
Approved: 

SPACE MANIPULATOR KINEMATICS 

FOR DOCKING OPERATIONS 

By 

Osman Parlaktuna 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

In partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

ın 

Electrical Engineering 

May, 1990 

Nashville, Tennessee 

Da te: 

~~~c~_/ 

A~ 9,. t9.'?o 



ELECTRlCAL ENGINEERING 

SPACE MANIPULATOR KINEMATICS 
FOR DOCKING OPERATIONS r 

OSMAN PARLAKTUNA 

Dissertation under the directian of Dr. George E. Cook 

Robotic manipulators carried by future spacecraft are expected to perform 

İnıportant tasks in space, like satellite asseınbly. However, since the base of the 

manipulator (satellite) is not fixed in space, some problems will be encountered . .. 
Internal forces and torques appliecl to the satellite due to the motion of the ma-

nipulator will cause changes in the position and attitude of the base. The control 

method for space manipulators should take into account the motion of the base clue 

to manipulator motions. In this study, the kinematics of a space manipulator sys-

tem is investigatecl and a control method based on resolved motion rate control and 

conservation of angular momentum is developed. It is shown that a manipulator 

arın follows a preseribed path despite the translations and rotations of the base. It 

is also shown that manipulator arın motions can be used to correct the orientation 

of the base. An algorithm is developed assuming that manipulator motions cause 

small rotations in the attitude of the base and these rotations are additive. This 

algorithm is used to find the required motions of the manipulator to rotate the base 

from an initial orientation to a elesireel final orientation. Results are animateel by 

using a computer graphic simulatar program, ROBOSIM. 
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INTRODUCTION 

In this decade, N ASA is planning to launch the first permanently manned U. 

S. space station. It is believed that "a key element of the right technology for 

the space station era is extensive use of advanced general-purpose automation and 

robotics [1 ]. The space station will be used to perform missions: collecting data from 

clistant stars; satellite assembly, deployment and retrieval, servicing, maintenance 

and repair; and debris capture [2]. Most of these tasks require extra vehicular 

activities. It is proposed that manipulators be used to perform same of these tasks. 

By using manipulators, the fallawing benefits can be obtained: [3] 

• Astronauts spend their time as station managers rather than as operators 

carrying out routine functions, thus productivity increases. 

• Lower cost of operations. 

• Same of the tasks that cannot be performed by human power can be per­

formed with robot s- such as the assembly of large structures .. 

• Sorrie of the tasks are hazardous to astronauts i.e., working in high orbits 

where radiation could be harmful. U sing manipulators for these tasks will reduce 

the risk of exposure of astronauts to hazardous situations. 

If the operations cannot be reduced to predetermined procedures, the han­

ciling of unpredicted events requires the presence of human beings. In cases where 

1 
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procedures are well defined manipulators can be used without human supervision. 

A space station orbital maneuverıng vehicle (OMV), which is a satellite­

installed manipulator system, is being planned as a free fiying teleoperator system 

to accomplish the tasks mentioneel above [4]. To be able to accomplish these tasks, 

manipulators must be controlled by a very accurate control algorithm. Several con­

trol algorithms have been developed for ground-fixecl manipulators. However, one 

of the characteristics of space basecl manipulators that is different from grouncl­

fixecl manipulators is the lack of a iixecl base. If the space manipulator moves, 

the base of the manipulator, OMV, moves in reaction to the applied forces on it. 

The forces that cause the OMV to move are external and internal forces. External 

forces are the forces generateel by the reaction jets, forces generateel by contact with 

surraunding objects, forces causecl by solar racliation anel forces causecl by gravita­

tional gradients. Internal forces are the interactive forces between the manipulator 

anel the OMV clue to manipulator motions. These external and internal forces pro­

duce a translation of the center of mass of the OMV anel a rotation of the OMV 

about its center of mass. If the algorithm that cakulates the joint angles-which 

moves the manipulator to a preseribed end effector position and orientation- does 

not compensate for these internal anel external forces, the end effector will miss the 

target. Grouncl-fixed manipulator control algorithms do not consicler the motion of 

the base. Therefore these algorithms cannot be usecl with control methocls unless 

the base is kept stationary. 
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The matian of the OMV as a result of manipulator motions can be compensated 

for by using reaction wheels and reaction jet s. Reaction wheels add more weight and 

complexity to the system, and they cannot compensate for the translational changes 

in the base, therefore they should be used together with reaction jets. The life of 

reaction jets depends on the amount of reaction jet fuel carried by the spacecraft, 

and this amount is limited. Therefore, a method which eliminates or minimizes the 

use of reaction wheels and reaction jets will reduce the cost and increase the life 

of the spacecraft. In positions where the target is out of reach of the manipulator, 

reaction jets should be used to bring the system into the vicinity of the target. 

When the manipulator is in position to reach the target, reaction jets usage should 

be avoided. 

In Chapter I, a control algorithm based on resolved motion rate control is 

cleveloped. It is assumed that the base of the manipulator is free to transiate and 

rotate, and reaction wheels and reaction jets will not be usecl to compensate for 

the motion in the base as a result of the manipulator motions. It is alsa asstimeel 

that the system is a calleetion of rigid bodies, and there are no external forces 

applied to the system. U sing a moclified resolvecl motion rat e control algorithm 

and an angular moment um conservation law, a generalized J acobian matrix of the 

manipulator, which gives the relation between the enel effector velocities and joint 

angle rates, is derived. The algorithm is testeel by a computer simulation of a space 

manipulator system. It is shown that the manipulator follows a preseribed path 
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despite the translations and rotations of the base. 

To service satellites, the OMV should clock with the satellite, for otherwise, 

they will start to drift apart as soon as there is a force of interaction between the 

OMV and the satellite. As mentioneel above, the OMV will rotate about its center of 

mass as a result of external and internal forces. These deviations in the orientation 

of the OMV should be corrected to clock with the satellite. To avoid the usage of 

reaction jet gases, thrusters should not be used to correct these deviations. 

It is well known that, astronauts can change their orientations in space by 

moving parts of their bodies. Also, divers, trampolinists, gymnasts and cats can 

perform rotation of their bodies in free fall without pushing against anything. This is 

possible because the angular moment um of the body is conserved. In this thesis, the 

same idea will be used to correct the orientation of the OMV for clocking purposes. 

A manipulator is assumed to be the arın of the OMV. If there is no external 

force applied to the system, the angular momentum of the system is conserved 

about its center of mass. The OMV will rotate as a result of manipulator motions. 

The orientation of the OMV will depenel on the path the manipulator travels. If the 

manipulator moves along one path and returns to the starting point by another path, 

the orientation of the OMV will, in general, be different from its initial orientation 

before the manipulator motion. In Chapter II, an algorithm is developed to find 

the required manipulator motions to rotate the OMV from an initial orientation to 

a elesireel final orientation. 
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A manipulator control algorithm should be testeel before applying it to real 

manipulators. Using real robots to test a control algorithm may result in an un­

desirable situation. For example, robots may collide accidentally with obstacles 

within a workcell. The control algorithm may be tested, however, using a com­

puter graphic simulation program. Thus, the hazards involved in the algorithm can 

be observed and solvecl before applying it to real robots. A number of computer 

graphic simulation programs have been clevelopecl to solve such problems. Such a 

computer graphic simulator, ROBOSIM, was clevelopecl jointly at NASA and Van­

clerbilt University [5]. ROBOSIM will be used to animate the motion of the OMV 

as a result of manipulator motions. In Chapter III, an overview of ROBOSIM is 

given, then the results of the fine attitucle control algorithm are animated. 

W e conclucle in Chapter IV with a discussion of results and proposals for further 

research. 



CHAPTER I 

KINEMATIC ANALYSIS 

Introduction 

To control robot manipulators in space, the motion of the satellite (which is 

the base of the manipulator), as a result of the force exerted by the manipulator 

motion, should be considered. Most of the algorithms developed to control a robot 

manipulator assume that the manipulator is connected to a fixed base [6], [7]. Since 

the satellite moves due to the motion of the robot manipulator, the control schemes 

developed for the fixed-base manipulators cannot be used for space manipulators. 

If one wants to use the schemes for the fixed-base manipulators to control a space 

manipulator, one should keep the satellite stationary which requires an extra effort. 

Satellites can be kept stationary by using reaction jets and/or reaction wheels. 

Reaction jets require propellant to operate and their life depends on the amount of 

fuel carried by the satellite. Reaction wheels add more weight to the system which 

is a disadvantage during launch of the system, and they also increase the cost of the 

system. Reaction wheels cannot compensate for the translational disturbances and 

should be used together with reaction jets. Reaction jets can be used to bring the 

system into a position where the manipulator will be able to reach the target. If the 

manipulator is close to the target, reaction-jet usage should be avoided. The aim 

of this study is to find a control method which does not require the use of reaction 

6 
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jet s and/ or reaction wheels to move a space manipulator from an initial position to 

a elesireel final positionj 

Previous Studies 

Studies have been macle of space manipulator control uncler conclitions of a 

nonstationary satellite base. Yamacla et al [8] assuroeel that the base is free to 

transiate but has attitude control to keep the orientation stationary. They clerived 

the kinematic equations using a Newton-Euler formulation proposecl by Luh [9]. 

They estimatecl the satellite linear acceleration by the use of the reaction force 

exerted on the satellite from the manipulator. They concludecl that the satellite 

linear acceleration cannot be neglectecl in the case of controlling satellite attitudes. 

Longman ei al. [10] also assumecl that the base is free to transiate but assumecl 

that reaction wheels were employecl to keep the attitude stationary. They appliecl 

the method to a specific class of robot arms i.e., spherical-polar-coordinate robots, 

anel showeel that by controlling satellite attitude, the kinematics and clynamics of a 

free-flying space manipulator can be clecoupled, anel the control problem becomes 

a purely kinematic problem. They also computeel the counter moments required 

to compensate for the turning moments of the satellite caused by manipulator arın 

motions. Their method is difficult to apply to an arbitrary manipulator configura­

tion. 

In these two methods, i. e., Yamacla [8] and Longman [10] propellant cansurnp­

tion to keep the attitucle fixed is very high, and the methocls require a very high 
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performance of attitude control. 

Vafa and Dubowsky [11] proposed a 'Virtual Manipulator Concept' which is a 

massless kinematic chain. They defined the base of the virtual manipulator at the 

center of mass of the space manipulator. The virtual manipulator's enel effector 

terminates at an arbitrary point on the real manipulator. They derived kinematic 

equations using the virtual manipulator and showeel that the real manipulator kine­

matics is the same as the virtual manipulator kinematics. 

Anather method was developed by Umetani and Yoshida [12], [13]. This 

method assumes no position and attitude control of the satellite, so the satellite­

based manipulator is a completely free-flying system. A generalized J acobian ma­

trix was derived using a modified resolved motion rate control [14] and momenturu 

conservation laws. They used 3 x 3 rotational matrices to derive the equations. 

In this chapter the method proposed by Umetani and Yoshida [12], [13] will be 

modified, anda generalized J acobian matrix will be derived using 4 x 4 homogeneous 

transformatian matrices. The method will be testeel by computer simulation of a 

space manipulator system. 

Fundamental Equations 

To derive the equations, an n-degrees-of-freedom manipulator arın carried by 

a spacecraft is considered. The spacecraft has 6 degrees-of-freedom in space, 3 

translational and 3 rotational degrees-of-freedom. The system has a total of n+6 
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degrees-of-freedom. An example of a space manipulator system is shown in Figure 

1; the spacecraft is modelled as a cylinder. 

The links and joints of the manipulator are assumed to be rigid bodies. The 

satellite is also assurueel to be rigid and is represented by a single rigid bocly. Thus, 

the system can be modellecl as a composition of rigid boclies. In many cases, space 

manipulators should be regarded as flexible boclies because of low stiffness. However, 

most of the formulations of flexible arms are basecl upon the small cleformations from 

the virtual rigid body, so knowledge of the motion of rigicl boclies is important. As 

a basic study for these aclvancecl investigations, the mavement of rigicllinks will be 

stuclied. 

Each joint of the manipulator has one rotational clegree-of-freedom and is rate 

controlled. The attitude and position of the main body is not controllecl at all. 

The forces clue to gravitational graclients, solar radiation and aeroclynamic drag 

are very small compareel to the rrianipulator-satellite dynamic interaction forces. 

These small forces can accumulate in time and change the manipulator's position 

and orientation, but their short term effects on the system can be neglectecl. There­

fore, it is assumed that there are no external forces applied on the system by external 

objects. The center of mass of the space manipulator system with respect to its 

orbit trajectory remains fixed during a manipulator maneuver. Hence, a coorclinate 

frame attached to its orbit trajectory is an inertial frame, and the linear and angular 

momenta of the space manipulator system are conserved in the inertial frame. 
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There is no relative motion between the center mass of the system and that of a 

target object at an initial position. 

Let us denote the inertial frame by XYZ. An X 0 Y 0 Z0 coordinate frame is fixed 

on the satellite main body, and its origin is at the center of mass of the satellite 

main body. The orientation of the satellite main body with respect to the inertial 

frame is defined by roll, pitch and yaw angles. Roll, pitch and yaw are a sequence of 

rotations which carries a moving coordinate frame from coincidence with the XYZ 

frame to coincidence with the coordinate frame X 0 Y 0 Z0 . The first rota tion, roll, 

is a rotation 1/J about the Z axis, pitch is a rotation (3 about the new Y axis , Yı, 

and yaw is a rotation T about the new X axis, X 2 . These rotations are shown in 

Figure 2. 

A rotational transformatian between the X 0 Y 0 Z 0 coordinate frame and the 

inertial frame is given by 

- sin-ı/J 

cos-ı/J 
o 

O) ( cos(3 

~ - s~n(3 
o 
ı 

o 
si~(3) (~ 
cos (3 o 

o 
COST 

sın T 

- s~nT) 
COST 

(1) 

( 

cos -ıp cos (3 
U o = sin 1/J cos (3 

- sin(3 

cos 1/J sin(3 sin T- sin 1/J cos T 

sin 1/J sin(3 sin T + cos 1/J cos T 

cos (3 sin T 

cos 1/J sin (3 cos T + sin-ı/J sin T) 
sin 1/J sin (3 co s T - co s 1/J sin T 

COS (3 COS T 

(2) 
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z 

-4~:------- y2 
X 

Y, 

Figure 2. Roll, pitch and ya"· rotations 

The position of the center of mass of the satelli te main body with respect to the 

inertial frame is given by a vector ro. The orientation and position of the X 0 Y 0 Z 0 

coordinate frame with respect to the inertial frame can be written using a 4 x 4 

homogeneous transformatian matrix A 0 : 

1'or 

U o roy 
Ao= ro: (3) 

o o o 1 

A coordinate frame is assigned to each lin k of the manipulator usıng the 

Dena\·it-Hartenberg method [15]. The relation between two adjacent links of the 

manipulator is shownin Figure 3 [16]. 



ı3 

Joint i 

Joint i+ 1 

Link i 

\ ç:====---y:::::..::"!!.====~~-~ x, 
a, 

1 
o,_ ı 1 x, -ı 

Figure 3. Relation between two links of the manipulator. 

Definition of the link parameters are as follows: 

ai: distance between the origins of coordinate systems i - ı and i measured 

along Xj. 

di: distance between Xi-1 and X i measured along Zi-I· 

ai: angle between Zi-ı and Zi axes measured about Xj. 

Bi: angle between Xi-ı and Xi axes measured about Zi-l· 

The position and orientation of coordinate frame i with respect to coordinate 

frame i - ı can be defined by using 4 X 4 homogeneous transformatian matrices 

i- 1 A · where 1) 
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es O; 
-sin B; cos a; sin B; sina; a; cos B; 

) i-1 A. _ sin B; cos B; cos o:; - cos B; sin o:; a; sin O; 
(4) ı- o sm o:; cos o:; d· ı 

o o o ı 

The upper left 3 x 3 matrix of i-1 A; gives the orientation information between 

the two coordinate systems and is denoted by i-ı U i. The first three element s of 

the fourth column give the translational information between the two links and is 

denoted by i- 1 Pi· B; and d; are the joint variables for rotaticnal and translational 

links, respectively. 

V ector definitions giving locations of the center of mass for each linkare shown 

in Figure 4. 

z 
1-1 

z, 

Figure 4. Vector definitions giving locations of the center of mass for each link. 
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Definitions of the vectors in Figure 4 are: 

Pi: position vector of coordinate frame i, defined at joint ı, with reference to 

the inertial frame. 

i-ıpi: position vector of the coordinate frame i with respect to the coordinate 

frame i- 1. 

C Nh center of mass of link i. 

iri: position vector of the center of mass of link i with reference to the coordi­

nate frame i. 

ri: position vector of the center of mass of link i with reference to the inertial 

frame. 

ra: position vector of center of mass of system with reference to the inertial 

frame. 

The position and orientation of link i with reference to the inertial coordinate 

system can be found by the matrix multiplication of 4 x 4 homogeneous transfor­

mation matrices: 

(5) 

The position vector of the center of mass of link i with reference to the inertial 

coordinate frame is 

(6) 
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Definition of the center of mass of the system is 

n n 

:2:= miri = raL mi (7) 
i=O i=O 

where mi is the mass of link i. 

Since there are no external forces applied on the system, linear anel angular 

momenta of the system are conserved in the inertial frame. 

Linear momenturu conservation is expresseel by: 

n 

L m(i'i = constant 
i= O 

Angular momentum conservation is expresseel by: 

where 

n 

L IiWi + miri X ri = constant 
i=O 

(8) 

(9) 

Ii= Inertia matrix of link i about a coordinate frame parallel to the inertial 

frame. 

wi= Angular velocity of link i with reference to the inertial frame. 

The angular velocity of the satellite main body with reference to the inertial 

frame, w 0 , in terms of changes in roll, pitch and ya w angles is given as follows 

(

Wox) (cos{3cos'f 
Woy = cos f3_sin 'ljJ 
Woz - sın{3 

(lO) 
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and the angular velocity of link i with respect to the inertial frame can be written 

as 

Wi = wo + L U/uJiii 
j=l 

(ı ı) 

where j u1 is the unit veetar about w hi ch rotation occurs, and qj is the generalized 

coorclinate representing the joint variable for link j. 

To fincl the linear velocity of the center of mass of link i with respect to the 

inertial frame, differentiate equation ( 6) with respect to time. Then 

(ı2) 

w here the clifferentiation of the homogeneous transformatian matrix T i is defined 

as 

· ôT· ôT· · ôT· · ôT· ôT· ôT· oT· ôT· 
T i = ~+ + ~f3ı f3 + ~"/ 'lj; + ~Tox + ~Tay + ~Toz+ ~qı + ... + ~qi 

uT u U<p urox uroy uroz uqı uqı 

(ı3) 

To eliminate Tox, r0 y, and Toz from the equations, substitute equations (ı2) and 

(ı3) into equation (8) and sol ve for the velocity of the center of mass of the satelli te, 

r0 . Then 

T 

(14) 

where 
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(15) 

n ( O ) 8Tkk 
Q,oy = 2: mk 8ro rk + mo 

k=l y o 
(16) 

n ( O ) 8Tkk 
Q,oz = 2: mk 8ro, rk + O 

k=l - m 0 

( 17) 

(18) 

(19) 

(20) 

i= 1, ... ,n (21) 

are 3 x 1 vectors. Define a matrix C as 

Then, from equations (14) and (22), rox, roy and roz can be written as 

. . 
rox = Cıı T + c12(3 + Cı31/J + Cı4<İl + · · · + Cın+3<İn (23) 

. . 
roy = C21 T + c22(3 + C231j; + C24<İ1 + · · · + C2n+3qn (24) 

. . 
roz = C31 T + C32/3 + C331j; + C34q1 + · · · + C3n+3<İn (25) 
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where Ckt is the kth row zth column entry of the C matrix. Then the derivative of 

the homogeneous transformatian matrix Ti can be written as 

(26) 

Generalized J acobian Matrix 

In general the characteristic equation for an ordinary ground fixed manipulator 

can be writ ten as 

p = f(q) (27) 

where 

P = (p;, e;)T: position and attitude vectors of the end effector of the ma-

nipulator. 

Pe: position vector of the en d effector of the manipulator. 

Be: Attitude vector of the end effector of the manipulator. 

q = ( q1 , ... , qn) T: vector of the joint variables. 

It is easy to obtain the transformatian that transforms the joint variables q into 

a set of task coordinates P. The inverse transformatian cannot be obtained easily 

even in ordinary cases, because the transformatian is nonlİnear and configuration 
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dependent. However, by differentiating (27) with respect to time the transformatian 

between P and q can be linearized, and the motion rate of the end effector in the 

task space can be resolved into that of joint variables in the configuration space. 

(28) 

where H( q) = ~: is the Jacobian matrix. For a space manipulator, position coor-

dinates and attitude angles of the satellite should be considered as state variables 

of the system because the posture of the satelli te is infiuenced. by a manipulator 

opera tion. 

The relation between the position of the end effector with respect to the inertial 

frame Pe and the coordinate frame n, nPe is 

(29) 

Then, the linear velocity of the end effector with respect to the inertial frame is 

given by 

(30) 

where 

· . ( 8T n 8T n 8T n 8T n ) . 
Tn= -

8 
+ -

8 
cıı + -

8 
c2ı + -

8 
c3ı r 

T rax ray raz 

8Tn 8Tn 8Tn 8Tn ). 
+C a(3 + -8 cı2 + -8 c22 + -8 c32 f3 

rax ray raz 

(31) 
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From equations (30) and (31) the linear velocity of the end effector with reference 

to the inertial frame can be written as a line ar combination of+, /-J, -J, q1 , . .. , qn 
T 

~ 

Hqn) 
1/; 
qı 

(32) 

qn 

where 

ÔTn ÔTn ÔTn ÔTn n 
Hr = (----;:;-- + ~cıı + -;:;--czı + ~c3ı) Pe 

uT urox uroy uroz 
(33) 

( 
ÔTn ÔTn ÔTn ÔTn )n 

H,e = ;::ıf3 + ~cız + -;:;--czz + ~c32 Pe 
u urox uroy uroz 

(34) 

ÔTn ÔTn ÔTn ÔTn n 
H..p = ( ::ı"/' + ~Cı3 + -;:;--c23 + ~C33) Pe 

u~ urox uroy uroz 
(35) 

(
ÔTn ÔTn ÔTn ÔTn )n 

Hqi = ~ + ~Cıi+3 + ~Czi+3 + -;::ı-c3i+3 Pe 
uqi urox uroy uroz 

(36) 

From equations (10) and (ll), the angular velocity of the end effector, w e, can also 

be w ri tt en as a line ar combination of +, {3, 1/;, ci ı, ... , qn 
T 

(37) 

qn 

where Wo:ı;, Woy and Woz are the columns of w 0 matrix given by the equation (10). 

Combining equations (32) and (37) gives 

P= (Pe) ( Hr 
.we - Wox 

Hıp 

Woz 

Hqı 
U ı ' 

ı Uı 

T 

(38) 

Aaa4oJa 'Cniverslte•ı 
llorku Kfltftphıı.M 
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Equation (38) can be divided into the satellite part and the manipulator part. 

(39) 

where 

qs: 3 x ı matrix of attitude angles of the satellite main body. 

qm: n x ı matrix of joint variables of the manipulator. 

Hs is an 6 X 3 matrix, and Hm is an 6 X n matrix. 

Equation (39) gives 6 equations in n + 3 unknowns. In order to solve this 

system of equations we need additional equations. These equations can be obtained 

using the angular moment um conservation equation. Substitute equations (ll) and 

(ı2) into equation (9) to obtain 

(IT 

where 

'T 

/3. 

I ,e 11/J lqı lqn) 
'1/J 
qı 

= constant 

qn 

n 

Ir= L(UjjljUj1 )wo:ı: + moAo 0 ro X cı 
j=O 

n 

( 40) 

(4ı) 

(42) 



n 

I,p = L(UjjljUj1 )woz + moAo 0 ro x c3 

j=O 

n 

Iqi = L(Ujiıju;ı)uiiui + moAo 0 r 0 x Cj+3 

j=ı 

23 

(43) 

(44) 

qwhere Ci is the ith column of the C matrix defined by equation (22). ili is the 

inertia matrix of link i with reference to coordinate frame i. This inertia matrix 

can be transformed into the inertial frame coordinates by the transformatian [1 7]. 

( 45) 

Equation ( 40) can also be divided into satellite part and manipulator part, as 

Is<ls + Im<lm = constant. (46) 

Is is a 3 x 3 inertia matrix of the satellite main body and Im is a 3 x n inertia 

matrix of the manipulator. 

The system defined by equations (39) and ( 46) has 9 linear equations of n+ 3 

variables +,/3,~,q1 ... ,qn. By eliminating <ls from equations (39) and (46) and 

assuroing the system is at rest initially Cım can be solved as 

( 4 7) 

P = H*qm ( 48) 
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where H* is the generalized Jacobian matrix for a space manipulator. The Jacobian 

matrix of the manipulator Hm is compensated for a disturbance of reactive mave­

ment of the base. The amount of compensation is proportional to the ratio of the 

manipulator inertia and satellite inertia matrices, Im/Is. This ratio approaches zero 

when the inertia of the satellite is much larger than the inertia of the manipulator. 

In this case the system can be treatecl as a grouncl fixecl manipulator system. If 

the manipulator has 6 degrees-of-freedom there is no redundancy anel H* becomes 

a 6 x 6 square matrix and can be inverted if it is nonsingular. Cıın can be solved as 

( 49) 

By us ing equation ( 49) the required manipulator operation Cı m corresponding 

to the given trajectory P for the captur~ of a free-flying target in space can be easily 

obtained. If the manipulator has a number of degrees-of-freedom other than 6, H* 

can be inverted using a pseudo inverse. 

A Test of the Control Algorithm 

To test the method, a simulation program was written in FORTRAN. Listing 

of the program is given in Appendix A. A 6 degrees-of-freedom system was assumed. 

The specifications of the system are listeel in Table 1. 

Velocity of the enel effector along the preseribed trajectory was assurueel to be as 

shownin Figure 5. This velocity was applied along different axes of the enel effector 

and the behavior of the system was observed. Figures 6a-6d show the response of 
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the system when the velocity was applied along the X direction. Figure 6a shows 

the change in the position of the end effector. Figure 6b represents the change in 

joint angles of the manipulator to achieve this motion. Figures 6c and 6d show the 

changes in the position and attitude of the satellite main body. Figures 7a-7d show 

the response of the system when the velocity was applied along the Z direction. As 

seen from the results, the end efiector follows the preseribed trajectory despite the 

rotational and translational motions of the satellite main body. 

TABLE 1. 

SPECIFICATIONS OF THE SPACE MANIPULATOR SYSTEM 

Link O Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

Mass (Lb) 23450.0 51.3 18.2 16.0 1.8 4.2 2.0 

Ix(Lb in2
) 631330.0 15000.0 125.0 63.0 5.0 47.0 11.0 

Iy 631330.0 425.0 3700.0 2525.0 30.0 140.0 11.0 

fz 2504500.0 12750.0 3725.0 2550.0 30.0 120.0 15.0 

fxy 0.0 0.0 160.0 -93.0 0.0 0.0 0.0 

fxz 0.0 0.0 0.0 0.0 0.0 19.0 0.0 

fyz 0.0 1080.0 0.0 0.0 0.0 0.0 0.0 



o . 
N,---------------------------------------------------------~ 

>-ı 
~ 

o . 
o 

o . 
co 

..-.ı o u . 
QtO 
_J 
w 
> 

o . 

o . 
N 

o . 
0~----------~----------~----------~----------~--------~ 

0.0 ıo.o 20.0 30.0 ~0.0 50.0 
TIME 

Fig;ure 5. Velocity along trajectory. 

26 



r 
o . 

r~ 
ı 

t ~~ 
l 

o . 
ı.: 11') 

t") c ..... 

~ 
c_, 

-'-' 
o c:: . c:.; 

~w c;; ,... 
~ 

E ........ - o 
~ -;:: 

o ...; . cr. - o N c... 
c-: 

c..:ı 

~~ 
c:.; 
:: 
tL· 

~ 
1 
1 

ı 

o . 
f'-

o . 
~------~~------~-------,----~~,-----------------~0 

sıc:·es 995"1.1. ııs·es ttı•et 9e9·sı ızo·s- 999·sc:-
(H8N!) lN3W3881dSIO 



~ 
O) 

~1 A A A A A A A A A A 

-

... 

~m 8 8 . 
ıB 

" li) . ... 
U) 

C!) 
w 
O ın ......., ... 

o . en,., 
w-r 
__] 
C!) 
z 
a: ... 

N 

G) ... 

e e e e e 8 8 o 

~. • ~ O O O O O o 0 n 
? 
O) 

~ 

-=, ---- • ~ i i i i i i • i & 

0.0 7.0 14.0 21.0 28.0 35.0 'i2.0 -i9.0 
TIME 

Figmr. Gh. Joint aıı~lf's. 

LEGEND 
c- THETA 1 
o- THETA 2 
A- THETA 3 
+- THETA 4 
X- THETA s 
~- THETA 6 

tv 
(/) 



29 

o . 
~ 

o . 
~ 

o 
o u: 

~ Ç,./ 

t'c 
t:: 
r. 

::: c: 
>. 

o '"Ç . 
~ t:: r: 

w -
X: u ...., ...... 

~ 1-4 -o -o - ~ 
N 

t..> 
a 

C,; 
;.., 

o 1:..0 

• ti: 
~ -
o . 
"' 

o . 
r-------~--------~------~--------~--------~------~0 

OBSi"t r66loz io~g·o oetsoo- i9ilot- tstoot- orss·s-
CS33HS30) S31f)N~ 



~X)-4N 
w 1 1 1 (!) 

Wc o~ 
_] 

o . 
O) .... 

o . 

o . 
ın 
l"i 

o • 
~ 

o • -N 

o . .... -
o . 
to-. 

o . 
--------~--------~-------r--------r--------r--------ro 

srs:oo·o ıs~ı·o- onst·o- erszs·o- l9SO.co- sszgg·o- J.Z090"t-
CHONil lN3~30~1dSIO 

30 

C) 
rtl ro 

.D 
C) ..... -....., w ...... 

~ o - ç:: 
~ o ·-....., ·-rtl o 

ı:.. 

""d 
t::> 

a..> 
1-< 
::ı 
~ 

~ 



~X >-tN 

~ 1 1 1 
woo~ 
_] 

o . 
C7) ... 

o . 
~ 

o 
• 
~ 

o • 
~w 
~ -....... 

o . -N 

o . ... -
o . 
r.... 

o . 
~------~--------r--------r-----.--r--------r------~~0 

lSS"OOl tS?"S.l Slt"BS 191"/.t H·0"9l 

(HONil lN3~38~1dSIO 

" . . ~·· r 

31 

ı-: 
o ...., 
u 

~ 
(1) 

":) 
ı:: 
(.i 

s -...., 
........ 
o 
ı:: 
o 
·~ ...., 
·;;; 
o ç_. 

d 
ı-

(1) 
i-< -..... 

. =.o 
ı:ı.. 



.§ LE:GE:ND 
D - THE:TA ı 

~t 6 6 6 o - THE:TA 2 la . 
-• 

A - THE:TA 3 
la la A + - THE:TA 4 

~t B B B B B B B El X- THETA ~ B B 

~- THETA E 
~ J• 

(-::;. 

-~ ·-m -C!) 
w 
9~ 
en u;-
w..-
_J 
C!) 
:z: 
a:g -·--t'lı 

)f :H )f ,, 

~ ~ 

~ 
t.... 
N., . . . -
~t • ' : : : : _: : : - --~ 

i i i i r= --, o.o 7.0 14.0 21.0 1 28.0 35.0 42.0 49.0 
TIME: 

C;J 

Figure 7b. Joint anglcs. 
ıv 



o . 
O) 
~ 

o . 
~ 

o . 
ll) 
l') 

o 
• 
~ 

o . -C'll 

o 
• 
~ -
o . 
r-.. 

o 
• 

r-------~--------,--------,---------r--------~--~----ro 
ozao·s 99St6"Jo zsm·t ıtru·z tet99·t 

CS33~S30) S31SNY 

'! .. ' 

/ 
i.l 

9YOlS. O 990ZS • o-

33 

rr. 

"" to 
ı:: 
r. 
~ 
r: 
;-. 

'"O 

w ı:: 
r;; 

ı: -= - u ..... ....., 
,. ---2 
u 
ı-

t.> 
ı-. ... 
-~ 
4-. 



~X >-tN 
~ 1 1 1 
WCO<l 
.....l 

o . 
en ..,. 

o . 
~ 

o . 
~ 

o . 
~ 

o . -N 

o 
• .,. -

o . 
1'-

o . 
r--------r------~-------------r-~i-----,---------~------~0 

tsot"J. lZSO"t 6J.6l"l 9lt5"0 J.6ll"D- 99l6"l- attı"t-

(HQNI) lN3W3Q81dSIO 

34 

C.:· 

~ 
~ 

~ 
~ 

w 
.._ 
c 

E c: - .s ~ ..., 
·en 
o 

CL. 

--c::: r-
Cl) ... 
;::ı 

b.O 
~ 



CHAPTER II 

FINE ATTITUDE CONTROL 

Previous Studies 

Several researchers studied the problem of orientation of objects in free fall. 

McDonald [18] studied the problem of how a cat in free fall can rotate itself without 

pushing against anything. He took pictures of a falling cat and showed that by 

moving different parts of its body a cat is able to change his orientation and touch 

the ground on its feet. One year later [19] , he conducted the same experimentona 

diver and showed that adiver can turn his body without any help from the board. 

After manned space fiights started, self-orientation of astronauts became an 

important subject. To perform certain tasks an astronaut must be able to change 

the orientation of his body in space. This is easy when the astronaut is in direct 

contact with some part of the space vehicle. However, if the astronaut is not in 

contact with the space vehicle he has two alternatives to change its orientation. 

The astronaut can carry a device which produces forces that help him to change 

his orientation, or as a second alternative he can move parts of his body to change 

his orientation. 

Kulwicki et al [20] discussed self rotation techniques of astronauts in qualitative 

terms and showed that by a series of arın and leg motions astronauts can rotate 

35 
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their bodies in space without external help. 

In 1964, McCrank [21] studied the problem of rotation of a body in free fall in 

his masters thesis. He derived the equations of motion of a bocly in free fall using 

momentum conservation laws and suggested some maneuvers for self-orientation of 

an astronaut. 

V. I. Stephantsov and his colleagues [22], [23] studied methocls of orienting 

the human body under conditions of weightlesness in the absence of a support. 

They concluded that if aman exerts muscular force and turns his arms through an 

angle a 1 then the rest of his body, according to conservation of angular moment um, 

turnsin the opposite directian through an angle a 2 . The angles of rotation from the 

starting point of the parts of the body are inversely proportional to their moments 

of inertia. 

Smith and Kane [24] proposedan analytic solution to the self-orientation prob­

lem. They derived the differential equations of motion using the angular moment um 

conservation law. Since the number of equations of the system are sınaller than the 

unknowns, they introduced an optimality eriterian and obtained new equations to 

equate the number of equations with number of unknowns. The new problem turned 

out to be a nonlİnear two point boundary value problem. They solved this boundary 

value problem using nurnerical methods. 

Later, Kane and Scher [25], and Passerella and Ruston [26] studied the orienta­

tian of human body problem in space without the aid of external control. Kane and 
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Scher suggested that if a man can perform both a pitch and a yaw rotation, he can 

acquire any elesireel orientation. Passerella and Ruston clerived the equations of the 

system using the principle of conservation of angular momentum. They integrated 

the equations assuruing the motions of arms and legs are known and showeel that 

astronauts can change their orientation by using predetermined limb motions. 

Vafa and Dubowsky [27] stucliecl the problem of deviations in the satellite orien-

tations clue to motions of the manipulator. They proposed that, if the orientation 

of the satellite exceeds a predeterminecl value while the manipulator moves, this 

deviation can be corrected through cyclic motions of the manipulator. 

Eguations of the System 

To derive the equations, the same system in Chapter I is used. The center of 

mass of the system with reference to a satellite fixed co ordina te system X 0 Y 0 Z0 is 

(50) 

where m is the total mass of the system, mi is the mass of the ith link, 0ri is the 

vector from the fixed body frame to the center of mass of link i, and R is the vector 

from the body fixed frame to the center of mass of the system. 

The angular momenturu of the system about the center of mass is 

n n 

i=l i=l 

where 0 ! 0 is the inertia matrix of the OMV about the X 0 Y 0 Z 0 coordinate system 

and 0Ii is the inertia matrix of link i about a coordinate frame parallel to the 
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X 0 Y 0 Z 0 system. 0 wi is the angular velocity of link i with respect to the X 0 Y 0 Z0 

reference frame. It is assumed that no external force is applied on the system and 

the system is at rest initially. Then the angular momentum of the system relative 

to its center of mass is conserved and is equal to zero. 

Equation ( 51) is expanded to obtain 

n 

Hem= 0Iowo + L 0Ii(-wo + 0 wi) + m(R X R) 
i=l 

(52) 
i=l i=l i=l 

where 0ri is the velocity of the center of mass of link i and R is the velocity of 

the center of mass of the total system relative to the inertial frame, respectively. 

Differentiating equation (50) with respect to time gives: 

(53) 

Substitute equation (53) into equation (52). Then the third and fourth terms in 

equation ( 53) caneel and the equation reduces to 

n n n 

· Hcrrı = 0Iowo + L 0 Ii(wo + 0 wi)- L mi 0 ri X R + L mi0 ri X 
0 İ:i (54) 

i=l i=l i:;=l 

Using moving coordinate frames [28], 0ri and R can be written as 

o. + x o rı· ri =vi '-Vo (55) 

R=V+w0 xR (56) 
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where Vi is the velocity of the center of mass of link i and V is the velocity of the 

center of mass of the total system relative to the X 0 Yo Zo frame, respectivelyo w 0 

is the angular velocity of the satellite main bocly with respect to the inertial fraıne. 

The orientation of the main body with respect to the inertial frame is given by the 

roll, pitch anel yaw angles as shown by equation (2), anel angular velocit.y of the 

main body with respect to the inertial frame in terms of rate of change of roll, pitch 

and ya w angles is given by equation ( 10)0 

Substituting equations (55) anel (56) into equation (54) and expancling the 

terms gives 

n 

Hem = 0Iowo + L 0 Ii(wo + 0wi)- mR X V- mR X (wo X R) 
i=l 

n n 

+ L mi 0 ri X Vi+ L mi 0 ri X (wo x 0 ri) (57) 
i=l i=l 

U sing the vector triple product property [29] 

a x (b x c)= (a o c)b- (b o a)c (58) 

The Rx (w0 x R) and 0 ri x (w0 x 0 ri) terms can be written as 

(59) 

(60) 

Using vector dyadic product [30], the second terms in equations (59) and (60) can 

(61) 



40 

Then equations (59) and (60) become 

Rx (wo x R) = (R ·RE- RR)wo (62) 

(63) 

where E is a unit dyaclic. Then equation (57) becomes 

n n n 

i=l i=l i=l 

where 

J . - m·( 0 r· · 0r··E- 0 ı·· 0 r·) ı- ı ı ı ı t (65) 

K= m(R ·RE- RR) (66) 

J i is the inertia clyadic of the ith link relative to the X oY 0 Z0 coordinate system as 

if the link were a point mass situated at the center of mass of the ith link. K is the 

inertia dyadic ofthe total system relative to the X 0 Y 0 Z0 co ordina te system asifthe 

total system were apoint mass situated at the center of mass of the total system. 

The linear velocity of the center of mass of link i, with respect to the X 0 Y 0 Z0 

coordinate frame , Vi, can be obtained using the relation given by equations (12) 

and (13) 

(67) 

Substituting equations (55) and (67) into equation (53) and equating carre-

sponding terms of equation ( 56) gives the velocity of the center of mass of the 
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system relative to the X 0 Y 0 Z 0 coorelinate frame as: 

(68) 

The angular velocity of link i \vith respect to the X 0 Y 0 Z 0 coorclinate frame is 

(69) 

Substitute equations (67)-(69) into equation (61). Then 

n n n n 0 

[
0 Io+ 2)0 Ii+Ji)-K]wo+ :L[(L 0Ij) 0 Uiiui+ :L mj[( 0 rj-R)x(

0
0 
~j jrj)]]qi =O 

i=l i=l j=i j=i q, 

(70) 

Equation (70) gives 3 equations in n+ 3 unlmowns for an n-clegrees-of-freeclom 

manipulator. If one knows the time history of joint angles then equation (70) 

becomes aset of 3 simultaneous, non-linear, non-homogeneous, orelinary differential 

equations with 3 unknowns. ıp, f3 anel T are the clependent variables, t is the 

independent variable, and joint angles are the intermediate variables. 

The O,MV will have different orientations depenciing on the manipulator path 

chosen from one position to another. Assume that manipulator moves along a doseel 

path, i.e., it starts from a position anel returns to the same position at the end of the 

motion. Since the 02viV orientation depends on the manipulator mot.ion path, the 

fina! OrJV orientation v.'ill change if the manipulator moves along one path in joir:.t 

sp~1..ce r~!ıci rctur:ıs t.o tl1c ir1it.ial ı)osit.ioı1 b~.~ anotlıcr p~Jlı. Tn tlıis study f\ırıc1 ior:.:: 



used in specifying qi are of the form suggested by Smith anel Kane [23]. 

ı . 27rt 
f(t) =fo+ (fı- fo)[tjT-- sm( -T )] 

27r 
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(7ı) 

where T İs the duration of angle change, anel fo and fı are the values of f for t = O 

and t = T. This function has the property of vanishing first anel second derivatives 

of the angles at t = O anel t = T, so the system starts from rest and returns to the 

rest position at the enel of the motion. 

To find the elesireel base orientation corrections it is assumed that changes 

in joint angles are small and these small changes res~ılt in small changes in the 

orientation of the OMV. Since rotations are assumed small they can be classified as 

vectors anel can be aelded vectorially [31]. Only one pair of joint angles are allawed 

to move at a time while the other joints are kept fixeel. An example of the matian 

of a pair of joint angles is shown by Figure 8. 

Computer Simulation of the Algorithm 

A Fortran program was written to find the sequence of motions to bring the 

OMV to the elesireel orieİıtation. Listing of the program is given in Appendix B. 

The algorithm of the program is as follows: 

ı) Read the initial and elesireel values of the attitude angles of the OMV. 

2) Find the pair of joints, establish the areler of change in these joints, and 

eletermine the magnitude and directian in these angles which rotates the OMV 
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towards the elesireel orientation. The following steps are applied to fincl the pair of 

joints which rotates the OMV towards the elesireel orientation 

a) Pide up a pair of joints from a look-up table. This table contains pair of 

joints, areler of change in these joints, magnitude and directian (positive or negative) 

of changes in the joint angles. 

b) By changing this pair of joint angles according to equation (71) anel integrat- · 

ing equation (70) using Runge-Kutta algorithm, find the orientation of the OMV at 

the enel of the motion. Denote the new attitude angles of the OMV as Tnewı f3new 

c) If all angles converge to their elesireel values, i.e., 

ırdesired - Tnew ı < ırdesired - Tinitialı 

ıf3desired - f3new ı < ıf3desired - f3initialı 

/1/ıdesired -1/ınew ı < ı1/ıdesired -1/ıinitiaı/ 

go to 3, else go back to a) to pick up another pair of joints. 

3) Determine the number of cycles, k, for· which this motion will be applied. 

The number is the minimum of the following divisions plus .1 

\rdesired - Tinitial/ 

ırnew - Tinitiaı/ 

ıf3desired - J3initialı 
/f3new - J3initialı 

/1/ıdesired - 1/ıinitialı 
ı1/ınew -1/ıinitialı 
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4) Apply the motion of the manipulator k times. Integrate equation (70) using 

the Runge-Kutta algorithm to find the orientation of the OMV at the end of the 

motion. Denote the new values of the attitude angles of the OMV as Tk, f3k and 1/Jk· 

5) Calculate the sum of the error squared of attitude angles as 

Compare the sum of the error squared with the error criteria. If the criteria is 

satisfied stop, else assign 

and go back to step 2. 

This program was tested for an OMV with a 6-degree-of-freedom manipulator. 

But, only the first 3 links of the manipulator were allawed to move, because the last 

3 links of the manipulator have very little effects on the OMV due to very small 

inertias of these 3 links compared to the inertias of the rest of the system. Initial 

values for T, f3 and 1/J for Figures 9-11 are T = 0.0°, f3 = 0.0° and 1/J = 0.0°. The 

desired final values for these angles are T = 6.0°, f3 = 10.0° and 1/J . 2.0°. 

Results of this run are shown in Figures 9-14. Figures 9-11 show the changes 

in angles T, f3 and 1/J, respectively. As can be seen from these figures all of the 

angles converge to the desired positions. The OMV oscillates in response to the 

manipulator motion. However, the mean orientation of the OMV changes continu­

ously towards the desired orientation. Figure 12 shows the mean orientation of the 
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OMV after each cycle of the motion. Figure 13 represents the error squared of the 

attit u de angles after each cycle of the manipulator motion and, as seen from the 

figure, squared error gets sınaller after each cycle of the motion. To show the small 

rotations can be acideel vectorially and the order of motions will not effect the final 

orientation of the OMV, order of the motions were changed and the program run 

again. Results of these two runs are plottecl in Figure 14. As seen from the figure, 

orientation of the OMV at the enel of the manipulator motions is the same for both 

cases. In Table 2 the order, magnitucle and directian of the joint angle changes are 

given. The number of cycles of each motion is also given in Table 2. Initially all 

joint angles are 0.0°. 

TABLE 2 

CHANGES IN JOINT ANGLES TO ROTATE THE OMV 

TO THE DESIRED ORIENTATION 

No of joint Change in No of joint Change in Number of 

moves first joint angle moves second joint angle c yel es 

ı 10.0 2 10.0 8 

2 -10.0 3 -10.0 6 

1 10.0 2 10.0 1 

2 -10.0 3 -10.0 21 
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CHAPTERIII 

COMPUTER GRAPHICS SIMULATION 

Introduction 

The design of robot manipulators requires the study of a number of compli­

cated multilink mechanical systems as a controlled object. The major manipulator 

design task is to set up a workspace and see if the arın can accomplish the desired 

task. Often this leacls to multiple trials of custom designed grippers and some of 

the links. A company cannot aiford to buy several robots to compare performance 

characteristics or move these systems within their plants in order to find a suit­

able application. A number of computer graphic simulation programs have been 

clevelopecl to solve such problems [32], [5]. Simulation provides a way of visualizing 

robot kinematics without the use of real robots. The answers to questions arising 

in the preliminary design stages, in the development, and during the tests of robot 

manipulators and also during their use, can be obtained by simulation. 

Another area in which computer graphic simulation programs can be useful is 

in testing robot control algorithms. Using real robots to test a control algorithm 

may result in an undesired situation, for example, robots may collide accidentally 

with obstacles within the workcell. This type of problems can be prevented by first 

testing the algorithm via a computer graphic simulation program. 
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In this chapter, results of the control algorithm developed in Chapter II will be 

animateel using a computer graphics simulation program, namely ROBOSIM. First, 

an overview of ROBOSIM will be given, then simulation of the algorithm will be 

presentecl. 

An Overview of ROBOSIM 

Robosim was initially implemented in FORTRANona DEC VAX 11/780 com­

puter. The display terminals were a TEKTRONIX 4014 printer or a clynamic elis­

play system, such as Evans & Sutherland PS330 graphics terminal. The software 

structure of ROBOSIM is divicled into three levels. At the lowest level there are 

subroutines which do the simulation tasks such as vector and matrix computations 

and display control. The routines at the first level are inflexible, and data must 

be input in a specific format. At the second level there are routines about display 

management, subroutines to perform view-point and perspective transformations, 

and robot control subroutines, such as computation of the J acobian matrix. At 

the third level, robots and other workcell components are modelled, programmed 

dynamically, simulated and viewed by the use of ROBOSIM instructions. 

Recently, ROBOSIM was porteel to an HP350SRX graphics workstation [33]. 

The version on the HP350SRX system is fully compatible with the first implemen­

tation, but it is written in C. Using the HP350SRX graphics terminal increased the 

speed anel allawed three dimensional graphics with shading, perspective views anel 

colors. 
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In areler to simulate a robot system, the user should write a program consisting 

of third level ROBOSIM instructions [34]. Each link of the robot can be modelieel 

by a combination of simple geometric objects i. e., box, cylinder, cone ete .. Then 

these links are translated and/ or rotatecl, and combineel with other links to form 

the robot system. The type (fixed, prismatic or rotational) and configuration of 

the joints should be suppliecl by the user. Each link of the robot is storecl in a 

file. This file contains Denavit-Hartenberg parameters, joint type, homogeneous 

transformatian matrix Ai of the link, generalizecl inertia matrix of the link and 

visual representation of the link's geometry. After creating the links, robot matian 

can be animateel using either the VIEW-ROBOT or CONTROL-ROBOT command. 

Animatian of the Results of Fine Attitude Control Algorithm 

To animate the results of the fine attitude control algorithm, a space manip­

ulatar system was designeel using third level ROBOSIM commands, and matian 

of the system was monitored on HP350SRX graphics terminal. ROBOSIM sim­

ulation commands used in construction of the space manipulator system is given 

in Appendix C. Satellite main body is modelled by a cylinder, with an imbedded 

coordinate frame at the center of mass of the cylinder. The manipulator has 6 links. 

Each link İs rotational, and coordinate frames are assigned such that rotation occurs 

about the z axis. ROBOSIM simulation of the space manipulator system is shown 

in Figure 15 with satellite attitude angles and manipulator joint angles all equal to 

0.0°. Figures 16-19 show a cy<::,le of motion of the system. In Figure 16, the first 
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joint moves from 0.0° to 10.0° and the satellite main body rotates about the z axis 

in the opposite direction. This is an expected result of conservation of angular mo­

mentum. In a multibody system, if some part of the body rotates in one direction, 

the rest of the body rotates in the opposite direction. The rotations of the part.s 

of the body are inversely proportional to the moment of inertia ratios of the two 

parts of the body. In Figure 17, the second joint angle of the manipulator changes 

from 0.0° to 10.0°. In the following two figures, the first and second joint angles 

return to their original values, respectively. When the manipulator returns to the 

initial position in Figure 19, the orientation of the satellite main body is different 

than the orientation when the cycle started. Figure 20 shows the final position of 

the system when the cycle of rnotion is applied several times. This shows that, even 

though the rnanipulator returns to its initial position, orientation of the satellite 

main body has changed. 
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CHAPTERIV 

DISCUSSION AND FURTHER RESEARCH 

D iscussion 

In the near future space manipulators may replace astronauts in doing some 

of the jobs which astronauts do taday. Before space manipulators can be utilized 

effectively, the control algorithms to control the end effector of the manipulator must 

be developed. Since the base of the manipulator moves as a result of manipulator 

motions, control algorithms which were developed for fixed base manipulators can 

not be used and new algorithms are required. 

In this thesis, a modified resolved motion rate control algorithm was developed 

to control the end effector of the space manipulator. The assumptions made were 

that no external forces were applied to the system and the angular momenturo 

conservation law holds. A generalized Jacobian matrix of a space manipulator 

system was derived and it was shown that the manipulator end effector moves in 

the desir~d directian in spite of the rotations and translations of the satellite main 

body. 

The satellite main body rotates when the manipulator moves. If the satellite 

main body orientation becomes misaligned while clocking with anather satellite, its 

orientation must be corrected to accomplish the clocking process. Finding a way to 
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rotate the main body without using thrusters will reduce the cost of operations and 

increase the life of the satellite system. 

In this thesis, an algorithm was developed to rotate the main body using ma­

nipulator motions. It was assumed that the law of angular momentum conservation 

holds. It was also assumed that the attitude angle rotations due to manipulator mo­

tion were small, so they could be acideel vectorially. A computer simulation program 

was written and it was shown that it is possible to find a sequence of manipulator 

motions which rotate the satellite main body in the elesireel direction. Motion of 

the satellite main bocly was also animateel using the ROBOSIM computer graphic 

simulation program [34]. 

Further Research 

For further study, the following suggestions are presented for the reader's con­

sideration. 

1) In calculating the kinematics the system w as considered to be a free-fl.ying 

multibody system with no attitude control of the satellite main body. Sametimes 

it is necessary to control the satellite main body araund some axes and allow the 

main body to rotate araund the remaining axes. The algorithm developed in this 

thesis can be modified to keep the main body fixed araund some axes while allowing 

it to rotate araund the remaining axes. 

2) The kinematics algorithm was developed for a system with one manipulator 

arın. The algorithm can be extended to include a space manipulator system with 
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two or more manipulator arms. 

3) A space experiment may be ruined if there is a change in the orientation 

of the space vehicle. Motion of a manipulator arın (perhaps used in performing 

the experiment) may ca use rotation in the main body. In this case, motion of a 

second arın can be used to caneel out the effect of the ''working" arın. Thus, the 

working arın will be able to do its task without causing problems to its own or other 

experiments. The algorithm developed in this thesis can be extended to accomplish 

cooperative work of two or more manipulator arms. 

4) The fine attitude control algorithm was developed without consideration of 

any type of minimization criterion. The algorithm can be modified to determine 

the manipulator motions which minimize power consumption while rotating the 

satellite main body towards the desired orientation. This would reduce the cost 

of the operation. Other criteria might be considered include minimum time or 

minimum motion. 



APPENDIX A 

SPACE MANIPULATOR KINEMATICS PROGRAM 

C MAIN PROGRAM 
C THIS PROGRAM CALCULATES THE KINEMATICS OF A SPACE 
C MANIPULATOR USING A MODIFIED RESOLVED MOTION RATE 
C CONTROL ALGORITHM 

DOUBLEPRECISION AM(7),RO( 4),Rl( 4),R2( 4),R3( 4),R4( 4),R5( 4) 
DOUBLEPRECISION RPY( 4,4),Al( 4,4),A2( 4,4),A3( 4,4),A4( 4,4) 
DOUBLEPRECISION RPYB(4,4),RPYT(4,4);X,Y,Z,A6(4,4),R6( 4) 
COMMON AM,RO,Rl,R2,R3,R4,R5,R6,X,Y,Z,RPY,Al,A2,A3,A4,A5,A6 
COMMON RPYB,RPYT,PI 
DOUBLEPRECISION TA(6),ALPl,BETl,TAUl,RT( 4),PN( 4),ALP3,BET3 
DOUBLEPRECISION A5( 4,4),T6( 4,4),DJ(6,6),BIR,PI,ZEROM( 4,4) 
DOUBLEPRECISION Tl( 4,4),T2( 4,4),T3( 4,4),T4( 4,4),T5( 4,4) 
DOUBLEPRECISION QOX( 4,4),QOY( 4,4),QOZ( 4,4),RPYA( 4,4) 
DOUBLEPRECISION QA( 4,4),A56( 4,4),T5TA( 4,4),T65A( 4,4),AI40( 4,4) 
DOUBLEPRECISION Al2( 4,4),Al3( 4,4),A14( 4,4),Al5( 4,4),A16( 4,4) 
DOUBLEPRECISION T61A( 4,4),A23( 4,4),A24( 4,4),A25( 4,4),A26( 4,4) 
DOUBLEPRECISION A34( 4,4),A35( 4,4),A36( 4,4),A45( 4,4),A46( 4,4) 
DOUBLEPRECISION C(3,9),QX( 4),QY( 4),QZ( 4),QAL( 4),QB( 4),QTA( 4) 
DOUBLEPRECISION Ql( 4),Q2( 4),Q3( 4),Q4( 4),Q5( 4),Q6( 4),801(3,3) 
DOUBLEPRECISION C33(3,3),C39(3,9),C33I(3,3),HS(6,3),HM(6,6) 
DOUBLEPRECISION AIS( 4,4),AISI( 4,4),AIM(3,6),T(6),S0(3,3) 
DOUBLEPRECISION AISM(3,6),HSIM(6,6),AJ(6,6),TD( 4,6),TF(6) 
DOUBLEPRECISION TlX( 4,4);T2X( 4,4),T3X( 4,4),T4X( 4,4),T5X( 4,4) 
DOUBLEPRECISION Tl Y( 4,4),T2Y( 4,4),T3Y( 4,4),T4Y( 4,4),T5Y( 4,4) 
DOUBLEPRECISION TlZ( 4,4) ,T2Z( 4,4 ), T3Z( 4,4), T4Z( 4,4), T5Z( 4,4) 
DOUBLEPRECISION TlA( 4,4),T2A( 4,4),T3A( 4,4),T4A( 4,4),T5A( 4,4) 
DOUBLEPRECISION TlB( 4,4),T2B( 4,4),T3B( 4,4),T4B( 4,4),T5B( 4,4) 
DOUBLEPRECISION T6X( 4,4),T6Y( 4,4),T6Z( 4,4),T6A( 4,4),T6B( 4,4) 
DOUBLEPRECISION Tl TA( 4,4),T2TA( 4,4),T3TA( 4,4),T4TA( 4,4) 
DOUBLEPRECISION T6TA( 4,4),T62A( 4,4),T63A( 4,4),T64A( 4,4) 
DOUBLEPRECISION Tll( 4,4),T21( 4,4),T31( 4,4),T41( 4,4),T51( 4,4) 
DOUBLEPRECISION T22( 4,4 ),T32( 4,4),T42( 4,4),T52( 4,4 ),T33( 4,4) 
DOUBLEPRECISION T43( 4,4),T53( 4,4),T54( 4,4),T63( 4,4),T64( 4,4) 
DOUBLEPRECISION T61( 4,4),T62( 4,4),T65( 4,4),AI6( 4,4) 
DOUBLEPRECISION AIO( 4,4),T44( 4,4),T55( 4,4),T66( 4,4),T66A( 4,4) 
DOUBLEPRECISION All( 4,4),AI2( 4,4),AI3( 4,4),AI4( 4,4),AI5( 4,4) 
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DOUBLEPRECISION AIOO( 4,4),AI10( 4,4),AI20( 4,4),AI30( 4,4) 
DOUBLEPRECISION AI50( 4,4),AI60( 4,4),C1( 4),C2( 4),C3( 4),C4( 4) 
DOUBLEPRECISION C6( 4),C7( 4),C8( 4),C9( 4),AIOA(3),AI1K(3) 
DOUBLEPRECISION C5( 4),AI2K(3),AIOT(3),R60( 4),A6C( 4) 
DOUBLEPRECISION AI3K(3),AI4K(3),AI5K(3),AI6K(3),AIOB(3) 
DOUBLEPRECISION ROO( 4),R10( 4),R20( 4),R30( 4),R40( 4),R50( 4) 
DOUBLEPRECISION S1A( 4),S2A( 4),S3A( 4),S4A( 4),S5A( 4),S6A( 4) 
DOUBLEPRECISION SlB( 4),S2B( 4),S3B( 4),S4B( 4),S5B( 4),S6B( 4) 
DOUBLEPRECISION Sl T( 4),S2T( 4),S3T( 4),S4T( 4),S5T( 4),S6T( 4) 
DOUBLEPRECISION S ll( 4),821( 4),831( 4),841( 4),851( 4),861( 4) 
DOUBLEPRECISION 812( 4),822( 4),832( 4),842(4),852( 4),862( 4) 
DOUBLEPRECISION 813( 4),823( 4),833( 4),843( 4),853( 4),863( 4) 
DOUBLEPRECISION 814( 4),824( 4),834( 4),844( 4),854( 4),S64( 4) 
DOUBLEPRECISION 815( 4),S25( 4),835( 4),845( 4),855( 4),S65( 4) 
DOUBLEPRECISION 816( 4),826( 4),836( 4),846( 4),856( 4),S66( 4) 
DOUBLEPRECISION AOC( 4),A1C( 4),A2C( 4),A3C( 4),A4C( 4),A5C( 4) 
DOUBLEPRECISION B6C( 4),T6C( 4),CP60( 4),CP61( 4),CP62( 4) 
DOUBLEPRECISION CP.63( 4),CP64( 4),CP65( 4),CP66( 4) 
DOUBLEPRECISION BOC( 4),B1C( 4),B2C( 4),B3C( 4),B4C( 4),B5C( 4) 
DOUBLEPRECISION TOC( 4),T1C( 4),T2C( 4),T3C( 4),T4C( 4),T5C( 4) 
DOUBLEPRECISION CPlO( 4),CP20(4),CP30( 4),CP40( 4),CP50( 4) 
DOUBLEPRECISION CPll( 4),CP21( 4),CP31( 4),CP41( 4),CP51( 4) 
DOUBLEPRECISION CP12( 4),CP22( 4),CP32( 4),CP42( 4),CP52( 4) 
DOUBLEPRECISION CP13( 4),CP23( 4),CP33( 4),CP43( 4),CP53( 4) 
DOUBLEPRECISION CP14( 4),CP24( 4),CP34( 4),CP44( 4),CP54( 4) 
DOUBLEPRECISION CP15( 4),CP25( 4),CP35( 4),CP45( 4),CP55( 4) 
DOUBLEPRECISION CP16( 4),CP26( 4),CP36( 4),CP46( 4),CP56( 4) 
DOUBLEPRECISION POD(6),P1D( 6),ABT( 4,3),ABT1(6),XYZ( 4,3) 
DOUBLEPRECISION ALP2,BET2,TAU2,WOZ(3),WOX(3),WOY(3),DEL,TIM 
DATA POD,PlD/12*0.0/ 
DATA ROO,RlO,R20,R30,R40,R50,R60,ZEROM /44*0.0/ 
DATA QOX,QOY,QOZ,QA /64*0.0/ 
QOX(1,4)=1 
BIR=-1 
PI=ACOS(BIR) 
QOY(2,4)=1 
QOZ(3,4)=1 
QA(1,2)=-1 
QA(2,1)=1 
DEL=O.l 
TIM=O.O 

C READ INITIAL JOINT ANGLES, ATTITUDE ANGLES OF SATELLITE 



C POSITION OF SATELLITE, POSITION OF CENTER OF MASS OF 
C EACH LINK, INERTIA MATRIX OF EACH LINK 

READ (20,ı) (TA(I),I=ı,6),ALPı,BETı,TAUı,X,Y,Z 
ı FORMAT (3Fı2.4) 

READ (20,3) (RO(I),I=ı,4),(Rı(I),I= ı,4),(R2(I),I=ı,4) 
READ (20,3) (R3(I),I=ı,4),(R4(I),I=ı,4),(R5(I),I=ı,4) 
READ (20,3) (R6(I),I=ı,4),(RT(I),I=ı,4) 

3 FORMAT (4Fı2.4) 
READ (20,ıO) (AM(I),I=ı,7) 

ıo FORMAT (7Fı2.4) 
READ (20,345)( ( AIO(I,J),J = 1,4) ,I=ı,4 ),( ( Ail(I,J),J =ı,4),I= ı,4) 
READ (20,345)( (AI2(I,J),J =ı,4),I=ı,4 ),( ( AI3(I,J),J =ı,4),I= ı,4) 
READ ( 20,345)( ( AI4(I,J) ,J =ı ,4) ,I=ı,4) ,( ( AI5(I,J),J =ı,4) ,I= ı ,4) 
READ (20,345)( (AI6(I,J),J =ı,4),I=ı,4) 

345 FORMAT( 4Fı4.6) 
76 IF(TIM.GT.40.)STOP 

Xı=X 

Yı=Y 

Zı=Z 

ALP2=ALPı 

BET2=BETı 

TAU2=TAUı 

DO 67 I=ı,6 
67 T(I)=TA(I)*Pijı80 
C CALCULATE HSMOGENEOUS TRANSFORMATION MATRICES 

CALL AMAT (T,ALP2,BET2,TAU2) 
CALL MMUL (RPY,Aı,Tı) 
CALL MMUL (Tı,A2,T2) 
CALL MMUL (T2,A3,T3) 
CALL MMUL (T3,A4,T4) 
CALL MMUL (T4,A5,T5) 
CALL MMUL (T5,A6,T6) 

C· CALCULATE POSITION OF CENTER OF MASS OF EACH LINK 
C WRT INERTIAL FRAME. PN =POSITION OF END EFFECTOR 

CALL MVMUL (RPY,RO,ROO) 
CALL MVMUL (Tı,Rı,RıO) 
CALL MVMUL (T2,R2,R20) 
CALL MVMUL (T3,R3,R30) 
CALL MVMUL (T4,R4,R40) 
CALL MVMUL (T5,R5,R50) 
CALL MVMUL (T6,R6,R60) 
CALL MVMUL (T6,RT,PN) 
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WRITE (1 7,46) TAU1,BET1,ALP1 
WRITE (18,46) (RPY(I,4),I=1,3) 
WRITE (16,45)(TA(I),I=1,6) 
WRITE (19,46) (PN(I),I=1,3) 
DO 70 IJK=1,4 

C VELOCITY ALONG TRAJECTORY 
IF (TIM.LT.10.) P1D(1)=TIM 
IF (TIM.GT.30.) P1D(1)=40.-TIM 
IF (TIM.GE.lO.AND.TIM.lE.30.) P1D(1)=10. 

C CALCULATE DERIVATIVES OF HOMOGENEOUS MATRICES 
CALL MMUL (QA,RPY,RPYA) 
CALL MMUL (Al,A2,A12) 
CALL MMUL (A12,A3,A13) 
CALL MMUL (A13,A4,A14) 
CALL MMUL ( A14,A5,A15) 
CALL MMUL ( A15,A6,A16) 
CALL MMUL (RPY,QA,T61A) 
CALL MMUL (T61A,A16,T61) 
CALL MMUL (A2,A3,A23) 
CALL MMUL (A23,A4,A24) 
CALL MMUL (A24,A5,A25) 
CALL MMUL ( A25,A6,A26) 
CALL MMUL (T1,QA,T62A) 
CALL MMUL (T62A,A26,T62) 
CALL MMUL (A3,A4,A34) 
CALL MMUL (A34,A5,A35) 
CALL MMUL (A35,A6,A36) 
CALL MMUL (T2,QA,T63A) 
CALL MMUL (T63A,A36,T63) 
CALL MMUL (A4,A5,A45) 
CALL MMUL (A45,A6,A46) 
CALL MMUL (T3,QA,T64A) 
CALL MMUL (T64A,A46,T64} 
CALL MMUL (A5,A6,A56) 
CALL MMUL (T4,QA,T65A) 
CALL MMUL (T65A,A56,T65) 
CALL MMUL (T5,QA,T66A) 
CALL MMUL (T66A,A6,T66) 
CALL MMUL (QOX,A1,T1X) 
CALL MMUL (QOY,A1,T1Y) 
CALL MMUL (QOZ,A1,T1Z) 
CALL MMUL (RPYT,A1,T1TA) 
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CALL MMUL (RPYB,Al,TlB) 
CALL MMUL (RPYA,Al,TlA) 
CALL MMUL (QOX,A12,T2X) 
CALL MMUL (QOY,A12,T2Y) 
CALL MMUL (QOZ,A12,T2Z) 
CALL MMUL (RPYB,A12,T2B) 
CALL MMUL (RPYT,A12,T2TA) 
CALL MMUL (RPYA,A12,T2A) 
CALL MMUL (QOX,A13,T3X) 
CALL MMUL (QOY,A13,T3Y) 
CALL MMUL (QOZ,Al3,T3Z) 
CALL MMUL (RPYB,A13,T3B) 
CALL MMUL (RPYT,A13,T3TA) 
CALL MMUL (RPYA,A13,T3A) 
CALL MMUL (QOX,A14,T4X) 
CALL MMUL (QOY,A14,T4Y) 
CALL MMUL (QOZ,A14,T4Z) 
CALL MMUL (RPYB,A14,T4B) 
CALL MMUL (RPYT,A14,T4TA) 
CALL MMUL (RPYA,A14,T4A) 
CALL MMUL (QOX,A15,T5X) 
CALL MMUL (QOY,Al5,T5Y) 
CALL MMUL (QOZ,A15,T5Z) 
CALL MMUL (RPYB,A15,T5B) 
CALL MMUL (RPYT,A15,T5TA) 
CALL-MMUL (RPYA,A15,T5A) 
CALL MMUL (QOX,A16,T6X) 
CALL MMUL (QOY,A16,T6Y) 
CALL MMUL (QOZ,A16,T6Z) 
CALL MMUL (RPYB,A16,T6B) 
CALL MMUL (RPYA,A16,T6A) 
CALL MMUL (RPYT,A16,RPYT) 
CALL MMUL (T61A,Al,Tll) 
CALL MMUL (T61A,A12,T21) 
CALL MMUL (T62A,A2,T22) 
CALL MMUL (T61A,A13,T31) 
CALL MMUL (T62A,A23,T32) 
CALL MMUL (T63A,A3,T33) 
CALL MMUL (T61A,A14,T41) 
CALL MMUL (T62A,A24,T42) 
CALL MMUL (T63A,A34,T43) 
CALL MMUL (T64A,A4,T44) 
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CALL MMUL (T61A,A15,T51) 
CALL MMUL (T62A,A25,T52) 
CALL MMUL (T63A,A35,T53) 
CALL MMUL (T64A,A45,T54) 
CALL MMUL (T65A,A5,T55) 

C CALCULATE Q MATRICES GIVEN BY EQNS. 15-21 
CALL JAC (QX,T1X,T2X,T3X,T4X,T5X,T6X) 
CALL JAC (QY,T1Y,T2Y,T3Y,T4Y,T5Y,T6Y) 
CALL JAC (QZ,T1Z,T2Z,T3Z,T4Z,T5Z,T6Z) 
CALL JAC (QAL,T1A,T2A,T3A,T4A,T5A,T6A) 
CALL JAC (QB,T1B,T2B,'r:3B,T4B,T5B,T6B) 
CALL JAC (QTA,T1TA,T2TA,T3TA,T4TA,T5TA,T6TA) 
DO 653 1=1,3 
Q1(I)=O 
Q2(I)=0 
Q3(I)=O 
Q4(I)=0 
Q5(I)=O 
Q6(I)=0 
DO 653 J=1,4 
Q1(I)=Q 1(1)+ AM(2)*T11(I,J)*R1( J)+ AM(3)*T21(I,J)*R2( J)+ 
*AM( 4)*T31(I,J)*R3( J)+AM(5)*T41(I,J)*R4( J)+AM(6)*T51(I,J) 
**R5( J )+AM( 7) *T61 (I,J) *R6( J) 
Q2(I)=Q2(I)+ AM(3)*T22(I,J)*R2( J)+AM( 4 )*T32(I,J) *R3( J)+ AM( 5)* 
*T42( I,J) *R4( J)+ AM( 6) *T52(I,J) *R5( J)+ AM( 7)*T62(I,J) *R6( J) 
Q3(I)=Q3(I)+ AM( 4 )*T33(I,J)*R3( J)+ AM(5)*T43(I,J) *R4( J)+ 
*AM( 6)*T53(I,J)*R5( J)+AM(7)*T63(I,J)*R6( J) 
Q4(I)=Q4(I)+ AM(5)*T44(I,J)*R4( J)+AM( 6)*T54(I,J)*R5( J)+ 
* AM(7)*T64(I,J)*R6( J) 
Q5(I)=Q5(I)+ AM( 6)*T55(I,J)*R5( J)+ AM(7)*T65(I,J)*R6( J) 
Q6(I)=Q6(I)+AM(7)*T66(I,J)*R6( J) 

653 CONTINUE 
C CALCULATE C MATRIX GIVEN BY EQN 22. 

DO 500 1=1,3 
C33(I, 1 )=QX(I) 
C33(I,2)=QY(I) 
C33(I,3)=QZ(I) 
C39(I, 1 )=QTA(I) 
C39(I,2)=QB(I) 
C39(I,3)=QAL(I) 
C39(I,4)=Q1(I) 
C39(I,5)=Q2(I) 
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C39(I,6)=Q3(I) 
C39(I, 7)=Q4(I) 
C39(I,8)=Q5(I) 
C39(I,9)=Q6(I) 

500 CONTINUE 
C33(1,1 )=C33(1,1)+AM(1) 
C33(2,2)=C33(2,2)+AM(1) 
C33(3,3)=C33(3,3)+ AM(1) 
CALL DLINRG (3,C33,3,C33I,3) 
DO 501 I=1,3 
DO 501 J=1,9 
C(I,J)=O 
DO 501 K=l,3 
C(I,J)=C(I,J)-C33I(I,K)*C39(K,J) 

501 CONTINUE 
DO 504 I=1,3 
C1(I)=C(I,1) 
C2(I)=C(I,2) 
C3(I)=C(I,3) 
C4(I)=C(I,4) 
C5(I)=C(I,5) 
C6(I)=C(I,6) 
C7(I)=C(I, 7) 
C8(I)=C(I,8) 
C9(I)=C(I,9) 

504 CONTINUE 
ALP3=ALP2*PI/180 
BET3=BET2*PI/180 

C CALCULATE WO MATRIX GIVEN BY EQN 10 
WOX(l)=HS(4,1). 
WOX(2)=HS(5,1) 
WOX(3)=HS(6,1) 
WOY(l)=HS(4,2) 
WOY(2)=HS(5,2) 
WOY(3)=HS(5,2) 
WOZ(1 )=HS( 4,3) 
WOZ(2)=HS(5,3) 
WOZ(3)=HS(6,3) 

C CALCULATE HS AND HM MATRICES GIVEN BY EQNS 33-36 
HS( 4,1)=COS(BET3)*COS( ALP3) 
HS( 4,2)=-SIN(ALP3) 
HS(4,3)=0 
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HS(5, ı )=SIN( ALP3)*COS(BET3) 
HS(5,2)=COS( ALP3) 
HS(5,3)=0 
HS(6, ı )=-SIN(BET3) 
HS(6,2)=0 
HS(6,3)=ı 
DO 600 I=ı,3 
HS(I,ı)=O 
HS(I,2)=0 
HS(I,3)=0 
HM(I,ı)=O 
HM(I,2)=0 
HM(I,3)=0 
HM(I,4)=0 
HM(I,5)=0 
HM(I,6)=0 
DO 601 J=ı,4 
HS(I, ı )=HS(I, ı )+(T6TA(I,J)+ T6X(I,J)*C(ı, ı)+ T6Y(I,J)* 
*C(2,ı )+T6Z(I,J)*C(3,ı) )*RT( J) 
HS(I,2)=HS(I,2)+(T6B(I,J)+T6X(I,J)*C(ı,2)+T6Y(I,J)* 
*C(2,2)+ T6Z(I,J)*C(3,2) )*RT( J) 
HS(I,3)=HS(I,3)+(T6A(I,J)+T6X(I,J)*C(ı,3)+T6Y(I,J)* 
*C(2,3)+T6Z(I,J)*C(3,3) )*RT( J) 
HM(I, ı )=HM(I, 1 )+(T6l(I,J)+ T6X(I,J)*C(l ,4 )+ T6Y(I,J)* 
*C(2,4)+T6Z(I,J)*C(3,4) )*RT( J) 
HM(I,2)=HM(I,2)+(T62(I,J)+T6X(I,J)*C(1,5)+T6Y(I,J)* 
*C(2,5)+ T6Z(I,J)*C(3,5) )*RT( J) 
HM(I,3)=HM(I,3)+(T63(I,J)+T6X(I,J)*C(1,6)+T6Y(I,J)* 
*C(2,6)+T6Z(I,J)*C(3,6))*RT( J) 
HM(I,4)=HM(I,4)+(T64(I,J)+T6X(I,J)*C(1,7)+T6Y(I,J)* · 
*C(2, 7)+T6Z(I,J)*C(3, 7))*RT( J) 
HM(I,5)=HM(I,5)+(T65(I,J)+T6X(I,J)*C(1,8)+T6Y(I,J)* 
*C(2,8 )+ T6Z(I,J)*C(3,8) )*RT( J) 
HM(I,6)=HM(I,6)+(T66(I,J)+T6X(I,J)*C(1,9)+T6Y(I,J)* 
*C(2,9 )+ T6Z(I,J)*C( 3,9)) *RT( J) 

601 CONTINUE 
HM(I +3, 1 )=Tl(I,3) 
HM(I+3,2)=T2(I,3) 
HM(I+3,3)=T3(I,3) 
HM(I+3,4)=T4(I,3) 
HM(I+3,5)=T5(I,3) 
HM(I+3,6)=T6(I,3) 

73 



74 

600 CONTINUE 
C CALCULATE INERTIA MATRICES IN FIRST TERMS OF EQNS 41-44 

CALL INERT2 (RPY,AIO,AIOO) 
CALL INERT2 (Tl,Ail,AilO) 
CALL INERT2 (T2,AI2,AI20) 
CALL INERT2 (T3,AI3,AI30) 
CALL INERT2 (T4,AI4,AI40) 
CALL INERT2 (T5,AI5,AI50) 
CALL INERT2 (T6,AI6,AI60) 
DO 506 1=1,4 
DO 506 J=1,4 
AI50(I,J)=AI50(I,J)+AI60(I,J) 
AI40(I,J)=AI40(I,J)+AI50(I,J) 
AI30(I,J)=AI30(I,J)+AI40(I,J) 
AI20(I,J)=AI20(I,J)+AI30(I,J) 
Ail O(I,J )=Ail O(I,J )+ AI20(I,J) 
AIOO(I,J)=AIOO(I,J)+AilO(I,J) 

506 CONTINUE 
C CALCULATE THIRD TERMS IN EQNS 41-44 

CALL SC (T1A,C(1,3),T1X,C(2,3),T1 Y,C(3,3),T1Z,R1,S1A) 
CALL SC(T2A,C(1,3),T2X,C(2,3),T2Y,C(3,3),T2Z,R2,S2A) 
CALL SC(T3A,C(1,3),T3X,C(2,3),T3Y,C(3,3),T3Z,R3,S3A) 
CALL SC(T4A,C(1,3),T4X,C(2,3),T4Y,C(3,3),T4Z,R4,S4A) 
CALL SC(T5A,C( 1,3) ,T5X,C(2,3) ,T5Y ,C(3,3),T5Z,R5,S5A) 
CALL SC(T6A,C(1,3),T6X,C(2,3),T6Y,C(3,3),T6Z,R6,S6A) 
CALL SC (TlB,C(1,2),TlX,C(2,2),T1Y,C(3,2),T1Z,Rl,SlB) 
CALL SC(T2B,C(1,2),T2X,C(2,2),T2Y,C(3,2),T2Z,R2,S2B) 
CALL SC(T3B,C(1,2),T3X,C(2,2),T3Y,C(3,2),T3Z,R3,S3B) 
CALL SC(T4B,C(1,2),T4X,C(2,2),T4Y,C(3,2),T4Z,R4,S4B) 
CALL SC(T5B,C(1,2),T5X;C(2,2),T5Y,C(3,2),T5Z,R5,S5B) 
CALL SC(T6B,C(1,2),T6X,C(2,2),T6Y,C(3,2),T6Z,R6,S6B) 
CALL SC (T1TA,C(l,l),T1X,C(2,1),TlY,C(3,1),TlZ,Rl,SlA) 
CALL SC(T2TA,C(l,l),T2X,C(2,1),T2Y,C(3,1),T2Z,R2,S2A) 
CALL SC(T3TA,C(l,l),T3X,C(2,1),T3Y,C(3,1),T3Z,R3,S3A) 
CALL SC(T4TA,C(l,l),T4X,C(2,1),T4Y,C(3,1),T4Z,R4,S4A) 
CALL SC(T5TA,C(1,1),T5X,C(2,1),T5Y,C(3,1),T5Z,R5,S5A) 
CALL SC(T6TA,C(1,1),T6X,C(2,1),T6Y,C(3,1),T6Z,R6,S6A) 
CALL SC (Tll,C(1,4),T1X,C(2,4),T1Y,C(3,4),TlZ,R1,Sll) 
CALL SC(T21,C(1,4),T2X,C(2,4),T2Y,C(3,4),T2Z,R2,S21) 
CALL SC(T31,C(1,4),T3X,C(2,4),T3Y,C(3,4),T3Z,R3,S31) 
CALL SC(T41,C(1,4),T4X,C(2,4),T4Y,C(3,4),T4Z,R4,S41) 
CALL SC(T51,C(1,4),T5X,C(2,4),T5Y,C(3,4);T5Z,R5,S51) 



CALL SC(T61,C(1,4),T6X,C(2,4),T6Y,C(3,4),T6Z,R6,S61) 
CALL SC(ZEROM,C(1,5),T1X,C(2,5),Tl Y ,C(3,5), T1Z,Rl,S12) 
CALL SC(T22,C(1,5),T2X,C(2,5),T2Y,C(3,5),T2Z,R2,S22) 
CALL SC(T32,C(1,5),T3X,C(2,5),T3Y,C(3,5),T3Z,R3,S32) 
CALL SC(T42,C(1,5),T4X,C(2,5),T4Y,C(3,5),T4Z,R4,S42) 
CALL SC(T52,C(1,5),T5X,C(2,5),T5Y,C(3,5),T5Z,R5,S52) 
CALL SC(T62,C(1,5),T6X,C(2,5),T6Y,C(3,5),T6Z,R6,S62) 
CALL SC(ZEROM,C(1,6),T1X,C(2,6),Tl Y ,0(3,6), T1Z,Rl,S13) 
CALL SC(ZEROM,C(1,6),T2X,C(2,6),T2Y,C(3,6),T2Z,R2,S23) 
CALL SC(T33,C(1,6),T3X,C(2,6),T3Y,C(3,6),T3Z,R3,S33) 
CALL SC(T43,C(1,6),T4X,C(2,6),T4Y,C(3,6),T4Z,R4,S43) 
CALL SC(T53,C(1,6),T5X,C(2,6),T5Y,C(3,6),T5Z,R5,S53) 
CALL SC(T63,C(1,6),T6X,C(2,6),T6Y,C(3,6),T6Z,R6,S63) 
CALL SC(ZEROM,C(1,7),T1X,C(2,7),Tl Y,C( 4,7),T1Z,Rl,S14) 
CALL SC(ZEROM,C(1,7),T2X,C(2,7),T2Y,C( 4,7),T2Z,R2,S24) 
CALL SC(ZEROM,C(1,7),T3X,C(2,7),T3Y,C( 4,7),T3Z,R4,S34) 
CALL SC(T44,C(1,7),T4X,C(2,7),T4Y,C(4,7),T4Z,R4,S44) 
CALL SC(T54,C(l, 7),T5X,C(2, 7),T5Y,C( 4,7),T5Z,R5,S54) 
CALL SC(T64,C(1,7),T6X,C(2,7),T6Y,C(4,7),T6Z,R6,S64) 
CALL SC(ZEROM,C(1,8),T1X,C(2,8),Tl Y ,C( 4,8),T1Z,Rl,S15) 
CALL SC(ZEROM,C(1,8),T2X,C(2,8),T2Y,C( 4,8),T2Z,R2,S25) 
CALL SC(ZEROM,C(1,8),T3X,C(2,8),T3Y,C( 4,8),T3Z,R4,S35) 
CALL SC(ZEROM,C(1,8),T4X,C(2,8),T4Y ,C( 4,8), T4Z,R4,S45) 
CALL SC(T55,C(1,8),T5X,C(2,8),T5Y,C( 4,8),T5Z,R5,S55) 
CALL SC(T65,C(1,8),T6X,C(2,8),T6Y,C(4,8),T6Z,R6,S65) 
CALL SC(ZEROM,C(1,9),T1X,C(2,9),Tl Y ,C( 4,9),T1Z,Rl,S16) 
CALL SC(ZEROM,C(1,9),T2X,C(2,9),T2Y ,C( 4,9) ,T2Z,R2,S26) 
CALL SC(ZEROM,C(1,9),T3X,C(2,9),T3Y,C( 4,9),T3Z,R4,S36) 
CALL SC(ZEROM,C(1,9),T4X,C(2,9),T4Y ,C( 4,9),T4Z,R4,S46) 
CALL SC(ZEROM,C(1,9),T5X,C(2,9),T5Y ,C( 4,9),T5Z,R5,S56) 
CALL SC(T66,C(1,9),T6X,C(2,9),T6Y,C( 4,9),T6Z,R6,S66) 

C CALCULATE CROSS PRODUCT TERMS IN EQNS 41-44. 
CALL CROPRO (ROO,Cl,TOC) 
CALL CROPRO (RlO,SlA,AlC) 
CALL CROPRO (R20,S2A,A2C) 
CALL CROPRO (R30,S3A,A3C) 
CALL CROPRO (R40,S4A,A4C) 
CALL CROPRO (R50,S5A,A5C) 
CALL CROPRO (R60,S6A,A6C) 
CALL CROPRO (ROO,C2,BOC) 
CALL CROPRO (RlO,SlB,BlC) 
CALL CROPRO (R20,S2B,B2C) 
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CALL CROPRO (R30,S3B,B3C) 
CALL CROPRO (R40,S4B,B4C) 
CALL CROPRO (R50,S5B,B5C) 
CALL CROPRO (R60,S6B,B6C) 
CALL CROPRO (ROO,C3,AOC) 
CALL CROPRO (Rlü,Sl T,TlC) 
CALL CROPRO (R20,S2T,T2C) 
CALL CROPRO (R30,S3T,T3C) 
CALL CROPRO (R40,S4T,T4C) 
CALL CROPRO (R50,S5T,T5C) 
CALL CROPRO (R60,S6T,T6C) 
CALL CROPRO (ROO,C4,CP10) 
CALL CROPRO (ROO,C5,CP20) 
CALL CROPRO (ROO,C6,CP30) 
CALL CROPRO (ROO,C7,CP40) 
CALL CROPRO (ROO,C8,CP50) 
CALL CROPRO (ROO,C9,CP60) 
CALL CROPRO (RlO,Sll,CPll) 
CALL CROPRO (R20,S21,CP21) 
CALL CROPRO (R30,S31,CP31) 
CALL CROPRO (R40,S41,CP41) 
CALL CROPRO (R50,S51,CP51) 
CALL CROPRO (R60,S61,CP61) 
CALL CROPRO (R10,Sl2,CP12) 
CALL CROPRO (R20,S22,CP22) 
CALL CROPRO (R30,S32,CP32) 
CALL CROPRO (R40,S42,CP42) 
CALL CROPRO (R50,S52,CP52) 
CALL CROPRO (R60,S62,CP62) 
CALL CROPRO (Rlü,S13,CP13) 
CALL CROPRO (R20,S23,CP23) 
CALL CROPRO (R30,S33,CP33) 

· CALL CROPRO (R40,S43,CP43) 
CALL CROPRO (R50,S53,CP53) 
CALL CROPRO (R60,S63,CP63) 
CALL CROPRO (R10,S14,CP14) 
CALL CROPRO (R20,S24,CP24) 
CALL CROPRO (R30,S34,CP34) 
CALL CROPRO (R40,S44,CP44) 
CALL CROPRO (R50,S54,CP54) 
CALL CROPRO (R60,S64,CP64) 
CALL CROPRO (Rlü,S15,CP15) 
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c 

583 
c 

CALL CROPRO (R20,S25,CP25) 
CALL CROPRO (R30,S35,CP35) 
CALL CROPRO (R40,S45,CP45) 
CALL CROPRO (R50,S55,CP55) 
CALL CROPRO (R60,S65,CP65) 
CALL CROPRO (R10,S16,CP16) 
CALL CROPRO (R20,S26,CP26) 
CALL CROPRO (R30,S36,CP36) 
CALL CROPRO (R40,S46,CP46) 
CALL CROPRO (R50,S56,CP56) 
CALL CROPRO (R60,S66,CP66) 
CALCULATE EQNS 41-44 
DO 583 1=1,3 
AIOA(I)=O 
AIOB(I)=O 
AIOT(I)=O 
AilK(I)=O 
AI2K(I)=0 
AI3K(I)=0 
AI4K(I)=O 
AI5K(I)=0 
AI6K(I)=O 
DO 583 J=1,3 
AIOT(I)=AIOT(I)+ AIOO(I,J)*HS( J +3, 1) 
AIOB(I)=AIOB(I)+AIOO(I,J)*HS( J +3,2) 
AIOA(I)=AIOA(I)+ AIOO(I,J)*HS( J +3,3) 
AI1K(I)=AI1K(I)+AI10(I,J)*T1( J ,3) 
AI2K(I)=AI2K(I)+ AI20(I,J)*T2( J ,3) 
AI3K(I)=AI3K(I)+ AI30(I,J)*T3( J ,3) 
AI4K(I)=AI4K(I)+ AI40(I,J)*T4( J ,3) 
AI5K(I)=AI5K(I)+ AI50(I,J)*T5( J ,3) 
AI6K(I)=AI6K(I)-t-AI60(I,J)*T6( J ,3) 
CONTINUE 
CALCULATE IS AND IM MATRICES GIVEN BY EQN 46 
DO 510 1=1,3 
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AIS(I,3)=AIOA(I)+AM(1)* AOC(I)+AM(2)* A1C(I)+AM(3)* A2C(I)+ 
*AM( 4)* A3C(I)+AM(5)* A4C(I)+AM(6)* A5C(I)+AM(7)* A6C(I) 
AIS(I,2)=AIOB(I)+AM(1)*BOC(I)+AM(2)*B1C(I)+AM(3)*B2C(I)+ 
*AM( 4) *B3C(I)+ AM( 5) *B4C(I)+ AM( 6) *B5C(I)+ AM( 7)*B6C(I) 
AIS(I,l)=AIOT(I)+AM(l)*TOC(I)+AM(2)*TlC(I)+AM(3)*T2C(I)+ 
*AM( 4)*T3C(I)+AM(5)*T4C(I)+AM(6)*T5C(I)+AM(7)*T6C(I) 
AIM(I,l)=AI1K(I)+AM(l)*CP10(I)+AM(2)*CP11(I)+AM(3)*CP21(I)+ 
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*AM( 4 )*CP31(I)+AM( 5)*CP41(I)+AM(6)*CP5ı(I)+AM(7)*CP61(I) 
AIM(I,2 )=AI2K(I) +AM( ı)* CP20(I)+ AM( 2) * CP ı 2(1)+ AM( 3) *CP22(I)+ 
*AM( 4 )*CP32(I)+AM( 5 )*CP42(I)+ AM( 6)*CP52(I)+ AM(7)*CP62(I) 
AIM(I,3)=AI3K(I)+ AM( ı )*CP30(I)+ AM( 2) *CP 13( I)+ AM(3) *CP23(I)+ 
*AM( 4)*CP33(I)+AM( 5)*CP43(I)+AM(6)*CP53(I)+ AM(7)*CP63(I) 
AIM(I,4 )=AI4K(I)+ AM( 1 )*CP40(I)+ AM(2)*CP 14(1)+ AM(3)*CP24(I)+ 
*AM( 4 )*CP34(I) +AM( 5 )*CP44(I)+ AM( 6)*CP 54(I)+ AM(7)*CP64(I) 
AIM(I,5)=AI5K(I)+AM(ı)*CP50(I)+AM(2)*CP15(I)+AM(3)*CP25(I)+ 
*AM( 4 )*CP35(I)+AM( 5)*CP45(I)+ AM( 6)*CP 55(I)+ AM(7)*CP65(I) 
AIM(I,6)=AI6K(I) +AM( 1 )*CP60(I)+ AM( 2) * CP ı 6(I)+ AM( 3) *CP26(I)+ 
*AM( 4 )*CP36(I)+AM( 5 )*CP46(I)+ AM( 6)*CP 56(I)+ AM(7)*CP66(I) 

510 CONTINUE 
C CALCULATE GENERALIZED INERTIA MATRIX GIVEN BY EQNS 
C 47 AND 48. AJ=GENERALIZED INERTIA MATRIX 
C DJ=INVERSE OF GENERALIZED INERTIA MATRIX 

CALL DLINRG(3,AIS,3,AISI,3) 
DO 30 I=ı,3 
DO 30 J=ı,6 
AISM(I,J)=O 
DO 30 K=ı,3 
AISM(I,J)=AISM(I,J)+AISI(I,K)* AIM(K,J) 

30 CONTINUE 
DO 32 1=1,6 
DO 32 J=ı,6 
HSIM(I,J)=O 
DO 31 K=1,3 
HSIM(I,J)=HSIM(I,J)+HS(I,K)* AISM(K,J) 

31 CONTINUE 
AJ(I,J)=HM(I,J)-HSIM(I,J) 

32 CONTINUE 
C DLINRG IS A SUBROUTINE IN IMSL LIBRARY WHICH SOLVES 
C SYSTEMS OF LINEAR EQUATIONS 

CALL DLINRG(6,AJ ,6,DJ ,6) 
C USE RUNGE-KUTTA METHOD TO INTEGRATE EQN 49 

DO 61 I=1,6 
TD(IJK,I)=O 
DO 6ı J=1,6 
TD(IJK,I)=DJ(I,J)*(PlD( J)-POD( J))*DEL+ TD(IJK,I) 

6ı CONTINUE 
DO 62 I=ı,6 
ABTl(I)=O. 
DO 62 J=1,6 



62 ABT1(1)=DJ(1,J)*(P1D( J)-POD( J) )*DEL+ABTl(I) 
DO 63 1=1,3 
ABT(IJK,I)=O. 
DO 63 J=l,6 

63 ABT(IJK,I)=ABT(IJK,I)-A1SM(I,J)* ABT1( J) 
DO 64 1=1,3 
XYZ(IJK,I)=O. 
DO 64 J=1,3 

64 XYZ(IJK,I)=C(I,J)* ABT(IJK,J)+XYZ(IJK,1) 
DO 65 1=1,3 
DO 65 J=4,9 

65 XYZ(IJK,I)=XYZ(IJK,I)+C(I,J)*tD(IJK,( J-3)) 
IF (IJK.EQ.4) GO tO 72 
IF (IJK.EQ.2) GOtO 75 
IF (IJK.EQ.3) GOtO 73 
TIM=TIM+DEL/2 

75 DO 60 1=1,6 
60 TF(I)=TA(I)+TD(1JK,I)/2 

X=X1+XYZ(1JK,1)/2 
Y=Y1+XYZ(IJK,2)/2 
Z=Zl+XYZ(IJK,3)/2 
ALP2=ALP1+ABT(1JK,3)/2 
BET2=BET1 + ABT(1JK,2) /2 
TAU2=TAU1+ABT(1JK,l)/2 
GOtO 74 

73 DO 80 1=1,6 
80 TF(I)=TA(I)+TD(IJK,1) 

X=Xl+XYZ(IJK,1) 
Y=Yl+XYZ(1JK,2) 
Z=Zl+XYZ(1JK,3) 
ALP2=ALP1+ABT(IJK,3) 
BET2=BET1+ABT(IJK,2). 
TAU2=TAU1+ABT(İJK,l) 
T1M=T1M+DEL/2 

74 DO 68 1=1,6 
68 TF(1)=TF(1)*P1/180 

CALL AMAT (TF,ALP2,BET2,TAU2) 
CALL MMUL (RPY,Al,Tl) 
CALL MMUL (Tl,A2,T2) 
CALL MMUL (T2,A3,T3) 
CALL MMUL (T3,A4,T4) 
CALL MMUL (T4,A5,T5) 
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CALL MMUL (T.S,A6,T6) 
CALL MVMUL (RPY,RO,ROO) 
CALL MVMUL (T1,R1,R10) 
CALL MVMUL (T2,R2,R20) 
CALL MVMUL (T3,R3,R30) 
CALL MVMUL (T4,R4,R40) 
CALL MVMUL (T5,R5,R50) 
CALL MVMUL (T6,R6,R60) 
CALL MVMUL (T6,RT,PN) 

70 CONTINUE 
72 DO 71 I=1 ,6 
71 TA(I)=TA(I)+(TD(1,I)+TD(2,I)*2+TD(3,I)*2+ TD( 4,I)) /6 

X=X1+(XYZ(l,l )+XYZ(2,1 )*2+XYZ(3,1 )*2+XYZ( 4,1 ))/6 
Y = Y1+(XYZ(1,2)+XYZ(2,2)*2+XYZ(3,2)*2+XYZ( 4,2))/6 
Z=Z1+(XYZ(1,3)+XYZ(2,3)*2+XYZ(3,3)*2+XYZ(4,3))/6 
ALP1=ALP1 +( ABT(1,3)+ABT(2,3)*2+ABT(3,3)*2+ABT( 4,3))/6 
BET1=BET1 +( ABT(1,2)+ABT(2,2)*2+ABT(3,2)*2+ABT( 4,2) )/6 
TAUl=TAU1 +( ABT(1,1 )+ABT(2,1 )*2+ABT(3,1 )*2+ ABT( 4,1) )/6 
GOtO 76 

45 FORMAT(6(2X,F14.7)) 
46 FORMAT(3(2X,F14.7)) 

END 
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SUBROUTINE JAC(QRO,TX1,TX2,TX3,TX4,TX5,TX6) 
DOUBLEPRECISION AM(7),RO( 4),R1( 4),R2( 4),R3( 4),R4( 4),R5( 4),Z 
DOUBLEPRECISION RPY( 4,4),A1( 4,4),A2( 4,4),A3( 4,4),A4( 4,4) 
DOUBLEPRECISION QRO( 4),TX1( 4,4),TX2( 4,4),TX3( 4,4),TX4( 4,4) 
DOUBLEPRECISION TX5( 4,4),TX6( 4,4),A5( 4,4),A6( 4,4),R6( 4),X,Y 
COMMON AM,RO,Rl,R2,R3,R4,R5,R6,X,Y,Z,RPY,Al,A2,A3,A4,A5,A6 
DO 14 I=1,4 
QRO(I)=O 
DO 15 J=l,4 
QRO(I)=QRO(I)+AM(2)*TXl(I,J)*R1(J)+ 
* AM(3)*TX2(I,J)*R2( J)+AM( 4)*TX3(I,J)*R3( J)+AM( 5)*TX4(I,J)*R4( J)+ 
* AM(6)*TX5(I,J)*R5(J)+AM(7)*TX6(I,J)*R6(J). 

15 CONTINUE 
14 CONTINUE 

RETURN 
END 
SUBROUTINE MATTR4(A,D) 
DOUBLEPRECISION A( 4,4),D( 4,4) 
DO 7 I=1,4 
DO 8 J=1,4 



D(I,J)=A( J ,I) 
CONTINUE 
CONTINUE 
RETURN 
END 
SUBROUTINE AMAT (T,ALPl,BETl,TAUl) 
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DOUBLEPRECISION AM(7),RO( 4),Rl( 4),R2( 4),R3( 4),R4( 4),R5( 4),Z 
DOUBLEPRECISION RPY( 4,4),Al( 4,4),A2( 4,4),A3( 4,4),A4( 4,4) 
DOUBLEPRECISION RPYB( 4,4),RPYT( 4,4),A5( 4,4),A6( 4,4),R6( 4),X,Y 
COMMON AM,RO,Rl,R2,R3,R4,R5,R6,X,Y ,Z,RPY ,A1,A2,A3,A4,A5,A6 
COMMON RPYB,RPYT,PI 
DOUBLEPRECISION T(6),ALP,BET,TAU,ALP1,BET1,TAU1,PI 
DATA A1,A2,A3,A4,A5,A6 /96*0.0/ 
ALP=ALP1 *PI/180 
BET=BET1 *PI/180 
TA U =TA U1 *PI/180 
A1(1,1 )=C0S(T(1)) 
A1(1,3)=-SIN(T(1)) 
A1(2,1 )=SIN(T(1 )) 
A1(2,3)=C0S(T(1)) 
A1(3,2)=-1 
A1(3,4)=39.02 
A1(4,4)=1 
A2(1,1 )=COS(T(2)) 
A2(1,2)=-SIN(T(2)) 
A2(2,1)=SIN(T(2)) 
A2(2,2)=C0S(T(2)) 
A2(3,3)=1 
A2(4,4)=1 
A2(1,4)=45*COS(T(2)) 
A2(2,4 )=45*SIN(T(2)) 
A2(3,4)=25.0 
A3(1,l)=COS(T(3)) 
A3(1,3)=SIN(T(3)) 
A3(1,4)=-2.0*COS(T(3)) 
A3(2,1)=SIN(T(3)) 
A3(2,3)=-COS(T(3)) 
A3(2,4)=-2.0*SIN(T(3)) 
A3(3,2)=1 
A3(4,4)=1 
A4(1,1)=COS(T( 4)) 
A4(1,3)=-SIN(T( 4)) 



A4(2,1 )=SIN(T( 4)) 
A4(3,4)=45.0 
A4(2,3)=COS(T( 4)) 
A4(3,2)=-1 
A4( 4,4)=1 
A5(1,1)=COS(T(5)) 
A5(1,3)=SIN(T( 5)) 
A5(2,1 )=SIN(T( 5)) 
A5(2,3)=-COS(T(5)) 
A5(3,2)=1 
A5(4,4)=1 
A6(1,1 )=COS(T(6)) 
A6(1 ,2)=-SIN(T( 6)) 
A6(2,1 )=SIN(T( 6)) 
A6(2,2)=COS(T(6)) 
A6(3,3)=1 
A6(3,4)=5.625 
A6( 4,4)=1 
RPY(1,1 )=COS( ALP)*COS(BET) 
RPY(1,2)=COS(ALP)*SIN(BET)*SIN(TAU)-COS(TAU)*SIN(ALP) 
RPY(1,3)=COS(ALP)*SIN(BET)*COS(TAU)+SIN(ALP)*SIN(TAU) 
RPY(2,1)=SIN(ALP)*COS(BET) 
RPY(2,2)=SIN(ALP)*SIN(BET)*SIN(TAU)+COS(ALP)*COS(TAU) 
RPY(2,3)=SIN(ALP)*SIN(BET)*COS(TAU)-SIN(TAU)*COS(ALP) 
RPY(3,1 )=-SIN(BET) 
RPY(3,2)=COS(BET)*SIN(TAU) 
RPY(3,3)=COS(BET)*COS(TAU) 
RPY(1,4)=X 
RPY(2,4)=Y 
RPY(3,4)=Z 
RPY(4,4)=1 
RPYB(l,l)=-COS(ALP)*SIN(BET) 
RPYB(1,2)=COS(ALP)*COS(BET)*SIN(TAU) 
RPYB(1,3)=COS(ALP)*COS(BET)*COS(TAU) 
RPYB(2,1)=-SIN(ALP)*SIN(BET) 
RPYB ( 2,2 )=SIN (ALP)* C O S(BET) *SIN (TA U) 
RPYB(2,3)=SIN(ALP)*COS(BET)*COS(TAU) 
RPYB(3,1)=-COS(BET) 
RPYB(3,2)=-SIN(BET)*SIN(TAU) 
RPYB(3,3)=-SIN(BET)*COS(TAU) 
RPYT(1,2)=COS(ALP)*SIN(BET)*COS(TAU)+SIN(TAU)*SIN(ALP) 
RPYT(1,3)=-COS(ALP)*SIN(BET)*SIN(TAU)+SIN(ALP)*COS(TAU) 
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RPYT(2,2)=S1N(ALP)*S1N(BET)*COS(TAU)-COS(ALP)*S1N(TAU) 
RPYT(2,3)=-S1N(ALP)*S1N(BET)*S1N(TAU)-COS(TAU)*COS(ALP) 
RPYT(3,2)=COS(BET)*COS(TAU) 
RPYT(3,3)=-COS(BET)*S1N(TAU) 
RETURN 
END 
SUBROUT1NE CROPRO (RC,S,CP) 
DOUBLEPREC1S10N RC( 4),S( 4),CP( 4) 
CP(ı )=RC(2)*S(3)-S(2)*RC(3) 
CP(2)=RC(3)*S(ı )-RC(ı )*S(3) 
CP(3)=RC(ı )*S(2)-RC(2)*S(ı) 
RETURN 
END 
SUBROUT1NE 1NERT2(A,B,C) 
DOUBLEPREC1S10N A( 4,4),B( 4,4),C( 4,4),D( 4,4),E( 4,4) 
CALL MATTR4(A,D) 
CALL MMUL(B,D,E) 
CALL MMUL(A,E,C) 
RETURN 
END 
SUBROUT1NE MMUL (B,A,F) 
DOUBLEPREC1S10N A( 4,4),B( 4,4),F( 4,4) 
DO ı 1=ı,4 

DO ı J=ı,4 

F(1,J)=O 
DO ı K=ı,4 

ı F(1,J)=F(1,J)+B(1,K)* A(K,J) 
RETURN 
END 
SUBROUT1NE MMUL3 (B,A,C) 
DOUBLEPREC1S10N A( 4,4),B( 4,4),C( 4,4) 
DO ı 1=ı,3 
DO ı J=ı;3 
C(1,J)=O 
DO ı K=ı,3 

ı C(1,J)=C(1,J)+B(I,K)* A(K,J) 
RETURN 
END 
SUBROUTINE MVMUL (A,B,C) 
DOUBLEPRECISION A( 4,4),B( 4),C( 4) 
DO ı I=ı,4 
C(I)=O. 
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DO ı J=ı,4 

ı C(I)=C(I)+A(I,J)*B( J) 
RETURN 
END 
SUBROUTINE SC (A,B,C,D,E,F,G,R,S) 
DOUBLEPRECISION A( 4,4),B,C( 4,4),D,E( 4,4),F,G( 4,4) 
DOUBLEPRECISION R(4),S(4) 
DO ı I=ı,3 

S(I)=O 
DO ı J=1,4 

1 S(I)=S(I)+( A(I,J)+B*C(I,J)+D*E(I,J)+F*G(I,J) )*R( J) 
RETURN 
END 
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APPENDIX B 

FINE ATTITUDE CONTROL PROGRAM 

C MAIN PROGRAM 
DOUBLEPRECISION AM( 4),Rl( 4),R2( 4),R3( 4) 
DOUBLEPRECISION Al( 4,4),A2( 4,4),A3( 4,4) 
DOUBLEPRECISION W0(3,3),DEL,T1D(3),RO( 4) 
COMMON AM,RO,Rl,R2,R3,Al,A2,A3,PI,WO 
COMMON AIO,AI1,AI2,AI3,TM,QA,DEL,TlD 
DOUBLEPRECISION T(3),AIO( 4,4),TM 
DOUBLEPRECIS.ION ALPl,BETl,TAUl,BIR,PI,QA( 4,4) 
DOUBLEPRECISION Ail( 4,4),AI2( 4,4),AI3( 4,4),TAU6 
DOUBLEPRECISION FO,FF,A,TF,BETD,ALPD,TAUD,BET6,ALP6 
DOUBLEPRECISION BETI,ALPI,TAUI,ALPF,BETF,TAUF 
DOUBLEPRECISION CRA( 4,2),BETDl,ALPDl,TAUDl,TEMP2( 4) 
DOUBLEPRECISION BETD2,ALPD2,TAUD2,ERRO,ERR01,TEMP1( 4). 
DOUBLEPRECISION ALP7,BET7,TAU7,ALP8,BET8,TAU8,ALP9 
DOUBLEPRECISION TAU9, TZ1(6),TZ2(6),TZ3(6),TZ4(6),BET9 
INTEGER ICR0(6,2) 
DATA ICRO /1,2,1,3,2,3,2,1,3,1,3,2/ 
DATA TZ1,TZ2,TZ3,TZ4 /24*0.0/ 
DATA CRA /10.0,10.0,-10.0,-10.0,10.0,-10.0,10.0,-10.0/ 
TF=l.O 
DATA QA /16*0.0/ 
BIR=-1 
PI=ACOS(BIR) 
QA(1,2)=-1 
QA(2,1)=1 
DEL=O.l 
.READ (10,1) ALPI,BETI,TAUI,ALPF,BETF,TAUF,(T(I),I=l,3) 

1 FORMAT (3F12.4) . 
READ (10,3) (RO(I),I=1,4) 
READ (10,3) (Rl(I),I=1,4),(R2(I),I=l,4),(R3(I),I=l,4) 

3 FORMAT ( 4F12.4) 
271 FORMAT (2X,F4.2) 

WRITE (26,48) TA UI,BETI,ALPI, TAUF ,BETF ,ALPF ,(T(I) ,I= 1,3) 
48 FORMAT (3(2X,F15.7)) 

WRITE (30,46) TAUI,BETI,ALPI,(T(I),I=l,3),(TZ1( JK),JK=4,6) 
READ (10,345) (AM(I),I=l,4) 
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READ (10,345)( ( AIO(I,J),J =1,4),I=1,4),(( AI1(I,J),J=1,4),I=1,4) 
READ (10,345)( ( A12(I,J),J =1,4),1=1,4),( ( A13(I,J),J =1,4),1=1,4) 

345 FORMAT( 4F14.6) 
ERR01=(TAUF-TAUI)**2+(BETF-BETI)**2+(ALPF-ALPI)**2 
TM=O.O 
DO 433 1=1,4 

433 TM=TM + AM(I) 
IJK=O 

925 DO 926 JKT=1,4 
TEMP1( JKT)=cHA( JKT ,1) 

926 TEMP2(JKT)=cHA(JKT,2) 
7 DO 2 1=1,6 

1K=ICH0(1,1) 
IL=ICHO(I,2) 
DO 4 J=1,4 
FO=T(IK) 
FF=T(IK)+CHA( J ,1) 
ALP1=ALPI 
BET1=BETI 
TAU1=TAUI 
CALL INTEG (FO,FF,TF,IK,T,ALP1,BET1,TAU1,1) 
FO=T(IL) t 

T(IK)=FF 
FF=T(11 )+CHA( J ,2) 
CALL INTEG (FO,FF,TF,IL,T,ALP1,BET1,TAU1,1) 
FO=T(IK) 
T(IL)=FF 
FF=T(IK )-CHA ( J, 1) 
CALL INTEG (FO,FF,TF,IK,T,ALP1,BETl,TAU1,1) 
FO=T(IL) 
T(IK)=FF 
FF=T(IL )-CHA( J ,2) 
CALL INTEG (FO,FF,TF,IL,T,ALP1,BET1,TAU1,1) 
'T(IL)=FF 
ALPDl=ABS(ALPF-ALPl) 
ALPD2=ABS( ALPF -ALPI) 
BETD1=ABS(BETF-BET1) 
BETD2=ABS(BETF-BETI) 
TAUD1=ABS(TAUF-TAU1) 
TAUD2=ABS(TAUF-TAUI) 
ERRO=ALPD1 **2+BETD1 **2+TAUD1 **2 
IF (ERROl.LT.ERRO) GOTO 4 
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IF(TAUD2.LT.O.Ol.AND.BETD2.LT.O.Ol.AND.ALPDl.LT.ALPD2) 
*GOTO 20 
IF(TAUD2.LT.O.Ol.AND.ALPD2.LT.O.Ol.AND.BETD1.LT.BETD2) 
*GOTO 21 
IF(BETD2.LT.O.Ol.AND.ALPD2.LT.O.Ol.AND.TAUD1.LT.TAUD2) 
* GOTO 22 
IF(TAUD2.LT.O.Ol)GOTO 14 
IF(BETD2.LT.O.Ol)GOTO 16 
IF(ALPD2.LT.O.Ol)GOTO 18 
IF(ALPDl.LT.ALPD2.AND.BETDl.LT.BETD2.AND.TAUD1. 
LT.TAUD2) GOTO 5 . 
GOTO 4 

14 IF(BETDl.LT.BETD2.AND.ALPDl.LT.ALPD2) GOTO 13 
GOTO 4 . 

16 IF(TAUDl.LT.TAUD2.AND.ALPDl.LT.ALPD2) GOTO 17 
GOTO 4 

18 IF(TAUDl.LT.TAUD2.AND.BETDl.LT.BETD2) GOTO 19 
4 CONTINUE 
2 CONTINUE 

JKI=JKI+l 
IF(JKI.Eq.3) GOTO 93 
DO 921 JKT=1,4 

921 cHA( JKT ,JKI)=cHA( JKT ,JKI) /2 
IF (JKI.Eq.l) GOTO 7 
DO 922 JKT=1,4 

922 cHA(JKT,l)=TEMPl(JKT) 
GOTO 7 

93 DO 923 JKT=1,4 
923 cHA(JKT,2)=TEMP2(JKT) 

DO 6 1=1,4 
DO 6 J=1,2 

6 CHA(I,J)=CHA(I,J)/2.0 
JKI=O 
GOTO 925 

5 ALPD=(ALPF-ALPI)/(ALPl-ALPI) 
BETD=(BETF-BETI)/(BETl-BETI) 
TAUD=(TAUF-TAUI)/(TAUl-TAUI) 
AMINK=ALPD 
IF (BETD.LT.AMINK) AMINK=BETD 
IF (TAUD.LT.AMINK) AMINK=TAUD 
MINK=IFIX( AMINK)+ 1 
GOTO 15 
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ı3 ALPD=(ALPF-ALPI)/(ALPı-ALPI) 
BETD=(BETF-BETI)/(BETı-BETI) 
AMINK=ALPD 
IF(BETD.LT.AMINK) AMINK=BETD 
MINK=IFIX( AMINK)+ ı 
GOTO ı5 

ı7 TAUD=(TAUF-TAUI)/(TAUı-TAUI) 
ALPD=(ALPF-ALPI)/(ALPı-ALPI) 
AMINK=ALPD 
IF(TAUD.LT.AMINK) AMINK=TAUD 
MINK=IFIX( AMINK)+ ı 
GOTO ı5 

ıg TAUD=(TAUF-TAUI)/(TAUı-TAUI) 
BETD=(BETF-BETI)/(BETı-BETI) 

AMINK=TAUD 
IF(BETD.LT.AMINK) AMINK=BETD 
MINK=IFIX( AMINK)+ ı 
GOTO ı5 

20 AMINK=(ALPF-ALPI)/(ALPı-ALPI) 

MINK=IFIX( AMINK)+ ı 
GOTO ı5 

2ı AMINK=(BETF-BETI)/(BETı-BETI) 
MINK=IFIX( AMINK)+ ı 
GOTO ı5 

22 AMINK=(TAUF-TAUI)/(TAUı-TAUI) 
MINK=IFIX( AMINK)+ ı 

ı5 ALPı=ALPI 

BETı=BETI 

TAUı=TAUI 

266 FORMAT (2X,ı 7HNUMBER OF CYCLES=,l5) 
DO 8 l=l,MINK 
ALP6=ALP1 
BET6=BET1 
TAU6=TAU1 
FO=T(IK) 
FF=T(IK)+CHA(J,l) 
DO 267 JK=1,3 

267 TZl(JK)=T(JK) 
TZı(IK)=TZl(IK)+CHA( J ,ı) 
CALL INTEG (FO,FF,TF,IK,T,ALPl,BETı,TAUı,2) 
FO=T(IL) 
T(IK)=FF 
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FF=T(IL)+CHA(J,2) 
ALP7=ALPı 

BET7=BETı 

TAU7=TAUı 

DO 268 JK=ı,3 
268 TZ2( JK) =TZ ı ( JK) 

TZ2(IL )=TZ2(IL) + CHA ( J ,2) 
CALL INTEG (FO,FF,TF,IL,T,ALPı,BETı,TAUı,2) 
FO=T(IK) 
T(IL)=FF 
FF=T(IK)-CHA( J ,ı) 
ALP8=ALPı 

BET8=BETı 

TAU8=TAUı 

DO 269 JK=ı,3 
269 TZ3( JK)=TZ2( JK) 

TZ3(IK)=TZ3(IK)-CHA( J, ı) 
CALL INTEG (FO,FF,TF,IK,T,ALPı,BETı,TAUı,2) 
FO=T(IL) 
T(IK)=FF 
FF=T(IL )-CHA( J,2) 
ALP9=ALPı 

BET9=BETı 

TAU9=TAUı 

DO 270 JK=ı,3 
270 TZ4( JK)=TZ3( JK) 

TZ4(IL )=TZ4(IL )-CHA( J ,2) 
CALL INTEG (FO,FF,TF,IL,T,ALPl,BETl,TAUl,2) 
T(IL)=FF 

46 FORMAT (9(1X,F13.6)) 
ALPD=( ALPF -ALPl )**2 
BETD=(BETF -BETl) **2 
TAUD=(TAUF-TAU1)**2 

"ERRO=ALPD+BETD+TAUD 
IF (ERROl.LT.ERRO) GOTO 77 
ERROl=ERRO 
WRITE (30,46) TAU7,BET7,ALP7,(TZı(JK),JK=1,6) 
WRITE (30,46) TAU8,BET8,ALP8,(TZ2(JK),JK=ı,6) 
WRITE (30,46) TAU9,BET9,ALP9,(TZ3(JK),JK=1,6) 
WRITE (30,46) TAUı,BETı,ALPı,(TZ4(JK),JK=ı,6) 
IF((ALPD+BETD+TAUD).LT.O.Oüı) GOTO 94 

49 FORMAT (2X,25HSUM OF THE ERROR SQUARES=,F20.7) 

89 



8 CONTINUE 
IJK=I-1 
BETI=BET1 
ALPI=ALP1 
TAUI=TAU1 
GOTO 7 

77 IJK=I-1 
BETI=BET6 
TAUI=TAU6 
ALPI=ALP6 
GOTO 7 

94 WRITE (27,46) TAU1,BET1,ALP1 
STOP 
END 
SUBROUTINE INTEG (FO,FF,TF,IJ,T,ALP1,BET1,TAU1,IN) 
DOUBLEPRECISION AM( 4),Rl( 4),R2( 4),R3( 4) 
DOUBLEPRECISION Al( 4,4),A2( 4,4),A3( 4,4) 
DOUBLEPRECISION W0(3,3),TIM,DEL,T1D(3),RO( 4) 
COMMON AM,RO,Rl,R2,R3,Al,A2,A3,PI,WO 
COMMON AIO,All,AI2,AI3,TM,QA,DEL,TlD 
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DOUBLEPRECISION AKO,AKl,AK2,AK3,AMO,AMl,AM2,AM3,ANO,AN1 
DOUBLEPRECISION AN2,AN3,T(3),AIO( 4,4),TM 
DOUBLEPRECISION ALP1,BETl,TAUl,PI,QA( 4,4) 
DOUBLEPRECISION T2(3),AI1( 4,4),AI2( 4,4),AI3( 4,4) 
DOUBLEPRECISION BET3,TAU3,ALP3,ALP4,BET4,TAU4 
DO UBLEPRECISIO N ALP2,BET2, TA U2,FO,FF ,A, TF ,FUNl ,FUN2 
DATA TlD,T2 /6*0.0/ 
FUNl(FO,FF,A,TF,PI)=FO+(FF-FO)*(A/TF-1/(2*PI)* 
*SIN(2*PI* A/TF)) 
FUN2(FO,FF,A, TF ,PI)=(FF-FO)*(l/TF*(l-COS(2*PI* A/TF))) 
TIM=O.O 
IC=TF/DEL 
DO 4 ICOUNT=l,IC 
:T(IJ)=FUNl(FO,FF,TIM,TF,PI) 
TlD(IJ)=FUN2(FO,FF,TIM,TF,PI) 
CALL AMAT (T,ALPl,BETl,TAUl) 
CALL AKOl (AKO,AMO,ANO) 
ALP2=ALP1+AN0/2 
BET2=BET1+AM0/2 
TAU2=TAU1+AK0/2 
T(IJ)=FUN1(FO,FF,TIM+DEL/2,TF,PI) 
T1D(IJ)=FUN2(FO,FF,TIM+DEL/2,TF,PI) 
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CALL AMAT (T,ALP2,BET2,TAU2) 
CALL AKOl (AKl,AMl,ANl) 
ALP3=ALP1+AN1/2 
BET3=BET1+AM1/2 
TAU3=TAU1+AK1/2 
CALL AMAT (T,ALP3,BET3,TAU3) 
CALL AKOl (AK2,AM2,AN2) 
ALP4=ALP1+AN2 
BET4=BET1+AM2 
TAU4=TAU1+AK2 
T(IJ)=FUNl(FO,FF,TIM+DEL,TF,PI) 
TlD(IJ)=FUN2(FO,FF,TIM+DEL,TF,PI) 
CALL AMAT(T,ALP4,BET4,TAU4) 
CALL AKOl (AK3,AM3,AN3) 
ALPl=ALPl+(AN0+2* AN1+2* AN2+AN3)/6 
BETl=BETl+(AM0+2*AM1+2*AM2+AM3)/6 
TAUl=TAUl+(AK0+2* AK1+2* AK2+AK3)/6 
TIM=TIM+DEL 

4 CONTINUE 
RETURN 
END 
SUBROUTINE AKOl(AKO,AMO,ANO) 
DOUBLEPRECISION AM( 4),Rl( 4),R2( 4),R3( 4) 
DOUBLEPRECISION Al( 4,4),A2( 4,4),A3( 4,4) 
DOUBLEPRECISION W0(3,3),WOC(3,3),WOCI(3,3),RO( 4) 
COMMON AM,RO,JU,R2,R3,Al,A2,A3,PI,WO 
COMMON AIO,Ail,AI2,AI3,TM,QA,DEL,TlD 
DOUBLEPRECISION AKO,AMO,ANO,AKAT(3,3),DEL,TlD(3) 
DOUBLEPRECISION PI,QA( 4,4) 
DOUBLEPRECISION T2( 4,4),T3( 4,4) 
DOUBLEPRECISION A23( 4,4),Ql( 4),Q2( 4),Q3( 4) 
DOUBLEPRECISION Tll( 4,4),T21( 4,4),T31( 4,4) 
DOUBLEPRECISION T22( 4,4),T32( 4,4),AIO( 4,4) 
DOUBLEPRECISION Ail( 4,4),AI2( 4,4),AI3( 4,4) 
DOUBLEPRECISION AI1K(3),AI2K(3),AI3K(3),T33( 4,4) 
DOUBLEPRECISION RlO( 4),R20( 4),R30( 4) 
DOUBLEPRECISION TlRl( 4),T1R2( 4),T1R3( 4),T3R3( 4) 
DOUBLEPRECISION T2R2( 4),T2R3( 4),TM,RG( 4) 
DOUBLEPRECISION Qll( 4),Q12( 4),Q13( 4) 
DOUBLEPRECISION Q22( 4),Q23( 4),Q33( 4),T11A( 4,4),T22A( 4,4) 
D O UBLEPRECISION AJl( 4,4) ,AJ2( 4,4) ,AJ3( 4,4) ,AK( 4,4) 
DOUBLEPRECISION AilO( 4,4),AI20( 4,4),AI30( 4,4) 
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CALL MMUL (A1,A2,T2) 
CALL MMUL (T2,A3,T3) 
CALL MMUL (A2,A3,A23) 
CALL MMUL (QA,A1,Tll) 
CALL MMUL (Tll,A2,T21) 
CALL MMUL (T21,A3,T31) 
CALL MMUL (A1,QA,T11A) 
CALL MMUL (T11A,A2,T22) 
CALL MMUL (T11A,A23,T32) 
CALL MMUL (T2,QA,T22A) 
CALL MMUL (T22A,A3,T33) 
CALL MVMUL (A1,R1,R10) 
CALL MVMUL (T2,R2,R20) 
CALL MVMUL (T3,R3,R30) 
DO 434 1=1,3 

434 RG(I)=(AM(2)*R10(I)+AM(3)*R20(I)+AM( 4)*R30(I)) /TM 
RG(4)=1.0 
CALL MVMUL (Tll,R1,T1R1) 
CALL MVMUL (T21,R2,T1R2) 
CALL MVMUL (T31,R3,T1R3) 
CALL MVMUL (T22,R2,T2R2) 
CALL MVMUL (T32,R3,T2R3) 
CALL MVMUL (T33,R3,T3R3) 
DO 327 1=1,3 
DO 328 J=1,3 
AK(I,J)=-RG(I)*RG( J)*TM 
AJ1(I,J)=-R10(I)*R10( J)* AM(2) 
AJ2(I,J)=-R20(I)*R20( J)* AM(3) 
AJ3(I,J)=-R30(I) *R30( J) *AM( 4) 

328 CONTINUE 
AK(I,I)=TM*(RG( 1 )**2+ RG( 2 )**2+ RG( 3) **2 )+ AK(I,I) 
AJ1(I,I)=AM(2)*(R10(1)**2+R10(2)**2+R10(3)**2)+AJ1(I,I) 
AJ2(I,I)=AM(3)*(R20(1)**2+R20(2)**2+R20(3)**2)+AJ2(I,I) 
AJ3(I,I)=AM( 4 )*(R30(1 )**2+ R30(2)**2+ R30(3)**2)+ AJ3(I,I) 

327 CONTINUE 
CALL CROPRO (R10,RG,T1R1,Qll) 
CALL CROPRO (R20,RG,T1R2,Q12) 
CALL CROPRO (R30,RG,T1R3,Q13) 
CALL CROPRO (R20,RG,T2R2,Q22) 
CALL CROPRO (R30,RG,T2R3,Q23) 
CALL CROPRO (R30,RG,T3R3,Q33) 
DO 653 1=1,3 
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Ql(I)=AM(2)*Q 1 l(I)+ AM(3)*Q12(I)+ AM( 4 )*Q13(I) 
Q2(I)=AM( 3 )* Q22(I)+ AM( 4 )*Q23( I) · 
Q3(I)=AM( 4)*Q33(I) 

653 CONTINUE 
CALL INERT2 (Al,All,AllO) 
CALL INERT2 (T2,AI2,AI20) 
CALL INERT2 (T3,AI3,AI30) 
DO 506 1=1,3 
DO 507 J=1,3 
AI20(I,J)=AI20(I,J)+AI30(I,J) 
All O(I,J) =All O(I,J) + AI20(I,J) 

507 CONTINUE 
506 CONTINUE 

DO 654 1=1,3 
AllK(I)=O 
AI2K(I)=O 
AI3K(I)=0 
DO 655 J=1,3 
AllK(I)=AllK(I)+AllO(I,J)* Al( J ,3) 
AI2K(I)=AI2K(I)+AI20(I,J)*T2( J,3) 
AI3K(I)=AI3K(I)+AI30(I,J)*T3( J ,3) 

655 CONTINUE 
Ql(I)=AllK(I)+Ql(I) 
Q2(I)=AI2K(I)+Q2(I) 
Q3(I)=AI3K(I)+Q3(I) 

654 CONTINUE 
DO 656 1=1,3 
DO 656 J=1,3 
WOC(I,J)=O 
DO 657 K=1,3 
WOC(I,J) = WOC(I,J)+( AIO(I,K)+ All O(I,K)+ AJl (I,K)+ AJ2(I,K)+ 
* AJ3(I,K)-AK(I,K))*WO(K,J) 

656 CONTINUE 
CALL DLINRG (3,WOC,3,WOCI,3) 
DO 658 1=1,3 
AKAT(I,l)=O 
AKAT(I,2)=0 
AKAT(I,3)=0 
DO 659 J=1,3 
AKAT(!, 1 )=AKAT(I, 1 )-WOCI( I,J) * Q 1 ( J) 
AKAT(I,2)=AKAT(I,2)-WOCI(I,J)*Q2(J) 
AKAT(I,3):._AKAT(I,3)-WOCI(I,J)*Q3( J) 
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659 CONTINUE 
658 CONTINUE 

ANO=O 
AMO=O 
AKO=O 
DO 660 I=1,3 
ANO=ANO+AKAT(3,I)*TlD(I) 
AMO=AMO+AKAT(2,I)*T1D(I) 
AKO=AKO+AKAT(l,I)*TlD(I) 

660 CONTINUE 
ANO=ANO*DEL 
AMO=AMO*DEL 
AKO=AKO*DEL 
RETURN 
END 
SUBROUTINE MATTR4(A,D) 
DOUBLEPRECISION A( 4,4),D( 4,4) 
DO 7 I=1,4 
DO 8 J=1,4 
D(I,J)=A( J ,I) 

8 CONTINUE 
7 CONTINUE 

RETURN 
END 
SUBROUTINE AMAT (T,ALP5,BET5,TAU5) 
DOUBLEPRECISION AM( 4),Rl( 4),R2( 4),R3( 4) 
DOUBLEPRECISION Al( 4,4),A2( 4,4),A3( 4,4) 
DOUBLEPRECISION W0(3,3),RO( 4),T1(3) 
COMMON AM,RO,Rl,R2,R3,Al,A2,A3,PI,WO 
DOUBLEPRECISION T(3),ALP,BET,TAU,PI 
DOUBLEPRECISION ALP5,BET5,TAU5 
DATA Al,A2,A3 /48*0.0/ 
ALP=ALP5*PI/180 
BET=BET5*PI/180 
TAU=TAU5*PI/180 
DO 1 I=1,3 

1 Tl(I)=T(I)*PI/180 
WO(l,l)=COS(ALP)*COS(BET) 
W0(1,2)=-SIN(ALP) 
W0(1,3)=0 
W0(2,1)=SIN(ALP)*COS(BET) 
W0(2,2)=COS(ALP) 
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W0(2,3)=0 
W0(3,1 )=-SIN(BET) 
W0(3,2)=0 
W0(3,3)=1 
Al(l,l )=COS(Tl(l)) 
A1(1,3)=-SIN(Tl(l)) 
A1(2,1 )=SIN(Tl(l)) 
A1(2,3)=COS(Tl( 1)) 
A1(3,2)=-1 
A1(3,4)=32.5 
Al( 4,4)=1 
A2(1,1 )=COS(T1(2)) 
A2(1,2)=-SIN(T1(2)) 
A2(2,1 )=SIN(T1(2)) 
A2(2,2)=COS(T1(2)) 
A2(3,3)=1 
A2( 4,4)=1 
A2(1,4)=50*COS(T1(2)) 
A2(2,4)=50*SIN(T1(2)) 
A2(3,4)=55. 
A3(1,1 )=COS(T1(3)) 
A3(1,3)=SIN(T1(3)) 
A3(2,1 )=SIN(T1(3)) 
A3(2,3)=-COS(T1(3)) 
A3(3,2)=1 
A3(4,4)=1 
RETURN 
END 
SUBROUTINE CROPRO (RC,RG,S,CP) 
DOUBLEPRECISION RC( 4),S( 4),CP( 4),RG( 4) 
CP(l )=(RC(2)-RG(2)) *S(3)-S(2)*(RC(3)-RG(3)) 
CP(2)=(RC(3)-RG(3) )*S( 1 )-(RC(l )-RG(l) )*S(3) 

. CP(3)=(RC(l)-RG(l ))*S(2)-(RC(2)-RG(2) )*S(l) 
,RETURN 
END 
SUBROUTINE INERT2(A,B,C) 
DOUBLEPRECISION A( 4,4),B( 4,4),C( 4,4),D( 4,4),E( 4,4) 
CALL MATTR4(A,D) 
CALL MMUL(B,D,E) 
CALL MMUL(A,E,C) 
RETURN 
END 
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SUBROUT1NE MMUL (B,A,F) 
DOUBLEPREC1S10N A(4,4),B( 4,4),F( 4,4) 
DO ı 1=ı,4 

DO ı J=ı,4 
F(1,J)=O 
DO ı K=ı,4 

ı F(1,J)=F(1,J)+B(1,K)* A(K,J) 
RETURN 
END 
SUBROUT1NE MVMUL (A,B,C) 
DOUBLEPREC1S10N A(4,4),B( 4),0( 4) 
DO ı 1=ı,4 

C(I)=O 
DO ı J=ı,4 

ı C(1)=A(1,J)*B( J)+C(1) 
RETURN 
END 
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APPENDIX C 

ROBOSIM SIMULATION FILE 

LOOK-FROM X=O.,Y =-200.,Z=80. 
LOOK-AT X=O.,Y=O.,Z=20. 
CLEAR 
·************************ 
' 
; DEFINE THE LOCATION 
·************************ 
' 
F-JOINT-I 
EXECUTE-FILE MARKI.DAT 
STORE B 
CLEAR 
F-JOINT-1+1 
TRANSLATE X=-70.,Y =O.,Z=-10. 
ADD B 
STORE-LINK OSMAN4.LOC 
CLEAR 
STORE B 
·**************************** 
' 
;BUILT OTH COORDINATE FRAME 
;ROTATION ABOUT X-AXIS (YAW) 
·**************************** 
' 
F-JOINT-I 
STORE B 
CLEAR 
R-JOINT-1+1 
TRANSLATE X=O.,Y =-25.,Z=0. 
ROTATE X=-90. 
ROTATE Z=-90. 
ADD B 
STORE-LINK OSMAN 4.10 
CLEAR 
STORE B 
·***************************** 
' 
;ROTATION ABOUT Y-AXIS (PITCH) 
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·***************************** J 

R-JOINT-I 
STORE B 
CLEAR 
R-JOINT-I+l 
ROTATE X=90. 
ROTATE Z=-90. 
ADD B 
STORE-LINK OSMAN4.Ll 
CLEAR 
STORE B 
·*************************** 
J 

;ROTATION ABOUT Z-AXIS (ROLL) 
·*************************** 
J 

R-J O INT-I 
STORE B 
CLEAR 
R-JOINT-I+l 
ROTATE X=90. 
ROTATE Z=90. 
ADD B 
STORE-LINK OSMAN4.12 
CLEAR 
STORE B 
·******************************** 
J 

;SATELLITE MAIN BODY (A CYLINDER) 
·******************************** 
J 

CYLINDER R=25.,H=50. 
STORE C 
CLEAR 
R-JOINT-I 
ADD C 
STORE C 
CL EAR 
R-JOINT-I+l 
TRANSLATE X=O.O,Y =0.,Z=32.5 
ADD B 
ADD C 
STORE-LINK OSMAN4.13 
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CLEAR 
STORE B 
STORE C 
STORE D 
·********************************* 
) 

;BUILD LINK 1 OF THE MANIPULATOR 
·********************************** 
) 

R-JOINT-I 
STORE B 
CLEAR 
BOX X=4.,Y=l5.,Z=l5. 
TRANSLATE X=9.5,Y=O.,Z=O. 
STORE D 
TRANS LA TE X=-19.,Y =O.,Z=O. 
ADD D 
ADD B 
STORE B 
CLEAR 
CYLINDER R=7.5,H=60. 
TRANSLATE X=O.,Y =0.,Z=22.5 
ROTATE X=-90. 
STORE C 
CL EAR 
R-JOINT-I+l 
ROTATE X=-90. 
ADD B 
ADD C 
STORE-LINK OSMAN4.14 
CLEAR 
STORE·B 
STORE C 
·************************* 
' 
;LINK 2 OF THE MANIPULATOR 
·************************* 
' 
R-J O INT-I 
STORE B 
CLEAR 
BOX X=l5.,Y=4.,Z=l0. 
TRANSLATE X=O.,Y =9.5,Z=52.5 
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STORE D 
TRANSLATE X=O.,Y=-19.,Z=0. 
ADD D 
STORE D 
CL EAR 
BOX X=50.,Y=15.,Z=5. 
TRANSLATE X=17.5,Y =0.,Z=55. 
STORE C 
CLEAR 
R-JOINT-1+1 
TRANSLATE X=50.,Y =0.,Z=55. 
ADD B 
ADD C 
ADD D 
STORE-LINK OSMAN4.15 
CLEAR 
STORE B 
STORE C 
STORE D 
·************************* 
' 
;LINK 3 OF THE MANIPULATOR 
·************************* 
' 
CYLINDER R=7.5,H=5. 
R-JOINT-I 
STORE B 
CLEAR 
BOX X=40.,Y=l5.,Z=5. 
TRANSLATE X=27.5,Y=O.,Z=O. 
STORE C 
CLEAR 
R-JOINT-I+l 
TRANSLATE X=55.,Y=O.,Z=O. 
ROTATE X=90. 
ADD B 
ADD C 
STORE-LINK OSMAN 4.L6 
CLEAR 
STORE B 
STORE C 
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·************************* 
' 
;LINK 4 OF THE MANIPULATOR 
·************************* 
' 
CYLINDER R=7.5,H=10. 
R-J O INT-I 
STORE B 
CL EAR 
R-JOINT-1+1 
TRANSLATE X=20.5,Y=O.,Z=O. 
ROTATE X=-90. 
STORE C 
CL EAR 
BOX X=8.,Y =8.,Z=8. 
TRANSLATE X=11.5,Y=O.,Z=0. 
ADD B 
ADD C 
STORE-LINK OSMAN4.L 7 
CLEAR 
STORE B 
STORE C 
·************************* 
' 
;LINK 5 OF THE MANIPULATOR 
·************************* 
' 
CYLINDER R=5.,H=5. 
R-JOINT-I 
STORE B 
CLEAR 
R-JOINT-I+l 
ROTATE X=90. 
ROTATE Z=90. 
STORE C 
CLEAR 
BOX X=8.,Y =8.,Z=5. 
TRANSLATE X=9.,Y=O.,Z=0. 
ADD B 
ADD C 
STORE-LINK OSMAN4.18 
CL EAR 
STORE B 
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STORE C 
·************************ 
' 
;L1NK 6 OF THE MANIPULTOR 
·************************ 
' 
R-J01NT-I 
STORE B 
CLEAR 
R-J01NT-1+1 
ROTATE Z=90. 
ADD B 
STORE B 
CLEAR 
CYLINDER R=5.,H=3. 
TRANSLATE X=O.,Y =0.,Z=14.5 
ADD B 
STORE-LINK OSMAN4.19 
CLEAR 
STORE B 
·***************************** 
' ;END EFFECTOR (A CYLINDER ROD) 
·***************************** 
' F-J01NT-1+1 
TRANSLATE X=O.,Y=O.,Z=22. 
STORE B 
CLEAR 
CYL1NDER R=l.,H=8. 
TRANSLATE X=O.,Y =0.,Z=20. 
F-JOINT-I 
ADDB 
STORE-L1NK OSMAN4.Ll0 
·************************** 
' 
;VIEW THE SYSTEM 
·************************** 
' 
VIEW-ROBOT OSMAN4 
END 
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