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ELECTRICAL ENGINEERING

SPACE MANIPULATOR KINEMATICS
FOR DOCKING OPERATIONS

OSMAN PARLAKTUNA

Dissertation under the direction of Dr. George E. Cook

Robotic manipulators carried by future spacecraft are expected to perform
important tasks in space, like satellite assembly. However, since the base of the
manipulator (sa}ellite) is not fixed in space, some problems will be encountered.
Internal forces and torques applied to the satellite due to the motion of the ma-
ﬁipulator will cause changes 1n the position and attitude of the base. The control
method for space manipulators should take into account the motion of the base due
to manipulator motions. In this study, the kinematics of a space manipulator sys-
tem is investigated and a control method based on resolved motion rate control and
conservation of angular momentum is developed. It is shown that a manipulator
arm follows a prescribed path despite the translations and rotations of the base. It
is also shown that manipulator arm motions can be used to correct the orientation
of the base. An algorithm is developed assuming that manipulator motions cause
small rotéztions in the attitude of the base and these rotations are additive. This
algorithm is used to find the required motions of the manipulator to rotate the base
from an initial orientation to a desired final orientation. Results are animated by

using a computer graphic simulator program, ROBOSIM.
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INTRODUCTION

In this decade, NASA is ﬁlanning to launch the first permanently manned U.
S. space station. It is believed that “a key element of the right technology for
the space station era is extensive use of advanced general-purpose automation and
robotics [1]. The space station will be used to perform missions: collecting data from
distant stars; satellite assembly, deployment and retrieval, servicing, maintenance
and repair; and debris capture [2]. Most of these tasks require extra vehicular
activities. It is proposed that manipulators be used to perform some of these tasks.

By using manipulators, the following benefits can be obtained: [3]

e Astronauts spend their time as station managers rather than as operators

carrying out routine functions, thus productivity increases.
e Lower cost of operations.

e Some of the tasks that cannot be performed by human power can be per-

formed with robots- such as the assembly of large structures..

e Some of the tasks are hazardous to astronauts i.e., working in high orbits
where radiation could be harmful. Using manipulators for these tasks will reduce

the risk of exposure of astronauts to hazardous situations.

If the operations cannot be reduced to predetermined procedures, the han-
dling of unpredicted events requires the presence of human beings. In cases where
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procedures are well defined manipulators can be used without human supervision.

A space station orbital 'maneuvering vehicle (OMV), which is a satellite-
installed manipulator system, is being planned as a free flying teleoperator systém
to accomplish the tasks mentioned above [4]. To be able to accomplish these tasks,
manipulators must be controlled by a very accurate control algorithm. Several con-
trol algorithms have been developed for ground-fixed manipulators. However, one
of the characteristics of space based manipulators that is different from ground-
fixed manipulators i1s the lack of a fixed base. If the space manipulator moves,
the base of the manipulator, OMV, moves in reaction to the applied forces on it.
The forces that cause the OMV to move are external and internal forces. External
forces are the forces generated by the reaction jets, forces generated by contact with
surrounding objects, forces caused by solar radiation and forces caused by gravita-
tional gradients. Internal forces are the interactive forces bet&een the manipulator
and the OMV due to manipulator motions. These external and internal forces pro-
duce a translation of the center of mass of the OMV and a rotation of the OMV
about its center of mass. If the algorithm that calculates the joint angles-which
moves the ;manipulator to a prescribed end effector positiori and orientation- does
not compensate for these internal and external forces, the end effector will miss the
target. Ground-fixed manipulator control algorithms do not consider the motion of
the base. Therefore these algorithms cannot be used with control methods unless

the base is kept stationary.



The motion of the OMV as a result of manipulator motions can be compensated
for by using reaction wheels and reaction jets. Reaction wheels add more weight and
complexity to the system, and they cannot compensate for the translational changes
in the base, therefore they should be used together with reactién jets. The life of
reaction jets depends on the amount of reaction jet fuel carried by the spacecraft,
and this amount 1s limited. Therefore, a method which eliminates or minimizes the
use of reaction wheels and reaction jets will reduce the cost and increase the life
of the spacecraft. In positions where the target is out of reach of the manipulator,
reaction jets should be used to bring the system into the vicinity of the target.
When the manipulator is in position to reach the target, reaction jets usage should

be avoided.

In Chapter I, a control algorithm based on resolved motion rate control is
developed. It is assumed that the base of the manipulator is free to translate and
rotate, and reaction wheels and reaction jets will not be used to compensate for
the motion in the base as a result of the manipulator motions. It is also assumed
that the system is a collection of rigid bodies, and there are no external forces
applied t;> the system. Using a modified resolved motion rate control algorithm
and an angular momentum conservation law, a generalized Jacobian matrix of the
manipulator, which gives the relation between the end effector velocities and joint
angle rates, is derived. The algorithm is tested by a computer simulation of a space

manipulator system. It is shown that the manipulator follows a prescribed path



despite the translations and rotations of the base.

To service satellites, the OMV should dock with the satellite, for otherwise,
they will start to drift apart as soon as there is a force of interaction between the
OMYV and the satellite. As mentioned above, the OMV will rotate about its center of
mass as a result of external and internal forces. These deviations in the orientation
of the OMYV should be corrected to dock with the satellite. To avoid the usage of

reaction jet gases, thrusters should not be used to correct these deviations.

It is well known that, astronauts can change their orientations in space by
moving parts of their bodies. Also, divers, trampolinists, gymnasts and cats can
perform rotation of their bodies in free fall without pushing against anything. This is
possible because the angular momentum of the body is conserved. In this thesis, the

same idea will be used to correct the orientation of the OMV for docking purposes.

A manipulator is assumed to be the arm of the OMV. If there is no external
force applied to the system, the angular momentum of the system is conserved
about its center of mass. The OMV will rotate.as a result of manipulator motions.
The orientation of the OMV will depend on the path the manipulator travels. If the
manipulat;)r moves along one path and returns to the starting point by another path,
the orientation of the OMV will, in general, be different from its initial orientation
before the manipulator motion. In Chapter II, an algorithm is developed to find
the required manipulator motions to rotate the OMV from an initial orientation to

a desired final orientation.



A manipulator control algorithm should be tested before applying it to real
manipulators. Using real robots to test a control algorithm may result in an un-
desirable situation. For example, robots may collide accidentally with obstacles
within a workcell. The control algorithm may be tested, however, using a com-
puter graphic simulation program. Thus, the hazards involved in the algorithm can
be observed and solved before applying it to real robots. A number of computer
graphic simulation programs have been developed to solve such problems. Such a
computer graphic simulator, ROBOSIM, was developed jointly at NASA and Van-
derbilt University [5]. ROBOSIM will be used to animate the motion of the OMV
as a result of manipulator motions. In Chapter III, an overview of ROBOSIM is

given, then the results of the fine attitude control algorithm are animated.

We conclude in Chapter IV with a discussion of results and proposals for further

research.



CHAPTER I

KINEMATIC ANALYSIS
Introduction

To control robot manipulators in space, the motion of the satellite (which is
the base of the manipulator), as a result of the force exerted by the manipulator
motion, should be considered. Most of the algorithms developed to control a robot
manipulator assume that the manipulator is connected to a fixed base [6], [7]. Since
the satellite moves due to the motion of the robot manipulator, the control schemes
developed for the fixed-base manipulators cannot be used for space manipulators.
If one wants to use the schemes for the fixed-base manipulators to control a space
manipulator, one should keep the satellite stationary which requires an extra effort.
Satellites can be kept statioﬁary by using reaction jets and/or reaction wheels.
Reaction jets require propellant to operate and their life depends on the amount of
fuel carried by the satellite. Reaction wheels add more weight to the system which
is a disadvantage during launch of the system, and they also increase the cost of the
system. Reaction wheels cannot compensate for the translational disturbances and
should be used together with reaction jets. Reaction jets can be used to bring the
system into a position where the manipulator will be able to reach the target. If the
‘manipulator is close to the target, reaction-jet usage should be avoided. The aim
of this study is to find a cont.rol method which does not require the use of reaction

6
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jets and/or reaction wheels to move a space manipulator from an initial position to

a desired final positionj

Previous Studies

Studies have been made of space manipulator control under conditions of a
nonstationary satellite base. Yamada et al [8] assumed that the base is free to
translate but has attitude control to keep the orientation stationary. They derived
the kinematic equations using a Newton-Euler formulation proposed by Luh [9)].
They estimated the satelliteAlinear acceleration by the use of the reaction force
exerted on the satellite from the manipulator. They concluded that the satellite

linear acceleration cannot be neglected in the case of controlling satellite attitudes.

Longman et al. [10] also assumed that the base is free to translate but assumed
that reaction wheels were employed to keep the attitude stationary. They applied
the method to a specific class of robot arms i.e., spherical-polar-coordinate robots,
and showed that by controlling satellite attitude, the kinematics and dynamics of a
free-flying space manipulator can be decoupled, and the control problem becomes
a purely kinematic problem. They also computed the counter moments required
to compensate for the turning moments of the satellite caused by manipulator arm
motions. Their method is difficult to apply to an arbitrary manipulator configura-

tiomn.

In these two methods, i. e., Yamada [8] and Longman [10] propellant consump-

tion to keep the attitude fixed is very high, and the methods require a very high



performance of attitude control.

Vafa and Dubowsky [11] proposed a ‘Virtual Manipulator Concept’ which is a
massless kinematic chain. They defined the base of the virtual manipulator at the
center of mass of the space manipulator. The virtual manipulator’s end effector
terminates at an arbitrary point on the real manipulator. They derived kinematic
equations using the virtual manipulator and showed that the real manipulator kine-

matics is the same as the virtual manipulator kinematics.

Another method was developed by Umetani and Yoshida [12], [13]. This
method assumes no position and attitude control of the satellite, so the satellite-
based manipulator is a completely free-flying system. A generalized Jacobian ma-
trix was derived using a modified resolved motion rate control [14] and momentum

conservation laws. They used 3 x 3 rotational matrices to derive the equations.

~In this chapter the method proposed by Umetani and Yoshida [12], [13] will be
modified, and a generalized Jacobian matrix will be derived using 4 x4 homogeneous
transformation matrices. The method will be tested by computer simulation of a

space manipulator system.

FPundamental Equations

To derive the equations, an n-degrees-of-freedom manipulator arm carried by
a spacecraft is considered. The spacecraft has 6 degrees-of-freedom in space, 3

~ translational and 3 rotational degrees-of-freedom. The system has a total of n+6



degrees-of-freedom. An example of a space manipulator system is shown in Figure

1; the spacecraft 1s modelled as a cylinder.

The links and joints of the manipulator are assumed to be rigid bodies. The
satellite 1s also assumed to be rigid and is represented by a single rigid body. Thus,
the system can be modelled as a composition of rigid bodies. In many cases, space
manipulators should be regarded as flexible bodies because of low stiffness. However,
most of the formulations of flexible arms are based upon the small deformations from
the virtual rigid body, so knowledge of the motion of rigid bodies is important. As
a basic study for these advanced investigations, the movement of rigid links will be

studied.

Each joint of the manipulator has one rotational degree-of-freedom and is rate

controlled. The attitude and position of the main body is not controlled at all.

The forces due to gravitational gradients, solar radiation and aerodynamic drag
are very small compared to the manipulator-satellite dynamic interaction forces.
These small forces can accumulate in time and change the manipulator’s position
and orientation, but their short term effects on the system can be neglected. There-
fore, it is assumed that there are no external forces applied on the system by external
objects. The center of mass of the space manipulator system with respect to its
orbit trajectory remains fixed during a manipulator maneuver. Hence, a coordinate
frame attached to its orbit trajectory is an inertial frame, and the linear and angular

momenta of the space manipulator system are conserved in the inertial frame.
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There is no relative motion between the center mass of the system and that of a

target object at an initial position.

Let us denote the inertial frame by XYZ. An X;Y 7y coordinate frame is fixed
on the satellite main body, and its origin is at the center of mass of the satellite
main body. The orientation of the satellite main body with respect to the inertial
frame is defined by roll, pitch and yaw angles. Roll, pitch and yaw are a sequence of
rotations which carries a moving coordinate frame from coincidence with the XYZ
frame to coincidence with the coordinate frame XY (Zy. The first rotation, roll,
is a rotation 1 about the Z axis, pitch is a rotation  about the new Y axis , Yy,
and yaw is a rotation 7 about the new X axis, X;. These rotations are shown in

Figure 2.

A rotational transformation between the X,YZy coordinate frame and the

inertial frame is given by

cosp —siny 0 cosffi 0 sinf 1 0 0
Uy = | sinyy cosyp O 0 1 0 0 cosT —sinT (1)
0 0 1 —sinff 0 cosf 0 sinT cosT

cospcosf cosysinfsinT —sintcosT cosypsinfcosT + sinysinT
Uy = | sinycosf sinysinfsin7 + costpcosT sinysinfcost — cosysinr
—sinpf cosBsinT - cosfcosT

(2)



12

Figure 2. Roll, pitch and yaw rotations

The position of the center of mass of the satellite main body with respect to the
inertial frame is given by a vector ro. The orientation and position of the X, YoZg
coordinate frame with respect to the inertial frame can be written using a 4 x 4

homogeneous transformation matrix Ag:

I Tor
Uy | Toy
Ao = ' To: - (3)
o 0o o0 | 1

A coordinate frame is assigned to each link of the manipulator using the
Denavit-Hartenberg method [15]. The relation between two adjacent links of the

manipulator is shown in Figure 3 [16].
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Joint i

Jointi—1 Jointi+1

Figure 3. Relation between two links of the manipulator.

Definition of the link parameters are as follows:

a;: distance between the origins of coordinate systems 7 — 1 and ¢ measured
along x;.

d;: distance between x;_; and x; measured along z;_;.

a;: aﬁgle between z;_; and z; axes measured about x;.

0;: angle between x,_; and x; axes measured about z;_;.

The position and orientation of coordinate frame ¢ with respect to coordinate
frame 7 — 1 can be defined by using 4 x 4 homogeneous transformation matrices

=1 A;, where
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cosf; —sinf;cosa; sinf;sina; a;cosb;
ie1 sinf; cosf;cosa; —cosb;sina; a;sinb;
A= . (4)
0 sin a; cOoS «; d;
0 0 0 1

The upper left 3 x 3 matrix of =1 A, gives the orientation information between
the two coordinate systems and is denoted by ~!U;. The first three elements of
the fourth column give the translational information be’gween the two links and is
denoted by *~!p;. 8; and d; are the joint variables for rotational and translational
links, respectively.

Vector definitions giving locations of the center of mass for each link are shown

in Figure 4.

s CM of system
inartial Frame

Figure 4. Vector definitions giving locations of the center of mass for each link.
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Definitions of the vectors in Figure 4 are:

pi: position vector of coordinate frame z, defined at joint 2, with reference to
the inertial frame.

“~1p,: position vector of the coordinate frame ¢ with respect to the coordinate
frame 7 — 1.

CM;: center of mass of link 2.

‘r;: position vector of the center of mass of link 7 with reference to the coordi-
nate frame <.

r;: position vector of the center of mass of link ¢ with reference to the inertial
frame.

rg: position vector of center of mass of system with reference to the inertial

frame.

The position and orientation of link ¢ with reference to the inertial coordinate
system can be found by the matrix multiplication of 4 x 4 homogeneous transfor-

mation matrices:

T; = Ag®Ay ... " TTA (5)

The position vector of the center of mass of link ¢+ with reference to the inertial

coordinate frame is

r; = Tiiri . (6)
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Definition of the center of mass of the system is

Zmiri =rg Zmi (7)
=0 =0

where m; is the mass of link 1.

Since there are no external forces applied on the system, linear and angular

momenta of the system are conserved in the inertial frame.

Linear momentum conservation is expressed by:

n
Z m;¥; — constant : (8)

1=0

Angular momentum conservation is expressed by:
n
E I,w; + m;r; X r; = constant (9)
1=0
where

I;= Inertia matrix of link 7 about a coordinate frame parallel to the inertial

frame.

w;= Angular velocity of link ¢+ with reference to the inertial frame.

The angular velocity of the satellite main body with reference to the inertial

frame, wy, in terms of changes in roll, pitch and yaw angles is given as follows

Wog cosfBcosyp —siny O T ,
woy | = | cosBsiny cosyp 0 B (10)
Wo —sinf3 0 1 P
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and the angular velocity of link 7 with respect to the inertial frame can be written

as

W, = wo + Z U7 u;4; (11)

i=1

where 7u; is the unit vector about which rotation occurs, and ¢; is the generalized

coordinate representing the joint variable for link j.

To find the linear velocity of the center of mass of link ¢+ with respect to the

inertial frame, differentiate equation (6) with respect to time. Then
I"i = Tiil‘i (12)

where the differentiation of the homogeneous transformation matrix T; is defined

as

9T, 0T, OT
=5 "5 P 5y

oT; .

L oT; . n 0T, oT, oT;
Toz 7
Oros Oroy T By

Fox b g e g

O0q1
(13)

To eliminate 7o, 7oy, and 7o, from the equations, substitute equations (12) and

(13) into equation (8) and solve for the velocity of the center of mass of the satellite,

ro. Then .
7
: 8
7"02: 1 1/)
'”"'Oy - - ( QrOx QrOy QrOz ) ( Qr Qﬁ Q'x,b qu e Qqn ) 41 (14)
T0z .

dn

where



n OT ! mo
Qroz :kaa Ekpe4 | 0
k=1 Toz 0
n 0
Ty
Qoy = S 25k, ¢ g
k=1 Oroy 0
n 0
OT
QTOZ:kaaTOZ ry + ( 0
k=1 Mo
Q- =) my Tk
P or
Qs = ka Ty
. op
Qy=> mu 'k
k=1 0%
i oT
qu:ka aq‘kkrkn 2:1) e

k=1

are 3 x 1 vectors. Define a matrix C as

C=- ( QrO:c QrOy QTOZ )hl ( Q"'

Qﬁ Qzll qu Qqn)

Then, from equations (14) and (22), 70,70, and 7o, can be written as

Toz = €117 + 012,3 + 013¢.‘ + c1a¢1 + ... F Cint3dn

Toy = C217 + 62218 + Czs¢ + coag1 F - ..+ Con+3qn

Toz = €317 + Cazﬂ‘ + 033¢ + c34G1 + ...+ C3nt3qn

18

(15)

(16)

(22)

(23)

(24)

(25)



19

where ¢y, is the k** row I** column entry of the C matrix. Then the derivative of

the homogeneous transformation matrix T; can be written as

. oT; oT; aT; oT;

Ti N il , PN

(87 +6118r0z+0180y+c310702)
GO, 0T 0T AT L.
818 Claa Toz C"za Oy ez 87‘0; )6
+(§£ oT; be a1, n aT; . .
Db C136 Toa 23 or Toy €33 Bro. )?ﬁ
Z. 0T, 0T, oT; oT; | .
+ ]z:;( aq] + Crjp3 Brg -Jr C';J.[.ga "oy -+ 63]‘_{_35@)(]]' (26)

Generalized Jacobian Matrix

In general the characteristic equation for an ordinary ground fixed manipulator

can be written as

P = f(q) (27)

where

P = (p, ,@?)T: position and attitude vectors of the end effector of the ma-

nipulator.

Pe: position vector of the end effector of the manipulator
O.: Attitude vector of the end effector of the manipuiator
= (g1,-.-,9n)T: vector of the joint variables.
It is easy to obtain the trénsformation that transforms the joint variables q into
a set of task coordinates P. The inverse transformation cannot be obtained easily

even in ordinary cases, because the transformation is nonlinear and configuration
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dependent. However, by differentiating (27) with respect to time the transformation
between P and q can be linearized, and the motion rate of the end effector in the

task space can be resolved into that of joint variables in the configuration space.

P = H(g)q (28)

where H(q) = %qi is the Jacobian matrix. For a space manipulator, position coor-
dinates and attitude angles of the satellite should be considered as state variables
of the system because the posture of the satellite is influenced by a manipulator

operation.

The relation between the position of the end effector with respect to the inertial

frame p. and the coordinate frame n, "p. is
Pe = Tn™Pe. (29)

Then, the linear velocity of the end effector with respect to the inertial frame is

given by
pe = rj'-‘nnpe (30)
where
g (OTn OTu, L OT. DT,
o a’f (97'02; 1 (9r0y 21 67‘0z w31
+(8Tn+<9Tnc +8Tn +3Tn )ﬂ
c ¢
B8 " Ores 2 Broy 0 Bres o
o oT, oJoT, N oT, L oT,, )?,b
—c
5% | Bron 1 Bre, P T Bro,
.91, 0T oT oT
n o, N zon ; o 31
+Z( Ba: + Bro. C1i+3 + Broy C2it3 -+ Bro. C3i43 )¢ (31)

1=1



From equations (30) and (31) the linear velocity of the end effector with reference

to the inertial frame can be written as a linear combination of 7,8,%, ¢1,..., dn
7
p
. P
pe=(H., Hs Hy, Hgpu ... Hyn) i (32)
In
where
oT aT oT 0T
H"' = = n = = i e 33
( ar + 5 5’7"093 1+ Broy S Co1 + Bro. ——¢31)"P (33)
o1, (9T oT, T,
H "Pe 34
g = 3,6’ 8 03612 + B chzz -+ 8T0z632) p (34)
8 — T C13 T Bro, Ao C23 + Bra. ¢33)" Pe (35)
or, 0T, oT, T,
H i = 1 1 A (3143 i e 36
q (8qi+80$Cl+3+60y62+3+8r0263+)p (36)

From equations (10) and (11), the angular velocity of the end effector, w,, can also

be written as a linear combination of T',,B,@[), 41,5 qn
7
B
' 1 n d)
we = (Woz Woy Wy, Ui'uy ... Up™u,) i (37)
dn

where Wz, Wo, and Wy, are the columns of wy matrix given by the equation (10).

Combining equations (32) and (37) giveé

7

. g
p_(P\_(H Hs H, H, .. H, » (38)

We Woz Woy Wor Uiluwy ... U,"u, Q1

dn

Anadolw Dniversitess
Morkes Kiithphane
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Equation (38) can be divided into the satellite part and the manipulator part.

P = H,q, + Hpdom (39)

where

qs: 3 x 1 matrix of attitude angles of the satellite main body.
qm: n X 1 matrix of joint variables of the manipulator.
H; is an 6 x 3 matrix, and H,, 1s an 6 X n matrix.

Equation (39) gives 6 equations in n + 3 unknowns. In order to solve this

system of equations we need additional equations. These equations can be obtained

using the angular momentum conservation equation. Substitute equations (11) and

(12) into equation (9) to obtain

(In Ig I, I, ... Xgn) i = constant (40)

gn

where

L = > (U/LUT ) Wos + moAq’ro X ¢4

=0
0T, oT; OT,
-I-]Zlm]T r; x ( a Ly g feng 2 +6318r0z )r; (41)
Ip =) (U;/1;U; ) woy + moAq’ro X ¢,
j=0
8T, dT; dT;
T, Y3 ’ 42
+Zm1 r]x( +61230$+ 2280y+c3280z)r1 (42)
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L, = Z(U]’jIjU;l)sz +mpAero X c3

= : oT; 0T, oT; oT; .
+ ijTjJrj x ( aT] + 13 37‘01 + C23 b—riﬁf“ €33 37‘01 )r; (43)
Lo = (U/LUTU u; + moAgro X ¢j4s
j=i

OT; oT; oT; oT; .
+ ZmJT r; X (“—Z + Clz-}—Sa . + o3 Droy + C3443 37‘01 )r; 544)

qwhere c; is the 1** column of the C matrix defined by equation (22). ‘I; is the
inertia matrix of link ¢ with reference to coordinate frame ¢. This inertia matrix

can be transformed into the inertial frame coordinates by the transformation [17].
L = U, LU (45)

Equation (40) can also be divided into satellite part and manipulator part, as
I.qs + I,,qm = constant. (46)

I, is 2 3 x 3 inertia matrix of the satellite main body and I,, is a 3 X n inertia
matrix of the manipulator.

The system deﬁnea by equations (39) and (46) has 9 linear equations of n + 3
variables %,,B,zﬁ.,ql .v.,qn. By eliminating §, from equatkions (39) and (46) and

assuming the system is at rest initially q., can be solved as
P = (Hpn - HJI'I.)dm (47)

P =H"qn (48)



where H;‘ is the generalized Jacobian matrix for a space manipulator. The Jacobian
matrix of the manipulator H,, is compensated for a disturbance of reactive move-
ment of the base. The amount of compensation is proportional to the ratio of the
manipulator inertia and satellite inertia matrices, I, /Is. This ratio approaches‘ Zero
when the inertia of the satellite is much larger than the inertia of the manipulator.
In this case the system can be treated as a ground fixed manipulator system. If
the manipulator has 6 degrees-of-freedom there is no redundancy and H* becomes

a 6 x 6 square matrix and can be inverted if it is nonsingular. {;, can be solved as
4m = (H*)7'P (49)

By using equation (49) the required manipulator operation ¢, corresponding
to the given trajectory P for the capture of a free-flying target in space can be easily
obtained. If the manipulator has a number of degrees-of-freedom other than 6, H*

can be inverted using a pseudo inverse.

A Test of the Control Algorithm

To test the method, a simulation program was written in FORTRAN. Listing
of the program is given in Appendix A. A 6 degrees-of-freedom system was assumed.

The specifications of the system are listed in Table 1.

Velocity of the end effector along the prescribed trajectory was assumed to be as
shown in Figure 5. This velocity was applied along different axes of the end effector

and the behavior of the system was observed. Figures 6a-6d show the response of



the system when the velocity was applied along the X direction. Figure 6a shows
the change in the position of the end effector. Figure 6b repreéents the change in
joint angles of the manipulator to achieve this motion. Figures 6¢ and 6d show the
changes in the position and attitude of the satellite main body. Figures 7a-7d SHOW
the response of the system when the velocity was applied along the Z direction. As
seen from the results, the end effector follows the prescribed trajectory despite the

rotational and translational motions of the satellite main body.

TABLE 1.
SPECIFICATIONS OF THE SPACE MANIPULATOR SYSTEM

Link 0 Link 1 Link 2 Link 3 Link 4 Link 5 Link 6

Mass (Lb) 23450.0 51.3 18.2 16.0 1.8 4.2 2.0
I.(Lb in?) 631330.0 15000.0 125.0 63.0 50 470 11.0
I, 631330.0  425.0 3700.0 2525.0 30.0 140.0 11.0
I, 2504500.0 12750.0 3725.0 2550.0 30.0 120.0 15.0
I, 0.0 0.0 160.0 -93.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 19.0 0.0
0.0 1080 0.0 0.0 0.0 0.0 0.0

el
13 n




VELOCITY

0.0

12.0

4.0 6.0 8.0

2.0

0.0

TIME

Figure 5. Velocity along trajectory.
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CHAPTER II

FINE ATTITUDE CONTROL

Previous Studies

Several researchers studied the problem of orientation of objects in free fall.
McDonald [18] studied the problem of how a cat in free fall can rotate itself without
pushing against anything. He took pictures of a falling cat and showed that by
moving different parts of its body a cat is able to change his orientation and touch
the ground on its feet. Oﬁe year later [19] , he conducted the same experiment on a

diver and showed that a diver can turn his body without any help from the board.

After manned space flights started, self-orientation of astronauts became an
important subject. To perform certain tasks an astronau.t must be able to change
the orientation of his body in space. This is easy when the astronaut is in direct
contact with some part of the space vehicle. However, if the astronaut is not in
contact with the space Yehicle he has two alternatives to change 1ts orientation.
The astronaut can carry a device which produces forces that help him to change
his orientation, or as a second alternative he can move parts of his body to change

his orientation.

Kulwicki et al [20] discussed self rotation techniques of astronauts in qualitative
terms and showed that by a series of arm and leg motions astronauts can rotate

35



their bodies in space without external help.

In 1964, McCrank [21] studied the problem of rotation of a body in free fall in
his masters thesis. He derived the equations of motion of a body in free fall using
momentum conservation laws and suggested some maneuvers for self-orientation of

an astronaut.

V. L. Stephantsov and his colleagues [22], [23] studied methods of orienting
the human body under conditions of weightlesness in the absence of a support.
They concluded that if a man exerts muscular force and turns his arms through an
angle «y then the rest of his body, according to conservation of angular momentum,
turns in the opposite direction through an angle as. The angles of rotation from the
starting point of the parts of the body are inversely proportiona.l to their moments

of inertia.

Smith and Kane [24] proposed an analytic solution to the self-orientation prob-
lem. They derived the differential equations of motion using the angular momentum
conservation law. Since the number of equations of the system are smaller than the
unknowns, they introduced an optimality criterion and obtained new equations to
equate the number of equations with number of unknowns. The new problem turned
out to be a nonlinear two point boundary value problem. They solved this boundary

value problem using numerical methods.

Later, Kane and Scher [25], and Passerello and Huston [26] studied the orienta-

tion of human body problem in space without the aid of external control. Kane and
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Scher suggested that if a man can perform both a pitch and a yaw rotation, he can
acquire any desired orientation. Passerello and Huston derived the equations of the
system using the principle of conservation of angular momentum. They integrated
the equations assuming the motions of arms and legs are known and showed that

astronauts can change their orientation by using predetermined limb motions.

Vafa and Dubowsky [27] studied the problem of deviations in the satellite orien-
tations due to motions of the manipulator. They proposed that, if the orientation
of the satellite exceeds a predetermined value while the manipulator moves, this

deviation can be corrected through cyclic motions of the manipulator.

Equations of the System

To derive the equations, the same system in Chapter I is used. The center of

mass of the system with reference to a satellite fixed coordinate system XY ¢Zg is
1 n

R=— gmiori (50)

where m is the total mass of the system, m; is the mass of the :** link, °r; is the

vector from the fixed body frame to the center of mass of link 2, and R is the vector

from the body fixed frame to the center of mass of the system.

The angular momentum of the system about the center of mass is

Hem = "Towo+ Y “Ti(wo +°wi) +mo(RxR)+ > mi[("ri—R) x ("t —R)] (51)
=1

=1

where °I; is the inertia matrix of the OMV about the XY Z¢ coordinate system

and °I; is the inertia matrix of link ¢ about a coordinate frame parallel to the



XoYZy system. w; is the angular velocity of link 7 with respect to the XY, Zq
reference frame. It i1s assumed that no external force is applied on the system and
the system is at rest initially. Then the angular momentum of the system relative

to its center of mass is conserved and is equal to zero.

Equation (51) is expanded to obtain

Hem = “Towo + ) °Li(wo +"w;) + m(R x R)
=1

n n "
—RXZmiOi‘i—ZmioriXR-{— Zmiorixoi‘i:() (52)
where °r; is the velocity of the center of mass of link ¢ and R is the velocity of

the center of mass of the total system relative to the inertial frame, respectively.

Differentiating equation (50) with respect to time gives:
R:iim-%- (53)
. m P 2 (2

Substitute equation (53) into equation (52). Then the third and fourth terms in

equation (53) cancel and the equation reduces to

Hem = OIoWO -+ Z OIi(Wo —+ OW,;) — Zmiori X R. —+ Zmz-ori X Of‘i (54)

i=1
Using moving coordinate frames [28], °F; and R can be written as

O%; = v; + wo x °r; (55)

R=V+wsxR (56)



where v; 1s the velocity of the center of mass of link 7 and V is the velocity of the
center of mass of the total system relative to the XY oZ¢ frame, respectively. wq
is the angular velocity of the satellite main body with respect to the inertial frame.
The orientation of the main body with respect to the inertial frame is given by the
roll, pitch and yaw angles as shown by equation (2), and angular velocity of the
main body with respect to the inertial frame in terms of ;ate of change of roll, pitch

and yaw angles is given by equation (10).

Substituting equations (55) and (56) into equation (54) and expanding the

terms gives

H.,, = °Tyw, + ZOL-(WO + %) =mR x V—mR x (wy x R)

1=1
n n
. Zmiori X V; + Zmiori x (wo x °r;) (57)
Using the vector triple product property [29]

ax(bxc)=(a-c)b—(b-a)c (58)

The R x (wo x R) and °r; x (wg x °r;) terms can be written as

R2W0 — (WO . R)R (59)
Or2wo — (wo - °r;)r; (60)

Using vector dyadic product [30], the second terms in equations (59) and (60) can

be written as (RR)wq and (°r;%r;)wy where

R.R, R.R, R.R,
RR=| R,R, R,R, R,R, (61)
R,R, R,R, R,R,
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Then equations (59) and (60) become

R x (wo x R) = (R-RE ~ RR)wy (62)
0

O, x (wo X Ori) = (Ori Ny riori)wo (63)

where E is a unit dyadic. Then equation (57) becomes

[OIO -+ Z(OL + Ji) - I(]VVO -+ Z OIiOVVZ' + Zmiori Xv,—-mRxV =0 (64)

=1 =1 =1
where
J; =mi(®r; - 'r.E = %rOr) (65)
K=m(R -RE -RR) ’ (66)

J; is the inertia dyadic of the 5% link relative to the XY Z, coordinate system as
if the link were a point mass situated at the center of mass of the ** link. K is the
inertia dyadic of the total system relative to the XY yZg coordinate system as if the
total system were a point mass situated at the center of mass of the total system.
The linear velocity of the center of mass of iink 2z, with respect to the X(YoZg
coordinate frame , v;, can be obtained using the relation given by equations (12)

and (13)

g5t (67)

Substituting equations (55) and (67) into equation (53) and equating corre-

sponding terms of equation (56) gives the velocity of the center of mass of the



4]

system relative to the X;YZo coordinate frame as:

& LT |
V=— Zmi( 3 ¢;)'Ti (63)
. ~— Jg;

The angular velocity of link ¢ with respect to the Xy Y Zo coordinate frame is
i .
Ow, = z OUjJI,ljg}]'. (69

Substitute equations (67)-(69) into equation (61). Then

n n aOT o
Z -K] W’O—{—Z U, u; Z'I?Zj[(ol']'—‘R)X( 8q:]]rjmqi =0

1=1 ‘=i j=t

Equation (70) gives 3 equations in n + 3 unknowns for an'n—deg.ree&of-_freedom
manipulator. If one knows the time history of joint angles then equation (70)
becomes a set of 3 simultaneous, non-linear, non—homo\éeneous, ordinary differential
equations with 3 unknowns. 1, § and 7 are the dependent variables, ¢ is the

independent variable, and joint angles are the intermediate variables.

The QMV will have different orientations depending on the manipulator path
chosen from one position to another. Assume that manipulavtor moves along a closed
path, 1.e., it starts from a position and returns to the same position at the end of the
motion. Since the OMYV orientation depends on"thé m_anipulator motion path, the
final OMYV orientation will change if the manipulator moves along one path in joint

space and returns to the initial position by another path. In this study function:



used in specifying g; are of the form suggested by Smith and Kane [23].

£ = fo+ (h — fo)lt/T — 5=sin(Z20)) (n)

where T 1s the duration of angle change, and f; and f; are the values of f for t =0
and ¢t = T. This function has the property of vanishing first and second derivatives
of the angles at t = 0 and ¢ = T, so the system starts from rest and returns to the

rest position at the end of the motion.

To find the desired base orientation corrections it is assumed that changes
in joint angles are small and these small changes result in small changes in the
orientation of the OMV. Since rotations are assumed small they can be classified as
vectors and can be added vectorially [31]. Only one pair of joint angles are allowed
to move at a time while the other joints are kept fixed. An example of the motion

of a pair of joint angles is shown by Figure 8.

Computer Simulation of the Algorithm

A Fortran program was written to find the sequence of motions to bring the
OMV to the desired orientation. Listing of the program is given in Appendix B.

The algorithm of the program is as follows:

1) Read the initial and desired values of the attitude angles of the OMV.
2) Find the pair of joints, establish the order of change in these joints, and

determine the magnitude and direction in these angles which rotates the OMV
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towards the desired orie..rltation. The following steps are applied to find the pair of
joints which rotates the OMYV towards the desired orientation

a) Pick up a pair of joints from a look-up table. This table contains pair of
joints, order of change in these joints, magnitude and direction (positive or negative)
of changes in the joint angles.

b) By changing this pair of joint angles according to equation (71) and integrat- -
ing equation (70) using Runge-Kutta algorithm, find the orientation of the OMV at
the end of the motion. Denote the new attitude angles of the OMV as Tyew, Brew
and Ypew.

c) If all angles converge to their desired values, i.e.,
leesired - 7_newl < ’Tdesired - Tinitiall

’ﬁdesired - Bnewl < I/Bdesired - ﬁinitiall
Id)desired - ¢new| < h/"desired - ",binitiali

go to 3, else go back to a) to pick up another pair of joints.
3) Determine the number of cycles, k, for- which this motion will be applied.

The number i1s the minimum of the following divisions plus.1

leesired - Tinitiali

ITnew - Tinitiall

|Bdesired — Dinitial

lﬂnew - ﬂinitiall

]¢desired - 'l;[)initiall

I'K/)new - ¢initial I
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4) Apply the motion of the manipulator k times. Integrate equation (70) using
the Runge-Kutta algorithm to find the orientation of the OMV at the end of the
motion. Denote the new values of the attitude angles of the OMV as 74, S and .

5) Calculate the sum of the error squared of attitude angles as

(Tdesired - Tk)2 + (/Bdesired - ﬂk)Q + (",L'desired - 'Qbk)Z

Compare the sum of the error squared with the error criteria. If the criteria is

satisfied stop, else assign
Tinitial = Tk, :Binitial = ﬁk? ¢initial = ¢k

and go back to step 2.

This program was tested for an OMV with a 6-degree-of—vfreedom manipulator.
But, only the first 3 links of the manipulator were allowed to move, because the last
3 links of the manipulator have very little effects on the OMV due to very small
inertias of these 3 links compared to the inertias of the rest of the system. Initial
values for 7, 8 and ¢ for Figures 9-11 are 7 = 0.0°, 8 = 0.0° and ¢ = 0.0°. The

desired final values for these angles are 7 = 6.0°, 8 = 10.0° and = 2.0°.

Resuifs of this run are shown in Figures 9-14. Figures 9-11 show the changes
in angles 7, § and 1, respectively. As can be seen from these figures all of the
- angles converge to the desired positions. The OMYV oscillates in response to the
manipulator motion. However, the mean orientation of the OMV changes continu-

ously towards the desired orientation. Figure 12 shows the mean orientation of the
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OMV after each cycle of the motion. Figure 13 represents the error squared of the
attitude angles after each cycle of the manipulator motion and, as seen from the
figure, squared error gets smaller after each cycle of the motion. To show the small
rotations can be added vectorially and the order of motions will not effect the final
orientation of the OMV, order of the motions were changed and the program run
again. Results of these two runs are plotted in Figure 14. As seen from the figure,
orientation of the OMV at the end of the manipulator motions is the same for both
cases. In Table 2 the order, magnitude and direction of the joint angle changes are
given. The number of cycles of each motion is also given in Table 2. Initially all

joint angles are 0.0°.

TABLE 2

CHANGES IN JOINT ANGLES TO ROTATE THE OMV
TO THE DESIRED ORIENTATION

No of joint Change in No of joint Change in Number of
moves first joint angle moves second  joint angle cycles

1 10.0 2 10.0 8

2 -10.0 3 -10.0 6

1 : 10.0 2 10.0 . 1

2 -10.0 3 -10.0 21
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Figure 10. Change in pitch (8) as a result of manipulator motions.
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Figure 11. Change in roll (1) as a result of manipulator motions.
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Figure 12. Changes in the attitude angles of the OMV after cach
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CHAPTER III

COMPUTER GRAPHICS SIMULATION

Introduction

The design of robot manipulators requires the study of a number of compli-
cated multilink mechanical systems as a controlled object. The major manipulator
design task is to set up a workspace and see if the arm can accomplish the desired
task. Often this leads to multiple trials of custom designed grippers and some of
the links. A company cannot afford to buy several robots to compare performance
characteristics or move these systems within their plants in order to find a suit-
able application. A number of computer graphic simulation programs have been
developed to solve such problems [32], [5]. Simulation provides a way of visualizing
robot kinematics without the use of real robots. The answers to questions érising
in the preliminary design stages, in the development, and during the tests of robot

manipulators and also during their use, can be obtained by simulation.

Anotf;ér area in which computer graphic simulation programs can be useful is
in testing robot control algorithﬁls. Using real robots to test a control algorithm
may result in an undesired situation, for example, robots may collide accidentally
with obstacles within the workcell. This type of problems can be prevented by first
testing the algorithm via a computer graphic simulation program.
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In this chapter, results of the control algorithm developed in Chapter II will be
animated using a computer graphics simulation program, namely ROBOSIM. First,

an overview of ROBOSIM will be given, then simulation of the algorithm will be

presented.

An Overview of RQBOSIM

Robosim was initially implemented in FORTRAN on a DEC VAX 11/780 com-
puter. The display terminals were a TEKTRONIX 4014 printer or a dynamic dis-
play system, such as Evans & Sutherland PS330 graphics terminal. The software
structure of ROBOSIM is divided into three levels. At the lowest level there are
subroutines which do the simulation tasks such as vector and matrix computations
and display control. The routines at the first level are inflexible, and data must
be input in a specific format. At the second level there are routines about display
management, subroutines to perform view-point and perspective transformations,
and robot control subroutines, such as computation of the Jacobian matrix. At
the third level, robots and other workcell components are modelled, programmed

dynamically, simulated and viewed by the use of ROBOSIM instructions.

Recently, ROBOSIM was ported to an HP350SRX graphics workstation [33].
The version on the HP350SRX system is fully compatible with the first implemen-
tation, but it is written in C. Using the HP350SRX graphics terminal increased the .
speed and allowed three dimensional graphics with shading, pérspective views and

colors.
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In order to simulate a robot system, the user should write a program consisting
of third level ROBOSIM instructions [34]. Each link of the robot can be modelled
by a combination of simple geometric objects i. e., box, cylinder, cone etc.. Then
these links are translated and/or rotated, and combined with other links to form
the robot system. The type (fixed, prismatic or rotational) and configuration of
the joints should be supplied by the user. Each link of the robot is stored in a
file. This file contains Denavit-Hartenberg parameters, joint type, homogeneous
transformation matrix A; of the link, generalized inertia matrix of the link and

visual representation of the link’s geometry. After creating the links, robot motion

can be animated using either the VIEW-ROBOT or CONTROL-ROBOT command.

Animation of the Results of Fine Attitude Control Algorithm

To animate the results of the fine attitude control algorithm, a space manip-
ulator system was designed using third level ROBOSIM commands, and motion
of the system was monitored on HP350SRX graphics terminal. ROBOSIM sim-
ulation commands used in construction of the space manipulator system is given
in Appendix C. Satellite main body is modelled by a cylinder, with an imbedded
coordina‘ce‘{frame at the center of mass of the cylinder. The rhanipulator has 6 links.
Each link is rotational, and coordinate frames are assigned such that rotation occurs
about the z axis. ROBOSIM simulation of the space manipulator system is shown
in Figure 15 with satellite attitude angles and manipulatér joint angles all equal to

0.0°. Figures 16-19 show a cycle of motion of the system. In Figure 16, the first



joint moves from 0.0° to _IO.OO and-the satellite main body rotates about the z axis
in the opposite direction. This is an expected result of conservation of angular mo-
mentum. In a multibody system, if some part of the body rotates in one direction,
the rest of the body rotates in the opposite direction. The rotations of the pafts
of the body are inversely proportional to the moment of inertia ratios of the two
parts of the body. In Figure 17, the second joint angle of the manipulator changes
from 0.0° to 10.0°. In the following two figures, the first and second joint angles
return to their original values, respectively. When the manipulator returns to the
initial position in Figure 19, the orientation of the satellite main body 1s different
than the orientation when the cycle started. Figure 20 shows the final position of
the system when the cycle of motion is applied several times. This shows that, even
though the manipulator returns to its initial position, orientation of the satellite

main body has changed.
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CHAPTER IV

DISCUSSION AND FURTHER RESEARCH
Discussion

In the near future space manipulators may replace astronauts in doing some
of the jobs which astronauts do today. Before space manipulators can be utilized
effectively, the control algorithms to control the end effector of the manipulator must
be developed. Since the base of the manipulator moves as a result of manipulator
motions, control algorithms which were developed for fixed base manipulators can

not be used and new algorithms are required.

In this thesis, a modified resolved motion rate control algorithm was developed
to control the end effector of the space manipulator. The assumptions made were
that no external forces were applied to the system and the angular momentum
conservation law holds. A generalized Jacobian matrix of a space manipulator
system was derived and it was shown that the manipulator end effector moves in
the desired direction in spite of the rotations and translations of the satellite main

body.

The satellite main body rotates when the manipulator moves. If the satellite
main body orientation becomes misaligned while docking with another satellite, its
orientation must be corrected to accomplish the docking process. Finding a way to
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rotate the main body without using thrusters will reduce the cost of operations and

increase the life of the satellite system.

In this thesis, an algorithm was developed to rotate the main body using ma-
nipulator motions. It was assumed that the law of angular momentum conservation
holds. It was also assumed that the attitude angle rotations due to manipulator mo-
tion were small, so they could be added vectorially. A computer simulation program
was written and it was shown that it is possible to find a sequence of manipulator
motions which rotate the satellite main body in the desired direction. Motion of
the satellite main body was also animated using the ROBOSIM computer graphic

simulation program [34].

Further Research

For further study, the following suggestions are presented for the reader’s con-

sideration.

1) In calculating the kinematics the system was considered to be a free-flying
multibody system with no attitude control of the satellite main body. Sometimes
it is necessary to control the satellite main body around some axes and allow the
main bodf;f to rotate around the remaining axes. The algorithm developed in this
thesis can be modified to keep the main body fixed around some axes while allowing

it to rotate around the remaining axes.

2) The kinematics algorithm was developed for a system with one manipulator

arm. The algorithm can be extended to include a space manipulator system with
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two or more manipulator arms.

3) A space experiment may be ruined if there is a change in the orientation
of the space vehiclé. Motion of a manipulator arm (perhaps used in performing
the experiment) may cause rotation in the main body. In this case, motion of a
second arm can be used to cancel out the effect of the “working” arm. Thus, the
working arm will be able to do its task without causing problems to its own or other
experiments. The algorithm developed in this thesis can be éxtepded to accomplish

cooperative work of two or more manipulator arms.

4) The fine attitude control algorithm was developed without consideration of
any type of minimization criterion. The algorithm can be modified to determine
the manipulator motions which minimize power consumption while rotating the
satellite main body towards the desired orientation. This would reduce the cost

of the operation. Other criteria might be considered include minimum time or

minimum motion.
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APPENDIX A

SPACE MANIPULATOR KINEMATICS PROGRAM

MAIN PROGRAM
THIS PROGRAM CALCULATES THE KINEMATICS OF A SPACE
MANIPULATOR USING A MODIFIED RESOLVED MOTION RATE
CONTROL ALGORITHM

DOUBLEPRECISION AM(7),R0(4),R1(4),R2(4),R3(4),R4(4),R5(4)
DOUBLEPRECISION RPY(4,4),A1(4,4),A2(4,4),A3(4,4),A4(4,4)
DOUBLEPRECISION RPYB(4,4),RPYT(4,4);X,Y,Z,A6(4,4),R6(4)
COMMON AM,R0,R1,R2,R3,R4,R5R6,X,Y,Z RPY,A1,A2 A3, A4 A5 A6
COMMON RPYB,RPYT,PI

DOUBLEPRECISION TA(6),ALP1,BET1,TAU1,RT(4),PN(4),ALP3 BET3
DOUBLEPRECISION A5(4,4),T6(4,4),DJ(6,6),BIR,PT,ZEROM(4,4)
DOUBLEPRECISION T1(4,4),T2(4,4),T3(4,4),T4(4,4),T5(4,4)
DOUBLEPRECISION Q0X(4,4),Q0Y(4,4),Q0%Z(4,4),RPYA(4,4)
DOUBLEPRECISION QA(4,4),A56(4,4), T5TA(4,4), T65A(4,4),A140(4,4)
DOUBLEPRECISION A12(4,4),A13(4,4),A14(4,4),A15(4,4),A16(4,4)
DOUBLEPRECISION T61A(4,4),A23(4,4),A24(4,4),A25(4,4),A26(4,4)
DOUBLEPRECISION A34(4,4),A35(4,4),A36(4,4),A45(4,4),A46(4,4)
DOUBLEPRECISION C(3,9),QX(4),QY(4),Q%Z(4),QAL(4),QB(4),QTA(4)
DOUBLEPRECISION Q1(4),Q2(4),Q3(4),Q4(4),Q5(4),Q6(4),501(3,3)
DOUBLEPRECISION (33(3,3),039(3,9),0331(3,3),HS(6,3),HM(6,6)
DOUBLEPRECISION AIS(4,4),AISI(4,4),AIM(3,6),T(6),50(3,3)
DOUBLEPRECISION AISM(3,6),HSIM(6,6),AJ(6,6),TD(4,6),TF(6)
DOUBLEPRECISION T1X(4,4),T2X(4,4),T3X(4,4),T4X(4,4),T5X(4,4)
DOUBLEPRECISION T1Y(4,4),T2Y(4,4),T3Y(4,4),T4Y(4,4),T5Y(4,4)
DOUBLEPRECISION T1%(4,4),T27(4,4),T3%(4,4),TA%(4,4),T5%(4,4)
DOUBLEPRECISION T1A(4,4),T2A(4,4), T3A(4,4),T4A(4,4), T5A(4,4)
DOUBLEPRECISION T1B(4,4),T2B(4,4),T3B(4,4),T4B(4,4),T5B(4,4)
DOUBLEPRECISION T6X(4,4),T6Y(4,4),T6%(4,4),T6A(4,4), T6B(4,4)
DOUBLEPRECISION T1TA(4,4),T2TA(4,4), T3TA(4,4),TATA(4,4)
DOUBLEPRECISION T6TA(4,4),T62A(4,4), T63A(4,4), T64A(4,4)
DOUBLEPRECISION T11(4,4),T21(4,4),T31(4,4),T41(4,4),T51(4,4)
DOUBLEPRECISION T22(4,4),T32(4,4),T42(4,4),T52(4,4),T33(4,4)
DOUBLEPRECISION T43(4,4),T53(4,4),T54(4,4),T63(4,4),T64(4,4)
DOUBLEPRECISION T61(4,4),T62(4,4),T65(4,4),A16(4,4)
DOUBLEPRECISION AI0(4,4),T44(4,4),T55(4,4),T66(4,4), T66A(4,4)
DOUBLEPRECISION Al1(4,4),A12(4,4),A13(4,4),A14(4,4),A15(4,4)
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DOUBLEPRECISION AI00(4,4),AT10(4,4),A120(4,4),A130(4,4)
DOUBLEPRECISION AI50(4,4),A160(4,4),C1(4),C2(4),C3(4),C4(4)
DOUBLEPRECISION C6(4),C7(4),C8(4),C9(4),AT0A(3),AT1K(3)
DOUBLEPRECISION C5(4),AI12K(3),AI0T(3),R60(4),A6C(4)
DOUBLEPRECISION AI3K(3),AI4K(3),AI5K(3),AI6K(3),AI0B(3)
DOUBLEPRECISION R00(4),R10(4),R20(4),R30(4),R40(4),R50(4)
DOUBLEPRECISION S1A(4),52A(4),S3A(4),54A(4),55A(4),S6A(4)
DOUBLEPRECISION S1B(4),52B(4),53B(4),54B(4),55B(4),56B(4)
), ), ),

DOUBLEPRECISION S1T(4),S2T(4),S3T(4),S4T(4),S5T(4),56T(4)
DOUBLEPRECISION S11(4),521(4),531(4),541(4),551(4),561(4)
DOUBLEPRECISION $12(4),522(4),532(4),542(4),552(4),562(4)
DOUBLEPRECISION $13(4),523(4),533(4),543(4),553(4),563(4)
DOUBLEPRECISION S14(4),524(4),534(4),544(4),554(4),564(4)
DOUBLEPRECISION S15(4),525(4),535(4),545(4),555(4),565(4)
DOUBLEPRECISION S16(4),526(4),536(4),546(4),556(4),566(4)

DOUBLEPRECISION A0C(4),A1C(4),A2C(4),A3C(4),A4C(4),A5C(4)
DOUBLEPRECISION B6C(4),T6C(4),CP60(4),CP61(4),CP62(4)
DOUBLEPRECISION CP83(4),CP64(4),CP65(4),CP66(4)
DOUBLEPRECISION B0C(4),B1C(4),B2C(4),B3C(4),B4C(4),B5C(4)
DOUBLEPRECISION T0C(4),T1C(4), T2C(4), T3C(4),T4C(4), T5C(4)
DOUBLEPRECISION CP10(4),CP20(4),CP30(4),CP40(4),CP50(4)
DOUBLEPRECISION CP11(4),CP21(4),CP31(4),CP41(4),
DOUBLEPRECISION CP12(4),CP22(4),CP32(4),CP42(4),CP52(4
DOUBLEPRECISION CP13(4),CP23(4),CP33(4),CP43(4),CP53(4
DOUBLEPRECISION CP14(4),CP24(4),CP34(4),CP44(4),CP54(4
DOUBLEPRECISION CP15(4),CP25(4),CP35(4),CP45(4),CP55(4
DOUBLEPRECISION CP16(4),CP26(4),CP36(4),CP46(4),CP56(4
DOUBLEPRECISION POD(6),P1D(6),ABT(4,3),ABT1(6),XYZ(4,3)
DOUBLEPRECISION ALP2,BET2,TAU2,W0Z(3),W0X(3),W0Y(3),DEL,TIM
DATA POD,P1D/12*0.0/

DATA RO00,R10,R20,R30,R40,R50,R60,ZEROM /44*0.0/

DATA QOX,Q0Y,Q0Z,QA /64*0.0/

QOX(1,4)=1

BIR=-1

PI=ACOS(BIR)

QOY(2,4)=1

QOZ(3,4)=

QA(1,2)=-1

QA(2,1)=1

DEL=0.1

TIM=0.0
READ INITIAL JOINT ANGLES, ATTITUDE ANGLES OF SATELLITE

CP51(4

)
)
)
)
)
)
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345
76

68

POSITION OF SATELLITE, POSITION OF CENTER OF MASS OF
EACH LINK, INERTIA MATRIX OF EACH LINK

READ (20,1) (TA(1),I=1,6),ALP1,BET1,TAU1,X,Y,Z
FORMAT (3F12.4)

READ (20,3) (RO(I),I=1,4),(R1(I),1=1,4),(R2(I),I=1,4)

READ (20,3) (R3(I),1=1,4),(R4(1),1=1,4),(R5(1),I=1,4)

READ (20,3) (R6(1),I=1,4),(RT(I),I=1,4)

FORMAT (4F12.4)

READ (20,10) (AM(I),I=1,7)

FORMAT (7F12.4) |

READ (20,345)((AT0(1,J),J=1,4),1=1,4),((AI1(1,),J=1,4),I=1,4)
READ (20,345)((A12(1,7),J=1,4),1=1,4),((AI3(1,J),J=1,4),I=1,4)
READ (20,345)((AI4(1,3),J=1,4),1=1,4),((AI5(1,J),J=1,4),I=1,4)
READ (20,345)((AI6(1,J),J=1,4),I1=1,4)

FORMAT(4F14.6)

IF(TIM.GT.40.)STOP

X1=X

Y1=Y

71=7 .

ALP2=ALP1

BET2=BET1

TAU2=TAU1

DO 67 1=1,6

T(I)=TA(I)*PI/180

CALCULATE HSMOGENEOUS TRANSFORMATION MATRICES
CALL AMAT (T,ALP2,BET2,TAU2)

CALL MMUL (RPY,A1,T1)

CALL MMUL (T1,A2,T2)

CALL MMUL (T2,A3,T3)

CALL MMUL (T3,A4,T4)

CALL MMUL (T4,A5,T5)

CALL MMUL (T5,A6,T6)

CALCULATE POSITION OF CENTER OF MASS OF EACH LINK
WRT INERTIAL FRAME. PN=POSITION OF END EFFECTOR
CALL MVMUL (RPY,R0 ROO) |

CALL MVMUL (T1,R1,R10)

CALL MVMUL (T2,R2,R20)

CALL MVMUL (T3,R3,R30)

CALL MVMUL (T4,R4,R40)

CALL MVMUL (T5,R5,R50)

CALL MVMUL (T6,R6,R60)

CALL MVMUL (T6,RT,PN)



WRITE (17,46) TAU1,BET1,ALP1
WRITE (18,46) (RPY(1,4),1=1,3)
WRITE (16,45)(TA(I),I=1,6)
WRITE (19,46) (PN(I),I=1,3)

DO 70 IJK=1,4

VELOCITY ALONG TRAJECTORY
IF (TIM.LT.10.) P1D(1)=TIM

IF (TIM.GT.30.) P1D(1)=40.-TIM
IF (TIM.GE.10.AND.TIM.IE.30.) P1D(1)=10.
CALCULATE DERIVATIVES OF HOMOGENEOUS MATRICES
CALL MMUL (QA,RPY,RPYA)
CALL MMUL (A1,A2,A12)

CALL MMUL (A12,A3,A13)
CALL MMUL (A13,A4,A14)
CALL MMUL (A14,A5,A15)
CALL MMUL (A15,A6,A16)
CALL MMUL (RPY,QA,T61A)
CALL MMUL (T61A,A16,T61)
CALL MMUL (A2,A3,A23)

CALL MMUL (A23,A4,A24)
CALL MMUL (A24,A5,A25)
CALL MMUL (A25,A6,A26)
CALL MMUL (T1,QA,T62A)
CALL MMUL (T62A,A26,T62)
CALL MMUL (A3,A4,A34)

CALL MMUL (A34,A5,A35)
CALL MMUL (A35,A6,A36)
CALL MMUL (T2,QA,T63A)
CALL MMUL (T63A,A36,T63)
CALL MMUL (A4,A5,A45)

CALL MMUL (A45,A6,A46)
CALL MMUL (T3,QA,T64A)
CALL MMUL (T64A,A46,T64)
CALL MMUL (A5,A6,A56)

CALL MMUL (T4,QA,T65A)
CALL MMUL (T65A,A56,T65)
CALL MMUL (T5,QA,T66A)
CALL MMUL (T66A,A6,T66)
CALL MMUL (Q0X,A1,T1X)
CALL MMUL (Q0Y,A1,T1Y)
CALL MMUL (Q0%,A1,T17)
CALL MMUL (RPYT,A1,T1TA)
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CALL MMUL (RPYB,A1,T1B)
CALL MMUL (RPYA,A1,T1A)
CALL MMUL (Q0X,A12,T2X)
CALL MMUL (QO0Y,A12,T2Y)
CALL MMUL (Q0Z,A12,T27)
CALL MMUL (RPYB,A12,T2B)
CALL MMUL (RPYT,A12,T2TA)
CALL MMUL (RPYA,A12,T2A)
CALL MMUL (Q0X,A13,T3X)
CALL MMUL (Q0Y,A13,T3Y)
CALL MMUL (Q0Z,A13,T37)
CALL MMUL (RPYB,A13,T3B)
CALL MMUL (RPYT,A13,T3TA)
CALL MMUL (RPYA,A13,T3A)
CALL MMUL (Q0X,A14,T4X)
CALL MMUL (QO0Y,A14,T4Y)
CALL MMUL (Q0Z,A14,T47)
CALL MMUL (RPYB,A14,T4B)
CALL MMUL (RPYT,A14,T4TA)
CALL MMUL (RPYA,A14,T4A)
CALL MMUL (Q0X,A15,T5X)
CALL MMUL (Q0Y,A15,T5Y)
CALL MMUL (Q0Z,A15,T5Z)
CALL MMUL (RPYB,A15,T5B)
CALL MMUL (RPYT,A15,T5TA)
CALL-MMUL (RPYA,A15,T5A)
CALL MMUL (Q0X,A16,T6X)
CALL MMUL (Q0Y,A16,T6Y)
CALL MMUL (Q0Z,A16,T6Z)
CALL MMUL (RPYB,A16,T6B)
CALL MMUL (RPYA,A16,T6A)
CALL MMUL (RPYT,A16,RPYT)
CALL MMUL (T61A,A1,T11)
CALL MMUL (T614,A12,T21)
CALL MMUL (T62A,A2,T22)
CALL MMUL (T614,A13,T31)
CALL MMUL (T62A,A23,T32)
CALL MMUL (T63A,A3,T33)
CALL MMUL (T61A,A14,T41)
CALL MMUL (T62A,A24,T42)
CALL MMUL (T63A,A34,T43)
CALL MMUL (T64A,A4,T44)
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CALL MMUL (T614,A15,T51)
CALL MMUL (T62A,A25 T52)

CALL MMUL (T63A,A35,T53)

CALL MMUL (T64A,A45 T54)

CALL MMUL (T65A,A5,T55)

CALCULATE Q MATRICES GIVEN BY EQNS. 15-21
CALL JAC (QX,T1X,T2X,T3X,T4X,T5X,T6X)

CALL JAC (QY,T1Y,T2Y,T3Y,T4Y,T5Y,T6Y)

CALL JAC (QZ,T1%,T2%,T3%,T47, T52,T62)

CALL JAC (QAL,T1A,T2A,T3A T4A T5A, T6A)
CALL JAC (QB,T1B,T2B,T3B,T4B,T5B,T6B)

CALL JAC (QTA,T1TA,T2TA,T3TA, TATA, T5TA, T6TA)
DO 653 I=1,3

DO 653 J=14
QLI)=QL(T)+ AM(2)*T11(], J)*Rl(J)+AM( PFT21(LI)*R2(3)+
*AM(4)*T31(L,J)*R3(J)-+AM(5)*T41(1,J)*R4(J)+AM(6)*T51(1,J)
**R5(J)+AM(7)*T61(I J)*R6(J)
Q2(D)=Q2(I)-+AM(3)*T22(1,J)*R2(J)+AM(4)*T32(1,J)*R3(J )+ AM(5)*
*T42(1,)*R4A(J)+AM(6)*T52(I,I)*R5(J)+AM(7)*T62(1,I)*R6(J)
Q3(D)=Q3(I)+AM(4)*T33(1,J)*R3(J)+AM(5)*T43(1,J)*Ra(J)+
*AM(6)*T53(1,J)*R5(J)--AM(7)*T63(1,J)*R6(J)
Q4(1)=Q4(I)+AM(5)*T44(L,I)*R4(I)+AM(6)*T54(1,J)*R5(J )+

* AM(7)*T64(1,3)*R6(7)
Q5(1)=Q5(I)+AM(6)*T55(1,J)*R5(J)+AM(7)*T65(1,J) *R6(J)
Q6(1)=Q6(1)-+AM(7)*T66(1,3)*R6(J)

CONTINUE

CALCULATE C MATRIX GIVEN BY EQN 22.

DO 500 I=1,3

033(1,1)=QX(I)
033(1,2)=QY(I)
033(1,3)=Q2z(I)
039(1,1)=QTA(I)
C39(1,2)=QB(I)
039(1,3)=QAL(I)
C39(1,4)=Q1(I)
C39(1,5)=Q2(1)

Il II il
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501

504

C39(1,6)=Q3(I)
C39(L,7)=Q4(1)

C39(1,8)=Q5(1)

C39(1,9)=Q6(I)

CONTINUE
C33(1,1)=C33(1,1)+AM(1)
033(2,2)=C33(2,2)+AM(1)
C33(3,3)=C33(3,3)+AM(1)
CALL DLINRG (3,C33,3,C331,3)
DO 501 I=1,3

DO 501 J=1,9

C(1,J)=0

DO 501 K=1,3
C(1,9)=C(1,J)-C331(L,K)*C39(K,J)
CONTINUE

DO 504 I=1,3

C1(I)=C(I,1)

C2(I)=C(1,2)
C3(1)=C(1,3)
C4(I)=C(1,4)
C5(1)=C(1,5)
C6(1)=C(L,6)

C7(1)=C(1,7)

C8(I)=C(1,8)

Co(1)=C(1,9)

CONTINUE

ALP3=ALP2*PI/180

BET3=BET2*PI/180

CALCULATE W0 MATRIX GIVEN BY EQN 10
WOX(1)=HS(4,1)

WO0X(2)=HS(5,1)

WOX(3)=HS(6,1)

WOY(1)=HS(4,2)

WOY(2)=HS(5,2)

WOY(3)=HS(5,2)

WO0%(1)=HS(4,3)

WO0Z(2)=HS(5,3)

WO0%(3)=HS(6,3)

CALCULATE HS AND HM MATRICES GIVEN BY EQNS 33-36

HS(4,1)=COS(BET3)*COS(ALP3)
HS(4,2)=-SIN(ALP3)
HS(4,3)=0

72



601

73

w2

HS(5,
HS(5,
HS(5,
HS(6,

IN(ALP3)*COS(BETS3)
JOS(ALP3)

S Q

1
2
3
1

)
)
)=-SIN(BETS3)
)
)

— 0010
| — o

—
w

o
OO Do OO

DO 601 J=1,4
HS(I,1)=HS(I,1)-+(T6TA (L) +T6X(I,J)*C(1,1)+T6Y(LI)*
*C(2,1)+T6%(1,J)*C(3,1))*RT(J)
HS(1,2)=HS(I,2)-(T6B(I,J)+T6X(I,])*C(1,2)+T6Y(L,J)*
*C(2,2)+T6Z(1,7)*C(3,2))*RT(J)
HS(1,3)=HS(1,3)-+(T6A(LJ)+T6X(L,I)*C(1,3)+T6Y(1,I)*
*C(2,3)+T6%(1,7)*C(3,3))*RT(J)
HM(T,1)=HM(I,1)+(T61(L,J)+T6X(1,J)*C(1,4)+T6Y(I,J)*
*C(2,4)+T6%(1,7)*C(3,4))*RT(J)
HM(I,2)=HM(I,2)+(T62(1,3) +T6X(1,J)*C(1,5)+T6 Y (LI )*
*C(2,5)+T6Z(1,J)*C(3,5))*RT(J)
HM(I,3)=HM(I,3)+(T63(1,J)+T6X(1,J)*C(1,6)+T6Y(I,J)*
*C(2,6)+T6%(1,J)*C(3,6))*RT(J)
HM(I,4)=HM(1,4)+(T64(1,7)+T6X(LI)*C(1,7)+TEY(L,J)* -
*C(2,7)+T6Z(1,7)*C(3,7))*RT(J)
HM(I,5)=HM(,5)+(T65(1,J)+T6X(L,I)*C(1,8)+T6Y(L,J)*
*C(2,8)+T6Z(1,J)*C(3,8))*RT(J)
HM(1,6)=HM(1,6)+(T66(1,J)+T6X(L,J)*C(1,9)+T6Y(L,J)*
*C(2,9)+T6Z(1,7)*C(3,9))*RT(J)

CONTINUE

HM(143,1)=T1(L,3)

HM(I+3,2)=T2(I,3)

HM(I+3,3)=T3(I,3)

HM(1+3,4)=T4(L,3)

HM(I1+3,5)=T5(1,3)

HM(1+3,6)=T6(1,3)
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600 CONTINUE
C  CALCULATE INERTIA MATRICES IN FIRST TERMS OF EQNS 41-44

CALL INERT2 (RPY,AI0,AI00)

CALL INERT2 (T1,AI1,AI10)

CALL INERT2 (T2,AI2,AI20)

CALL INERT?2 (T3,AI3,AI30)

CALL INERT2 (T4,AI4,AT40)

CALL INERT?2 (T5,AI5,AI50)

CALL INERT? (T6,AI6,A160)

DO 506 I=1,4
DO 506 J=1,4 |
AT50(1,J)=AI50(I,J)+ATI60(1,J)
AT40(I,J)=AI40(1,3)+AI50(1,J)
AT30(1,7)=AI30(1,J)+AI40(1,J)
AT20(1,3)=AI20(I,3)+AI30(1,J)
AT10(1,J)=AI10(I,J)+AI20(1,J)
AT00(1,J)=AI00(I,J)+AI10(1,J)

506 CONTINUE

C  CALCULATE THIRD TERMS IN EQNS 41-44
CALL SC (T1A,C(1,3),T1X,C(2,3),T1Y,C(3,3),T1Z,R1,51A)
CALL SC(T24A,C(1,3),T2X,C(2,3),T2Y,C(3,3),T2Z,R2,524)
CALL SC(T3A,C(1,3),T3X,C(2,3),T3Y,C(3,3),T3%,R3,53A)
CALL SC(T4A,C(1,3),T4X,C(2,3),T4Y,C(3,3), T4Z,R4,54A)
CALL SC(T5A,C(1,3),T5X,C(2,3),T5Y,C(3,3),T5%,R5,554)
CALL SC(T6A,C(1,3),T6X,C(2,3),T6Y,C(3,3), T6Z,R6,56A)
CALL SC (T1B,C(1,2),T1X,C(2,2),T1Y,C(3,2),T1Z,R1,S1B)
CALL SC(T2B,C(1,2),T2X,C(2,2),T2Y,C(3,2),T2%,R2,92B)
CALL SC(T3B,C(1,2),T3X,C(2,2),T3Y,C(3,2),T3Z,R3,53B)
CALL SC(T4B,C(1,2),T4X,C(2,2), T4Y,C(3,2), T47%,R4,34B)
CALL SC(T5B,C(1,2),T5X,C(2,2),T5Y,C(3,2),T5Z,R5,55B)
CALL SC(T6B,C(1,2),T6X,C(2,2),T6Y,C(3,2),T6%,R6,56B)
CALL SC (T1TA,C(1,1),T1X,C(2,1),T1Y,C(3,1),T1Z,R1,51A)
CALL SC(T2TA,C(1,1),T2X,C(2,1),T2Y,C(3,1),T2Z,R2,52A)
CALL SC(T3TA,C(1,1),T3X,C(2,1),T3Y,C(3,1),T3Z,R3,534)
CALL SC(T4TA,C(1,1),T4X,C(2,1),T4Y,C(3,1),T4Z,R4,54A)
CALL SC(T5TA,C(1,1),T5X,C(2,1),T5Y,C(3,1), T5Z,R5,55A)
CALL SC(T6TA,C(1,1),T6X,C(2,1),T6Y,C(3,1),T6Z,R6,56A)
CALL SC (T11,C(1,4),T1X,0(2,4),T1Y,C(3,4),T1Z,R1,511)
CALL SC(T21,0(1,4),T2X,C(2,4), T2Y,C(3,4),T27,R2,521)
CALL SC(T31,0(1,4),T3X,C(2,4),T3Y,C(3,4),T3Z,R3,931)
CALL SC(T41,0(1,4),T4X,C(2,4), TAY,C(3,4),T4Z,R4,541)
CALL SC(T51,C(1,4),T5X,C(2,4), T5Y,C(3,4);T52,R5,51)



CALL SC
CALL SC

T61,C(1,4),T6X,C(2,4),T6Y,C(3,4),T6%,R6,561)
ZEROM,C(1,5),T1X,C(2,5),T1Y,C(3,5),T1Z,R1,512)
CALL SC(T22,C(1,5),T2X,C(2,5),T2Y,C(3,5),T2Z,R2,522)
CALL SC(T32,C(1,5),T3X,C(2,5),T3Y,C(3,5),T3%,R3,532)
CALL SC(T42,C(1,5),T4X,C(2,5),T4Y,C(3,5), TAZ,R4,542)
CALL SC(T52,C(1,5),T5X,C(2,5),T5Y,C(3,5),T5%,R5,552)
CALL SC(T62,C(1,5),T6X,C(2,5),T6Y,C(3,5),T6%,R6,562)
CALL SC(ZEROM,C(1,6),T1X,C(2,6),T1Y,C(3,6),T1%,R1,513)
CALL SC(ZEROM,C(1,6),T2X,C(2,6),T2Y,C(3,6),T2%,R2,523)
CALL SC(T33,C(1,6),T3X,C(2,6),T3Y,C(3,6),T3Z,R3,933)
CALL SC(T43,C(1,6),T4X,C(2,6),T4Y,C(3,6),T47 R4,543)
CALL SC(T53,C(1,6),T5X,C(2,6),T5Y,C(3,6),T5Z,R5,553)
CALL SC(T63,C(1,6),T6X,C(2,6),T6Y,C(3,6),T6Z,R6,363)
CALL SC(ZEROM,C(1,7),T1X,C(2,7),T1Y,C(4,7),T12%,R1,514)
CALL SC(ZEROM,C(1,7),T2X,C(2,7),T2Y,C(4,7),T2Z,R2,524)
CALL SC(ZEROM,C(1,7),T3X,C(2,7),T3Y,C(4,7),T3%,R4,534)
CALL SC(T44,C(1,7),T4X,C(2,7),T4Y,C(4,7),TAZ,R4,544)
CALL SC(T54,C(1,7),T5X,C(2,7),T5Y,C(4,7),T5%,R5,554)
CALL SC(T64,C(1,7),T6X,C(2,7),T6Y,C(4,7),T6%,R6,564)
CALL SC(ZEROM,C(1,8),T1X,C(2,8),T1Y,C(4,8),T1Z,R1,515)
CALL SC(ZEROM,C(1,8),T2X,C(2,8),T2Y,C(4,8),T2%,R2,525)
CALL SC(ZEROM,C(1,8),T3X,C(2,8),T3Y,C(4,8),T3%,R4,335)
CALL SC(ZEROM,C(1,8),T4X,C(2,8),T4Y,C(4,8),T4Z,R4,545)
CALL SC(T55,C(1,8),T5X,C(2,8),T5Y,C(4,8),T5%,R5,955)
CALL SC(T65,C(1,8),T6X,C(2,8),T6Y,C(4,8),T6Z,R6,365)
CALL SC(ZEROM,C(1,9),T1X,C(2,9),T1Y,C(4,9),T1Z,R1,516)
CALL SC(ZEROM,C(1,9),T2X,C(2,9),T2Y,C(4,9),T2%,R2,526)
CALL SC(ZEROM,C(1,9),T3X,C(2,9),T3Y,C(4,9),T3Z,R4,536)
)
)

—_—~ e~ =

CALL SC(ZEROM,C(1,9),T4X,C(2,9),T4Y,C(4,9), T4Z,R4,546
CALL SC(ZEROM,C(1,9),T5X,C(2,9),T5Y,C(4,9),T5%,R5,556
CALL SC(T66,C(1,9),T6X,C(2,9), T6Y,C(4,9),T6%,R6,366)
CALCULATE CROSS PRODUCT TERMS IN EQNS 41-44.
CALL CROPRO (R00,C1,T0C)

CALL CROPRO (R10,51A,A1C)

CALL CROPRO (R20,52A,A2C)

CALL CROPRO (R30,53A,A3C)

CALL CROPRO (R40,54A,A4C)

CALL CROPRO (R50,55A,A5C)

CALL CROPRO (R60,56A,A6C)

CALL CROPRO (R00,C2,B0C)

CALL CROPRO (R10,51B,B1C)

CALL CROPRO (R20,52B,B2C)

5



CALL CROPRO (R30,53B,B3C)
CALL CROPRO (R40,54B,B4C)
CALL CROPRO (R50,S5B,B5C)
CALL CROPRO (R60,56B,B6C)
CALL CROPRO (R00,C3,A00)

CALL CROPRO (R10,81T,T1C)
CALL CROPRO (R20,S2T,T2C)
CALL CROPRO (R30,53T,T3C)
CALL CROPRO (R40,84T,T4C)
CALL CROPRO (R50,85T,T5C)
CALL CROPRO (R60,S6T,T6C)
CALL CROPRO (R00,C4,CP10)
CALL CROPRO (R00,C5,CP20)
CALL CROPRO (R00,C6,CP30)
CALL CROPRO (R00,C7,CP40)
CALL CROPRO (R00,C8,CP50)
CALL CROPRO (R00,C9,CP60)
CALL CROPRO (R10,811,CP11)
CALL CROPRO (R20,521,CP21)
CALL CROPRO (R30,531,CP31)
CALL CROPRO (R40,541,CP41)
CALL CROPRO (R50,851,CP51)
CALL CROPRO (R60,561,CP61)
CALL CROPRO (R10,512,CP12)
CALL CROPRO (R20,522,CP22)
CALL CROPRO (R30,532,CP32)
CALL CROPRO (R40,542,CP42)
CALL CROPRO (R50,552,CP52)
CALL CROPRO (R60,562,CP62)
CALL CROPRO (R10,513,CP13)
CALL CROPRO (R20,523,CP23)
CALL CROPRO (R30,533,CP33)
- CALL CROPRO (R40,543,CP43)
CALL CROPRO (R50,553,CP53)
CALL CROPRO (R60,563,CP63)
CALL CROPRO (R10,514,CP14)
CALL CROPRO (R20,524,CP24)
CALL CROPRO (R30,534,CP34)
CALL CROPRO (R40,544,CP44)
CALL CROPRO (R50,554,CP54)
CALL CROPRO (R60,564,CP64)
CALL CROPRO (R10,515,CP15)

76
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CALL CROPRO (R20,325,CP25)
CALL CROPRO (R30,535,CP35)
CALL CROPRO (R40,345,CP45)
CALL CROPRO (R50,355,CP55)
CALL CROPRO (R60,565,CP65)
CALL CROPRO (R10,516,CP16)
CALL CROPRO (R20,526,CP26)
CALL CROPRO (R30,536,CP36)
CALL CROPRO (R40,546,CP46)
CALL CROPRO (R50,556,CP56)
CALL CROPRO (R60,566,CP66)
CALCULATE EQNS 41-44

DO 583 1=1,3

ATOA(D)=
ATOB(I)
AIOT(T)
ATIK(I)
AT2K(T)
AIZK(I)
AT4K(1)=0
ATSK(I)=0

AI6K(I)=0

DO 583 J=1,3

AIOT(I)=AI0T(I)+AI00(I,I*HS(J+3,1) B
AIOB(I)=AI0B(I)+AI00(I,J )*HS(J+3,2)
ATOA(I)=AI0OA(I)+AI00(1,J)*HS(J+3,3)
ATIK(I)=ATIK(I)4+AI10(1,9)*T1(J,3)
AI2K(I)=AI2K(1)+AI20(1,3)*T2(J,3)
AIBK(D)=AI3K(I)+AI30(L,)*T3(J,3)
AT4K(1)=AT4K(T)+AT40(1,3)*T4(J,3)
AISK(1)=AI5SK(I)+AI50(1,3)*T5(J,3)

AI6K(1)=AT6K (I)+AT60(1,7)*T6(7.3)

CONTINUE

CALCULATE IS AND IM MATRICES GIVEN BY EQN 46

DO 510 1=1,3
AIS(L,3)=AI0A(I)+AM(1)*A0C(1)+ AM(2)* A1C(I)+AM(3)*A2C(1)+

* AM(4)*A3C(1)+AM(5)*A4C(I)+AM(6)*A5C(I)+AM(7)*A6C(I)
AIS(1,2)=AI0B(I)+AM(1)*B0oC(I)+AM(2)*B1C(I)+AM(3)*B2C(I)+

* AM(4)*B3C(I)+AM(5)*B4C(I)+AM(6)*B5C(I)+AM(7)*B6C(I)
AIS(1,1)=AI0T(1)+AM(1)*TOC(1)+AM(2)*T1C(1)+AM(3)*T2C(1)+

* AM(4)*T3C(I)+AM(5)*T4C(I)+AM(6)*T5C(I)+AM(7)*T6C(I)
AIM(I,1)=AT1K (D) +AM(1)*CP10(I)-++ AM(2)*CP11(I)+ AM(3)*CP21(I)+

Il H I

0
0
0
0
0
0

ll i



510
C

30

61

78

*AM(4)*CP31(I)+AM(5)*CP41(I)+AM(6)*CP51(I)+AM(7)*CP61(I)
AIM(1,2)=AI2K(I)+AM(1)*CP20(I)+-AM(2)*CP12(I)+AM(3)*CP22(I)+
*AM(4)*CP32(I)+AM(5)*CP42(I)+AM(6)*CP52(I)+AM(7)*CP62()
ATM(1,3)=AI3K(I)+AM(1)*CP30(I)+AM(2)*CP13(I)+AM(3)*CP23(I)+
*AM(4)*CP33(I)+AM(5)*CP43(I)+AM(6)*CP53(1)+AM(7)*CP63(I)
AIM(I,4)=AT4K (1) +AM(1)*CP40(I)-+AM(2)*CP14(1)+AM(3)*CP24(1)+
*AM(4)*CP34(1)+AM(5)*CP44(I)+AM(6)*CP54(1)+AM(7)*CP64(1)
AIM(L5)=AISK(I)+AM(1)*CP50(1)+AM(2)*CP15(1)+AM(3)*CP25(1)+
*AM(4)*CP35(1)-+AM(5)*CP45(1)+AM(6)*CP55(1)+AM(7)*CP65(1)
AIM(L6)=AI6K(I)-+AM(1)*CP60(I)+AM(2)*CP16(I)+AM(3)*CP26(I)+
*AM(4)*CP36(1)-+AM(5)*CP46(1)+AM(6)*CP56(I1)+AM(7)*CP66(I)
CONTINUE

CALCULATE GENERALIZED INERTIA MATRIX GIVEN BY EQNS
47 AND 48. AJ=CENERALIZED INERTIA MATRIX

DJ=INVERSE OF GENERALIZED INERTIA MATRIX

CALL DLINRC(3,AIS,3,AIS1,3)

DO 30 I=1,3

DO 30 J=1,6

ATSM(1,J)=0

DO 30 K=1,3

ATSM(T,1)=AISM(I,J)-+AISI(I,K)*AIM(K,J)

CONTINUE '

DO 32 I=1.6

DO 32 J=1,6

HSIM(1,J)=0

DO 31 K=1,3

HSIM(I,J3)=HSIM(I,J)+HS(I,K)*AISM(K,J)

CONTINUE

AJ(1,3)=HM(I,J)-HSIM(I,J)

CONTINUE

DLINRG IS A SUBROUTINE IN IMSL LIBRARY WHICH SOLVES
SYSTEMS OF LINEAR EQUATIONS

CALL DLINRG(6,A1,6,DJ,6)

USE RUNGE-KUTTA METHOD TO INTEGRATE EQN 49

DO 61 I=1,6

TD(IJK,I)=0

DO 61 J=1,6

TD(LJK,1)=DJ(I,3)*(P1D(J)-POD(J))*DEL+TD(IJK,I)

CONTINUE

DO 62 I=1,6

ABT1(I)=0

DO 62 J=1,6
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63

64

65

75
60

73
80

74
68

ABT1(D=DJ(L,I)*(P1D(J)-POD(I))*DEL+ABTI(I)
DO 63 1=1,3

ABT(LJK,I)=0.

DO 63 J=1,6
ABT(IJK,I)=ABT(1JK,I)-AISM(I,J)*ABT1(J)
DO 64 1=1,3

XYZ(1JK,1)=0.

DO 64 J=1,3
XYZ(IJK,)=C(L,))*ABT(IJK,J)+X YZ(LJK,I)
DO 65 1=1,3

DO 65 J=4,9
XYZ(IIK,D)=XYZ(1JK,1)+C(L,J)*tD(1TK,(J-3))
IF (IJK.EQ.4) GOtO 72

IF (IJK.EQ.2) GOtO 75

IF (IJK.EQ.3) GOtO 73
TIM=TIM+DEL/2

DO 60 I=1,6
TF(I)=TA(D)+TD(IJK,I)/2
X=X1+XYZ(1JK,1)/2
Y=Y1+XYZ(1JK,2)/2
7=71+XYZ(1JK,3)/2
ALP2=ALP1+ABT(IJK,3)/2
BET2=BET1+ABT(1JK,2)/2
TAU2=TAU1+ABT(IJK,1)/2

GOtO 74

DO 80 I=1,6

TF(D)=TA(I)+TD(LIJK,I)
X=X1+XYZ(IJK,1)
Y=Y1+XYZ(1JK,2)
Z=71+XYZ(1JK,3)
ALP2=ALP1+ABT(IJK,3)
BET2=BET1+ABT(IJK,2)
TAU2=TAU1+ABT(IJK,1)
TIM=TIM+DEL/2

DO 68 I=1,6

TF(D)=TF(I)*PI/180

CALL AMAT (TF,ALP2,BET2,TAU2)
CALL MMUL (RPY,A1,T1)

CALL MMUL (T1,A2,T2)

CALL MMUL (T2,A3,T3)

CALL MMUL (T3,A4,T4)

CALL MMUL (T4,A5,T5)
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72
71

45
46

15
14

80

CALL MMUL (T5,A6,T6) .

CALL MVMUL (RPY,R0,R00)

CALL MVMUL (T1,R1,R10)

CALL MVMUL (T2,R2,R20)

CALL MVMUL (T3,R3,R30)

CALL MVMUL (T4,R4,R40)

CALL MVMUL (T5,R5,R50)

CALL MVMUL (T6,R6,R60)

CALL MVMUL (T6,RT,PN)

CONTINUE

DO 71 I=1,8
TA(D=TA(D)+(TD(1,1)+TD(2,1)*2+TD(3,I)*2+TD(4,1)) /6
X=X1+(XYZ(1,1)+XYZ(2,1)*2+XYZ(3,1)*24+XYZ(4,1)) /6
Y=Y1+(XYZ(1,2)+XY%(2,2)*2-+XY7(3,2)¥2+ XY 7%(4,2)) /6
Z=71+(XYZ(1,3)+XY%(2,3)¥2+X Y Z(3,3)*2+ XY %(4,3)) /6
ALP1=ALP1+(ABT(1,3)-++ABT(2,3)*2+ABT(3,3)*2+ABT(4,3))/6
BET1=BET1+(ABT(1,2)+ABT(2,2)*2+ABT(3,2)*2+ABT(4,2))/6
TAU1=TAU1+(ABT(1,1)+ABT(2,1)*2+ABT(3,1)*2+ABT(4,1))/6
GOtO 76

FORMAT(6(2X,F14.7))

FORMAT(3(2X,F14.7))

END

SUBROUTINE JAC(QRO,TX1,TX2,TX3,TX4,TX5 TX6)
DOUBLEPRECISION AM(7),R0(4),R1(4),R2(4),R3(4),R4(4),R5(4),Z
DOUBLEPRECISION RPY(4,4),A1(4,4),A2(4,4),A3(4,4),A4(4,4)
DOUBLEPRECISION QRO(4),TX1(4,4),TX2(4,4),TX3(4,4),TX4(4,4)
DOUBLEPRECISION TX5(4,4), TX6(4,4),A5(4,4),A6(4,4),R6(4),X,Y
COMMON AM,R0,R1,R2,R3,R4,R5,R6,X,Y,Z,RPY,A1,A2 A3 A4 A5 A6
DO 14 I=1,4

QRO(1)=0

DO 15 J=14

QRO(I)=QRO(I)+AM(2)*TX1(I,J)*R1(J)+

e S’

*AM(3)*TX2(LI)*R2(T)+AM(4)*TX3(L,I)*R3(3)+AM(5)*TX4(L,T)*Ra(J)+

*AM(6)*TX5(1,J)*R5(J)+AM(7)*TX6(LI)*R6(J) |
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE MATTR4(A,D)
DOUBLEPRECISION A(4,4),D(4,4)

DO 7 I=14

DO 8 J=1,4
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D(I1,7)=A(J,1)
CONTINUE

CONTINUE

RETURN

END

SUBROUTINE AMAT (T,ALP1,BET1,TAU1)
DOUBLEPRECISION AM(7),R0(4),R1(4),R2(4),R3(4),R4(4),R5(4),%
DOUBLEPRECISION RPY(4,4),A1(4,4),A2(4,4),A3(4,4),A4(4,4)
DOUBLEPRECISION RPYB(4,4), RPYT(4,4),A5(4,4),A6(4,4),R6(4),X,Y
COMMON AM,RO0,R1,R2,R3,R4,R5 R6,X,Y 2, RPY, A1,A2,A3 A4 A5 A6
COMMON RPYB,RPYT,PI

DOUBLEPRECISION T(6),ALP,BET,TAU,ALP1,BET1,TAU1,PI
DATA A1,A2,A3,A4,A5 A6 /96*0.0/

ALP=ALP1*PI/180

BET=BET1*PI/180

TAU=TAU1*PI/180

A1(1,1)=COS(T(1))

A1(1,3)=-SIN(T(1))

A1(2,1)=SIN(T(1))

A1(2,3)=COS(T(1))

A1(3,2)=-1

A1(3,4)=39.02

Al(4,4)=1 .

A2(1,1)=COS(T(2))

A2(1,2)=-SIN(T(2))

A2(2,1)=SIN(T(2))

A2(2,2)=COS(T(2))

A2(3,3)=1

A2(4,4)=1

A2(1,4)=45*COS(T(2))

A2(2,4)=45*SIN(T(2))

A2(3,4)=25.0

A3(1,1)=COS(T(3))

A3(1,3)=SIN(T(3))

A3(1,4)=-2.0*COS(T(3))

A3(2,1)=SIN(T(3))

A3(2,3)=-COS(T(3))

A3(2,4)=-2.0¥SIN(T(3))

A3(3,2)=1

A3(4,4)=1

A4(1,1)=COS(T(4))

A4(1,3)=-SIN(T(4))



A4(2,1)=SIN(T(4))
A4(3,4)=45.0
A4(2,3)=COS(T(4))
A4(3 2)_-1
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A5(4,4
A6(1,1)=COS(T(
A6(1,2)=-SIN(T(
A6(2,1)=SIN(T(6
A6(2,2)=COS(T(
A6(3,3)=1
A6(3,4)=5.625
A6(4,4)=1
RPY(1,1)=COS(ALP)*COS(BET)
RPY(1,2)=COS(ALP)*SIN(BET)*SIN(TAU)-COS(TAU)*SIN(ALP)
RPY(1,3)=COS(ALP)*SIN(BET)*COS(TAU)+SIN(ALP)*SIN(TAU)
RPY(2,1)=SIN(ALP)*COS(BET)
RPY(2,2)=SIN(ALP)*SIN(BET)*SIN(TAU)+COS(ALP)*COS(TAU)
RPY(2,3)=SIN(ALP)*SIN(BET)*COS(TAU)-SIN(TAU)*COS(ALP)
RPY(3,1)=-SIN(BET)
RPY(3,2)=COS(BET)*SIN(TAU)
RPY(3,3)=COS(BET)*COS(TAU)
RPY(1,4)=X
RPY(2,4)=Y
RPY(3,4)=7
RPY(4,4)=1
RPYB(1,1)=-COS(ALP)*SIN(BET)
RPYB(1,2)=COS(ALP)*COS(BET)*SIN(TAU)
RPYB(1,3)=COS(ALP)*COS(BET)*COS(TAU) .
RPYB(2,1)=-SIN(ALP)*SIN(BET)
RPYB(2,2)=SIN(ALP)*COS(BET)*SIN(TAU)
RPYB(2,3)=SIN(ALP)*COS(BET)*COS(TAU)
RPYB(3,1)=-COS(BET)
RPYB(3,2)=-SIN(BET)*SIN(TAU)
RPYB(3,3)=-SIN(BET)*COS(TAU)
RPYT(1,2)=COS(ALP)*SIN(BET)*COS(TAU)+SIN(TAU)*SIN(ALP)
RPYT(1,3)=-COS(ALP)*SIN(BET)*SIN(TAU)+SIN(ALP)*COS(TAU)

—
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RPYT(2,2)=SIN(ALP)*SIN(BET)*COS(TAU)-COS(ALP)*SIN(TAU)
RPYT(2,3)=-SIN(ALP)*SIN(BET)*SIN(TAU)-COS(TAU)*COS(ALP)
RPYT(3,2)=COS(BET)*COS(TAU)
RPYT(3,3)=-COS(BET)*SIN(TAU)

RETURN

END

SUBROUTINE CROPRO (RC,S,CP)
DOUBLEPRECISION RC(4),5(4),CP(4)
CP(1)=RC(2)*S(3)-S(2)*RC(3)
CP(2)=RC(3)*S(1)-RC(1)*S(3)
CP(3)=RC(1)*5(2)-RC(2)*5(1)
RETURN

END

SUBROUTINE INERT2(A,B,C)
DOUBLEPRECISION A(4,4),B(4,4),C(4,4),D(4,4),E(4,4)
CALL MATTR4(A,D)

CALL MMUL(B,D,E)

CALL MMUL(A,E,C)

RETURN

END

SUBROUTINE MMUL (B,A,F)
DOUBLEPRECISION A(4,4),B(4,4),F(4,4)
DO 11=1,4

DO 1 J=1,4

F(1,J)=0

DO 1 K=14
F(1,7)=F(1,3)+B(LK)*A(K,J)
RETURN

END

SUBROUTINE MMUL3 (B,A,C)
DOUBLEPRECISION A(4,4),B(4,4),C(4,4)
DO 11=1,3

DO 1J=1;3

C(1,3)=0

DO 1 K=1,3
C(1,3)=C(L,J)+B(LK)*A(K,J)
RETURN

END

SUBROUTINE MVMUL (A,B,C)
DOUBLEPRECISION A(4,4),B(4),C(4)
DO 11=1,4

C(I)=0.



DO 1 J=14
C(D)=C(I)+A(1,3)*B(J)

RETURN

END

SUBROUTINE SC (A,B,C,D,E,F,G,R,S)
DOUBLEPRECISION A(4,4),B,C(4,4),D,E(4,4),F,G(4,4)
DOUBLEPRECISION R(4),5(4)

DO 11=1,3

S(1)=0

DO 1J=14
S(1)=S(1)+(A(L,1)+B*C(1,])+D*E(I,])+F*G(L,I))*R(J)
RETURN

END
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APPENDIX B

FINE ATTITUDE CONTROL PROGRAM

MAIN PROGRAM
DOUBLEPRECISION AM(4),R1(4),R2(4),R3(4)
DOUBLEPRECISION A1(4,4),A2(4,4),A3(4,4)
DOUBLEPRECISION W0(3,3),DEL, T1D(3),R0(4)

COMMON AM,R0,R1,R2,R3,A1,A2,A3,PLW0

COMMON AI0,AI1 AT2,AI3,TM,QA,DEL,T1D
DOUBLEPRECISION T(3),A10(4,4), TM

DOUBLEPRECISION ALP1,BET1,TAUL,BIR,PI,QA(4,4)
DOUBLEPRECISION AI1(4,4),AI2(4,4),A13(4,4), TAU6
DOUBLEPRECISION F0,FF,A,TF BETD,ALPD,TAUD BET6,ALP6
DOUBLEPRECISION BETIALPI, TAULALPF BETF,TAUF
DOUBLEPRECISION CHA(4,2) BETD1,ALPD1,TAUD1, TEMP2(4)
DOUBLEPRECISION BETD2,ALPD2, TAUD2,ERRO,ERRO1, TEMP1(4).
DOUBLEPRECISION ALP7,BET7,TAU7,ALP8 BETS, TAUS ALP9
DOUBLEPRECISION TAU9, TZ1(6),TZ2(6),TZ3(6),TZ4(6),BET9
INTEGER ICHO(6,2)

DATA ICHO /1,2,1,3,2,3,2,1,3,1,3,2/

DATA TZ1,T72,TZ3,T%4 /24*0.0/

DATA CHA /10.0,10.0,-10.0,-10.0,10.0,-10.0,10.0,-10.0/

TF=1.0

DATA QA /16%0.0/

BIR=-1

PI=ACOS(BIR)

QA(1,2)=-1

QA(2,1)=1

DEL=0.1

READ (10,1) ALPLBETT,TAULALPF,BETF, TAUF,(T(I),1=1,3)
FORMAT (3F12.4)

READ (10,3) (RO(I),I=1,4)
READ (10,3) (R1(I),I=1,4),(R2(I),I=1,4),(R3(I),]=1,4)
FORMAT (4F12.4)

FORMAT (2X,F4.2)
WRITE (26,48) TAUL,BETL,ALPL, TAUF,BETF,ALPF (T(I),I=1,3)

FORMAT (3(2X,F15.7))
WRITE (30,46) TAULBETL,ALPI,(T(I),I=1,3),(TZ1(JK),JK=4 6)

READ (10,345) (AM(I),I=1,4)
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433

925

926

READ (10,345)((AI0(L,J),J=1,4),I=14),((AI1(1,J),J=1,4),I=1,4)
READ (10,345)((AI2(1,J),J=1,4),I=1,4),((AI3(1,J),I=1,4),1=1,4)
FORMAT(4F14.6)
ERRO1=(TAUF-TAUI)**2+(BETF-BETI)**2+(ALPF-ALPI)**2
TM=0.0

DO 433 I=1,4

TM=TM+AM(I)

IJK=0

DO 926 JKT=1,4

TEMP1(JKT)=cHA(JKT,1)
TEMP2(JKT)=cHA(JKT,2)

DO 2 1=1,6

IK=ICHO(L,1)

IL=ICHO(I,2)

DO 4 J=1,4

FO=T(IK)

FF=T(IK)+CHA(J,1)

ALP1=ALPI

BET1=BETI

TAU1=TAUI

CALL INTEG (FO,FF,TF,IK,T,ALP1,BET1,TAUL,1)
FO=T(IL) *
T(IK)=FF

FF=T(IL)+CHA(J,2)

CALL INTEG (F0,FF,TF,IL,T,ALP1,BET1,TAUL,1)
FO=T(IK)

T(IL)=FF

FF=T(IK)-CHA(J,1)

CALL INTEG (F0,FF,TF,IK,T,ALP1,BET1,TAU1,1)
FO=T(IL)

T(IK)=FF

FF=T(IL)-CHA(J,2)

CALL INTEG (F0,FF,TF,IL,T,ALP1,BET1,TAUL,1)
T(IL)=FF

ALPD1=ABS(ALPF-ALP1)
ALPD2=ABS(ALPF-ALPI)
BETD1=ABS(BETF-BET1)
BETD2=ABS(BETF-BETI)
TAUD1=ABS(TAUF-TAU1)
TAUD2=ABS(TAUF-TAUI)
ERRO=ALPD1**24+BETD1*¥2+TAUD1**2

IF (ERRO1.LT.ERRO) GOTO 4
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921

922

93
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IF(TAUD2.LT.0.01.AND.BETD2.LT.0.01. AND.ALPD1.LT.ALPD2)
*GOTO 20
IF(TAUD2.LT.0.01.AND.ALPD2.LT.0.01.AND.BETD1.LT.BETD2)
*GOTO 21

IF(BETD2.LT.0.01. AND.ALPD2.LT.0.01.AND.TAUD1.LT.TAUD?)
* GOTO 22

IF(TAUD2.LT.0.01)GOTO 14

IF(BETD2.LT.0.01)GOTO 16

IF(ALPD2.LT.0.01)GOTO 18
IF(ALPD1.LT.ALPD2.AND.BETD1.LT.BETD2.AND.TAUDI.
LT.TAUD2) GOTO 5 |

GOTO 4

IF(BETD1.LT.BETD2.AND.ALPD1.LT.ALPD2) GOTO 13

GOTO 4
IF(TAUD1.LT.TAUD2.AND.ALPD1.LT.ALPD2) GOTO 17

GOTO 4
IF(TAUD1.LT.TAUD2.AND.BETD1.LT.BETD2) GOTO 19
CONTINUE | :
CONTINUE

JKI=JKI+1

IF(JKLEq.3) GOTO 93

DO 921 JKT=1,4

cHA(JKT,JKI)=cHA(JKT,JKI)/2

IF (JKLEq.1) GOTO 7

DO 922 JKT=1,4

cHA(JKT,1)=TEMP1(JKT)

GOTO 7

DO 923 JKT=1,4

cHA(JKT,2)=TEMP2(JKT)

DO 6 I=1,4

DO 6 J=1,2

CHA(LJ)=CHA(L,J)/2.0

JKI=0

GOTO 925

ALPD=(ALPF-ALPI)/(ALP1-ALPI)
BETD=(BETF-BETI)/(BET1-BETI)
TAUD=(TAUF-TAUI)/(TAU1-TAUI)

AMINK=ALPD

IF (BETD.LT.AMINK) AMINK=BETD

IF (TAUD.LT.AMINK) AMINK=TAUD
MINK=IFIX(AMINK)+1

GOTO 15
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267

ALPD=(ALPF-ALPI)/(ALP1-ALPI)
BETD=(BETF-BETI)/(BET1-BETI)
AMINK=ALPD

IF(BETD.LT.AMINK) AMINK=BETD
MINK=IFIX(AMINK)+1

GOTO 15
TAUD=(TAUF-TAUI)/(TAU1-TAUI)
ALPD=(ALPF-ALPI)/(ALP1-ALPI)
AMINK=ALPD

IF(TAUD.LT.AMINK) AMINK=TAUD
MINK=IFIX(AMINK)+1

GOTO 15
TAUD=(TAUF-TAUI)/(TAU1-TAUI)
BETD=(BETF-BETI)/(BET1-BETI)
AMINK=TAUD
IF(BETD.LT.AMINK) AMINK=BETD
MINK=IFIX(AMINK)+1

GOTO 15
AMINK=(ALPF-ALPI)/(ALP1-ALPI)
MINK=IFIX(AMINK)+1

GOTO 15
AMINK=(BETF-BETI)/(BET1-BETI)
MINK=IFIX(AMINK)+1

GOTO 15
AMINK=(TAUF-TAUI)/(TAU1-TAUI)
MINK=IFIX(AMINK)+1

ALP1=ALPI

BET1=BETI

TAU1=TAUI

FORMAT (2X,17THNUMBER OF CYCLES=,15)
DO 8 I=1,MINK

ALP6=ALP1

BET6=BET1

TAU6=TAU1

FO=T(IK)

FF=T(IK)+CHA(J,1)

DO 267 JK=1,3

TZ1(JK)=T(JK)
TZ1(IK)=TZ1(IK)+CHA(J,1)

CALL INTEG (F0,FF,TF,IK,T,ALP1,BET1,TAU1,2)
FO=T(IL)

T(IK)=FF
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FF=T(IL)+CHA(J,2)
ALP7=ALP1

BET7=BET1

TAU7=TAU1

DO 268 JK=1,3

TZ2(JK)=TZ1(JK)
TZ2(IL)=TZ2(IL)+CHA(J,2)

CALL INTEG (FO,FF,TF,IL,T,ALP1,BET1,TAU1,2)
FO=T(IK)

T(IL)=FF

FF=T(IK)-CHA(J,1)

ALP8=ALP1

BET8=BET1

TAUS=TAU1

DO 269 JK=1,3

TZ3(IK)=T2Z2(JK)
TZ3(IK)=TZ3(IK)-CHA(J,1)

CALL INTEG (FO,FF,TF,IK,T,ALP1,BET1,TAU1,2)
FO=TY(IL)

T(IK)=FF

FF=T(IL)-CHA(J,2)

ALP9=ALP1

BET9=BET1

TAU9=TAU1

DO 270 JK=1,3

TZ4(JK)=TZ3(JK)
TZ4(IL)=TZ4(IL)-CHA(J 2) .

CALL INTEG (F0,FF,TF,IL,T,ALP1,BET1,TAU1,2)
T(IL)=FF

FORMAT (9(1X,F13.6))
ALPD=(ALPF-ALP1)**2
BETD=(BETF-BET1)**2
TAUD=(TAUF-TAU1)**2

‘ERRO=ALPD+BETD+TAUD

IF (ERRO1.LT.ERRO) GOTO 77
ERRO1=ERRO

WRITE (30,46) TAU7,BET7,ALP7,(TZ1(JK),JK=1,6)
WRITE (30,46) TAUS,BETS8,ALP8,(TZ2(JK),JK=1,6)
WRITE (30,46) TAU9,BET9,ALP9,(TZ3(JK),JK=1,6)
WRITE (30,46) TAU1,BET1,ALP1,(TZ4(JK),JK=1,6)
IF((ALPD+BETD+TAUD).LT.0.001) GOTO 94

FORMAT (2X,25HSUM OF THE ERROR SQUARES=,F20.7)
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94

90

CONTINUE
[JK=I-1

BETI=BET1

ALPI=ALP1

TAUI=TAU1

GOTO 7

IJK=1-1

BETI=BET6

TAUI=TAU6

ALPI=ALP6

GOTO 7

WRITE (27,46) TAU1,BET1,ALP1

STOP

END : .
SUBROUTINE INTEG (F0,FF,TF,1J,T,ALP1,BET1,TAU1,IN)
DOUBLEPRECISION AM(4),R1(4),R2(4),R3(4)
DOUBLEPRECISION A1(4,4),A2(4,4),A3(4,4)
DOUBLEPRECISION W0(3,3),TIM,DEL,T1D(3),R0(4)
COMMON AM,R0,R1,R2,R3,A1,A2,A3,PI, W0

COMMON AI0,AI1,AI2,AI3,TM,QA,DEL,T1D

DOUBLEPRECISION AK0,AK1,AK2,AK3,AM0,AM1,AM2,AM3,ANO,AN1

DOUBLEPRECISION AN2,AN3,T(3),AI0(4,4),TM
DOUBLEPRECISION ALP1,BET1,TAU1,PL,QA(4,4)
DOUBLEPRECISION T2(3),AI1(4,4),A12(4,4),AI3(4,4)
DOUBLEPRECISION BET3,TAU3,ALP3,ALP4,BET4, TAU4
DOUBLEPRECISION ALP2,BET2,TAU2,F0,FF,A, TF,FUN1 FUN2
DATA T1D,T2 /6*0.0/

FUN1(F0,FF,A,TF PI)=F0+(FF-FO)*(A/TF-1/(2*PI)*
*SIN(2*PI*A/TF))

FUN2(F0,FF,A,TF ,PT)=(FF-F0)*(1/TF*(1-COS(2*PT*A/TF)))
TIM=0.0

IC=TF/DEL

DO 4 ICOUNT=1,IC

T(13)=FUN1(F0,FF,TIM,TF,PI)

T1D(1J)=FUN2(F0,FF,TIM,TF PI)

CALL AMAT (T,ALP1,BET1,TAU1)

CALL AKO1 (AK0,AMO,ANO)
ALP2=ALP1+AN0/2
BET2=BET1+AMO0,2
TAU2=TAU1+AK0/2
T(13)=FUN1(F0,FF,TIM+DEL/2,TF,PI)
T1D(13)=FUN2(F0,FF, TIM+DEL/2,TF,PI)
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CALL AMAT (T,ALP2,BET2,TAU2)

CALL AKO01 (AK1,AM1,AN1)

ALP3=ALP1+AN1/2

BET3=BET1+AM1/2

TAU3=TAU1+AK1/2

CALL AMAT (T,ALP3,BET3,TAU3)

CALL AKOI (AK2,AM2,AN2)

ALP4=ALP1+AN2

BET4=BET1+AM?2

TAU4=TAU1+AK2 |
T(1J)=FUN1(F0,FF,TIM+DEL,TF,PI)
T1D(1J)=FUN2(F0,FF,TIM+DEL,TF,PI)

CALL AMAT(T,ALP4,BET4,TAU4)

CALL AKO1 (AK3,AMS3,AN3)
ALP1=ALP1+(AN0O+2*AN1+2*AN2+AN3)/6
BET1=BET1+(AMO+2*AM1+2*AM2+AMS3)/6
TAU1=TAU1+(AKO+2*AK1+2*AK2-+AK3)/6
TIM=TIM+DEL

CONTINUE

RETURN

END

SUBROUTINE AKO01(AKO,AMO,ANO)
DOUBLEPRECISION AM(4),R1(4),R2(4),R3(4)
DOUBLEPRECISION A1(4,4),A2(4,4),A3(4,4)
DOUBLEPRECISION W0(3,3),W0C(3,3),W0CI(3,3),R0(4)
COMMON AM,R0,R1,R2,R3,A1,A2,A3,PI,W0

COMMON AI0,AI1,AI2,AI3,TM,QA,DEL,T1D
DOUBLEPRECISION AK0,AMO0,AN0,AKAT(3,3),DEL,T1D(3)
DOUBLEPRECISION PI,QA(4,4)

DOUBLEPRECISION T2(4,4),T3(4,4)
DOUBLEPRECISION A23(4,4),Q1(4),Q2(4),Q3(4)
DOUBLEPRECISION T11(4,4),T21(4,4),T31(4,4)
DOUBLEPRECISION T22(4,4),T32(4,4),A10(4,4)
DOUBLEPRECISION AI1(4,4),AI2(4,4),AI3(4,4)
DOUBLEPRECISION AI1K(3),AI2K(3),AI3K(3),T33(4,4)
DOUBLEPRECISION R10(4),R20(4),R30(4)
DOUBLEPRECISION T1R1(4),T1R2(4),T1R3(4),T3R3(4)
DOUBLEPRECISION T2R2(4),T2R3(4),TM,RG(4)
DOUBLEPRECISION Q11(4),Q12(4),Q13(4)
DOUBLEPRECISION Q22(4),Q23(4),Q33(4), T11A(4,4), T22A(4,4)
DOUBLEPRECISION AJ1(4,4),AJ2(4,4),AT3(4,4),AK(4,4)
DOUBLEPRECISION AI10(4,4),A120(4,4),AI30(4,4)
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327

CALL MMUL (A1,A2,T2)

CALL MMUL (T2,A3,T3)

CALL MMUL (A2,A3,A23)

CALL MMUL (QA,A1,T11)

CALL MMUL (T11,A2,T21)

CALL MMUL (T21,A3,T31)

CALL MMUL (A1,QA,T11A)

CALL MMUL (T11A,A2,T22)

CALL MMUL (T11A,A23T32)

CALL MMUL (T2,QA,T22A)

CALL MMUL (T22A,A3,T33)

CALL MVMUL (A1,R1,R10)

CALL MVMUL (T2,R2,R20)

CALL MVMUL (T3,R3,R30)

DO 434 I=1,3 -
RG(1)=(AM(2)*R10(1)+AM(3)*R20(1)+AM(4)*R30(I))/TM
RG(4)=1.0

CALL MVMUL (T11,R1,T1R1)

CALL MVMUL (T21,R2,T1R2)

CALL MVMUL (T31,R3,T1R3)

CALL MVMUL (T22,R2,T2R2)

CALL MVMUL (T32,R3,T2R3)

CALL MVMUL (T33,R3,T3R3)

DO 327 1=1,3

DO 328 J=1,3

AK(L,1)=-RGI)*RG(J)*ITM
AJ1(L,3)=-RI0(I)*R10(J)*AM(2)
AJ2(1,3)=-R20(I)*R20(J)*AM(3)
AJ3(1,3)=-R30(I)*R30(J)*AM(4)

CONTINUE
AK(LD=TM*(RG(1)**2+RG(2)**2+RG(3)**2)+AK (L)
AJL(ILD=AM(2)*(R10(1)**2+R10(2)**2+R10(3)**2)+AJ1(LI)
AJ2(LD=AM(3)*(R20(1)**2+R20(2)**2+R20(3)**2) + AJ2(I,I)
AJ3(LD=AM(4)*(R30(1)**2+R30(2)**2+R30(3)**2)+AJ3(LI)
CONTINUE

CALL CROPRO (R10,RG,T1R1,Q11)

CALL CROPRO (R20,RG,T1R2,Q12)

CALL CROPRO (R30,RG,T1R3,Q13)

CALL CROPRO (R20,RG,T2R2,Q22)

CALL CROPRO (R30,RG,T2R3,Q23)

CALL CROPRO (R30,RG,T3R3,Q33)

DO 653 1=1,3
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654

656

QUI)=AM(2)*Q11(I)+AM(3)*Q12(I)+AM(4)*Q13(I)
Q2(1)=AM(3)*Q22(1)-+ AM(4)*Q23(1) -
Q3(I)=AM(4)*Q33(I)

CONTINUE

CALL INERT2 (A1,AI1,AI10)

CALL INERT2 (T2,AI2,AI20)

CALL INERT2 (T3,AI3,AI30)

DO 506 1=1,3

DO 507 J=1,3
AT20(1,3)=AI20(I,J)+AI30(L,J)
AT10(I,7)=AT10(1,])+AI20(1,J)
CONTINUE

CONTINUE

DO 654 1=1,3

ATIK(I)=0

AI2K(T)=0

AIZK(I)=0

DO 655 J=1,3 ,
ATIK(I)=AIIK(I)+AI10(T,J)*A1(J,3)
AI2K(T)=AI2K(1)4+AI20(1,3)*T2(J,3)
AI3K(I)=AI3K(1)+AI30(1,J)*T3(J,3)
CONTINUE

QUI)=ALIK(I)+Q1(I)
Q2(I)=AI2K(I)+Q2(I)
Q3(I)=AI3K(I)+Q3(I)

CONTINUE

DO 656 1=1,3

DO 656 J=1,3

WO0C(I,J)=0

DO 657 K=1,3

WOC(IL,J)=WO0C(I,J)+(AIO(LK)+AI10(LK)+AT1(LK)+AJ2(LK)+

*AJ3(1,K)-AK(I,K))*WO(K,J)
CONTINUE

CALL DLINRG (3,W0C,3,W0CI,3)

DO 658 I=1,3
AKAT(I,1)=0

AKAT(1,2)=0

AKAT(1,3)=0

DO 659 J=1,3
AKAT(I,1)=AKAT(I,1)-W0CI(L,J)*Q1(J)

AKAT(1,2)=AKAT(I,2)-WO0CI(I,7)*Q2(J)

AKAT(I,3)=AKAT(1,3)-W0CKI,J)*Q3(J)
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659
658

660

CONTINUE
CONTINUE

ANO=0

AMO=0

AKO=0

DO 660 I=1,3

ANO=ANO+AKAT(3,I)*T1D(I)
AMO=AMO+AKAT(2,1)*T1D(I)
AKO=AKO+AKAT(1,I)*T1D(I)

CONTINUE

ANO=ANO*DEL

AMO=AMO*DEL

AK0=AK0*DEL

RETURN

END

SUBROUTINE MATTRA4(A,D)
DOUBLEPRECISION A(4,4),D(4,4)

DO 7 I=14

DO 8 J=14

D(L,3)=A(J,])

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE AMAT (T,ALP5,BET5,TAUS)
DOUBLEPRECISION AM(4),R1(4),R2(4),R3(4)
DOUBLEPRECISION A1(4,4),A2(4,4),A3(4,4)
DOUBLEPRECISION W0(3,3),R0(4),T1(3)
COMMON AM,R0,R1,R2,R3,A1,A2,A3,PI,W0
DOUBLEPRECISION T(3),ALP,BET,TAU,PI
DOUBLEPRECISION ALP5BETS5,TAUS5
DATA A1,A2,A3 /48%0.0/
ALP=ALP5*P1/180

BET=BET5*P1/180

TAU=TAU5*P1/180

DO 11=1,3

T1(I)=T(I)*P1/180
W0(1,1)=COS(ALP)*COS(BET)
W0(1,2)=-SIN(ALP)

W0(1,3)=0

W0(2,1)=SIN(ALP)*COS(BET)
W0(2,2)=COS(ALP) -
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W0(2,3)=0
W0(3,1)=-SIN(BET)
W0(3,2)=0
W0(3,3)=1
A1(1,1)=COS(T1

A1(1,3)= SIN(Tl(( )
1
(

)
)
)
)

1
1
Al 2,1)=SIN(T1(1)
COS(Tl 1
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A2(4,4
A2(1,4)=50*COS(T1(2))
A2(2,4)=50*SIN(T1(2))
A2(3,4)=55.
A3(1,1)=COS(T1(3))
A3(1,3)=SIN(T1(3))
A3(2,1)=SIN(T1(3))
A3(2,3)=-COS(T1(3))
A3(3,2)=1
A3(4,4)=1
RETURN
END
SUBROUTINE CROPRO (RC,RG,S,CP)
DOUBLEPRECISION RC(4),S(4),CP(4),RG(4)
CP(1)=(RC(2)-RG(2))*S(3)-S(2)*(RC(3)-RG(3))
CP(2)=(RC(3)-RG(3))*S(1)-(RC(1)-RG(1))*S(3)
- CP(3)=(RC(1)-RG(1))*S(2)-(RC(2)-RG(2))*S(1)
.RETURN |
END
SUBROUTINE INERT2(A,B,C)
DOUBLEPRECISION A(4,4),B(4,4),0(4,4),D(4,4), E(4 1)
CALL MATTRA(A,D)
CALL MMUL(B,D,E)
CALL MMUL(A,E,C)
RETURN
END
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SUBROUTINE MMUL (B,A,F)
DOUBLEPRECISION A(4,4),B(4,4),F(4,4)
DO 11=14

DO 1 J=14

F(1,7)=0

DO 1 K=1,4
F(1,J)=F(LJ)+B(LK)*A(K,J)
RETURN

END

SUBROUTINE MVMUL (A,B,C)
DOUBLEPRECISION A(4,4),B(4),C(4)
DO 1 1=14

C(1)=0

DO 1 J=14

C(I)=A(LI)*B(J)+C(I)

RETURN

END
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APPENDIX C

ROBOSIM SIMULATION FILE

LOOK-FROM X=0.,Y=-200.,2=80.
LOOK-AT X=0.,Y=0.,2=20.
CLEAR

sk s ok sk ok sk sk ok sk ok s ok ok sk sk ok o KOk ok ok ok

. DEFINE THE LOCATION
;************************
F-JOINT-I

EXECUTE-FILE MARKLDAT
STORE B

CLEAR

F-JOINT-I+1

TRANSLATE X=-70.,Y=0.,Z=-10.
ADD B '
STORE-LINK OSMAN4.1.OC
CLEAR

STORE B
****************************
'BUILT 0TH COORDINATE FRAME
-ROTATION ABOUT X-AXIS (YAW)
;****************************
F-JOINT-I

STORE B

CLEAR

R-JOINT-I+1

TRANSLATE X=0.,Y=-25. Z=0.
ROTATE X=-90.

ROTATE Z=-90.

ADD B

STORE-LINK OSMAN4.LO
CLEAR

STORE B

Lok sk ok sk ok ok ok ok ok sk ok sk ok ke ok ok ok Sk okok sk ok ok ok ok
b

;ROTATION ABOUT Y-AXIS (PITCH)
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+ ok sk sk ok ok ok ok koo sk ok sk e stk sk ok sk sk ok ok ket ok ok ok ok ok ok
!

R-JOINT-I

STORE B

CLEAR

R-JOINT-I+1

ROTATE X=90.

ROTATE Z=-90.

ADD B

STORE-LINK OSMAN4.L.1
CLEAR

STORE B

. skosk sk ok sk ok ok ok ok sk sk ok ok ok ok ok ok okt sk skok ok s ok

;ROTATION ABOUT Z-AXIS (ROLL)
;***************************
R-JOINT-I

STORE B

CLEAR

R-JOINT-I+1

ROTATE X=90.

ROTATE 7=90.

ADD B

STORE-LINK OSMAN4.L2
CLEAR

STORE B

3K 3 S ok sk ok Sk sk sk ok ok sk ok 3k sk k ok s ok ok sk ok ok sk k skok ok sk ok

;SATELLITE MAIN BODY (A CYLINDER)

« 3K 2 ok ok ok s sk ok ok sk ok sk 3 3k ok ok ok sk ok sk ok ok sk skokOk ok ok sk skok sk
; .

CYLINDER R=25.,H=>50.
STORE C

CLEAR

R-JOINT-I

ADD C

STORE C

COLEAR

R-JOINT-I+1

TRANSLATE X=0.0,Y=0.,2=32.5
ADD B

ADD C

STORE-LINK OSMAN4.L3
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CLEAR

STORE B
STORE C
STORE D

ke skok ok ok sk ok ok ok ook sk S ok ok ok o sk ok sk ok ok sk ok sk sk ok ok sk ok sk

-BUILD LINK 1 OF THE MANIPULATOR
;**********************************
R-JOINT-I

STORE B

CLEAR

BOX X=4.Y=15.,Z2=15.
TRANSLATE X=9.5,Y=0.,7=0.
STORE D

TRANSLATE X=-19.,Y=0.,Z=0.
ADD D

ADD B

STORE B

CLEAR

CYLINDER R=7.5,H=60.
TRANSLATE X=0.,Y=0.,2=22.5
ROTATE X=-90.

STORE C

CLEAR

R-JOINT-I+1

ROTATE X=-90.

ADD B

“ADD C

STORE-LINK OSMAN4.L4
CLEAR

STORE B

STORE C

2k ok sk ok sk sk sk sk ok Aok sk R okok ook sk skoskok sksk

LINK 2 OF THE MANIPULATOR
;************************* )
R-JOINT-I

STORE B

CLEAR

BOX X=15.,Y=4.,2=10.
TRANSLATE X=0.,Y=9.5,%=52.5
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STORE D
TRANSLATE X=0.,Y=-19.,2=0.
ADD D

STORE D

CLEAR

BOX X=50.,Y=15.7=5.
TRANSLATE X=17.5,Y=0.,%=55.
STORE C

CLEAR

R-JOINT-I+1

TRANSLATE X=50.,Y=0.,Z=55.
ADD B

ADD C

ADD D

STORE-LINK OSMAN4.L5
CLEAR ‘
STORE B

STORE C

STORE D

2 3k ok ok ok 3k sk ok vk 3k ok ok sk oK ok 3k ok ok sk ok sk ko sk ok
’

LINK 3 OF THE MANIPULATOR
;*************************
CYLINDER R=7.5,H=5.
R-JOINT-I

STORE B

CLEAR

BOX X=40.,Y=15.,7=5.
TRANSLATE X=27.5,Y=0.,%=0.
STORE C

CLEAR

R-JOINT-I+1

TRANSLATE X=55.,Y=0.,2=0.
ROTATE X=90.

ADD B

ADD C

STORE-LINK OSMAN4.L6
CLEAR

STORE B

STORE C
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L3k 3K K sk sk sk sk sk okok sk Kok okook sk kR kok sk sk

LINK 4 OF THE MANIPULATOR
;*************************
CYLINDER R=7.5H=10,
R-JOINT-I

STORE B

CLEAR

R-JOINT-I+1

TRANSLATE X=20.5,Y=0.,Z=0.
ROTATE X=-90.

STORE C

CLEAR

BOX X=8.,Y=8.,2=8.
TRANSLATE X=11.5,Y=0.,Z=0.
ADD B

ADD C

STORE-LINK OSMANA4.L7
CLEAR

STORE B

STORE C

23K 3K 3k ok sk ok ot ok 3 Sk sk sk ok koo ok sk sk stk kokok ok

LINK 5 OF THE MANIPULATOR
;*************************
CYLINDER R=5.,H=5.
R-JOINT-I '
STORE B

CLEAR

R-JOINT-I+1

ROTATE X=90.

ROTATE Z=90.

STORE C

CLEAR

BOX X=8.,Y=8. 7Z=5.
TRANSLATE X=9.,Y=0.,Z=0.
ADD B

ADD C

STORE-LINK OSMAN4.L8
CLEAR

STORE B
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STORE C

Lk sk ok ok of s ok ok e stk sk ok ok sk ok sk ok sk ok ok ok

;LINK 6 OF THE MANIPULTOR
;************************
R-JOINT-I

STORE B

CLEAR

R-JOINT-I+1

ROTATE Z=90.

ADD B

STORE B

CLEAR

CYLINDER R=5.,H=3.
TRANSLATE X=0.,Y=0.,2=14.5
ADD B '
STORE-LINK OSMAN4.L9
CLEAR

STORE B

23k 3k ok sk ok 3 sk sk ok ks ok ok sk sk sk ok ok ok sk ok sk ok ok Kook sk k
)

:END EFFECTOR (A CYLINDER ROD)
;*****************************
F-JOINT-I+1

TRANSLATE X=0.,Y=0.,2=22.
STORE B

CLEAR

CYLINDER R=1.,H=8.
TRANSLATE X=0.,Y=0.,Z=20.
F-JOINT-I

ADD B

STORE-LINK OSMAN4.L10

2 3K ok 3R 3R 3K ok ok ok ok Kok oK K ok k ok ok ok ok ok ok of Kk K
)

.VIEW THE SYSTEM
;**************************
VIEW-ROBOT OSMAN4
END
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