the probability rate becomes high. 

This desirable property helps our method to successfully identify foreground and 

background regions.    

Based on the probability rate, p , the background frames are updated with a sliding 

window selecting policy and blind update policy as presented in Eq. (2.25) 

( ) (1 ) ( ) ( )i i tB x p B x p I x                                      (2.25) 

In Eq. (2.25), i  starts from 1 and gets incremented until Nth frame. ( )tI x  refers to the 

processed pixel of the incoming test frame at time t. ( )iB x  indicates a processed 

background’s pixel. In Figure 2.5, the update mechanism of SWCD algorithm is 

Background 

T/time 

... 

Bk 

B1 

… 

BN 

Previously Updated 
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illustrated as a sliding window process, where background frames are selected and 

updated consecutively. However, the sliding window indexing is circularly stacked: as 

the index overshoots N, the list index goes back to 1.  

A disadvantage of the previous conservative policy, as already indicated above, is 

that only the pixels marked as background are updated in VIBE [21], PBAS [22] and 

SuBSENSE [23], and this leads to formation of ghost objects caused by intermittent 

object motions. In the proposed SWCD algorithm, in order to avoid false alarms, both 

foreground and background pixels are updated regardless of checking the classification 

of the pixel, using similar dynamic control parameters.  

2.3.3. Updating internal parameters 

Updating the Decision Threshold ( )R x  

The performance of background subtraction algorithm immediately depends on a 

good selection of threshold value. In order to reduce the number of false alarms while 

maintaining acceptable accuracy rates, an adaptive threshold is required. Therefore, 

instead of using a user-defined and fixed threshold, many adaptive threshold attempts 

have been made in the literature to cope with camera jitter, sudden illumination and 

dynamic changes [21-23, 42, 43]. Many methods prefer a constantly updated threshold 

map after their foreground segmentation stage. For example, a history of minimal 

decisions was kept over the time as  1( ) ( ), , ( ), , ( )k Nd x d x d x d x    in the study of 

PBAS [22] and SUBSENSE [23].  Here, “minimal” decision refers to minimum absolute 

difference between the pixel of test frame and background frames, computed as: 

 ( ) ( ( ), ( ))t t id x min dist I x B x . The average value of minimal decision list represents the 

dynamic changes in time domain and will be called the dynamic’s control parameter, 

( )mind x , evaluated around the current time, t, as , 1( ) { ( ), , ( )}min t t t nd x mean d x d x  . For 

a static region,  ( )mind x  would be small and for a dynamic region, that value would be 

high. Using this idea, we have observed that the minimal distance between current and 

background frames can be simultaneously measured in order to gauge the background 

dynamics. Once mind  is computed, the threshold map, R , is increased or decreased based 

on the rule given PBAS [22] algorithm. In SWCD, for a better performance, only five 
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historical minimal distance ( 5)n   maps are held during the change detection procedure 

and the average of these minimal distances is represented as ( )mind x  for each pixel. The 

decision threshold parameter is instantly updated with respect to ( )mind x  in each frame as 

shown in Eq. (2.26). 

/

/

( ) ( )  ( ) < ( ( ) )
( )

( ) ( )

inc dec min scale

inc dec

R x R R x if R x d x R
R x

R x R R x otherwise

  
 

 
 ,       (2.26) 

where /inc decR  denotes a steering coefficient, which was set to 0.01 in our experiments. 

The scaleR  parameter depends on the complexity of video type and typically attains one 

of the three values: 0.1, 1, and 2. It was experimentally observed that for static and noise 

free videos, scaleR  should be selected as 0.1 and for complex videos, a value of 1 or 2 

should be selected. Specifically, for complex outdoor videos, selecting 2scaleR   causes 

more effective results. Also, the interval of ( )R x  is restricted to  ( )lower upperR R x R  . 

Similarly, the upper value of ( )R x , upperR ,  is bounded as upperR  . Initially, ( )R x  is 

set by the user-defined threshold lowerR  (which has a value of 35). The latter ( )R x  values 

are always greater than or equal to lowerR .  

Updating the Learning Rate ( )T x  

The activity of the foreground and background greatly varies according to the 

selected video; in some cases, the background present static behaviors, while in other 

cases, it exhibits dynamic movements. For example, the places of some objects in videos 

do not change for a long time (say, 1000 - 3000 frames), and then these objects just move 

(even causing an illusion to the human eye). To prevent such objects from entering the 

background class, it is necessary to increase the corresponding foreground probability 

values for lower false alarm rates. A parameter that needs updating is the histogram of 

foreground pixels: T . Similar to SUBSENSE [23] method, we have updated the T  

parameter using v  and mind̂  parameters, which are called as dynamic’s controllers, where 

mind̂  corresponds to the normalized version of mind  (normalized to [0-1] interval):     
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                    (2.27) 

In Eq. (2.27), the ( )v x  parameter takes care of pixels that are alternatingly marked 

as foreground and background in time (causing a blinking in foreground tagging matrix, 

which is a binary frame). This ( )v x  parameter is, therefore, an accumulator (defined in 

Eq. (2.28)) to measure the statistical information related to constantly changing pixels. Its 

value is always positive, and for static regions, ( )v x  converges to 0. Since the parameter 

is in the denominator, in order to avoid division by zero, an offset of 1 is added to 

denominator in the given equation. In the second condition line of the same equation,  

    min
ˆ( ) 0.1 ( ) 1v x d x   is subtracted from current ( )T x  to increase the update 

probability rate of slowly changing pixels. Based on the segmented foreground pixel (

( )tF x ), the associated threshold value ( ( )T x ) is increased or decreased with dynamic 

control parameters over time. 

In the proposed algorithm, a rule given in Eq. (2.28) is pursued to monitor the ( )v x  

parameter.  

( )   ( ) = 1
( )

( )  if ( ) = 0

incr t

decr t

v x v if X x
v x

v x v X x


 


 ,                        (2.28) 

where ( )tX x  refers to a flag (i.e. an XOR operation) indicating that the location x contains 

alteration for two consecutive (binary) foreground tagging matrices, ( )tF x  and 1( )tF x . 

As a final retouch, the areas of tX  intersected with tF  are set to 0 in order to avoid 

leaking of foreground’s borders into the background frame. In Eq. (2.28), the increment 

(punishment) and decrement parameters were specified as 1incrv   and 0.1decrv  , 

respectively, so that camera jitters, waving trees and water waves could be collected in v  

map by punishing the related coordinates with 1. The learning rate, T  in Eq. (2.27) is 

finally restricted as ( )lower upperT T x T  .  
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Figure 2.6. The visual performance with or without dynamic control parameters and post 

processing 

The consensus of several studies show that selecting a lower bound as 2lowerT   is 

sufficient for reasonable performance. Unfortunately, there are different proposals for the 

upper value, upperT . While PBAS [22] proposes 200upperT   , SUBSENSE method [23] 

makes experiments with 256upperT  . In this study, we have observed that the upper value 

should be made as high as possible for real time applications because a wrongly classified 

foreground pixel should never be let into the background frame – not even after 200 or 

256 frames. Consequently, we take upperT  .  

As seen from Figure 2.6 and due to other known examples, it is quite difficult to 

cope with sudden illumination changes, intermittent object motion and waving trees 

without using a feedback mechanism based on the dynamic control parameters. The 3rd 

and 4th columns in this figure show the results without feedback. As expected, many 

misclassified pixels inevitably appear, although post-processing somewhat improves the 

foreground detection. On the other hand, feedback by itself is observed to be greatly 

improving the foreground segmentation (column 5) except for rapidly changing 

backgrounds (i.e. waving tree leaves in the last row). Finally, as illustrated in the last 

column, if feedback and post processing scenarios are engaged together, then remarkable 

performance is achieved for almost all difficult cases. 

In these experiments, the post processing step consisted of sequentially applying 

median filter (to remove salt-pepper type noise for isolated chunks smaller than 10 
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pixels), then opening and closing morphological operations (with diamond-shaped 

structuring elements having radius size 10).  

2.3.4. Handling PTZ challenges 

PTZ videos have their unique challenges as compared to other video types. 

Furthermore, foreground detection is mostly applied to these types of videos. Therefore, 

a precaution is required in order to find the changes in the view points of camera, 

particularly for twoPositionPTZCam and intermittentPan videos. For this purpose, we 

have utilized a fast pixel based scene change detection algorithm that was inspired from 

the study in [44].  

In the referred study on scene change detection, the abrupt scene changes were 

found with a low computational complexity procedure which depends on statistical 

measures between processed frames. When a scene change is detected, the related 

background is totally replaced with the new scene. By combining this scene change 

detection strategy with the above foreground extraction method, plausible F-score values 

were achieved in PTZ camera videos. The proposed scene change detection depends on 

serially checking variations between two consecutive frames by Mean Absolute Edge 

Difference (MAED), Mean Absolute Frame Difference (MAFD) and Absolute Difference 

Frame Variance (ADFV). 

 

Figure 2.7. Scene change detection mechanism for PTZ videos 

In Figure 2.7, the reference and current frames are taken as input to the process 

chain for scene change detection. First, a histogram equalization is applied on the frames 
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for normalization purposes. Then MAED, MAFD and ADFV measures are quickly and 

sequentially computed. The algorithm resets the background if ALL of the variation 

measures agree that a scene change has occurred. Otherwise, a scene change is not 

decided and the foreground/background detection process continues. 

Detailed information about computation of MAFD and ADFV can be found in [44]. 

However, in this series of checks, MAED is proposed by our study and utilized for the 

first time in scene change detection, and is defined as  

 
1 1

1
(x) (x) ,

H W

r c

i j

MAED E E
H W  

 

                                 (2.29) 

where rE  and cE  refer to edge maps obtained from reference and current frames (using 

a simple Sobel operator), respectively. H and W denote frame dimensions. 

2.3.5. Implementation details  

In order to achieve a reasonable background subtraction performance, certain pre- 

and post-processing steps are typically applied in many studies. For instance, 

downsampling of video frames improve performance by reducing the noisy regions due 

to camera jitters, waving trees and reflectance.  

 

Figure 2.8. Performance analysis of different number of samples (N) after conducting experiments 

on CDnet dataset 

Besides, as emphasized in SuBSENSE [23] algorithm, a downsampling (by a factor 

of 2) naturally increases the speed. However, such a downsampling was NOT applied in 
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our tests to see and show the exact performance comparison under real conditions. 

Instead, a post processing phase (consisting of simple median filtering, opening and 

closing) is applied for cleaning the foreground and background parts. 

The number of background samples was determined as N 35 . This stack size was 

decided according to experiments on CDnet 2014 dataset. The value of N was gradually 

increased from 10 to 100 and the F-scores were analyzed for each experiment. Figure 2.8 

roughly shows results in increments of 5. For instance, an F-score of 0.7521 was obtained 

at N = 30. In order to be compatible with the literature and since there is no significant 

degradation at N = 35, the value of 35 was chosen.  

2.4. Method 4: Moving Object Segmentation with Common Vector Approach 

(CVABS) 

CVA is a subspace based recognition method that gives satisfactory invoice results 

[45], face [46], spam e-mail [47], edge detection [48] and classification tasks. Essentially, 

the derivation of CVA comes from the idea behind the Principal Component Analysis 

(PCA). While in PCA the projection is taken onto the eigenvector corresponding to the 

largest eigenvalues, in the CVA method this procedure is carried out in the opposite 

direction by projecting the data onto the eigenvector associated with the smallest 

eigenvalues. The advantage of CVA over some subspace based classification methods is 

the derivation of a solution for an insufficient data case, which occurs when the dimension 

of vectors is greater than the number of vectors [37]. On the other hand, computing the 

inverse within the class matrix with Fisher Linear Discriminant Analysis (FLDA) method 

for an insufficient data case is impossible.  

Let suppose that we give the k samples that correspond to the i th class (different 

sequential views of the same scene,  1, 2, ...,i

ja j k ). Now, refer to a particular class 

and drop the superscript i  . It is possible to represent each ja vector as the sum of

j i,com i,diffa = a +a . A common vector ( i,coma ) is what is left when the difference vectors 

are removed from class members and is invariant throughout the class, whereas i,diffa  is 

called the remaining vector, which represents the particular trend of this particular 

sample.  There are two cases in CVA where the number of vectors is either sufficient or 
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insufficient. In this study, we have focused on the insufficient data case since the frames 

are handled as a vector format. 

For an insufficient data case, it has been stated that the common vector can be 

obtained based on the covariance matrix and the Gram–Schmidt orthogonalization 

process. With respect to this concept, the common vector can be derived by obeying the 

following rules. 

Let us suppose that the training set has k samples 
1 2 k

(a ,a ,…,a ) corresponding to the 

i th  class in k
R . Also, each sample has a hxw  dimension. To find a common vector for 

any class, we should construct a matrix from these samples. Hence, a column matrix with 

the ( . )h w xk  dimension is obtained from the given k samples. Our aim is to project the 

column matrix into the 1-D space (vector), by preserving the global information. To 

understand this, the algorithm described below should be followed based on the rules 

given in the related work on CVA [45]. 

 Firstly, a random vector, i.e., 
1

a  is taken as a reference, then the difference vector 

which belongs to processed data is obtained by: 

2, 3, ...,j-1 j 1d = a -a j k                                     (2.30) 

 Once the ( 1k  ) difference vector is obtained, the difference subspace ( DS ) for i th  

class can be calculated by gathering the difference vectors.  

  1, 2, ..., 1i j j+1 k-1DS = d , d , ... , d j k                                               (2.31) 

 In the next stage, the Gram-Schmidt orthogonalization procedure is applied to obtain 

the orthonormal basis, 1 2 (k-1)(z ,z ,…,z )  which spans the difference subspace and 

orthogonalizes the difference vectors of the i th  class. The obtained orthogonal 

vector is divided by their Frobenious Norm’s to make them normalized, called the 

orthonormal basis.  

 In k-1
R , the orthonormal basis 1 2 (k-1)(z ,z ,…,z )  and orthogonal vectors 

1 2 (k-1)(v , v ,…, v )   of the plane with k  dimension are computed with the following 

formulas. 
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1
1 1 1

1

v
v = d z =

v
and  

 2
2 2 2 2 2 2

2

v
v = d - d ,z z z =

v
and                                          (2.32) 

3
3 3 3 2 2 3 1 1 3

3

v
v = d - d ,z z - d ,z z z =

v
and  

2, ... ,
j-1

j

j j j j-1 j-1 j

j=1 j

v
v = d - d ,z z z =

v
and j k  

1 2 (k-1)(z ,z ,…,z ) refers to an orthonormal basis for k-1
R  and for a given plane, respectively. 

Also, . , . implies the dot product of the given vectors and . denotes the Frobenious 

Norm of the vectors.  Again 1 2 (k-1)(v , v ,…, v )  refers to orthogonal vectors for a given plane 

and for k-1
R , respectively. 

 Once the orthogonal and orthonormal basis are computed, the difference vectors i,diffa  

can be obtained by the projection of any sample ja  from the i-th class on the difference 

subspace of a class which is spanned by a orthonormal basis 1 2 (k-1)(z ,z ,…,z ) . 

i,diff 1 2 2 2 3 3 k k-1 k-1a = a ,z z + a ,z z +, ... ,+ a ,z z                               (2.33) 

 Finally, as shown in Eq. (2.34), subtracting the i,diffa from any vector ja  , gives a 

common vector of the i th  class. Practically, any sample among the 
1 2 k

(a ,a ,…,a )

can be used as a reference. By considering the given form of j i,com i,diffa = a +a , the 

common vector can be formulized as; 

i,com j i,diffa = a -a  

i,com j j 1 1 j 2 2 j k-1 k-1a =a -( < a ,z > z + < a ,z > z +...+ < a ,z > z )                    (2.34)                                                              

 

i,coma  refers to a common matrix of the i th  class. Thus, a class with several samples 

can be represented by a unique subspace called a common vector. To summarize, the 

projection of vectors established from each sample of a class onto an orthonormal basis 
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gives the difference vectors. If the difference vectors are subtracted from the reference 

vector, the common vector of the processed class is acquired. In other words, the 

projection of the matrix in a difference subspace of a processed class, generates the 

common vector.  

2.4.1. Application to background modelling 

It can be recalled that our objective is to combine the common characteristic stated 

in different sequential views with a single view that reserves the rich information about 

the background. Using the CVA algorithm to represent the different views with a common 

one is a similar procedure to the work of Oliver et. al, called Subspace Learning based on 

the PCA algorithm (SL-PCA) . When cross-referenced to the study, the eigenspace model 

generated from the PCA decomposition is utilized by considering the fact that moving 

objects do not appear in static regions which are the contributions of moving objects to 

the eigenspace model and are very small and can even be negligible. With this concept, 

the difference between the mean background ( )u and the column representation of each 

input image t
(I ) was projected onto the h  dimensional eigenbackground subspace, h(Φ )  

, which consists of the eigenvectors associated to the largest eigenvalues of a column 

representation of the k  frames, denoted with 
t

B . In the following step, the t
(I )  has been 

reconstructed to represent the background model (
'

tI ) as shown in Eq. (2.35).  

t h t
B = Φ (I -u)                                                      (2.35) 

' T

t h tI =Φ B +u                                                       (2.36) 

Finally, those foreground pixels related to a moving object are detected by considering 

the distance between the input t
(I )  and the reconstructed background ( )

t
I  frames 

regarding the predefined threshold T as denoted with the rule below; 

1 ( ),

0

if dist Threshold

else

 
 


t t

t

I (i, j) I (i, j))
F (i, j)                  (2.37) 

The procedure stated for the SL-PCA is the inspiration for our study in background 

subtraction. Specifically, the common vector of a column representation of the k frames 

can be obtained either by using the eigenspace model that consists of eigenvectors 
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corresponding to the smallest eigenvalues, or by obtaining the orthonormal vectors of the 

processed data with the Gram-Schmid Orthogonalization procedure in the case of an 

insufficient data case. Since obtaining the eigenvector for a large dimension of data 

requires an enormous memory, we have concentrated on the Gram-Schmid 

Orthogonalization procedure instead of deriving the orthonormal vectors. 

Although using the CVA algorithm for background modelling gives good results in 

the case of low correlated data ranked greater than 2, it has been observed, however, that 

the CVA concept collapses in the case of high correlated data when ranked at about 2. 

For example, it is favourable to obtain a nice common vector (background model) in the 

case of ‘backdoor’, but it is obvious that the non-meaningful common vector derived 

from the ‘copyMachine’, ‘office’ and ‘library’ video set in which the sequential frames 

are too similar to each other.  With this, the data range of the common vector becomes 

different by 0-255. It results in a segmentation problem where difference between test 

and the common vector does not reveal the accurate foreground regions which can be 

observed from Figure 2.9.   

 backdoor copyMachine traffic highway  

test image 

    

 

common of 

first 35 background frames 

    

 

discriminative common  

of test frame 

    

 

distance between discriminative 

 common and common  

 

    

 

Figure 2.9. The visual demonstration of common frame of backgrounds, discriminative common 

frame and distance map between them                                                                                     

By taking these adverse effects of pure CVA, we have put together a new CVA 

methodology to obtain an accurate distance map between the test and background frames. 

For this purpose, as an extended version of CVA, the Discriminative Common Vector 

Approach (DCVA) option has been considered in the case of distance computation stage. 

The DCVA method works based on the CVA method. First of all, the common vector of 
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the background frames is obtained with the CVA concept and then the discriminative 

common vector is obtained by taking the projection of the test vector onto the orthonormal 

vectors generated from the Gram-Schmidt procedure. This process is called DCVA. The 

L1 norm distance between the discriminative common vector and the common vector 

gives accurate regions for the foreground motion, which can be observed from Figure 2.9. 

This distance is then utilized for the foreground segmentation. Detailed information about 

the foreground segmentation is introduced in the chapter, Foreground Extraction. 

The discriminative common vector related to the test frame 
t

a  can be found based on the 

following steps. 

 At first, the difference vector t,diffa  is obtained after the projection of the test vector 

onto the orthonormal basis 1 2 (k-1)(z ,z ,…,z ) . 

t,diff 1 2 2 2 3 3 k k-1 k-1a = a ,z z + a ,z z +, ... ,+ a ,z z            (2.38) 

 Then, as shown in Eq. (2.39), subtracting the t,diffa from the test vector (
t

a ), gives a 

discriminative common vector associated to 
t

a . 

t,com t t,diffa = a -a                                             (2.39)    

Figure 2.9 shows some visual results of CVABS in terms of background modelling. 

The first row presents the test frames. The second row of Figure 2.9 exhibits the common 

frame (background model) derived from the background frames. On the other side, the 

third row denotes the visualization of discriminative common frame related test image to 

be processed for moving object detection.  

The last row displays the distance between the discriminative common frame and 

background model (common frame), which clearly exposes the motions in the test frame. 

One can obviously observe that using the CVABS promises high valuable results in terms 

of highlighting the foreground regions. With respect to the idea of the CVABS, it is 

expected that the common and unvarying characteristic of static regions would be 

combined with the background model (common frame) while details such as unstable 

regions including illuminations, reflections and waving trees would be moved to the 

difference frame. 
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When considering the general implementation of CVABS, an overview of the procedure 

for the foreground detection with the CVA concept can be summarized with the 

Algorithm-1. 

2.4.2. Common vector versus average vector 

As aforementioned, the common vector is obtained by taking the difference 

between the sum of the projection average vector onto the orthonormal basis and average 

vector.  With respect to this, one can note that the common vector refers to the weighting 

of the average vector with a constant. To explain the contribution of common vector 

against average, a mathematical proof is illustrated and the difference in performance is 

compared with a simple numerical example and a visual demonstration.  

Presuming that we give m vectors and 
i

a , 
com

a and 
i

z refers to a training vector, the 

common vector and orthonormal basis returned from Gram-Schmidt Orthogonalization, 

respectively. Hence, all the vectors in the training set can be written with following forms: 

1 com 1 1 1 1 2 2 1 m-1 m-1
a = a + < a ,z > z + < a ,z > z + ...+ < a ,z > z  

2 com 2 1 1 2 2 2 2 m-1 m-1
a = a + < a ,z > z + < a ,z > z + ...+ < a ,z > z  

     …                                                                       (2.40) 

m com m 1 1 m 2 2 m m-1 m-1
a = a + < a ,z > z + < a ,z > z + ...+ < a ,z > z  

Algorithm-1: Foreground Detection with DCVA  

1. Constructing a background set with column representation of k frames. 

2. Subtracting a predefined reference vector from each vectors stated on background set to 

obtain the difference subspace 

3. Obtaining orthonormal vectors spanning difference subspace of processed background 

set by applying Gram–Schmidt orthogonalization process onto the difference subspace 

4. Computing the difference vector related to reference vector by taking projection of 

reference vector onto the basis returned from Gram–Schmidt orthogonalization process. 

5. Computing the common vector, which is the background model of background set, by 

subtracting the difference vector from reference vector. 

6. Computing the difference vector related to test frame by taking projection of test vector 

onto the basis returned from Gram–Schmidt orthogonalization process. 

7. Computing the discriminative common vector by subtracting the difference vector from 

test vector. 

8. Finally, the distance between discriminative common vector and common vector is 

considered as motion regions in terms of foreground segmentation. 

9. Once a distance vector with h.w dimension obtained, then reconverted into the image size 

as hxw 
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If we summarize both sides of the above equation side by side, we would like to obtain: 

m m m m

i com i 1 1 i 2 2 i m-1 m-1

i=1 i=1 i=1 i=1

a = ma + < a ,z > z + < a ,z > z + ...+ < a ,z > z     

   
m m m m

i com i 1 1 i 2 2 i m-1 m-1

i=1 i=1 i=1 i=1

1 1 1 1
a = a + < a ,z > z + < a ,z > z + ... + < a ,z > z

m m m m
  

com ave ave 1 1 ave 2 2 ave m-1 m-1
a = a - < a ,z > z - < a ,z > z - ...- < a ,z > z             (2.41) 

As we can see, the common vector is obtained by subtracting the average vector from its 

projection onto all of the orthonormal basis. To analyze the behaviors of an average and 

a common vector on three simple training vectors, a numerical example is given. Let 

suppose that we have been given 3 vectors, such as  
T

1a = 1 1 1 ,  
T

2a = 1 1 -1 and 

 
T

3a = 1 5 5 , then assume that the closest vectors (
1

a and 
2

a ) refer to the background 

and the distinct vector (
3

a ) refers to the foreground. Hence, the common vector can be 

obtained by the training set that consisted of these vectors. First of all, we should compute 

absolute difference vectors (
1

b  and
2

b ) by taking 
1

a  as a reference. 

 
T

1b = 0 0 -2 and  
T

2b = 0 4 4                             (2.42) 

To go on, by using the Gram-Schmidt Orthogonalization, the common vector of the 

training set is acquired by the following rules: 

1 1
d = b ,    

T1
1

1

b
z = = 0 0 -1

b
               (2.43) 

 
T

2 2 2 1 1d = b - < b ,z > z = 0 4 0 ,  
T2

2

2

d
z = = 0 1 0

d
              (2.44) 

1 2 (k-1)(z ,z ,…,z )  shows the orthonormal basis and 1 2 (k-1)(b ,b ,…,b )  indicates the 

orthogonal vectors. Hence, the summation of the projections of 
1a onto the orthonormal 

basis of the difference subspace B , which is denoted with
sum

a , can be obtained by as 

follows:  

 
T

sum 1 1 1 1 2 2a =< a ,z > z + < a ,z > z = 0 1 1                 (2.45) 
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Finally, the common vector can be obtained by subtracting the 
sum

a  from either the 

reference vector 
1

(a ) or the average vector. By using the reference vector, the common 

vector can be obtained with Eq. (2.46). 

 
T

com 1 suma = a -a = 1 0 0                            (2.46) 

Also, by using the average vector, the common vector can be obtained with Eq. (2.49). 

Let us define the average vector as: 

 
m

T

ave i

i=1

a = a = 1 2.33 1.67                         (2.47) 

 

ave,sum ave 1 1 ave 2 2

T

ave m-1 m-1

a =< a ,z > z + < a ,z > z + ... +

< a ,z > z = 0 2.33 1.67
           (2.48) 

Hence, the common vector would be: 

 
T

com ave ave,suma = a -a = 1 0 0                         (2.49) 

If the absolute between the training vectors, average and common vector is computed 

with the rules in Eq. (2.50), we will observe the different results that stand out. 

     
1 1.4907

2

1 ave= a -aaveF  , 
1 1.4142

2

1 com= a -acomF   

 
2 2.9814

2

2 ave= a -aaveF  ,  
2 1.4142

2

2 com= a -acomF                    (2.50) 

     
3 4.2687

2

3 ave= a -aaveF  , 
3 7.0711

2

3 com= a -acomF   

To compare the performance of an average and a common vector, the obtained F 

values are taken as a reference. For the best performance, we would like to expect that 

the obtained results are close to the background model (
1

a and 
2

a ) and the difference 

between the foreground vector (
3

a ) should be as high as possible. By inspecting the F 

values, we can easily make an inference that the common vector outperforms the average 

vector when the difference of the foreground vector is considered, which is reported as 

4.2687 and 7.0711 for average and common vectors, respectively. The objective results 

imply that the CVA can separate the foreground from the background with a high-

performance rate when compared with an average vector. 
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2.4.3. Foreground detection  

As is outlined in the sections above, the common frame associated with background 

frames is obtained for background modelling. The main objective is to derive a robust 

distance between the test frames and the background frames with respect to a CVABS 

based motion segmentation procedure. In the case of initialization, the first N frames are 

considered as a background list called  1( ) ( ), , ( ), , ( )k NB x B x B x B x   , where x  

corresponds to a pixel location. According to a common idea, using the first 35N   

frames for initialization of the background bank is suitable by considering the speed and 

performance. The Eq. (2.51) represents the foreground detection module utilized to 

determine the foreground map between the test and the background frames.  

 
1

1 # ( ), ( ) ( ) #
( )

0

N

t i

it

if dist I x B x R x min
F x

otherwise



  
   

   




             (2.51) 

In Eq. (2.51), the ‘#’ operator is used as a counter of the foreground pixels. The #min  is 

a decision threshold to assign the label of a pixel as a foreground or a background.  It is 

specified as # 1min N  . For example, the label of a pixel is considered as a foreground 

(1) if it is marked as 1 in all binary output maps (
1 2( ), ( ), , ( )NF x F x F x ) otherwise it is 

assigned as a background (0).  With this strict decision threshold process, it is ensured 

that the algorithm becomes more robust to the noisy pixels. Again, the ( )R x  is a gray 

level threshold to generate binary output maps.  

Fundamentally, the performance of all algorithms depends on the utilized distance 

metric. In this study, we performed a hybrid distance metrics where the three distance 

metrics are considered in the case of foreground detection. The first distance metric is 
1

norm distance, which is usually known as the traditional distance in the literature of 

background subtraction. However, the 
1
 distance is sensitive to sudden illumination 

changes. Therefore, as a second distance metric, the Gradient information is taken into 

account to bottle with the sudden illumination changes and shadows. The last distance is 

determined based on the common vector approach concept.  

 
1

( ), ( ) ( ) ( )t i t idist I x B x I x B x                               (2.52) 
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As shown in Eq. (2.52), the 
1
 distance is performed by comparing the gray value of each 

pixel. Simply, the absolute value of grey values is considered to compute 
1
 distance.  

11 12

12 22

2 2

,

(x) (x) (x) (x) (x)

(x) (x) (x) (x) (x)
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
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,
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



 
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   

 

                              (2.53)                        

  , ,( ), ( ) (x) (x)m m

Gmag t i gt t gt tdist I x B x I B                                (2.54) 

In case of the second distance metric, the gradient information is activated between the 

test and the background frames. As is known, the illuminations and shadows distribute in 

a homogeneous way. Therefore, using the gradient information between test and 

background frames improves the performance by diminishing the sudden illumination 

effect. Owing to this, the homogeneous regions are suppressed by taking the derivation 

procedure. In this study, a new gradient distance metric is computed to reduce the ghost 

problem caused by sudden changes and intermittent object motion problems. The utilized 

gradient distance metric is calculated with an edge suppression based gradient 

transformation approach [49], shown in Eq. (2.53) and Eq. (2.54). Firstly, the horizontal 

gradient map, (x)gxI ,  and vertical gradient map (x)gyI  of the test frame ( tI ) and the 

mean background frame ( tB ) are computed with the Sobel operator. Later, the cross-

diffusion tensor terms, called 11D , 22D  and 12D , are determined with respect to the rules 

given in the referred study.  After applying the cross-diffusion tensor terms to tI  and tB

, then the gradient transformed versions, , (x)m

gt tI  and , (x)m

gt tB , are acquired to compute 

gradient distance. The absolute distance between these two new robust gradient maps,  

, (x)m

gt tI  and , (x)m

gt tB , gives accurate and noise free foreground localization. 

  ,( ), ( ) ( ) ( )cva t i d com comdist I x B x I x B x                               (2.55) 
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The third and main distance metric is expressed with a CVABS based distance 

computation. As emphasized in the chapters above, firstly, the common frames related to 

the background frames are determined with respect to the CVA method. Moreover, the 

discriminative common frame of the test frame is computed by taking projection of the 

test frame onto the orthonormal vectors associated with the background list. As exhibited 

in Eq. (2.55), the absolute difference between the common frame and the discriminative 

common frame gives us a novel distance metric for foreground detection.  

 

     
1

, , ,

( ), ( )

( ), ( ) ( ), ( ) ( ), ( )

( ) ( ) (x) (x) ( ) ( )



 

     

t i

t i Gmag t i com t i

m m

t i gt t gt t d com com

dist I x B x

dist I x B x dist I x B x dist I x B x

I x B x I B I x B x

        (2.56) 

Eq. (2.56) demonstrates the final distance metric as a combination of the three distance 

metrics. As a hybrid distance metric; the pure grey level distance, gradient distance and 

CVA distance are combined to obtain a robust and weighted distance term. The condition 

of  
1

( ), ( ) 1t idist I x B x  is carried out in the final distance metric to refuse the noisy 

regions caused by dynamic scenes. By using this final distance metric, those pixel values 

related to foreground regions take higher values and the value of noisy and unwanted 

pixels becomes lower. Later, the segmentation process is applied to the final distance map 

to determine the label of each pixel. Moreover, the gradient transformation enables us to 

wipe out the ghosts and illuminations. The CVA distance together with the traditional and 

gradient distance generates more valuable results in challenging videos. 

While the updating procedure for background frames is same as explained in the 

Section 2.3.2, the updating procedure for inner parameters is same as explained in the 

Section 2.3.3. Also, the procedure for handling PTZ challenges parameters is same as 

explained in the Section 2.3. 
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3. PERFORMANCE ANALYSIS 

In this study, we have analyzed the performance of four studies, which are 

mentioned above as Method 1: Background Modelling Using Common Vector Approach 

(BMCVA), Method 2: Background Modelling Using Common Matrix Approach 

(BMCMA), Method 3: Sliding Window based Change Detection (SWCD) and Method 

4: Common Vector Approach based Background Subtraction (CVABS). In below 

sections, we have provided some information about utilized datasets and evaluation 

metrics. 

3.1. Datasets 

In the experimental stage, two well-known background subtraction datasets, namely 

Change Detection (CDnet) [1] and Wallflower [50], are utilized in order to analyze the 

performance of proposed methods.  

The CDnet 2014 dataset contains different types of backgrounds related to real world 

events including illumination variation and dynamic changes. The dataset contains 53 

videos (corresponding to nearly 160,000 frames) in 11 categories: badWeather, baseline, 

cameraJitter, dynamic Background, intermittentObjectMotion, lowFramerate, 

nightVideos, PTZ, shadow, thermal and turbulence.   

Technically Wallflower dataset provides different classes of about dynamic backgrounds 

which are Moved Object (MO), Time of Day (TD), Light Switch (LS), Waving Trees (WT), 

Camouflage (C), Bootstrapping (B) and Foreground Aperture (FA). Until now, various 

methods have been made experimental on this dataset. The specified training and test 

images with their ground truth are utilized to obtain subjective and objective results. 

3.2. Evaluation Metrics 

In this section, some objective metrics are provided to evaluate the results of each 

proposed method. As noted by CDnet2014 [1], possible metrics to measure the 

performance of background subtraction techniques can be listed as number of True 

Positives (TP), number of True Negatives (TN), number of False Negatives (FN) and 

number of False Positives (FP), whose definitions are compactly presented in Table 3.1. 

For CVABS and SWCD, we have considered two main metrics as the MCC and F-score 
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metrics to compare the performance of proposed methods with other state of art methods 

in an objective way. The F-score is computed based on the precision, / ( )TP TP FP , and 

recall, / ( )TP TP FN , values, and the value of the F-score is in the interval [0-100] in 

terms of percentage. 

Table 3.1. Utilized metrics 

Metrics 

Matthew Correlation Coefficient (MCC)

( ) - ( )

( ) ( ) ( ) ( )

TP TN FP FN

TP+ FP TP+ FN TN + FP TN + FN

 

  

 

Recall (Re)

/ ( )TP TP FN  

Specificity (Sp)  

/ ( )TN TN FP  

False Positive Rate 

(FPR) / ( )FP FP TN  

False Negative Rate (FNR) 

/ ( )FN TN FP  

Precision (Pre)  

/ ( )TP TP FP  

F-score 

2* Pr* Re / (Pr Re)  

Percentage of Wrong Classifications (PWC) 

100( FN FP ) / (TP FN FP TN )     

The MCC is a balanced metric that reveals the correlation between the two binary samples 

and its value between -1 and 1. In this study, the average MCC value is computed after 

calculating the MCC value for each video.  For the best performance, the MCC value is 

equal to 1. 

3.3. Performance of Method 1: BMCVA 

3.3.1. Subjective evaluation of method 1: BMCVA 

In order to comment the obtained results, we have compared the produced results 

with other ones. For this purpose, the subjective outputs are presented on Figure 3.1. 

Specifically, the visual results that are presented in the study of Bouwman [2] are 

considered as reference in case of performance comparison. For a benchmark 

comparison, the obtained visual results are compared with state of popular subspace and 

other methods, which are given as Single Gaussian (SG) [51], Mixture of Gaussian 

(MOG) [52], Kernel Density Estimation (KDE) [53], Subspace Learning PCA (SL-PCA) 

[11], Subspace Learning ICA (SL-ICA) [54], Subspace Learning via Incremental Non 

Negative Matrix Factorization (SL-INMF) [17] and Subspace Learning via Incremental 

Rank-(R1, R2, R3) Tensor (SL-IRT) [16].   

The all of visual results are exhibited in Figure 3.1. The first column indicates the 

method’s name and the rest of columns show the performance of each aforementioned 



53 

 

method. Also, the first row denotes the processed image, second row indicates the ground 

truth related to given image and other rows show visual result generated by each method. 

Method Moved  

Objects 

Time of  

Day 

Light  

Switch 

Waving  

Trees  

Camou 

-flage 

Boot 

-strap 

Foreg. 

Aperture 

Test image 

       
Ground truth 

       
SG 

Wren et al. 
       

MOG 

Stauffer et al. 
       

KDE 

Elgammal et al. 
       

SL-PCA 

Oliver et al.  
       

SL-ICA 

Tsai and Lai  
       

SL-INMF 

Bucak et al.  
       

SL-IRT 

Li et al.  
       

BMCVA 

Proposed 
       

Figure 3.1. Subjective results of CVA on the Wallflower dataset 

At a first glance, we can observe that similar outputs are obtained from each 

method. Upon inspecting results, one can emphasize that probabilistic based methods 

including MOG and KDE produce similar results in terms of foreground region detection. 

The results of KDE and MOG are superior than SG, since background modelling with 

single Gaussian is a short-side in term of complex background. Again, we can emphasize 

that SG, MOG and KDE are sensitive illumination changes because of working on 

historical probability of each pixel. 

On the other side, the subspace based methods are more robust to illumination and 

complex background changes. By examining results of PCA, ICA, INMF and IRT, it can 

be seen that the visuals result of IRT are not converged to ground truth as some objects 

are disappeared in foreground mask. Moreover, although the PCA method exhibits good 

results in case of Time of Day, Light Switch, Waving Trees, Camouflage, Foreground 

Aperture, but some erroneous pixels are obtained for Moved Object and Bootstrap videos. 
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Furthermore, visual outputs of ICA and INMF are similar to each other, however, the 

performance of ICA is more dominant for Camouflage and Bootstrap videos. 

Finally, we can observe that CVA and PCA generate closest results, however, the 

PCA method fails in case of indoor crowded scene (bootstrap). Also, one can note that 

the proposed method can perfectly model the clean background in case of illumination 

changes, crowded scenes and other complex backgrounds. As a result, good foreground 

masks are determined for all videos.   

3.3.2. Objective evaluation of method 1: BMCVA 

Table 3.2. Objective performance evaluation on the Wallflower dataset 

    Problem Type       

          Total TE TE 

Method Error MO ToD LS WT C  B FA Errors without LS without C 

SG FN 0 949 1857 3110 4101 2215 3464       

 FP 0 535 15123 357 2040 92 1290 35133 18153 28992 

MOG FN 0 1008 1633 1323 398 1874 2442       

  FP 0 20 14169 341 3098 217 530 27053 11251 23557 

KDE FN 0 1298 760 170 238 1755 2413       

  FP 0 125 14153 589 3392 933 624 26450 11537 22175 

SL-PCA FN 0 879 962 1027 350 304 2441       

 FP 1065 16 362 2057 1548 6129 537 17677 16353 15779 

SL-ICA FN 0 1199 1557 3372 3054 2560 2721       

 FP 0 0 210 148 43 16 428 15308 13541 12211 

SL-INMF FN 0 724 1593 3317 6626 1401 3412       

 FP 0 481 303 652 234 190 165 19098 17202 12238 

SL-IRT FN 0 1282 2822 4525 1491 1734 2438       

 FP 0 159 389 7 114 2080 12 17053 13842 15448 

BMCVA FN 0 1012 946 766 708 982 2537       

 FP 0 0 320 20 8 130 482 7891 6625 7175 

In addition to subjective evaluation, the objective results for each method is 

determined with respect to statistical metrics, called false positive (FP) and false negative 

(FN). While the FP indicates the pixel marked as foreground in processed image but it is 

background in ground truth image, conversely the FN refers to the pixel marked as 

background in processed image but it is foreground in ground truth image.  

If a pixel is marked as 1 in processed image, but it is 0 in ground truth image, then 

the count of FP is incremented by 1. Similarly, if a pixel is marked as 0 in processed 

image, but it is 1 in ground truth image, then the count of FN is incremented by 1. By 
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combining these error values, the Total Error (TE) metric is computed as a sum of FP and 

FN. The lower value of error value denotes the best performance in the concept of 

foreground segmentation. Also, the Total Errors without light switch (TE without LS) 

and Total Errors without Camouflage switch (TE without Camouflage) are presented on 

the last columns of Table 3.2. 

The Table 3.2 summarizes all of the objective results for aforementioned 

background modelling methods.  As we can see that the performance MOG and KDE are 

close to each other and show better performance than SG method. The performance of 

MOG and KDE are better when the light switch video excluded, but worse in case of TE 

metric. Comparing the PCA, ICA, INMF and IRT, one can observe that the performance 

of ICA is dominant in case of all metrics. On the other side, we can find that the CVA 

method combining with the basic post processing procedure show favorable results in 

terms of all metrics.  

3.4. Performance of Method 2: BMCMA   

3.4.1. Subjective evaluation of method 2: BMCMA   

In the present work, a simple thresholding methodology is realized in case of 

revealing the binary skeleton of objects. Since the difference of two common matrix gives 

changes, a fixed thresholding is carried over the absolute difference. The obtained visual 

results are demonstrated on Figure 3.2. To subjectively judge performance of both 

methods, the obtained visual results are compared with state of popular subspace and 

other methods, which are given as Single Gaussian (SG) [19], Mixture of Gaussian 

(MOG) [20], Kernel Density Estimation (KDE) [53], Subspace Learning PCA (SL-PCA) 

[11], Subspace Learning ICA (SL-ICA) [54], Subspace Learning via Incremental Non 

Negative Matrix Factorization (SL-INMF) [17] and Subspace Learning via Incremental 

Rank-(R1, R2, R3) Tensor (SL-IRT) [16]. For this purpose, the visual results determined 

in the work of Bouwman [2] are taken as ground on in case of performance comparison.   

In Figure 3.2, the first column denotes method’s name, the other columns show 

video’s name, respectively. Again, the first row and second row exhibit test image and 

related ground truth, and other rows demonstrates visual results returned from each 

method.   
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Figure 3.2. Subjective results of CMA on the Wallflower dataset 

From the exhibited results, we can observe that each method presents similar foreground 

objects in the meaning of obtained foreground skeleton. By analyzing results, one can 

note that results of MOG and KDE are closes to each other and are dominant than SG 

method. The performance of SG, MOG and KDE are weakness to illumination changes 

due to work on historical probability of pixels. 

To continue, we can see that subspace based method are more robust to light 

changes. By comparing the PCA, ICA, INMF and IRT, we can emphasize that the result 

of IRT is the worst one in terms of preserving foreground skeleton. While the INMF 

shows good results in case of bootstrap video, but the same performance has not 

maintained in case of camouflage video. Moreover, the results of PCA are similar to CVA 

method, however, the PCA method fails in case of indoor crowded scene (bootstrap). 

Furthermore, the proposed method not only robust to dynamic structures but also 

resistance to illumination change in case of foreground detection.   
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3.4.2. Objective evaluation of method 2: BMCMA   

In addition to subjective results, the statistical results are obtained by considering 

the false positive (FP) and false negative (FN) pixels. With this aim, the ground truth 

images and acquired foreground object are compared to find the number of erroneous 

pixels by counting the number of FP and FN. If a pixel marked as foreground in processed 

image, but marked as background in ground truth, then it is considered as FP.  

Table 3.3. Numerical results of CMA on the Wallflower dataset 

           

          Total TE TE 

Method Error MO ToD LS WT C B  FA Errors without LS without C 

SG FN 0 949 1857 3110 4101 2215 3464       

 FP 0 535 15123 357 2040 92 1290 35133 18153 28992 

MOG FN 0 1008 1633 1323 398 1874 2442       

 FP 0 20 14169 341 3098 217 530 27053 11251 23557 

KDE FN 0 1298 760 170 238 1755 2413       

 FP 0 125 14153 589 3392 933 624 26450 11537 22175 

SL-PCA FN 0 879 962 1027 350 304 2441       

 FP 1065 16 362 2057 1548 6129 537 17677 16353 15779 

SL-ICA FN 0 1199 1557 3372 3054 2560 2721       

 FP 0 0 210 148 43 16 428 15308 13541 12211 

SL-INMF FN 0 724 1593 3317 6626 1401 3412       

 FP 0 481 303 652 234 190 165 19098 17202 12238 

SL-IRT FN 0 1282 2822 4525 1491 1734 2438       

 FP 0 159 389 7 114 2080 12 17053 13842 15448 

BMCMA FN 0 1017 882 26 172 929 2534       

 FP 0 0 320 1106 616 157 485 8218 7016 7430 

For opposite case, if a pixel marked as foreground by ground truth, but marked as 

background in processed image, then it is considered as FN. The sum of FP and FN 

denotes the error measure in terms of comparing the objective results. Specifically, the 

Total Errors, Total Errors without light switch (TE without LS) and Total Errors without 

Camouflage switch (TE without Camouflage) are demonstrated on the last columns of 

Table 3.3. The less error value indicates the best performance in terms of foreground 

segmentation. The obtained statistical results are presented in Table 3.3. From the Table, 

one can derive that a superior performance is obtained by the proposed method, called 

CMA. In conjunction with visual results, the performance SG, MOG and KDE similar to 

each other. However, when the light switch video is excluded in case of performance 

evaluation, we can observe that the MOG and KDE generate better results than almost of 
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all algorithms except CMA. These results are attributed to characteristic of probability 

based foreground and change detection property. Moreover, when the camouflage video 

is not considered, the worst performance is produced by probabilistic based background 

subtraction methods.  Also, comparing the subspace based methods including SL-PCA, 

SL-ICA and SL-INMF, one can note that the performance of SL-ICA is favorable against 

SL-PCA and SL-INMF. The performance of SL-PCA and SL-IRT are closes to each 

other, but difference bears in case of removing the light switch   

3.5. Performance of Method 3: SWCD 

3.5.1. Subjective evaluation of method 3: SWCD 
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Figure 3.3. Some visual results of SWCD on the CDnet 2014 dataset 

In order to test the effectiveness of the proposed method, the results are compared 

with the results of state of the art change detection approaches as stated on CDnet website. 
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The ground truth of each sample is subjectively constructed. Results are summarized in 

Figure 3.3. By inspecting Figure 3.3, one can say that the results of the proposed method 

are in competition with best methods. Particularly, in sidewalk, fountain01, cubicle, 

winterDriveway, skating, continousPan, turbulence0 videos, the performance of the 

proposed method is fairly plausible when compared with state of art methods. Especially, 

in case of winterDriveway which includes the intense effects of intermittent object 

motion, the proposed method outperforms the rest. For the cubicle video case, it is 

observed that our method is robust against sudden illumination changes, which is widely 

accepted as a challenging problem for real time image processing tasks. Our background 

updating procedure is also observed to work well in case of the continousPan video. In 

the same set of experiments, the proposed method provides competitive results in case of 

fountain01 and skating videos, which are assumed as real representations of dynamic 

background and bad weather categories. Furthermore, the proposed updating strategy is 

able to handle turbulence effects as demonstrated in turbulence0 video. 

The proposed method also accurately reduces the effects of ghosts, which are caused 

by intermittent object motions. As a result, it was concluded that the proposed method 

performs at least as good as the state of the art methods, and gains a favorable edge on 

truly challenging cases in dynamic background, shadow and PTZ categories. Another 

important conclusion is that the proposed SWCD method seems to be an “on the average 

fair” method for all scenarios. This property is not observed in other methods, which 

usually focus to a specific class of video scenarios and ignore the others. This observation 

is also in accordance with the objective F-score values presented in the next subsection. 

3.5.2. Objective evaluation of method 3: SWCD 

Using these metrics, extensive experimental evaluations are made and their CDnet 

averages are presented in Table 3.4. Again, the proposed method attains very comparable 

or superior results as compared to other state of the art techniques. Particularly, the F-

score value of the proposed method (0.7510) exceeds the nearest competitor. The false 

alarm rates (FPR and FNR) perfectly cope with the competitors. We can also observe that 

the proposed method produces lower wrong classified rates, when compared with 

SharedModel, SuBSENSE, PAWCS and FTSG. The SWCD method also gives better 
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performance than PAWCS in terms of specificity metric. Finally, the precision and recall 

values of the proposed method are compatible with popular methods.    

Table 3.4. Objective performance comparison with top state of art methods 

 Overall Averages (%) 

Method    Re   Sp  FPR  FNR  PWC  F-score  Pre  

SWCD  0.7695 0.9934 0.0066 0.2305 1.3444 0.7510 0.7667 

SharedModel  0.8098 0.9912 0.0088 0.1902 1.4996 0.7474 0.7503 

SuBSENSE  0.8124 0.9904 0.0096 0.1876 1.6780 0.7408 0.7509 

PAWCS  0.7718 0.9949 0.0051 0.2282 1.1992 0.7403 0.7857 

C-EFIC  0.7976 0.9782 0.0218 0.2024 2.6316 0.7307 0.7543 

MBS  0.7389 0.9927 0.0073 0.2611 1.2614 0.7288 0.7382 

FTSG  0.7657 0.9922 0.0078 0.2343 1.3763 0.7283 0.7696 

Table 3.5 shows the categorically separated performances according to F-scores. The 

proposed method gives particularly superior results in challenging cases of Thermal (Th) 

and Turbulence (Tu) categories, while maintaining very reasonable results in all other 

categories. Unlike several methods which aim a very specific class while compromising 

the performance from others, our method always keeps on par with the best of each class, 

making it a very reasonable alternative in real life and general background subtraction 

applications. 

Table 3.5. Detailed performance (F-score) evaluation of each category 

 F-scores of each Category (%) 

Method    PTZ   BW  BA  CJ  DB  IOM  LF     NV  Sh  Th  Tu 

SWCD  0.4561 0.8395 0.9225 0.7451 0.8480 0.6630 0.7096 0.5200 0.8692 0.8533 0.8348 

SharedModel  0.3860 0.8480 0.9522 0.8141 0.8222 0.6727 0.7286 0.5419 0.8455 0.8319 0.7339 

SuBSENSE  0.3476 0.8619 0.9503 0.8152 0.8177 0.6569 0.6445 0.5599 0.8646 0.8171 0.7792 

PAWCS  0.4615 0.8152 0.9397 0.8137 0.8938 0.7764 0.6588 0.4152 0.8710 0.8324 0.6450 

C-EFIC  0.6207 0.7867 0.9309 0.8248 0.5627 0.6229 0.6806 0.6677 0.8453 0.8349 0.6275 

MBS  0.5520 0.7980 0.9287 0.8367 0.7915 0.7568 0.6350 0.5158 0.8262 0.8194 0.5858 

FTSG  0.3241 0.8228 0.9330 0.7513 0.8792 0.7891 0.6259 0.5130 0.8535 0.7768 0.7127 

The categorical advantages of the proposed SWCD method are listed as follows. 

 PTZ: This category includes well known PTZ challenges such as slow continuous pan 

mode, intermittent pan mode, 2-position patrol-mode PTZ and zooming-in/zooming-

out.  Contrary to other categories, the scenes behind these videos are not stable. As 

can be seen from Table 3, most of the methods perform below a rate of 50% in terms 

of F-score. In this category, C-EFIC seems to perform best. However, C-EFIC fails 
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badly in BW, DB, IOM and Tu categories. Our proposed SWCD algorithm stands at 

46% (top-4) using fast statistical measurements to catch sudden scene changes with 

an adaptation mechanism for the background set. Besides, the proposed method is 

observed to always stand among the group of better algorithms (even being the best 

for some cases) for each of the presented categories.  

 badWeather (BW): This category contains challenging weather conditions including 

blizzard, skating, snowFall and wetSnow, which generally occur in winter. The 

segmentation challenges include illumination changes in blizzard and vertical sliding 

behavior in wetSnow videos. The results indicate that the SWCD can overcome the 

badWeather difficulties and achieves an acceptable level of performance with 84% 

F-score and takes the 3rd rank after SuBSENSE (85%) and SharedModel (86%).  It 

must be noted that SuBSENSE and SharedModel perform quite bad for PTZ at F-

scores of 35% and 39%, respectively. 

 baseline (BA): This category encapsulates basic videos with static backgrounds. 

Therefore, foreground regions can be usually detected with an effortless manner. The 

F-scores in this category are all over 90% for all methods.  

 cameraJitter (CJ): This category contains movements caused by vibrating unstable 

camera. The SWCD method has an F-score of 75% (similar to FTSG), which is 

slightly less than other methods. For example, MBS method reaches to 83%. 

However, again, MBS goes down to a poor level of 64% for LF category. The lack of 

high performance with SWCD in CJ category is mostly attributed to the sidewalk 

video, according to the total count of TPs and FNs. 

 dynamicBackground (DB): This category consists of complex dynamic movements 

such as tree branches and water waves, fountains.  One can infer from the Table 3 that 

the feedback mechanism of SWCD provides very competitive results, closely 
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following the top two: PAWCS (89%) and FTSG (88%). On the other hand, PAWCS 

performs quite bad in NV and Tu categories and FTSG cannot cope with the PTZ 

category. 

 intermittentObjectMotion (IOM): The videos in this category mostly causes ‘ghost’ 

artifacts. The F-score of SWCD is an average performance in this category with FTSG 

being the best. Yet, as indicated above, FTSG completely ignores PTZ cases.  

 lowFramerate (LF): This category includes videos captured at various low frame 

rates. In some videos (such as the “port” video), some critical objects appear too small 

and there are sudden illumination changes. In this tough category, SWCD reaches an 

F-score of 71%, which puts it at a compatible level of the best, which is SharedModel 

(at 73% F-score). However, SharedModel performs way below SWCD at PTZ and 

Tu categories. 

 nightVideos (NV): This category involves complex background dynamics due to 

darker moving objects and bright background objects, such as light bulbs. Most 

methods yield an F-score around 50-60% and SWCD performs similarly. The best in 

this category is C-EFIC, however that method fails at DB and Tu categories.  

 Shadow (Sh), Thermal (Th) and Turbulence (Tu): These are challenging SWCD 

shines. Many of the top-tiers of other categories perform well below SWCD in these 

categories. This observation supports that use of gradient transformation combined 

with adjustments of dynamic’s controller parameters gives reasonable segmentation 

results. As proposed in Section 2.6 (updating learning), setting the upper value for 

learning rate to infinity ( upperT  ) seems to be a reasonable precaution to prevent 

integration of foreground regions into background and avoiding the leak of 

foreground objects into background at pixel coordinates where a foreground object 
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may stand for a long time (referred to library video). One can also see that SWCD 

has potential to cope with air turbulence. The sliding window based background 

updating procedure together with feedbacks clearly improves performance in this 

category.  

Although the proposed method does not always outperform the best method (which 

is dedicated to the corresponding category) of each scenario, it was observed to stand well 

and never “totally” fail in “any” of the categories. This property cannot be argued for 

other state of the art methods, which usually focus a class of scenarios and ignore others. 

Therefore, it is argued that SWCD is a robust, useful and effective tool for general 

purposes.  

3.5.3. Computational issues of method 3: SWCD 

A key concern in foreground-background separation is the run-time (hence the 

complexity) of the algorithm. We have investigated the run-time of our method on a 

modest PC (Intel core i7-6700HQ with 2.60 GHz CPU and 8 GB memory) and a generic 

MATLAB interpreting environment. Even under these low-end conditions, the 

experimental runs show that each frame of test videos (frame size = 240x320, video 

lengths = 2000 frames/video) takes about 0.1 sec for processing. After a quick conversion 

to a compiled environment (C++) with OpenCV library, the runtime immediately became 

real time with over 30 frames/sec process speed. The memory utilization was also not 

above a level of keeping few image frames in RAM. It is concluded that, the proposed 

method is a plausible alternative to real-time foreground/background separation 

application with high efficiency. 

3.6. Performance of Method 4: CVABS 

3.6.1. Subjective evaluation of method 4: CVABS 

To give a general insight into the performance of the CVABS method, the visual 

outputs of several state of art methods are demonstrated and compared in Figure 3.4. As 
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a common evaluation method, the judgements are expressed in terms of visual inspection 

of foreground masks, that is the obtained segmentation results are compared with ground 

truth (GT) images given in Figure 3.4. By evaluating the results, one can observe that the 

CVABS method gives well segmented and satisfactory results to cope with the 

illuminations and dynamics changes.  
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Figure 3.4. Visual performance demonstration on the CDnet dataset 

The CVABS advocates the reduction of unstable light effects especially for shadow 

videos like cubicle. Again, from the fall and turbulence0 videos that include the intense 
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effects of dynamic scenes, we can observe that the utilized dynamic controller parameters 

present a great performance in terms of accurate update of the backgrounds as well as 

reducing the false alarms. 

To reveal the strength of CVABS to sustain the performance in case of turbulence 

degradations, the foreground segmentation results of each method is compared by taking 

the turbulence0 video as reference. At first glance, we can say that the CVABS gives 

clean results for the given sample of the turbulence0 videos whereas the SharedModel, 

PAWCS and MBS methods show relative performance impairment for the turbulence0 

video. However, WeSamBE, SuBSENSE and FTSG generate similar outputs with the 

ground truth for the turbulence0 video, but we cannot say the same for the SharedModel, 

PAWCS and MBS methods, where the performance degradation of such methods is 

caused by the utilized distance computation and updating techniques.  Again, we can 

observe that almost all methods (except MBS) achieve nice segmentation results for 

streetCornerAtNight video which belongs to the night category. Furthermore, when the 

winterDriveway video is considered, we can observe that the CVABS gradually updates 

background frames with utilized feedback parameters to regulate changes in frames. 

Thus, ghosts are alleviated based on the utilized self-regulation and self-learning 

procedure in terms of the background frames updating.  When analyzing the results of 

other methods for the winterDriveway video, one can note that the performance of FTSG 

outperforms SharedModel, WeSamBE, PAWCS and SuBSENSE and MBS. 

3.6.2. Objective evaluation of method 4: CVABS 

Table 3.6 summarizes the detailed version of F-score values for each method on 

each category stated at the CDnet 2014 dataset. By examining the results, one can clearly 

note that the CVABS method gives superior results in the case of BadWeather, 

LowFramerate, NightVideos, Thermal and Turbulence categories. In the case of the PTZ 

category, the high F-score value is obtained with the MBS method. Again, among all the 

methods, the FTSG method is more robust to the ghost problem caused by intermittent 

object motions. Moreover, the PAWCS and SuBSENSE gives good efforts to overcome 

noise problems observed in the categories of the dynamicBackgrounds and BadWeather, 
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respectively. Although the CVABS presents valuable outputs for the BadWeather 

category, but the WeSamBE and SuBSENSE gives competitive results. 

Table 3.6. Performance (F-score) evaluation in more details for each category of aforementioned 

methods 

 F-measure Scores of each Category (%) 

Method    PTZ   BW  BA  CJ  DB  IOM  LF     NV  Sh  Th  Tu 

CVABS  0.5082 0.8693 0.9147 0.7837 0.8618 0.6586 0.7755 0.6295 0.8757 0.8567 0.8403 

SharedModel  0.3860 0.8480 0.9522 0.8141 0.8222 0.6727 0.7286 0.5419 0.8455 0.8319 0.7339 

WeSamBE 0.3844 0.8608 0.9413 0.7976 0.7440 0.7392 0.6602 0.5929 0.8999 0.7962 0.7737 

SuBSENSE  0.3476 0.8619 0.9503 0.8152 0.8177 0.6569 0.6445 0.5599 0.8646 0.8171 0.7792 

PAWCS  0.4615 0.8152 0.9397 0.8137 0.8938 0.7764 0.6588 0.4152 0.8710 0.8324 0.6450 

MBS  0.5520 0.7980 0.9287 0.8367 0.7915 0.7568 0.6350 0.5158 0.8262 0.8194 0.5858 

FTSG  0.3241 0.8228 0.9330 0.7513 0.8792 0.7891 0.6259 0.5130 0.8535 0.7768 0.7127 

Furthermore, the MBS method is the best one to alleviate Camera Jitter problems. 

Again, we can note for the Shadow category that while WeSamBE outperforms all 

methods with high F-scores, CVABS and PAWCS take the second and third rank in terms 

of robustness to illumination changes, respectively. 

 

Figure 3.5. MCC and F-score results for top ranked methods given in CDnet and CVABS 

Figure 3.5 demonstrates the MCC and F-score for the top ranked methods listed in 

CDnet and the CVABS algorithm. By examining the MCC coefficients in Figure 3.5, we 

can highlight the superior performance of CVABS and achieved a 77.95% F-score and 

77.54% MCC value when compared with others. An interesting point is that it can be seen 

that degradation in the F-score also results in low MCC values, with the exception of 
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PAWCS and FTSG. Comparing PAWCS with other methods, one can observe that while 

the F-measure of PWACS is lower than the SharedModel, PAWCS generates a higher 

value of the MCC coefficient. 

Again, FTSG produces a higher MCC value than MBS while MBS is dominant in 

the case of the F-score. Moreover, one can say that the performances of the CVABS and 

SharedModel are in competition with each other, but CVABS outperforms all methods 

exhibited in the CDnet in terms of F-scores and MCC values. When focusing on the F-

scores of other methods, it can be noted that the F-score PAWCS and SuBSENSE are 

similar to each other. As a harmonic mean of precision and recall, the good F-score 

indicates the precision of each method in terms of performance for moving object 

segmentation. 

3.7. Overall Performance Evaluation of Our Proposed Works 
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Figure 3.6. Visual outputs returned from proposed methods on CDnet 

To compare the performance of each proposed method, the objective and subjective 

results have obtained on two well-known datasets, namely CDnet and Wallflower. In case 
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of objective evaluation, the F-measure scores have considered, whereas the segmentation 

quality have determined based on the human eyes as a subjective evaluation. 

The Figure. 3.6 exhibits the visual outputs obtained on CDnet. While the first row 

shows Test images and second row indicates the ground truths related to expected 

segmentation results for test images. As one can clearly observe that employing the 

feedback mechanism in CVABS and SWCD gives superior results nearly almost in all 

categories. For blizzard video, where the dynamic changes are not too much, the both of 

four methods capable of generating the valuable results.  

For fall video, only SWCD and CVABS are able to struggle with waving trees. 

Again, one can note that it is impossible to produce desirable results in winterDriveway 

video, unless performing a smart feed-back mechanism, which is considered SWCD and 

CVABS. Moreover, in case of night effect (refer to streetCornerAtNight video), the both 

of four methods presented good segmentation accuracy.   Furthermore, we can say that 

without using the feedback mechanism, it would be troublesome to combat with 

illumination changes. For turbulence effect, the BMCVA and BMCMA collapsed 

whereas the CVABS and SWCD generates desirable results. Again, for thermal video 

(refer to library video), the both of four methods produced the well-segmented 

foreground regions.    

Table 3.7. F-measure scores of our proposed methods on CDnet 

 F-measure Scores of each Category (%) on CDnet 

Method    PTZ   BW  BA  CJ  DB  IOM  LF     NV  Sh  Th  Tu 

CVABS  0.5082 0.8693 0.9147 0.7837 0.8618 0.6586 0.7755 0.6295 0.8757 0.8567 0.8403 

SWCD  0.4561 0.8395 0.9225 0.7451 0.8480 0.6630 0.7096 0.5200 0.8692 0.8533 0.8348 

BMCVA 0.0343 0.5790 0.9027 0.4777 0.3620 0.5168 0.5817 0.4477 0.6546 0.6809 0.3827 

BMCMA 0.0343 0.5798 0.9026 0.4796 0.3617 0.5170 0.5820 0.4471 0.5359 0.6811 0.3819 

In the Table 3.7, the categorical F-measure score of each method exhibited in order 

to evaluate the performance objectively. As we can see that SWCD and CVABS keep 

pace with each other in terms of F-measure scores. Also, the overall F-measure scores of 

methods are determined as CVABS 77.95%, SWCD 75.11%, BMCVA 51.09% and 

BMCMA 50.03%. From the results shown in Table 3.7, we can note that the CVABS 

dominates the others.  
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Figure 3.7. Visual Outputs returned from proposed methods on Wallflower 

The Figure 3.7 shows the results obtained on Wallflower dataset, which includes 

seven different videos. For this category, the four methods produced successful results, 

except for Light Switch video (LS). In case of sudden illumination changes like Light 

Switch, the SWCD regulates itself after some frames, therefore the SWCD gives worst 

segmentation result for sample numbered as #1865.  

Table 3.8. F-measure scores of our proposed methods on Wallflower 

F-measure Scores of each Category (%) on Wallflower 

Method B C FA LS MO ToD WT 

CVABS  0.7377 0.9268 0.6153 0.5619 0.0000 0.9182 0.7661 

SWCD  0.7650 0.9793 0.6357 0.1720 0.0000 0.8557 0.9037 

BMCVA 0.8177 0.9771 0.6241 0.7625 0.0000 0.3611 0.9386 

BMCMA 0.8230 0.9703 0.6242 0.7772 0.0000 0.3559 0.9136 

The Table 3.8 presents categorical F-measure scores of each method obtained on 

Wallflower dataset. The four methods produce good F-measure scores. Once results 

scrutinized, CVABS is superior in 5 of 7 videos, SWCD is superior in 4 of 7 videos, 

BMCVA is superior in 3 of 7 videos and BMCMA is superior in 2 of 7 videos.  When the 

overall F-measure scores are sorted, we can observe the results achieved as CVABS is 

76.61%, SWCD is 90.31%, BMCVA is 64.01% and BMCMA is 63.77%. By considering 

the overall F-measure scores, one can emphasize that the CVABS is more dominant. If 

the Wallflower considered as a category in addition to 11 categories of CDnet, then we 

can say that CVABS achieved superior results for 10 of 12 videos and SWCD gives 

superior results only for Intermittent Object Motions (IOM) and Wallflower categories. 
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4. CONCLUSIONS 

In this study, we have developed four foreground detection methods based on 

different ideas for background modelling and distance computation. During the 

background modelling, we have considered two ways as (i) using single background 

model and (ii) using multi backgrounds in memory for real time foreground segmentation 

in videos. The utilized methods are given as BMCVA, BMCMA, SWCD and CVABS. 

The SWCD and CVABS are relied on feedback mechanism that is background frames 

are updated with respect to internal dynamic controller parameters. 

The SWCD and CVABS, which relied on sliding window based background model 

updating procedure, are pixel-wise change detection algorithms and incorporate a smart 

feedback system in which the dynamic internal parameters are self-regulated and updated. 

The methods also incorporate a fast and robust estimate of distance map by using cross-

projection tensor based gradient transformation. Experimental results on static and 

dynamic test videos show that the proposed methods successfully tackle challenging 

problems of background modeling, in terms of both subjective quality and objective 

measures using ground truth data. The proposed methods (SWCD and CVABS) are not 

only capable of handling variations in dynamic views, but also efficiently alleviates 

problems caused by shadows, illumination variation, and thermal and turbulence effects. 

Experimental results show that SWCD and CVABS stands a top-half position in all 

categories and outperforms most methods in certain categories. Since several methods 

focus on certain video types while compromising their performances for the rest of the 

scenarios, this property renders the proposed algorithms a very reasonable alternative in 

background modeling and foreground detection. Also, the proposed CVABS method 

presents valuable performance for overall results of F-measure score and MCC on CDnet 

dataset.  

However, we have observed that using a single background frame through time 

domain in video does not produce favorable results in terms of foreground segmentation 

as carried out in our proposed BMCVA and BMCMA methods. The reasons to why the 

BMCVA and BMCMA methods collapsed can be attributed to encountered dynamics 

including waving trees, illumination changes due to weather conditions, water waves and 

motions of camera. The other challenge is revealed as updating the basis of subspace for 
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such methods when it comes to regularly refresh the background model. Therefore, one 

can emphasize that considering N frames as background model is better than using a 

single background model in case of initialization stage.  

Moreover, the execution time of proposed algorithms (SWCD and CVABS) is 

reported as approximately 0.1 second per each image having size 240x320 pixels. The 

execution time includes processes of reading and writing of images, distance 

computation, segmentation, post processing, update of internal parameters and update of 

backgrounds.  It should be noted that all the experiments have carried out on the same 

hardware with a software implemented on the Matlab. The elapsed running time is 

sufficient for a real time application if it is implemented in OpenCV framework with C++ 

programming language.   
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