MIKROISLEMC! KONTROLLU COK
KAVSAKL] TRAFIK SISTEMI
Halil KARAKAS
Yuksek Lisans Tezi
Elektrik Elektronik Muhendisligi
Anabilim Dala

1892

jversitesf]
b Universites
Amﬂouwmwmmw

WALEIWCE

VS e0 |



MIKROISLEMC! KONTROLLU COK
KAVSAKL! TRAF!K SISTEMI

Halil KARAKAS

Anadolu Universitesi
Fen Bilimleri Enstitusu
Lisansiustu Yonetmeligi Uyarinca
Elektrik - Elektronik Muhendisligi Anabilim Dala
Elektronik Bilim Dalinda
YUKSEK LISANS TEZ!

ODlarak Hazirlanmistair.

Danigman: Dog. Dr. Hamdi ATMACA

SUBAT - 1892



Halil KARAKAS' 1n 'Yuksek Lisans’ tezi olarak hazirladig:
"MIKROISLEMCY FKONTROLLU GOK  KAVSAKLI TRAFIK SISTEMI' basiikl: bu
galisma, Jjurimizce lisansUsty yonetmelidinin ilgili maddeleri wuyarinca

Cegerlendirilerek kabul edilmigtir.

Uye: Prof. Dr. Atila BARKANA

Uye: Doc¢. Dr. Hamdi ATMACA

Uye: Y. Dog¢. Dr. Osman PARLAKTUNA

Prof. Dr. Rustem KAYA ;
Enstitu Muduru ’




ICINDEKILER

8274 e et
SUMMARY i i i e e s i e s e e e
TESEKKUR ........... f e e e e et ettt e
SEKILLER DIZINI ..., .. ... e et r e e e
1. GIRIS ittt ittt it et e e e e
2. SINYALIZASYON PROJELERININ TEMEL ILKELER! ...... ..
2.1. Sinyal Devresi ........ A N
2.2. Faz DUzenleri ...... .0 ittt iiieceeneenensa
2.2.1. Sinyalize yaya gecitleri ....... ... ...
2.2.2. Tek yonll yollarin kesistigi kavsaklar
2.2.3. Scla donusglerin az oldugu kavsaklar
2.2.4. Ug ve dort fazl:i: uygulamalar ..........
2.2.5. Ada cevresinde dBnus ......0i i,
2.3, Yescilleraras: SUTrel el ..ttt er i teoentnnnenoes
2.3.1, Sar1 sUreler ...c.ou ittt oneinioeenss
2.3.2. Kirmizi ve Sar: sUreler ........... PN
2.3.3. Koruma sUreleri .......cc0iiieiiiraneans
2.3.4. Kayip z2aman ...-veue.. e e e e e e
2.4, Yaya Gecgis SUreleri ... it teeeeeenoeeness
2.5, Devre Suresi ........c.000. G e e e e e e e e
2.5.1. Etkili akim ..... e e e e
2.5.2. Devre =sUresi bileskeleri ....¢viievie..
2.6, Optimum Devre SUresi ....ciiii it ernncsns
3. GENEL HABERLESME SISTEMLERI ... ...,
3.1. Dijital Haberlesmeye Girisg et e e e
3.2, Paralel Data Transferi ...... .0
3.3. Seri Data Transferi ........ e e e i e,
4., DONANIM ... ... e et e et e e e
4.1, Z-80 MikroilslemcCl ... iiii it ii i enenannean
4.2. Saat (Clock) Devresi ......... e e e e e .
4,3, Reset Devresi .....ciiiiiiiirinnrivonss e
4.4, Z-80 PID (Paralel Giris-Cikis Birimi) .......
4.5, Hafiza Girigs-Cikis Uniteleri Ic¢in Adres Cozucu

[

(62 T @) S -SRI -3

o oM

11
11
14
14
16
16
17
17
18
19

28



ICINDEKILER (devam)

Savfa
4.5.1. Hafizalarin adreslenmesi ........c ... 28
4,5.2. Girigs-¢i1kis Unitelerinin adreslenmesi . 28
4.6. Z2-80 SI0 (Eeri Giris-Caikig Birimi) ........... 29
4.7. Z-80 CTC (Sayica, Zamanlayic:r Birimi) ....... 29
A, 8. GOSLEeIge it ittt i ittt ittt e e e e e e 30
4.9, Tus TaKkaml ittt it ettt ettt tmen i sttt nsneee 30
4.10. Interrupt Ara Devresi ......c.ccovinsn N 32
4,11, Sistemin Calismasl it i it ittt oo tnoeneseas 33
S YA ZILIM i i e e e e e e e s e e 35
5.1. Akis Divagramiari ......o0cie... e e e e e e 35
E. SONUCLAR . i i it i i s b it e e e s 46
7. KAYNAKLAR DIZINt o i it i i i i v e st e a 47
EKLER
1, Z-80 Mikroiglemci
2. 2-80 PIO
3. 2-80 CTC
4, Z2-80 S10
5. Sistem Programiar:



iv

UZET

Bu +tez <c¢alismasinda belirlenen vyol kavsaklarindaki
trafik i1gi1klarinin bir merkezden kontrold esas alinmis ve
tasarlamistir. Her bir kavsakta bulunan mikroislemciler ile
merkezi mikroislemci arasinda yildiz - c¢evre baglantis:
(star - loop connection) kurulmus ve seri bir haberlegme

hatti clusturulmustur. Merkezi mikroislemciden her kavsakta

bulunan mikroislemciye veya her bir kavsaktaki
mikroiglemciden merkezi mikroislemciye bilgi transferi
yvyapmak mimkUn olmustur. Merkezi kontrol sistemivle

kavsaklardaki trafik 1si1klarinin devre suUreleri gUnun trafik
yogunluguna gtre hesaplanacak ve her kavsaktaki
mikroislemciye <seri veri (data) hattindan gtnderilecektir.
Bu sekilde yapilan dtzenleme ile trafik akisindaki

gecikmeler ve zaman kaybi ortadan kaldirilacaktair.



v

SUMMARY

In this thesis, the control of the traffic lights in
rocad confluents from a central microprocessor is aimed, and
is planned. Star - loop connection is constructed between
central microprocessor and microprocessors that exist in
each confluent, therefore a serial communication link is
established between thenm. It is possible to make data

transfer from central microprocessor to microprocessors that

exist in each confluent or from microprocessors that exist
in each confluent to central microprocessor. The time
period of the traffic lights in confluents will be
calculated according to the traffic density of the day, and
will be sent from serial data link to microprocessors that

exist in each confluent. In this cacse, delays in +traffic

flow and time loss will ke avoided in rush hours.



vi

TESEKKUR

Calismalarimda her asamada bana yardimci olan ve beni
yonlendiren degerli hocam Do¢. Dr. Hamdi ATMACA ’'ya, Yard.
Dog. Dr. Osman PARLAKTUNA ’ya ve mesai arkadaslarim Ars.
Gor. Hakan TORA ,Ars. Gor. Sazlih EREN ve Ars. Gor Umit
KUNKCU 'ye ve benden manevi destedini esirgemeyen sevgili

arkadasim Selda DURAN ’a tesekktr ederim.



2. 2.
2.3,
2.4.
2.5.
z.6.
2.7.
2,

W

o

N B2 M BB D W W W

2 b

g B

.

.

.

.

.

.

.

m

uown

= 0

w N

L

AN}

[V

Eay

SEKILLLER DIZINI

Yaya Gecgidi Fazlar: ......... e e e et e e e .
Tek Yonlu Yol Kavssklarinda Fazlar ... i,

Scola Denuszun Az 0ldudu Kavsakta Fazlar ...........

Sola Donusleri Ayrilan 3 Fazli Duzen ........... .
Sola Donusleri Birlikte 3 Fazli Dtzen ....... e
T - Kavgsaklarda Faz Duzenleri ... . ...
Ada Cevresinde DErnUs ..ot r it in v e e e e e e e e
Kritik Kavsak OlcUleril .. .i i ir e eneennnnas e e
Hzberlesmenin Teopolojik Yapirlari ...

Yildiz - Cevre (Star-Loop Connection) Baglantisi .

Asenkron Data Haberlegme Formati ........... e e,
BISYNC Hzberlesme Formatl ... .o, e e e e
Mikroislemecl Karti .ottt it e e eteseenanos e e
Saat (Clock) Devresl ... et it teteneeeenens e ee
Resetleme Devresi .(.... e e e e e e e e e
P10 Baglantisi ... vven e et e e -
PIO tle Trafik lsiklarinin Baglantis: ............
Adres Cozuzcl Devresil ..o i v eetonnsons e s e e e e

SI0 - TSC232 Baglantilart o vttt i e e oneenans
CTC Baglanmtisa it it it ottt oaesetanoscessnaes .

Gtsterce Eazglantizar .......... e e e e e e e ..
Tug Takimi1 ......... e e e e e e e et e e e e
Interrupt Ara Pevresi ...ttt ..
MUX - DEMUX Devresi ...ttt ittt tetvnsennnenaas .

Kavgsakteki Isik Kontrolu lI¢in Akis Semasi ........
Sinyalize Bir Tesicsin Calicsmasinin Akis Semasi ...
Cictem Programi AK1g SEMBESI v ittt vt o oceneerson ..

Merkez Mikroislemci Sistem Program: Akis Semasi

Savia

0 Wy O v

27

w W w
N e

W W W
0 NN

[$))
Us]

I~
N



1.GIRIS

r

W

Sinyaller, bir diger deyisle 1g1kli1 icsasretler, yol
Uzerinde ve tzellikle kavsaklarda dtdzenli ve guvenli bir

akim saglemak igin kullzaznilan trafik kontrol! gerecgleridir.

Ilk olarak 1868 yilinda Londra’ da el ile yonetilen
semaforlar bigiminde kullanilan trafik sinyalleri gece
gfrUnumlerini saglamak amaci ile gaz lambalar: ile
aydinlatilmistar. Kirmiz:r ve yesil 1si1kli1 ilk sinvyalizasyon
tesisi 1814 yilinda A.B.D.’nde Cleveland?’da kurulmusg, 1920
yilinda Detrcit’te sari1 1s1klar da kullanilmistar. 1924
yi1lindan sonra Avrupa tlkelerinde de kullanilmaya baslanar
1isi1kl1 sinyaller tzellikle 1850 yilindan scnra biyuk gelisme

ggstermistir (1).

Herhangi bir yerde sinyvalizasyon tesisgi kurulmzs: igin
acagi1daki maddelerden en az birinin gerceklestirilmesi
gerekmektedir:

a) Kesicen akimlarden veya gecmetrik ozelliklerden
dolaya olusan cecikmeleri, sikismalari: ve tikanikliklara

tnlemek,

b) Tasitlarin difjer tacitlarla veya yayas gegitleri ile
kesistikleri noktaslarda guvenli bir gegis dUzeni saglamsk ve

kaza ihtimalini azaltmak,

c) Tasit ve yaya yoQdunluklarini gtz cnunde tutarak,
akim yonlerine gegis hakk:i veya Gnceligi verirken uyumlu bir

zaman dagitimint yapmak,

d) Yuklu trafik yogunlugu olan bir vyol Uzerindeki
tasatlar: zaman zaman durdurarak tali yollardaki trafige wve

vayalara da gegig olanadi saglamak.

Trafik guvenligi ve kontrold ig¢in kullanilan yatasy ve
ducey isaretlemelerde (Yol cizgilerinde ve trafik
levhalarainda) oldugu gibi, 1s1kli isaretlerin de asagidaki

dort nitelige sahip olmalari gereklidir,.



&y}

1. Sturucu ve yayalarin dikkatini ¢ekmelidir.

2. Basit ve kesin anlamlar: olmalaidir.

3. Sdrudcd ve vavalarin sayg: gtstermeleri ve uymalara
saglanmalidair.

4, Ozellikle sUrtuculere intikal ve reszksiyvyon i¢in

yeterli zaman taninmalidar.

Trafik sinyalizasyonu sistemlerinin gerek
projelendirilmesi gerekse uygulamas: oldukga basit
gdrUnmekle birlikte kuUgUmsenmemeli, kullanilzcak c¢ihaz ve
ceregler ihtiyaca uygun bicimde titizlikle secilmeli ve ne
vetersiz nede fazla olmalidir. Zaman dagitimlarinda tasgsit ve
yaya givenliagine titizlik otsterilmeli, degigik akim
ygnlerine verilen gegis hakk1 sUreleri ydnlerin
vogunluklarinin birkirlerine olazn oranlar: ve sinvalize
edilmis tesisten gegis sureleri ile uyumlu clmalaidar. Zaman
daditimlarinda ozellikle akim dederlerinin szatlik, gunluk,
aylik, mevsimlik degisimleri gtz onunde tutulmali, ayrica
zaman asiml nedeniyle akim szelliklerinin degicmesi halinde
sUrekli bir revizyon yapilmalaidair. Gereksiz olarak kurulmusg
elemanlari, yanlisgs yerlegtirilmis veya uyumsuz icletilen bir
sinyalizasyon tesisi gecikmeleri buyUk otlgude arttirsbilir
ve bunun sonucu olarak suUricu ve yayalari 1si1klara uymamaya

alistirabilir, hatta zorlayabilir (1,2).

Bu projede belli basli kavsaklar gtz onune alinmis ve
bu kavsaklardaki trafik szskisin kontrol edebilecek bir
sistem hazirlanmistair. Bu sistemde dort ayri kaveak Dbir
merkezden bilgisayar aracilig: ile kontrol edilmektedir.
Merkez bilgisayar ile her kavsakta bulunan vardimeci
bilgisayarlar aracsinda bilgi alig verisini saglamak ic¢in bir
haberlesme hattz kurulmustur. 3. Bolumde haber lecsme ile

ilgili agiklamalar vapilacaktair.

Kullanilan bu sistemde kavsaklarin kontrolu igin
gereken bilgiler guntun be]irli caatlerinde merkez bilgisaysar
aracili1g: ile her kaveaktaki yvardimci bilgisayar’a
gonderilecek wve sistemin duzgUn bir sekilde calismasa

sa8lanacaktair. Kavsgsaklardaki tasitlarin bekleme ve gegis



eUreleri gUnun degigen sastlerinde (Trafik yecdunluguna gtre)
merkez bilgisayar tarafindan kayip zamani en zza indirecek

sekilide kontrol edilir.



In

2. SINYALIZASYON PROJELERININ TEMEL I{LKELERI
2.1. Sinyal Devresi

Sinyalize bir tesiste birbirini izleyen dedisik 1s1kla
sinyallerin bir devrine "Sinyal Devrecsi" veya kisaca "Devre"
denir. Ieiklir sinyallerin bir devreyi tamaml!amasi sirazcinda
gegen toplam zamana da "devre csUresi" veya "period" ada

verilir.

Bir devre stresi iki bilegsenden olusur:

1. Tasit akimlari igin ayrilan yegil surelerin toplam:
2. Yesiller arasindaki surelerin toplami (hzy1p zaman)
Bir sinvalize tesisin verimi buvuk ©lgtde devre

gslresinin uyumlu sec¢ilmis olup olmadiginz baglidir. Bu

[

nedenle devre sUresinin czptanmasy cinyalizasyen projesinin

ot

hemen hemen en Cnemli belumudur. FPratikte  wuygulanabilecel

n

minimum vyesgil sUrelerinin altina dusUlmedidi sirece, tasit
ve ‘ayalara verilecek vyesil sureler devre sUresinin
vzunlugduna baglidir. Yesiller arasinda kalan csireler ise

kabul edilen kistaslara gtre saptanir veya  hesaplanir.

Yeciller arasinda kalan surelerin fazla colmas:1 bir devre
iginde kay:i1p zamanil arttirir ve devre sirecsinin uzamasina

yol acgsr.

Pratikte 30 sn’den daha kisa devre suresinin vyeterli
clacagi bir kavsazk i¢in "sinyalizasyon tesisinin kuruimasin:
gerektirmeyen bir kavgak”" denebilir. Yayalara geg¢is hakkl
verecek olan yegsil sture 6 sn’den daha kisa olmamalidair. 8

sn’den daha kisa olan tasit yesgil sUreleri ise vpratikte

uygulanabilme clanag: bulamamaktadir. Sinyalizasyon
sistemlerinde 120 sn’den dzha uzun devre slreleri wuzun
kuyruvklarin olusmasina yeol acgar. Zorunlu sartlar zltinda
135-140 sn’lik devre <cUreleri maksimum olarak kabul
edilebilir. Devre suUresine bagla clara saptanan vyesil

sUreler ig¢in herhangi bir tst limit yoktur. (3)



Z2.2. Faz Duzenleri

o

Bir sinval devresi iginde belirli bir trafik akimini,
veya birden fazla akimi ayni1 anda tngdren kumanda sekline
"faz" =adi1 verilir. CSinyalizasyon Projesinde seg¢ilecek faz
sistemi kavsaga giris olan yol sayisina ve kesisen trafik

yogunluguna baglaidair.

Sinyalize bir tesiste en =az 2 ve en ¢ok 4 fazla
sistemler uygulanir. Tags:it trafigi ile birlikte vaya
trafiginin ¢ock yoZun oldufu bazi1 kavsaklarda, sinyalize yava

gecgcitlerinde oldudu gibi tzel vava fazlara duzenlenehilir.

W

Faz szvyisinin ¢ck olmasi, her faz rasindaki yesiller arasi

sureyl arttiracad:indan yegiller aras: surelerin tcplami clan

u

kayip =zamanin fazla olmzs: ise devre siresinin uzamasinm
gerektireceginden, proje hazirlanirken faz sayi1sinin mUmkun
oldugu kadar szaltilmasina ¢alis:ilmalaidar.

>

2.2.1. Sinyalize yaya gecgitleri

Kavsak olmayan yerlerdeki yaya gegitlierinin sinyalize
edilmesinde bir tasit, birde yayalar i¢in clmak Uzere iki

faz kullanilir (Sekil 2.1).

Faz 4. ] Faz 2,

+

PR (U G

Sekil 2.1 Yaya Gegidi Fazlara



[8})

2.2.2. Tek yonlu yollarin kesistigi kavsaklar

Tek yonll yeollarin birlestigi udglu kavszhlarda kavsaja
dogru bir tagit akimi1 clup, ana yola katilan trafik csola
donls yaplyorsa sola donUsin yogun olmasa halinde
sinyalizasyon gerekebilir. Bunun disinda bir kaveaktaki
yonlerin tumU tel yonlu ise, sinyallzssyon tesisi kurulmas:

icin en az bir kesicme noktas: ongdrilur.

Dort bes kollu kavsaklarda Sekil 2.2 'de oorulduguy gibi
bir fazlia bir duzen yeterlidir. Sekildeki drnekte By sola
donust ile Ap saga donusunu yapan tagitlar trafik Lkurallar:
uyarinca, ayni anda gecis hakka olan vayalara yol

vereceklerdir.

S
N —
.- .

Sewrwil 2.2, Tek Yonlu Yol Kavsaklarinda Fazlar

Bl

2.2.3. Sola donuslerin az oldugu kavsaklar

Cift yonde akimi1 bulunan vyollarda sola d&nlUs yapan
tasi1t hacmi 60 tasit/saat veya daha az ice, bunlarin sola
ddnUsleri i¢in ©zel bir donan:m yapmak gerekmez. Sola donus
vyapacak tasitlarin kesecegi trafik ak:minin arasinda bosluk
clmasa bile az sayi1da tasi1t fazlarin degisimi sirasindaki
yvesiller zrasi cUreden vararlanarak donus manevrasinl
rahatlikla yapabilir. Ayraica, donus yapacak tasitlarin
karsi yonunden kavszZa giren tasitlar arasinda zaman zaman
bosluklar olusuycrsa daha fazla sayida tags:it bu bogluklardan

vararlanarak sola doénusiinl tamamlayabilir. Kavsak alaninin



genis ve yeterli 'olimasa halinde, sola dtinusg vapacak

P

zsitlarin kavsak i¢ginde depoc edilerelk, yesiller arasi
strenin uzatilmasa suretiyle ek bir fazin vuygulanmamas:

aflanabilir.

Sekil 2.3 'te ¢ift yonlu yollarin kasistigi dortlu  bir
kavsakta scla donuUslerin &z olmasindan yararlanilarak
uygulanan iki fazli bir duzen gorulmektedir. Bu gsekilde facz
dizenine gbre safa ddnusler duz gidigler ile birlikte
kesilimektedir. Kavsadin geometrik tzellikleri uygun olursa
sagda donuUsler buttn fazlarda cserbest barakilabilir, ancak bu
durumda <saBa donus yaspacak tagsitlarin geg¢is hakk: olan
tasitlara sikistirmamasina ve saga csapmadan Cnceki yava

mamasina dikkat edilmelidir. Ayna

8]

gegidinin vayalara ag:ik

prensibler ¢ok fazli1 dUzenlerde de stz konusudur.

F-:J—L\L- :;l/ }
e

Sekil 2.3 Sola Donustin Az (Oldudu Kavsakta Fazlar

T\OHTI_

2.2.4. Ug ve dort fazli uygulamalar

Duz gidis yapan tasit yodunluunun yani: sira sola donius
vapan tasit sayisinin artﬁas1 halinde ¢ok fazla duzen
uygulamasi gerekmektedir. Cok fazla sinvalize duzen
kurulmasa tasarlanan kavsaklarin faz sayisinin azaltilmas:
olanaklaryr arastirilmal:, bu amac¢la tek bir c¢ozuim ile
vetinilmeyip degisik alternatifler denenmelidir. ¢ck fazli
uygulamanin g¢iderilemiyecegi kavsaklarda hangi durumlarda

nasil bir duzenin uyumlu olacag: asagida belirtilmigtir:



8

1) ¥Vargalikl: tki Sola Deéntzun Yodun Qldudu Kavsaklar:

a) Sola donusler ig¢in yeterli si1ginma sgseridi Varsa

cekil 2.4 gbsterilen U¢ fazla dizenin uygulanmasi

te
verindedir. Bu duzende yoZun scla donlsler i¢gin bir faz
ayri1lmaktadir.

hzi.l

> E s

'._
__1 B2 Bi
nldninl i
Il {1

&
i

—

al N

Sekil 2.4. Sola Donusleri Ayrailan Ug¢ Fazlii1 Duzen

!
A2

b) Scla donusler i¢in yeterli si13i1nma seridi yocksa

cekil 2.5 teki ug fazli duzen kullanilmaktadir. Bu dydzende
yogun scla donUsg skimlarina duz gidis akimlar: ile birlikte

gegis hakkir verilmektedir.

2) tkiden Fazla Scla Donusin Yogun Oldugu Dortlu
Kavsgaklar:

Bu kavgsasklarda d&rt fazli1 duzen uygulanmalid:r.

a) Sola donUsler igin vyveterli sifinma seridi bulunmayan
kavsaklarda ESekil 2.5 deki 1. ve 2. fazlardan sonra C ve D
yeénlerine ayr: geg¢is hakk: verilir. Bu bigimde tasarlanan

dort fazla uygulamalarda fazlar degisik siralarda



duzenlenebilir, ancak kayilp zamanin minimum tutulmas: icin
Birbirini izleven fazlarin szastin akig yoOninde olmamas:ins
calisalmal:idir. Buntn amaci, kavszg:r bogaltmakta olan  son
tas:1t ile kavsaga girecek ilk tasitin arasindaki uzakligin

mumkiUn mertebe fazla colmasin: =aglamaktir.

b) Sola donusler icin yeterli siginma seritleri bulunan
kavgsezklarda yukarida agiklanan dort fazla duzen
uygulanabildigi gibi Sekil 2.4 te gtsterilen 1. ve 2.
fazlardan scnra 3. fazda Cp ve Dp duz gidislerine gegis
hakkili verilir, 4. fazda da Cy ve Dy sola dtnUs akimlar:

g181nma seritlerini bosaltirlar.

Faz 2.

vomed / ” | S PO A

—_— e

Ry
Em—— ge p— o—
’ T
Faz 3.|
W
‘CG

Y 2N

iy

\

Sekil 2.5. Sola Donusleri Eirlikte Ug Fazl: Duzen

3) Sola donuslerin vogun oldugu T-kavsakl

w
-

Bu kavsaklarda genellikle 3 fzzli bir duzen uygulanir.
Kavsezk gecometrisine ve tasit yogunluklarinin Birbirine

i
aranina gdre Sekil 2.6 daki fazlardan uUgU segilir.



L)
(b

oy
[nca

T @ —33

g

ce
(d {e) 4
4—’//
BZ ¢4
- ¢1
——
!
B‘g Cz (2
czkil 2.6, T - Kavsaklarda Facz Duzenleri

z) Ana yolda yeterli si1ginmz2 cseridi varsa 1. ve Z. faz
aolarak (3) ve {c) , si18i1nma seridl yokes {(b) ve (d)
vullanil:r.

) Ap akiminin Bn zkimindan cok fazla oldudu durumiarda
(&) hareletinden sonra 2. faz olarak (c? hereketd
vullaznilir.

c? 3. faz genellikle (f) hareketindehi gibi olmakla
birlikte Ap skiminin cok yogdun olmasi veya ana yalu kesen
vaya trafigi kulunmayip B yoniune dodru kavesaktan =zg¢ilan
yolun Ag ve €y askimlarimin birbirine kasti1lmalar: halinde her
ikicini birden tasiyabilecek nitelikte olmas: durumunda (e)

hareketi uyguleanabilir.



2.2.5 Ada gevresinde donus

Seliil 2.7 de sinyalize edilmig Dbir donel La
goruimektedir. tki fazli duzenle yoretilen bu kavsagin
ikl fzazinin {(a) hereketinde dtuz gidis ile biriikte Ilav
giren scla donecek tagitlar ortadaki zdanin ¢gevres
dénerek depoclanmalta, (k) hareket inde ise lav
bhogaltmaktadairlar. Scla donus yapacak tagitlar kavsak i
girmis colduklarindan fazlarin (b)) hareketleri ic¢in veri!
slre gok kisa clabilmekte, bir =scnraki fazda kavsegs gir
tagsitlar llavezag: bosaltmakta olan tasitlarla ayn: ¥
seyrettiklerinden zaman kayhbi tnlendigi gibi tr
giivenligi Je buydk olgide arttiriimaktadar. Burads yave
yegoil venrmadligi durumlardsas sa3da conusler cer
tirabkilimistir (3,4),.

—_'ﬂ#////ZJ C
. j
o Al | | T ¢
——x D A
<:> Foz | Foz 2 Cl DE
‘Bo B1 (a) V (a) °
D1t
o
O
B] (b) {b)
. C1
Sekil Z.7. Ada Cevresinde Dontus
2.3 Yegsiller Arasi Sureler
2.3.1 Sari1 siureler
Sara 1si1kin sinyalin amac:, tzgi1t strucilerini g
halkkinin scna ermig oldufu hususunda wuyararak, uz
clanlarin durusa gegmelerini ve duramayacak kadar vakla
clanlarin kzvsaga guvenle gecerek bosaltmals

<
oroan
[} 0
g =

0]
[
o
W

)

i)
P
W 4

m

1

4n
=
4

t
-
o
o



sz&lamakiir. Bu redenle, sinyalize bir tesiste devre suresi
ve yesil sUreleri etkileyen en ©nemli faktorler tasat
yogunlusu ve kompozisyonu colmasina  ragmen, sari siireler

v

tagitlarin sinyalize tesise yaklasim hizlarina baglidar.
Sekil 2.8 de gorulen basit T - tipi kavsakta, X yonune

gegis hakki verilirken kavsaktali kritik clguler ve

annlamlaril sunlardir:

Lpy = Durus uzaklig:r : X yonunden kavsaZa yaklasgmakta olan
tasitin fren intikali wve resksiyonu sirasinda
katettigi mesafe dahil olmak Uzere guvenli durus
igin baveshtaki Jur cizoisinden geride clmasi
cereben uvzaklairk.

Ley = Bogaltma vzaklig:r : X yonunden kavsaga giren bir

tas1t icin dur c¢izgisinden kavsaktaki kesisme

1

noktalarinin scnuna kadar olan uzakl:irk.

[N

X

Lgy = Giris uzaklig: : X yonunden sonra gegis hakki el
edecek Z yonu i¢in dur gizgisinden kavsaktaki i
kesicme noktasina kadar uvzaklik.

Z

|

LY

t—
R

]
3J
P

¥

L
o
—
[
-

£
J———|

| A
S

[ 7

|

Px

e Bp T

Cekil 2.8. Kritik Kavsak Ulguleri



.
w

r4

Seki] 2.8 dekwi Px noktasi, X yoninden kavgsaga giren tasitla

icin kritik bir noktadyir. (Bu nokta aslinds ssbit olmsy:ip
her tagsitin hizina gore degisik bir yerdedir, ancak proje
hazirlanirken Px neoktas: tasitlarin %85 hizina gbre yaklasik
olarzk alinir) Yezil 1s1ktan sonra sar:1 11k yandidindz Px
noktasina erigmemis olan tasit teorik olarak Lpy mesafesi
igerisinde ve dur c¢izoisinden once durabilecektir. Seri 1z:1k

vandigd:r anda Px noktasini: gecmis olan bir tzgat ise dur

¢izgisine tader duramavacadindan, kKirmizi 11k yanmadan

Vavesazktaki kesigme neoktalarinin bulundugu alan igine girmis
olmali, dolayisiyle (Lpy + Lgy) mecsafesini katedebilmelidir.

1

ravsata oirmekte olan tasitlarin %85 hizi Vx

~——

X  yonunden

km/cszat is

in

>, gerekli sari 11k siuresi Yx su sekilde bulunur.

Vy = ;/G (Lpy + Lgx> (2.12
L=falt ksplamasi olan bir vyeolda 11sglak zemin ile
lastikler arzsindaki siUrtunme katsayisa: vaklas:ik oclarak .35
dir. Intikal ve reaksiyon stresi ise crtalama olarak 1.0
sanive kazbul edilebilir. Pu sartlar igin vyzklasim vyolunun
meyilsiz cldugu kakul edilerek gerekli csar: 121k sUresleri

u
Tablo 1. de grosteriimistir.

Genellikle sari: 151k sureleri minimum 3 saniye olarak
alinair. Fratik uygulamalarda yesklasik olarak 70 km/szat %85
h:z igin 4 saniye, 80 km/st igin 5 saniye sari1 151K siresi

uyumlu kabul edilebilir.

Tabtlto 1. Zar:1 1si1k Sureleri (Y)

%85 haz Girig uzakla2g1(m)
km/st 0 5 10 15 20
20 1.8 2.7 2.6 4.5 5.4
a0 2.2 2.8 3.4 4,0 4.6
40 2.5 3.0 3.5 4.0 4.5
50 2.0 3.3 3.7 4,1 4.5
€0 3.4 3.7 4,0 4.3 4.6
70 3.8 4.1 4.3 4.6 4.9
80 4.2 4.5 4.7 4,9 5.1
20 4.6 4.8 5.0 5.2 5.4
100 £.0 5.2 5.4 5.6 5.8



.
A=

2.3.2 Kirmizi ve Sari sureler

Herhangi bir yocne vesil 1g5si1kla gegisz izni verilmezden
orice, harelete gegecek eolan tagitlarin hazirlanmalar: ve
zaman kaybetmemeleri igin kirmizi ve cari tUniteler hirlikte
sinyal verirler. Bu 1s:1kl1 sinyal i¢in metodik bir hesap
uygulanmayarak duruma gbre 2-3 saniyelik bir sure segilir.
Kirmiza ve Sari1 1si1kl: sinyalde tagsitliarin gecmemeleri ve
beklemeleri gereklidir. Ancak vyerel sartlara gtre tzcs:it
sUriculerl ku 1gs1kl1 sinyalde gecme egilimi gosteriyorlarssa
kirmizi ve sarl stUrenin iki csaniyeden uzun olmamasa

gerekir,

[

2.3.3 Koruma sireler

Koruma girecsi, gegig hakk: scna eren bir yonden kavsada
sirerek kavssgir bosaltan son tasit ile, bundan sonraki fazda
kavesalda girecel olan ilk tasi1tin kecsisme nchtasinda
gerpismamalar: i¢in fazlar zrasinda birakilmasi: gereken, ve

vesiller arasi slirenin bir boliminy olusturan, kayip bhir
zamandir. GSuvenli bir koruma '~ suresi hesaplamak igin

asagidaki kabulleri yapmak gerekir:

a) Kaveagl bosaltmakta olan tasit daha once kirmiza
1gikta  bkeklemis olan kuyrugdun son elemanidir ve kavsad:
cnindeki tagitlarin arkasinda agir bir hizla terketmektedir.

b)) Kavsada terkedecek clan sSOon tasit sari 1s1kia
sinvalde gegmektedir ve dur gizgisini gegtidi ande kirmiz:

c) Rir sonraki fazda lavsada girmek zere dur
¢izgisinde bekleyen tasit yoktur. Kavsaga ilk girecek olan
tagit hizin: diustrmeden vyaklagmakta olup (kirmizi ve sari)

csinyalden sconra vyesil 1g218:n yandi1ga anda dur ¢cizgisini

«Q

egmektedir.

—

Seki 2.8 de X yonunden gelen zkim, Z yOnUnden gelen

e
akim tsrafindan izleniyorsa standart bir octomobil boyu Em.
clarak alindi1g: tzktirde, kavegagl terketmekte olan son

tasitin bir sonraki fazdsaki ilk tasit kendisine yetismeden



b
J

katetmesi gerekli olan mesafe (Lgy + 5)m. dir. Z  yEonunden
kavezga girecek clan tasaitin ice, vyesil 151k yzndiga andan
sonra kesisme ncktzesine kadar katedecedi mesafe Lgz dir.
Her iki tagit arasincdaki kcoruvma siuresi z2safidaki sekilde
heszplanir:
Bogaltma suresi
Lpy + 5
tpy = VB (2.2)
Purada
Vg = HKavsai3a bosaltmakta olan son tasitin kavsak
icindeki ortalamse hiz:r (km/st),
Lgxy = X yoniunden hkavsaga giren tasitin kavsad: bosalims
mezafesi,
Girigs suresi ise
Lgz
tgz 3.6 e (2.3
Vo
Burada
Vo = Gegis hakki agilzcak olan yaklasim yonlnuUn %85
hizai,
Lgz = Gegig hakki agilacak olan ciris
uzakligidir.
Kesigme neoktacsindaki garpismay: onlemek igin kuililanilacak
koruma stresi ise ikl surenin farki clacaktair:
tg = tg - tg (2.4)
Burada
tg = Koruma suresi,
ig = Bosaltma suresi,
tg = Girig suUresidir.
Koruma suresinin hesesplanmzsindz en buyuk zorluk Vg ve Vg
degerlerinin saptanmacsidir. Sehir igi kavszklarinin
sinyalizasyon projelerinde %85 hiz 50 km/sast sehir d1$i
vollari Uzerindeki sinyalize kavsaklarda ise 80 km/sasat
olaralk kabul edilmekle birlikte, gercede yakin bir uygulama



1N
o

(4]

1

Q.

P

rilabilmesl icin me durum ve trafil
tindabki  yakl od czpilarabk bulue
VEahta tellemis olan tasitlasrin kavesak icindeki
zlzr1 ige 25 km/st. mertetesinde babul edilebilir.
3.4. Kayip zaman
Kavip zaman, bir devre Ic¢indeki butun yegil!
relerin toplamidir. Pgeha bir devicgle, bir devre
r sUreler ile koruma =zlrelerinin ve boruma siir
sinda kaian hep - kirmizy slrelerin toplamidar.
n T 8
te =, 2 Y5 ¢ L %tpy 4 L otp
i=1 i=1 i=1
radz
ts = Kav:ip zaman,
thi=1 faz: ils &nir i fazz mrzsairvdzalki borunm
n = Faz =sayisi.

ruma

1
+
|
ot
11}
J
e
el
-
I
s
n
c
-1
m
1}
-
1o
Paad
N}
T
m
5]
.
[n]

N
I
]
w
«
o)
[}
(5]
O
—
4
wn
o
o
©
®
jor ]
-

i)

w

Yavya trafiginin ycocgun clmad:igy kavsalklards, vay
Ureleri cegite dikey yondehi tzesit trafiginin kirm
raliklarinds cerilir., Yayvalara gecgis habka ve

ce tasitlzrin kesinlikis SUrmus clmalar: e
avalara verilenelh yegil! 1gibk stresinin € sn’ den d
mamas:inia dihkat edilmelidir., Yavalarin vesil! 1g1k
ridme hizi1 1.2 m/sn kebul edilerel bulunur.

Yaya Yesili Suresi 2 Yaya Gecidi Uzunlugu (By) /1

Iniz vayvmiasl i¢in ciuzenlenmis olan veya Yayea t
Zun cldudyu gecitlerde ise hrer fzz iginde karsgidan
zecelk oclan ortalamea yaya szy:igsinln gtz onunde
rekir. Burun igin en uygun vdntem ne hkadsr sayid
cidi ne kadar zamanda gectigini gtizlemek

m

fon

0]
a1
i

b}

H
~~

[l
-4
g

n
ol

[

(1)

iy
n
e

b ]

4
N

i

b




_./

m

$r
w
A2
[y

e
o

et
o
[
[A)]

dusuntlimelidir.

lecegl

1

eceb

6

S
W
E

(17}

o]
[
n

]

el
]
0

~

w

ot
L)

i

UZUNMUS

Yyaya

“~

]

m.

TOrnedin 5

0

Suresi

Devre

2.5

1}

iy
o

j8X]

3

n

[tV
>

8]
[0}
Y-

cecilen

1.
o

i}

"y

o

3

]

L]

N
[l
o]

1]
-

.,y:

s
o
10
<G
o
@
4+
(1,
]
61

b

it

syon

s

aj

cruglarain

c

W]

42
=
Ur

n

)

edeni,

-

Eunun

)

]

ur

cslricu

U
=
1\
|
U}

akim

2.5.1 Etkili

4]

[
il
s

et

nvali

£y

C <

-4

)
[u]

e

[as]

]

{J:

i

biri

111

1,
=

omo

Ur
e

Lall

Lir

yet
L))
[8]]

s

-~

YU

yikd en

cdisey

ot
B
1
o

YOn

lan

s}

en buUyuk

$Y054
u

wrl

et
>
]

D

.

0

B9l

" F

Y

eden

o

kontr



c
0
o
]

Birbirini izievyen fzzlardzhki en yilksel yukiy

yoénlerin hepsine birden Etkili 2zk:im vcnleri, veya dshsa vica
olarak Etkild zvaim  =z=d: wverilir. Birbirini izlezyen
fazlardakl en yuhsek trefik yuklerinin toplamina da Etkili
zkim yuku denir. Ornedin iki fazli1 bir sinyalizazsyon dizeni
clan skim

Lir kavsadin her fazinda iki ayri yonde tagat
[

varsa wve 1. fazdakil otomobil birimi yuUkleri Ma ve Mb 2.

o
]
—

fazdakiler de Mc ve Md ise, Ma 2 Mb ve Mc 2> Md olm
k

]
= 4
Y

halinde, etkili zkim ‘Ma, Mc) ve stkili akim yuku de M

+ Mc oclacaktair.

2.5.2 Devre siresi bileskeleri

Herhangi bir devre curesi, kullan:len yontem Ve
vygulanan sistem ne clursa olsun, prensip bzkimindan 1]

o
~
o
AN
e
~+
iy
—
b
=
)
L
-
.
€}
s
o
0
-
=
[l
s
<
LR
[
11}
e
[
m
)
g
o+
[}
3
)
jee]
—

Devre Siresti,

hal
n

C = E = + tS (2.7
i=1

ile ifade edilir. Burada

C : Devre suUresi,

n

G:: i fazini1 kontrol! esden akimin yesil 1g1k siresi,
t

Sinyalize yaya gegitlerinde, vyayalar igin verilen yesil 1g:k

slreleri tzgirtlar ig¢in zasman kaybina ycl acacadindan, bu
cUreler hep-kirmiz:i sUre kapsamina alinir ve dolayiziyla
kayip zaman oclarak kabul edilir. Devre sdresinin
heszaplanmasinda, kullanilan yvontemin Tzelligine gtre gesitli
faktogrler gz ©OnuUne alinmakla birlikte, Etkili akim en

tnem!i veri tutar. Hemen hemen bUtun yiontemlerde, etkili
zkim icincdeki tag:tlara verilecek yesil csUrelerde devre
stresinin ve avyn: zzmanda gecirecekleri akim yuklerinin

fonksiycocnu colurlar.



<

(R

2.6 Optimum Devre Suresi

Uygulanan yontem ne olursa olsun devre sUrecinin
hesaplanmasinda gncelikle crtalama akim degerleri
kullanilar, Ortalama degerlere gdre hesaplamnan bkir devre

stresinin sakincalar: su sekilde Czetlenebilir:

a) Kavsaga ortalamadan daha dusuk sayida tasit
geldigi zaman yesil sUrelerde kayiplar olugsacaktir.
b)) Kazvecagsa ocrtalamanin uUstunde tas:it geldigi zZaman
kuyruklar uvzayacz¥ ve gecikmeler artacaktir.
Sinyalizce edilen kzvsasda crtalama dederlerden daha az tasit
celdigi ZEMEN, kayip yesil siureler, ancak tesis wyvarmslal
cldusu  tabtirde Znlenebilir Kurulan tecis czbit Zamanlt 1
olursa devre sUresinin kavsaga her yonden (veya iste§e gtre
valrniz bazi veénlerden) girecek olan tasitlarin hkuyudk bir
crarninin  kendilerine verilecek vesil siire i¢inde gegme
imkani elde etmesi, devre siurecsinin buna gdre avarlsnmzcs:
ile <caglenabilir. Pir diger deyicle, etkili akimdaki baza
yodnlierden veya hepsinden bi: devre sUrecsi iginde lLavsaga
Jiren tacsitlarin T2&Yy1S1. ortalamanin Ustunde olss bile
gelmekte olan tagitlarin hepsini bUyUk bir ihtimalle (%50 -
vzatilmasa ile




~

SISTEMLERI

GENEL HABERLESME

3.

w
I
ot
s

[t

et
A2
[

A

i
ur

4
-
-

W
10
Al

V]

&)

o

i
o

Ulimektedir.

$a
O
(w2}

Yan

ur

ud

ft vonl

:
1

gl skis: ¢

Eil

[

4t

evrie

~
o

ul

Loop

W

4

[V
O

V]
v

NN =

(LB

A1

[a3]

[

st
g

ion)

+
Q
[\

T

oo

evre ol

—
o

)
+2

©

Ui}

Wy
e
ty
4o

-4

3
-

n

V]
s}

ol

(%)}

+
e

-

3

Urni

z1

merke

inde

ig

bt

$os
5]
o

W\

[
uw
§2
i}
40
ul

ot

i
O

433

[a%]

i1l

]
42
[
(1]
[l 1}
V]
A2

I
£
i

L]

Ul

$n

(&)
[}

o

w

n unit

Y o

"

zligs1

m
et

Lr)

etely

-1
i

T
s

(Cor

s

£
)]
-

Jdur.

yon i

}/

Eu

fu

o

e

dniteden

fetenen

NG
P

(

0]

1]

44

e
or

wr

0

15}
-

&7

-
42

o

U]
n
1Y)
A

ur

tion)

(b

{a)



-

Sekil 3.2. Olusturulan Cok Mikroislemcili Sistem Yapisa
3.1 Digital Haberlesmeye Giris
Seri ) paralel veri (datsz) tranz=feri bilgicsezyzrlar
arzsinda karsilaikli bilgi alig-verisg vontemleridir, Her 1ki

: d
tntemde genis bir uygulama alani1 bulmahktad:ir.

<

3.1.1 Paralel data transferi

) iletimi hizin ©rnemli ocldugu kica

a
haberlesmelerde kullanilmaktzdir,. Eutin bir veri

mesafell k
haberlesmesi ¢ok hizli1 bilgisayarlar arasinda kurulmustur ve
bu hakberlesmenin hizi csniyede milyon karaktere

\

xabilmektedir.

0
-



e

3.1.2 Seri veri transferi

Seri veri transfer; genelde sayi1sal (digital) bilainin
uzun mecafelere aktarilmas: gerektigi yerlerde kullanilar.
Uzun mesafelli haberlesmede seri veri transferinin
kullanilmasinin tek sebebi bhilgiyi tasimak ic¢cin gerekli olan
kablo sayisinin =2z olmasindan kaynaklianir, Faliat bu
haberlecmede elde edilen transfer hiza bugiunku norma l
telefon hatlar: kullsanildiginda ancak 4800 bit/sn (baud

rate) dir.

Ibi tur ceri haberlesme metodu mevcuttur. Bunlar

siracs: ile asenkron haberlesme ve senkron hzberlesmedir.
a) Asernkron veri transferi

Acsenkron veri haberlesmesinin bir diger ad: da basla -

dur (start stop) haberlesmesidir. Cunku cenkronizassyonu
cszdlamak i¢in gtnderilen her 1 byte bilginin ic¢inde basla ve
dur bitleri bulunmektadir. Asenkron hakerlegmede c¢lock

(saat) csinyaline ihtiyag yoktur. CuUnku csenkronizasyon
gtnderilen basla wve dur biti ile saglanair. Sekil 3.3 te
asenkron haberlecmenin cenel format: verilmistir.
Gonderilecek her bilgiden tnce lojiik seviyesi 7low’ olan bir

inyal gbnceritlir. Bunun ardindan LSB ilk bilgi olacak

m

cekilde veri gonderilir. Gonderilen verinin ardindan
istenirse veriye ait parite biti gonderilebilir. EStop biti
her zaman veri bilgisinden sonra cellr ve lajik *high’

cseviyesindedir (8).

Sekil 3.3 Asenkron Data Haberlesme Format:
b) Senkrcocn haberlesme

Cenkron haberlesme de senkronizasyon bir wveys iki

senkrornizzsyon karakteri gonderilerek saglanir ve ardindan



)
)

uzun bir veri blogu génderilir. Senkronizasyon karakterinin
haricinde birde claock pulsler gtnderilir, Senkron
habierlesme degisik sekillerde gergeklegebilir. Burada drnek

olarak BISYNCH (Binary Synchronous communication) yontemini
kisaca acgiklamak veterlil clacaktar. Cekil 3.4 te goruldusg
gibi veri gtnderecek olan Unite diZer Uniteye haberlesmenin
basinda her biri tek byte (8 bitlik bilgi) olan 1iki adet
senkronizasycon karakteri gonderir ve karakterlerden hemen
scnira transfer edilecek olan veri blogGunu gtnderir. Veri
ginderme iglemi sonunda ise gtnderme igleminin sona erdigini

belirten bir karskter gonderir ve islemi bitirir (8).

P
T

o |

;oA
- -

Sekil 3.4 BISYNCH Haberlegme Format:



[

DONANIM

4,

ud

®

3

i3
1}

s
D

e
[}
11]
0

o

n

~rd

1

hazirl

devre

[£2)]

h

4o
U]
b
u

1
]

et

i1}
s

(8]
3
1)
0
(93

3
(]
$4

g

i1l
n

12

See
e
iy

Rl

U

W
ol

iy
oy

e

U
n
[
&
ut
0
{n

[{H]
£

mn

3T
A o

[}
Sy

Ur

£

lemcisi

13

-80 Mikro

4.1 Z

]

&
et

@]
uy]

ur

,.
-5
o

e

st

o

[
i}

A

P
[}
w
[
~
i
©
[
il

devreleri

uyum

h

vineten,

o

$eu
N
S

[N}

-t

-
o
2

2,

L
L

+

[
iy

}
a

[

14}

®

ot

et

kaynak

]

]

o

0

4

£

I
i
4+

[

et

o

&

"
_d
AT

ttre

[0

]

kimu

=X

Diger

cemh

bl

B

a
m

o
iy
it
49

2
ho]

Ve

N
a

u?
M

€ay181n1n

e}

[0}

fazl

giris-gi1kis

1
(]
L}

bontrol

.rd

=

—

rim

et

Al

(1707

1]

o

~-t

ur

$
ot



Ve = .
- .
b | ———=2d M1 ma 22 121 ho Do 4 18] qo o0
. AL [ = At D1 = 21 a1 ot
:Ji% q treg fz 125 81 he o2 Hd §laz oz (42
- 299 Tora a3 |2 21 e 5 HE N s
FDRES  [r@ £2 vin ha |22 tlas b€ Glhi  oa HE
3 = N—AE =1 nE
- —=2g REFSH a7 55 =& 67 D7 |42 — A7 o7 2
Ve ‘= —LaﬂHﬁ_T Ao 33 il i L4 s
- . = 2
CQLOCK , E4luarr . p Al L 23] A1 el Py
- Y4 H ALe f—= 2l £l aiz
RESET 161 T A e ] = 261915
s S —L23 Nt ALa [ 20 5T 22 a1
DEVREST | i aldre st oL X
CLOCk 26| pEaeT = =7 QEL 20| =& ROM
2k BUSRG Bt j:-t— or  RAM =5
< L H= ~ VER
- = = (==L
d BUSAK Dz 12 STSER
-3 G 35
CLK Dd (4
o6 19
RN ER
=
s 2730 CTC 2780 SI0
PR DO = Do ba
4 pai b1 =4 o1 TRGD D1
" = F’ff\d D2 4@ P2 TOO = D2 =D
S Pa3 D3 = D3 =503 RxTHCR =
T HEEE B : oot — cene
1= 2 Pas D5 (-4 05 TOL e e RO 52 —BFCE
072 3 — D72
NE=R ARDY =g TO2 b—vo T -
_ INT pES— CTe -
6l asts P10 11 fsd- ax Y10 qraal— o g
= PEQ TEO e —q €81 A8 7
<E1poi a - e
=2 PE2 CE P=p < €S2 »
S0 pEG RO P .
1] pEg Tora pES —dq ToRG 2 ToRe
= Pes ML P -
22! pec R = | M1 S 71
I pev B/A = - ]
—i=d4 BRDY o —RD 5 RD
L4 ss78 CLK TE  RAFSET & FESET
ZBPI0 Ty 0y U &
s 21

croislemci Kart

M

Mi

4.1

Sekil



(Clock) Devresi

4.2 Saat

)

[88)]

t-d

w
>

G

4
1]
W]
71

(1

m

1]

e

Or
o

5]

veril

m

lin

1
4

!

lall

(1Y)
D]

4.3 Reset Devresi

o]
o)

P8}

Cr

[l1]
i
Al

[14]

=
et
(83

et

eEmer

-
in
w
W

e
Bz

[t}

(8%

m

~
31}
4
O

~

o
1l

=
Y]
4
(o}
O

1,

I\
0

~—
i
b4
{3

[
[N

w

s

W

M
ur

e
[47]
(7}

¥t

q
el

Devresi

etleme

u



4.4 2-80 PI0O (Paralel Giris-Cikis Birimi)

Girig-g:rkis Unitest mikroislemocinin dis dinya 1ls
alis verigini caglayan birimdir. PO’ REbs
mikroizclemcisl ile badlantisi sekil 4.4 te gbsterilmistir,
Trzfik 1s1klari kontrolu icin yepilan baglenty sekil 4.5 te
verilmigtir.

E7d M1 A 22
al =i L
L2 MrEG Az 2=
=Xd TORG o k]
—Z=2] uRr 22 =4 12 . =
30 Rk v BT 2o b9 Po@ 1
==Y QE 3L 1 D1 pﬁé [T
—=23 REFSH A7 oL 1 = e 2 ErZ [IZ
ig el e I =4 Prg 8-
—L24 HaL T Aa HE— G EBA £ e =
o =2 Iy = =
=L — ‘ A1e = =1 D& [
b ‘:‘ié Z = D7 AL
1g et M) rYTY =3 ARDY (S
T51 INT a1z 4 zzle ~S59INT pi
N NMT gi"; = [ATX R 4] —£=13IEI
26 | RESET 14 =¥ e
= e Da g 21 cE
== BLISRG i = =
—=2] BUSAK bz £ -
&4~ D2 51
> CLK D4 b—t e
o =
DE (2
L7 HL2
25
Selil 4.4, Z - 80 P10 Bazglantis:
33
- AN A e
S
v N |
19 c K 339
—424 e Paa M A— A
= D1 PRL ME | vy 3
a@ | D2 PRz 5 . Y
=51 D3 PAZ 1y ]
=51 b4 PRdq g — 4
=24 pE PAS —E—— W 3
=4 DE PRE = s A
D7 Pa? = K 330
- ) ARDY — Ay
== IET ARETE 25— — A\ A
———WIEO PE@ H=5 1 L g 3 b5y
44 o PRl F55 [ o e .
—==d < PBZ =55 330
—2=d RD 2 i? — A~
—2£] 1ora PE2 (21 v
UE:_-j ("ji_ Fes :’.:-":‘ "% 3 i
3 -":D PE‘E', =4 336
—E{ BA PE? |2 — SN N |
=5 HKW-%%— v 230
~=25CLK STE i S A A
4
ZE10 330
NG M—'(
ok 230
. v |
t 44
KK .

Sekil 4.5 PIO tle Isi1klarin Baglantisa



- e

czucu

Adres

icin

Uniteleri i

- Cikas

iris

4.5 Hafiza ve G

el
]
Q

>

(1)
O

ur

n
)
b
O
1]

O
™
i

&3]

)

)
@}
]
i}
]
£r

]

y

{Q

]

N

4]
i

4]
Len

i

i

4t

[l
3
@

o

4.5.1 Hafizalarin adreslenmesi

[
1
[
P
(o))
0]

MEMREQ sinvali

adir.

U]
td

A

(o)

et
ur
I

rd

0

(&1

i

U]

14
di

42
ur

er

a

1

dreslenmes

1nin a

Uniteler

/Cikis

iris

4.5.2 G

1
il

1]

13RQ

i}

£
]

Y]
u

-1

i}

0

It

=]

=

G eGP

plu]

FIOL
TG

(&
[SENE)

=

<

CTC SIC PIOL

1F
3F
=F

bl ]
et
N
M

:;::'l

RAM ROM

FFFF

SFFF

s

@



Seri hakerlesme, -30 510 ile yespa
ile hem senkron hem cde aszenkron haberls ¥
Degisik status registerler ile S107 nun onem
hata durumlarin: ctzlemek muUmkUndur. Bu
mikroiglemci ile baglantisi Sekil 4.7.2 Cda
Clusturulan sistemin Cry? dan sonr
Unitesidir. RBilgisayarlar arasindaki eti
ile sesglarmistir. Eilgi iletiminde meszfen
olmasa nedeniyie S gilhislar TS =
yiikeeltilmekte ve dzha az lava =
iletilebilimektedir oD I2 ilte S10 aras
sekil 4.7.b de cocsterilmiztir
FROM
CTC 3
220 _ST0 o |+
D i T
D I
02
B2 B
EG D4 ZAF
gg RxT=CE T
- 7 =
oo FDEl —— RECETVER
Trbe N, TRANSMITTER
¢ CLK -
R B
e cD
RECEITVE
| U2
R 15
e =] JIoRG RECEIVE B
M1 11 o
Zi ——“'__“*Ti TRANS, it
RO ———gF TR
(2 fa

4.6 2-80 510 (Ser

e

Gir

(a)
ekil 4.7. 2
4,7 Z-80 CTC (Sayici,
Dor kenatla €3

gerektirmeden bsa

icerigsindekl

baglantisa

s-Cikis Unitesi)

fle}

()

Jte

ar =
e

h

ot
o
+

Te]

)
e

0

vy

<

n
)
()

T .
mumbun3ur.

Te]
m
-
v
oo}
.

n

-
=
o

1
~+
ot
-
.

e Criemli

o
—
0
0
-
-
ie]
4t

wm
.
h
[}
I
W

reci ile
o

Yoo

Sl ya

P —- e .

IS IR G IS S

]

g0 &10 ve TECZZ

Zamanlayici1 Unitesi)

NWHN-

CPuyL
cru2
s chPuL
j CrPu2

T

T

(82
m
1]

zriti1s
i bir ok
tadair. Z-80
iT zara devre
in csistem

mictir.



W

,J.
€1

o+
lui}

-5
~+
Q Al
-9
w

n
T3

o+
6}

«

£l
o
-
)
n
m

€,

o+
~+

2@ CTC
%
Di TR
D2 TO
- D= |
DS TO01 ——————cTo
D <
=g TRG2—
CTC vo2 —
LK
Selil 4.8, Z - 80 CTC Baglant:isa
€ alts adest crtak ancdlu yedi pErozla
vy clusmustur. Pispleylerin verl girigleri benrndi
pezralel taglanmigt:ir. Adres gCzucid devre ile
rine trancsistdrlerie becsleme verilebilmektedir.
indern valnizca bir tanesi yvanabkilir. Col hizla
ile =slta tznesininde vandid: gorulebilisr,
bzglantisr  genil 4.8 da gisterilmistir.
iki kizimdan slusmusivur. i1k dort Sispiley
niin  zdres hatt: bilgisini, son iki Zisplay ice
lgigini gostermektiedir.
Lisminda 8011, data kism:ncda ise 3E vyazilivea
BU11H zdresinde ZEH bulurmaktadair.
adet say1 tusu ve dort adet feonksiyon tusundan
tak:m1 devresi sekil 4.10 da geriuldugy giki bes
dort sutundan olugsan bir matris formunda
lanmisgtir. Devreye ilave edilen bu gtsterge ve tus
PC Gbtilgicayardan bLajims:iz cliarak merkez
isine rrogram yazilip bagia Uinitelere hileai



O

|
)

,I|||/ 8 2
|j [
M
N o]l
{u
[&¥]
]
=
- _%._.
-
[\d]
-
u
©
]
m
3
s
$444 3 -
3M. %V % -
i
or
SH{uRr| iik )
]
[reppl o T aTel foTeTely)
B gy [T Tu N )
L] 30> R o o IR
o i
et it
bl @m 9 plam @
[ - v

g~ v :Hﬁ
ot b

—%

bima

-2

=

iN4i4



4.10 Interrupt Ara Devresi

Merkez bilgisavar ile vardimel bilgisayarlar arasindaki
haberlesmeyi UM uUm iginde vyapabilmek i¢in bir ara devre
tasarlanmigstir. Bu ara devre ile yardimc: Uniteler arasinda
bir gneelilt si1ras: olusturulmustur. Ayni zamanda bu devre
Z-80 CPU’ nun interrupt mode O durumu icin kullanilan ara
devredir. B devrenin sisteme baglanisi sekil 4.11 de

gosterilmigtir.

ENCODER +EV

7432 AS5leo ET p=-
il 4 4
2 avq 24 L & 2
Havs 2a3 4= 4 £ p—5
paTA Ll2v2  2p2 —Lda gs 4 pt
o al: =5 i 3 k2 —cPut
BUS = 2Y4 2A1 = X 3 PE z
N\ Z11v4 104 2 L_;——ii Az 2 g CPU2
L iva ras S| | —ddar 1B cPU3
et vz 1Az 2 dae o ple—crua
LB IvT 1AL —4T35
JAL 5544
INT<
Sekil 4.11. Interrupt ara Devresi
JfB = 2445
WY
8X1 MUX
DDODDDDD
01234867 ABCG
RECETVER y
] cPUL
L A =
2lpe oo |- cPua
E] DL GL 2 4< CPO4
BalA E1D3 w3 o
L2ioa a4
Hoe  gs 2
nvdl el
105 S6lI9
oc
CE—————:]jS~CLK cPUL
JALS374 &z
TRANSMITTER Py
Lotch

Selkil 4.12 Mux - Demux Baglantis:



Sekil 4,12 de ise merkez Unite ile vardimc: uniteler
arasinda seri data transferi icin baglantiya kurmalkta
kullanilan MUY ve DEMUX baglantilari g@sterilmistir. Bu MUX
ve DEMUX? 1n segici sinyalleri uygun konumlara ayarlanarak

istenen Unite ile haberlesme vaprlabilirc.
4.11 Sistemin Calismast

Her Unite acgilista ROM’da bulunan program: ¢alistirir

ve bu programa gdre kavsaklardaki trafik 1gi1llari  kontrol

edilir. Bu Sistem genel olarak Ug¢ yardimea unite, bir
merkezi unite ve bu merkezi Uniteve bhagla bir PC
bilgisayardan olusmustur. FC bilgisayarinda vazilan

programda saat surekli olarak kontrol edilir ve saate gbre
uygulanacak praogram numarasl belirlenir. Belirlenen
programla ilgili bilgiler seri porttan merkezi Unitevye
gonderilir. Merkezi tnitede kullanilan ‘'interrupt’ ara
devresi ile bilginin hangi Uniteden geldigi belirlenir ve
ilgili alt programa atlanir. Alt programda ilk olarak
yapllan helirtenen Unite ile merkezi Unite arasindaki bilgi
hattin: kontrol eden MUX - DEMUX yapirsinda uygun 'select’ler
gonderilir ve  merkezxi unite 1ile bilgi gtonderen unite

arasindaki bitgil hatty birlegtirilir. Birlestirilen bilgi

hattindan gelen veri alinir ve hafizaya vazilir. Merkezi
Uniteve PC den gelen bilgi s1ra ile diger yardimeci
tinitelere gonderiltir. Bu igslem yapilirken her Unite ile
merkezi Unite arasindalki bilgi hatti1 MUX -~ DEMUX ‘1in

'select’leri aracilig:r ile uygun konuma getirilir ve wveril
transfer iglemi yvapirlir. Yardimci unitelerde g¢aligstarilan
programiarin numaralari uniteler tarafindan her faz
bagslarinda merkezi tniteye bildirilir. Merkezi Uniteye
gonderilen program numaralari merkezi unitede kontrol edilir

ve farklili1k varsa galiswmasy gereken program verileri ilgili

Uniteye ganderilir. Hemen sonra da merkezi unitedeki
program numaralar: bilgigsayara gonderilir ve calismasi
gereken program olup olmadig: kontrol edilir. Kontrol

sonucunda, program numaralari ayni ise tum Uniteler normal

calismasina devam edecektir, farkli ise iglenmesi gereken



34

program verileri bilgisayardan merkezi Uniteye gonderilir.
Merkezi Uniteye ogelen wveriler diger Unitelere sira ile
gonderilir ve lkontrolld ve uygun sekilde tiUm Unitelerin

calismasi saglanir (9,10,11,12).

Merkezi Uniteden Ug¢ Uniteye veri gotnderme islemi
"interrupt’ ve MUX-DEMUX ara devreleri kullanilarak
yapllmaktadir. Bunlarin vaninda sistemde koordine c¢alisan

iki uUnite bulunmakftadir. Bu iki unite ardi ardina gelen iki
tane ddrt yollu kavsad: kontro! etmektedirler. Bu iki uUnite
ile merkezi uUnite arasinda bir g¢evre (loop connection)
badlantisi yapilmigtir. Bu sekilde yapilarak ard arda gelen
iki kavsagin koordine ¢alismas: saglanmis, .tasitlarin ve

vayalarin kavsaklardaki beklemeleri onlenmigtir (11,13).

Butun bunlarin vyaninda bagimsiz ¢aligsan Unitelerden

birisine digerlerinden farkl:r olarak bir yaya 15181 kaontrol

tusu ilave edilmigtir. Bu tusun gdrevi, tagsitlara vesil
131k yanarken yayalary dnecelikli duruma getirmektir. Tusga
basi1ldi1ginda Unitevyi vonlendiren (kontrol eden birim)

mikroislemciye bicr NMI[ (Non Maskable Interrupt) ’intercupt®
gitmekte wve bu Tinterrupt’ isteginden bir muddet sonra tum
yonden gelen arac¢lara 3 sn sure ile sar1 1s1k  yanmaktadir.
Sara 1giktan zonra tasitlara kirmizil, yayalara ise yesgil
151k yanmaktadir. Yayalara belirli bir sure yesil yandiktan
sonra kKirmiziya donUsmektedir. Ug saniye koruma sUrecinden
sonra en son gegls hakkina sahip olan ydne sar 1s1k yanmakta
ve sonra yesile donmektedir. Bundan sonra normal akis devam
etmektedir. Kavgaklarda uygulanacak devre sUreleri
kavsaktaki trafik yogunlufjiuna gore degistirilmektedir. Bu
sekilde duzenli ve gegikmelerin ¢cok az oldugu bir trafik
akiga saglanmaktadir. Bu devre stireleri gtzlemle yapilan
istatistikler sonucunda alinan veriler dikkate alinarak

ampirik denklemierle bilgisayarla hesaplanir (14,15).



35

5. YAZILIM

Sistem ©programlar: alt programlar halinde yazilmis olup
istenen bir programdan diger bir programa gegmek mumkundur.

Alt programlara ulasmada daha ¢ok interrupf fonksiyonlar:

kullanilmigtir. Butun sistem PC Bilgisayarinda yazilan
program ile idare edilir. Yerine getirilecek fonksiyona
gbre ilgili alt program ¢alistairailar ve fonksiyonun
gergeklestirilmesi caglanir. Her iglemden sonra sistem

programina donUlur.
5.1 Aki1s Semalara

Sisteme enerji verildiginde her kavsaktaki mikroislemci
merkezden badimsi1z olarak ROM? unda bulunan programi
calistirir ve bu gsekilde kavsaktaki igiklarin merkezden

bilgi gelinceye kadar kontrolu saglanmig olur (Sekil 5.1).

Bir kavsakta wuygulanan akis diyagram: sekil 5.2 de
gisterilmistir, pC Bilgisayarindaki sistem program?
caligmaya basladig:r andan itibaren sistem trafik yogunluduna
gtre dtuzenli bir sekilde ¢alismaya baslar. Bu da éistem
‘programlnda saatin kontrol edilmesi ve belirlenen saatlere
gdre uygun programlarin ¢aligtirilmas: ile gergeklegtirilir.
Gunun dedgisik gsaatlerinde trafik yogunlugu farkli oldudundan
kavsaklarda uygulanan devre surelerinin trafik yogunluguna
gore duzenlenmesi gerekir. Bunun ig¢in belirlenen saatlerde
uygulanmasi gereken devre suUreleri bilgisayardan merkezi
mikroislemcive, oradan da kavsaklardaki mikroislemcilere
gonderilir. Bu sekilde de kavgaklardaki trafik akisi trafik
vogunluguna gbtre dedgistircilir. Akgam, belli bir saatten
sonra ve sabah belli bhir saate kadar olan surede 1siklarin
sari vanip sonmesi csadlanir. Bagslangigta saat kontrol

edilir wve bunun sonucunda saat 6:00 dan kucukse veya 19:00

dan buyukse bir numarall program, ©6:00 - 7:00 saatleri
arasinda ise iki numarali program, 7:00 - 8:00 saatleri
arasinda ise ¢ numaralyl program, 8:00 - 9:00 saatleri
arasinda ise dort numarali program, 9:00 - 12:00 saatleri

arasinda ise beg numarali1 program, 12:00 - 14:00 saatleri



36

arasinda ise alti1 numarali program, 14:00 - 17:00 caatleri
arasinda ise besg numaralil program ve 17:00 - 19:00 saatleri
arasinda ise alti numarali program calistirailacaktar.
Sistem programinin  akis semasl S5ekil 5.3 de, merkezi

mikroiglemcideki yardimci sistem programi akis semasi Sekil
5.4 da gosterilmigtir. Sistem programlar: Ek &7 te

verilmigtir.



BAaSLA

Y

Sistem deqgisken-
lerini tanimla ve
resetle

Y

§TC, 510, PID "yu
gerekll moda
programla

H

Program no = 3
ise butun yonden
gelen tasitlara
sarl isik
sondur

yak

'Y

L4

Trafik 1siklari
kontrolu 1cin
kullanilan para-
metreleri baslan-
gica getir

v

[siklarin kontro-
lu 1cin data yi
ploya yaz

Y

~ Her state
icin belirli
geclkme ver

Sekil

. 1. Kavsaktaki

Isik Kontrolu

\

Calismakta olan
program nag:
merkeze bildir

—
GERI DON

I¢in Akis Semasa

w



BASLA

DELAY ZOSN

-t

DELaY Z3N

DELAY 2SN

DELAY 165N

DELAY 25N

WXL
e
e o
—C——
[pgle i ul
HZTX
e —
[t 3 [ b
——

DELAY 153N

DELAY 25N

I P f g
t;lt?l".l 1

DELAY 25N

5.2.8inyalize Bir Tesisin Lalismasinin Akis Semasi

38



BASLA

¥

Duruwm degiskenle-
rini tanimla
Interrupt’ i
enable et ve
degerleri ata

v

Herhangi
hir tusa
basildimi

Saats19:00
ve
Saatd{6:00

v

Saatro:00
ve
Saat<?:00

v

Saat>7:00
ve
$a3at:8:00

b ==

Saat,8:00
ve
Saat{9:09

oy}
4]
=~
o

5.

3. Sistem Program:

39

i

Frogramdan
Likis

Calismakta olan
program
aciklamasi

GERI DON

Akic Semas:




Sekil

53a1,9:00
ve
Saat{iz:00

H

3aatr14:00

Lo ve
Saatii?:08

y

Saatr17:00
Ve
S5aat<i9: 08

4

Uygulanmakta olan
programi, saati,
ekrana yaz

|

(NN

3. 5{sten Programi Akis Semasi (devam)

OO0

40



Pr=z2 p———P

Fr=z3 p———mb

Fr =z 4

v

¥

saate uygun
Frz3 p—mb olarak belirlenen
Programi calistir
ve gerekli olan
datalari trans.et

\

GERT DON

Frz§ p—b»

|

Pr =

TTITT T

Sekil 5.3. Sistem Programi Akis Semaszi (devam)



BASLA

\

Sistem degisken-
lerini tanimla
ve PIO® yu prog.

-
e

v

f

HAINLOOP

¥

Bilgiyi Gusterge-
ye gonder wve
gecikme ver

KEYSTATUS

Keycount = D

Keycount'u
bir
arttir

~ Gostergeyl
disable et ve tus
kodunu Acc "ye al

Sekil 5.4. Merkez Mikroiglemci Sistem Programi Akis Semasi



TUS PROGRAMI

fice deki tus

kodunu 7 segment
koda cevirip
Dighuf a yaz

E
¥
Gostergenin Gostergenin
bilgl kismini adres kismini
degistir degistir

e b e~ oEEs

43



44

i

/8 flaginin
icerigini
complement et

\

Adres moda Bilgi moda
gec Jes

B
PRINTDIGIT

\d

Lronin 1cerigi
ile hangl digite
bilgi yazacagini
belirle ve Cr’nin
icerigini i artir

E
(r =9
) .

©
F N



Gostergenin Gostergenin
Adres kisminl fdres kisminil
i artir 1 azalt
©,;
\J

Basilan tus G0

tusudur., Goster-
gede gorunen ad-
resten 1tlbaren
programi baslat

ekil 5.4, Merkez Mikroiglemci Sistem Programi Akis Gemasi (devam)



46

6. SONUCLAR ve ONERILER

Bu c¢alismada belirlenen baz: kavsaklardaki trafik
1s1klarinin bir merkezden wmikroliglemciler vyardima ile
kontrol edilmesi gergeklestirilmigtir. Merkezi uUniteden

kavsaklardaki unitelere bilgi iletimi seri hattan (=zeri data
transferi metodu ile) yapilmaktadir. Hazirlanan vazilim ile
de gunun degisgsen trafik younlujuna gbre devre siureleri

helirlenmis ve buna gore 1siklarin kontrolu yapilmigtic,

Trafik 1isiklarinin bir merkezden ve mikroislemcilerle

kontrold ile kavsaklarda belleme sUreleri minimuma
indirilecelk, uzun kuyruklarin clusmasina izin
verilmeyecektir. En onemlisi de kazalarin ve beklemelerde
bosa harcanan vakitin asgari bir duzeye dusmesi

saglanacaktir.

Boyle bir ¢alisma daha ileri bir duzeye getirilip butiun

bir sehrin trafilk 1s1klara kontrolu vyapirlabilir. Bunu
gercelklestirebilmel igin de Uniteler arasindaki veri

transferi ddsgenen tzel hatlar ile saglanabilir. Bu hatlarda
kullanilacalk kaplolar dusuk empedansli ve guUrultusuz olarak
secgilmelidir. Cunku bu hatlarda ki gerilim dusumy bu tip
kaplolarla minimum seviyeye dlusuUrtilebilir. Cok gelismisg bir
sistem kurmalk istersek, kavsaklara trafik 151k akigina
kontrol eden wmikroislemci tarafindan kontrol edilebilen
tagsit sayicir sensarler yerlestirilmelidir. Bu sensorler ile
kavsaklardan gecgen arac sayls: hakkinda sdrekli istatiksel
bilgil alinir. Bu Ikilgiler dogrultusunda sistem kendi
parametrelerini hesaplayabillir. Parametreler tarafindan
bolum 2 de verilen ampirik denklemlere uygulanir ve bunun
sonucunda trafik akisina gore surekli degigsen Adapdif

kontrol sistemi kurulmug olur.,



3.

11.

13.

14,

S
~Jt

KAYNAKLAR DIZINI

Kutltu, K., 19684, Trafik etidleri, Mathaa teknisyenleri
basimevi, 1738s.
Kutlua, ., 1967, Traftik teknigi, Teknik universite
matbaasi, 37X2s.
Ayfer, M.O., 1977, Trafik sinyal izasyonu, Karayollara
genel mudUrlugu matbaas:, 184s.
Hobbs, F.Do, 1979, Tratfic planning and engineering,
Pergamon press, 544p.
Tanenbaum, A.S., 1981, Computer Networks, Prentice-Hall,
Inc., 518p.
Gupta, A., 1987, Multi-Microprocessors, IEEE press, Z268p,
Laver, M., 107%, Computers, Communications and Society,
Oxford University press, 100p.
Uffenbeck, 1., 1885, Microcomputers and microprocessors
the 8080, 80B5 and Z-80, Prentice-HMall, Inc., 670p
Zaks, R., 1982, Programming the Z-80, Sybex, Inc., €626p.
Greenfield, J.D., 198%, Microprocessor Handbook, John
Wiley & Sonsz, Inc., G3Ep.
Ward, D.E., 1990, The American double ring system
applied in London, London, viii+218p.
Antonini, Cc., 1981, Microcomputer programmed traffic
light controls, ltaly, 143 - €2 p.
Strawinski, T., 1983, Microcomputers in road traffic
systems, Budapest, 126 - 137 p.
Pursula, M., 1989, Microprocessor and PC-based vehicle
classification eqguipments using induction loops, UK,
vii+199p.
Hawke, M.J., 1984, Application of microprocessor traffic
contraoltlers-adding pedestrian csignals to existing_

signalled juncticons, London, &0p.



EKILER



Chapter 7
ZILOG Z80

g Z80 microcomputer devices have been designed as 8080A enhancements. In fact, the same individuals
onsible for designing the 8080A CPU at Intel desighed the Z80 devices at Zilog. The 8085, described in
pter 5, is Intel’s 8080A enhancement. '

Z80 instruction set includes all B0BOA instructions as a subset. In deference to rationa! necessity,
ever, neither the Z80 CPU, nor any of its support devices attempt to maintain pin-for-pin compatibitity with
OA counterparts. Compatibility is limited to instruction sets and general functiona! capabilities. A program
‘has been written to drive an 8080A microcomputer system will also drive the Z80 system — within cer-

limits; for example, a ROM device that has been created to implement object programs for an 8080A
-ocomputer system can be physically removed and used in a Z80 system.

Z80-8080A compatibility does extend somewhat further, since most support devices that have been
gned for the 8080A CPU will also work with a Z80 CPU; therefore in many cases you will be able to upgrade
080A microcomputer system to a Z80, confining hardware modifications to the CPU and its immediate in-
ace only.

interesting to note that the Z80 pins and signal interface is far closer than the 8085 to the three-chip 8080A
iguration illustrated in 8080A chapter. Aiso, whereas the Z80 instruction set is greatly expanded as compared to
3080A. the 8085 instruction set contains just two new instructions. However, both the Z80 and the 8085 have
ved the two most distressing problems associated with the 8080A — the three-chip 8080A CPU has in both cases
' reduced to one chip, and the three BOB0A power supplies have in both cases been reduced to a single +5V power
ly. °

G, INC., manufacturers of the Z80, are located at:

10460 Bubb Road
Cupertino, California 95014

official second source for Zilog products is:

MOSTEK, INC.
1215 West Crosby Road
Carrollton; Texas 75006

1annel MOS technology is used for all Z80 devices. 280 LSI
. TECHNOLOGY

THE 280 CPU

:tions implemented on the Z80 CPU are illustrated in Figure 7-1. They represent "‘typical’”” CPU logic,
valent to the three devices: 8B080A CPU, 8224 Clock and 8228 System Controller.

UMMARY OF 280/8080A DIFFERENCES

are going to summarize 280/8080A differences before describing differences in detail. If you know the
JA well, read on; if you do not, come back to this summary after reading the rest of the Z80 CPU descrip-
We will also contrast the Z80 and the 8085, where relevant.

‘he programmer, the 280 provides more registefs and addressing modes than the 8080A, plus a much larger
uction set.

ificant hardware features are a single power supply (+5V), a single system clock signal, an additional inter-
. and logic to refresh dynamic memories. '



Counterls)

!

Interrupt Priority
Arbitration Logic

6 #

; System Bus j

t |4 ' ;

Direct Memory
Access Control -

I/0 Communication] ROM Addressing . RAM Addressing
! 1/0 Ports .
Serial to Parallel and Interface Logic and B &
Interface Logic Interface Logic . 9 Interface Logic

] ¥ '

Programmable Read Only Read/Write
Timers Memory 1/0 Po.rts Memory

3

Figure 7-1. Logic Functions of the Z80 CPU

2 8085 also has a single power supply and a single system clock S|gna| The 8085 has three addmonal interrupts. but
ks logic to refresh dynamic memories.

the Z80 CPU indeed the logical next 8080A evolution?

rdware aspects of the B080A represent its weakest features, as compared to principal current competitors.
acifically. the fact that the 8080A is really a three-chip CPU is its biggest single problem; three chips are always
ng to cost more than one. Next, the fact that the 8080A requires three power supplies (+5V, -5V and +12V) is a very
jative feature for many users and the desirability of going to a single power supply is self-evident: the Z80 requires a
gle +5V power supply. This is also true of the 8085.

2 problems associated with condensing logic from three chips onto one chip are not so straightforward. Figure 7-2 il-
trates the standard three-chip 8080A CPU. Let us assume that the three devices are to be condensed into a single
p. Asterisks (*) have been placed by the signals which must be maintained if the single chip is to be hardware com-
ible with the three chips it replaces. Forty-three signals are asterisked. therefore the standard 40-pin DIP cannot be
'd. The problem is compounded by the fact that not all 8080A systems use an 8228 System Controller. Some 8080A
tems use an 8212 bidirectional 1/O port to create control signals. A few of the earliest 8080 systems use neither the
28 System Controller, nor an 8212 1/0 port; rather external logic decodes the Data Bus when SYNC is true in order to
1erate control signals; for example, that is how the TMS5501 works. We must therefore conclude that any attempt

1.9



to reduce three chips to one will create a product that is not pin compatible with the 8080A; and. indeed. the Z80 is not
pin compatible. What Zilog has done is include as many hardware enhancements as possibie within the confines of a
40-pin DIP that must be philosophically similar to the 80B0A. without attempting any form of pin compatibility. Figure
7-2 identifies the correlation between Z80 signals and 8080A signals. Notice that there is a significant similarity.

Figure 5-3 is equivalent to Figure 7-2, comparing 8085 and 8080A signals. Z80 signals are far closer to the 8080A
three-chip set than the 8085. ‘

Here is a summary of the hardware differences:

1) The 280 has reduced three power supplies to a single +5V power supply.

2} Clock logic is entirely within the Z80.

3} The complex. two clock signals of the BOB0A have been replaced by a single clock signal.
4) Automatic dynamic memory refresh logic has been included within the CPU.

5) Read and write control signal philosophy has changed. The 8080A uses separate memory read, memory write, 1/0
read and 1/O write signals. The Z80 uses a general read and a general write, coupled with a memory select and an
I/0 select. This means that if a Z80 CPU is to replace an 8080A CPU then additional logic will be required beyond
the Z80 CPU. You will either have to combine the four Z80 control signals to generate 8080A equivalents. or you
will have to change the select and strobe logic for every I/0 device. We will discuss this in more detail later.

6) Address and Data Bus float timing associated with DMA operations have changed. The 8080A floats these busses
at the beginning of the third or fourth time period within the machine cycle during which a bus request occurs;
this initiates a Hold state. The Z80 has a more straightforward scheme; a Bus Request input signal causes the Data
and Address Busses to float at the beginning of the machine cycle; floating busses are acknowledged with a Bus
Acknowledge output signal.

7)  The Z80 has an additional interrupt request. In addition to the RESET and normal 8080A interrupt request, the Z80
has a nonmaskable interrupt which is typically used to execute a short program that prepares for power failure,
once a power failure has been detected.

Now consider internal organization of the Z80 in terms of instruction set compatibility and enhancement.

As illustrated by Table 7-3 the 8080A instructi'on set is, indeed. a subset of the Z80 instruction set. Unfortunately. the
Z80 uses completely new source program instryction mnemonics, therefore 8080A instructions cannot immediately be
identified. Technical Design Labs, Inc.. has an 8080-like Z80 assembly language.

*GND L] a0 P e AD
Y - _J. ar B > Al
5 11 Y £ ‘ -~ A
+12v .- *A3 % — A
CA4 poen g A4
sas 3l A5
cas 32 > AS
ar 3 > A7
vy > A ADDRESS BUS %
BUSAG SYSTEM DMA REQ L oag 38 — A
poooa A0 e A0
14 o i ET =3 Al
SYSTEM WT. REQ. - INTe & A2 3 e A2
: *A13 e P A1
INT. ENABLE & 1 INTE® *A14 Lo — A4
*A1S e el A!SJ
WR
XTAL DBIN bl
0 g BT BUSAK
14 15 2| 4] 3
TANK 130 ry b 2 0l evae 0o 'O: ‘:“ om0
osc 12 L LI U o1 12 17 o8}
oy @t 0224 wa ﬁ-;:  ware 02 Bgpll m2 on2
MOYN aocx 4 READY* 03 322 BIDRECTIONAL 08\ arasuse
+NESN 2. GENERATOR |1 120 RESET® o B > susoaver ona
cv —t oRver [, _ i’ 05 Hgmp- . o8e
8V ] e Y vnee D8 : - . )
OND  =enamasm—y : D7 Py . 087
+8v . WTA
7 “STATUS STROBE *] ek
l STATUS 1 SYSTEM mso'wn — s
R g
BUEEN ————atPpn] » > oW
W Z80 squivaient, or new signels. TESH ) Thess sre Z80 wignets
+  Signels reproduced by the Z80. HALT with no BOBOA
*  Signals which must be duplicated by # o counterpart
- hardwars replacement product.

Figure 7-2. The Standard 8080A Three-Chip System and Z80 Signal Equivalents



There are very few unused object codes in the B0O80A instruction set. The Z80 has therefore taken what few unused ob-
ject codes there are. and used them to specify that an additional byte of object code follows:

11011101 -—Spare 8080A object code
-w— Specifies new Z80 object code follows

This results in most new Z80 instructions having 16-bit object codes; but simultaneously it means that a very large
number of new instructions can be added.

Any enhancement of the 8080A can include major changes within the CPU; providing the 8080A registers and status
flags remain as a subset of the new design, instruction compatibility remains. These are the principal enhancements
made by the Z80:

1) The standard general purpose registers and status flags have been duplicated. This makes it very easy to handle
single-level interrupts. since general purpose register and Accumulator contents no loniger need to be saved on the
Stack: instead. the program may simply switch to the alternate register set. ’

2) Two Index registers have been added. This means that additional Z80 instructions can use indexed memory ad-
dressing.

2) AnlInterrupt Vector register allows external logic the option of responding to an interrupt acknowledge by issuing
the equivalent of a Call instruction — which vectors program execution to a memory address which is dedicated
to the acknowledged external logic.

4) A single Block Move instruction allows the contents of any number of contiguous memory bytes to be moved from
one area of memory to another, or between an area of memory and a single 1/0 port. You can also scan a block of
memory for a defined value by executing a Block Compare instruction.

5) Instructions have been added to test or alter the condition of individual register and memory bits.

In contrast to the extensive enhancements of the Z80, the 8085 registers and status architecture are identical to the
8080A. There are only two additional instructions in the 8085 instruction set; however, the 8085, like the Z80, allows
Call instructions to be used when acknowledging an interrupt — a particularly useful enhancement.

While on the surface the Z80 instruction set appears to be very powerful, note that instruction sets are very
subjective; right and wrong, good and bad are not easily defined. Let us look at some nonobvious features of the
280 instruction set. ¢

First of all, the execution speed advantage that results from the new Z80 instructions is reduced by the fact that many
of these instructions require two bytes of object code. Some examples of Z80 instructions and equivalent 8080A in-
struction sequences with equivalent cycle times are given in Table 7-1.

Table 7-1. Comparisons of Z80 and 8080A
Instruction Execution Cycles

Z80 v 8080A
Instructions Cycles] Instructions Cycles
LD RAX + di} 19 LXI H.d 10

DAD X 10

MOV  RM 7

27

LD RP.ADDR 20 LHLD ADDR 16
| MOV CL 5

MOV B.H _5

26

SET  B.(HL) 15 MOV  AM 7
ORI MASK 7

MOV MA 7

o 21

Also. a novice programmer may find the Z80 instruction set bewilderingly complex. At a time when the majority of po-
tential microcomputer users are terrified by simple assembly language instruction sets. it is possible that users will
react negatively to an instruction set whose complexity (if not power) rivals that of many large minicomputers.

Many of the new Z80 instructions use direct. indexed memory addressing to perform operations which are otherwise
identical to existing 8080A instructions. Now the Z80 has two new 16-bit Index registers whose contents are added to

7-4



n 8-bit displacement provided by the instruction code: this is the scheme adopted by the Motorola MC6800. This
cheme is inherently weaker than having a 16-bit, instruction-provided displacement, as implemented by the Signetics
2650. When the Index register is larger than the displacement, the Index register. in effect, becomes a base register.
Nhen the Index register has the same size. or is smaller than the displacement, it is truly an Index register as described
n “Volume 1 — Basic Concepts”. The Signetics 2650 implementation is more powerful.

280 PROGRAMMABLE REGISTERS
Ne will now start looking at the Z80 CPU in detail, beginning with its programmable registers.

'he Z80 has two seté of 8-bit programmable registers, and two Program Status Words. At any time one set of
rogrammable registers and one Program Status Word will be active and accessible.

n addition, the Z80 has a 16-bit Program Counter, a 16-bit Stack Pointer, two 16-bit Index registers, an 8-bit
nterrupt Vector and an 8-bit Memory Refresh register.

"igure 7-3 illustrates the 280 registers. Within this figure, the 8B080A registers’ subset is shaded.

are sometimes treated

These two 8-bit registers
as a 16-bit unit

Program Status Words "PSW' }
Primary Accumulators A’

Secondary Accumulators/Data Counter B’ C’
Secondary Accumulators/Data Counter D’ £
Secondary Accumulators/Data Counter H L

Stack Pointer

Program Counter

Index Register X

Index Register Y
Interrupt Vector

Memory Refresh Counter

Shaded registers represent the 8080A subset.

Figure 7-3. Z80 Programmable Registers

he 280 uses its Program Status Word, its A, B, C, D, E, H, and L registers, plus the Stack Pointer and the Pro-
ram Counter exactly as the 8080A uses these locations; therefore no additional discussion of these registers
s needed.

he Program Status Word, plus registers A, B, C, D, E, H and L are duplicated. Single Z80 instructions allow you to
witch access from one register set to another, or to exchange the contents of selected registers. At any time, one or
e other set of registers, but not both, is accessible.

here are two 16-bit Index registers, marked IX and lY. These are more accurately looked upon as base registers, as
/ill become apparent when we examine Z80 addressing modes.

he Interrupt Vector register performs a function similar to the ICW2 byte of the 8259 PICU device (described
1 the 8080A chapter). Z80 interrupt acknowledge logic gives you the option of initiating an interrupt service routine
/ith a Call instruction. where the high order address byte for the call is provided by the Interrupt Vector register. The
085 also provides this capability. ‘

he Memory Refresh Counter register represents a feature of microcomputer systems which has been over-
»oked by everyone except Fairchild and Zilog. Dynamic memory devices will not hold their contents for very long.
respective of whether power is off or on. A dynamic memory must therefore be accessed at millisecond intervals.
'ynamic memmory devices compensate for this short-coming by being very cheap — and dynamic refresh circuitry is
ery simple. Using a technique akin to direct memory access. dynamic refresh circuitry will periodically access dynamic
emories, rewriting the contents of individual memory words on each access. About the only logic needed by dynamic
fresh is a counter via which. it keeps track of its progress through the dynamic memory; that is the purpose of the Z80
lemory Refresh Counter register. The Z80 also has a special DMA refresh control signal. therefore the Z80 provides
wch of the dynamic refresh logic needed by dynamic memory devices. ’

7-5



Z80 ADDRESSING MODES

Z80 instructions use all of the 8080A addressing modes; the Z80 also has these two enhancements:

1) A number of memory reference instructions use the 1X and 1Y registers for indexed, or base relative ad-
dressing.

2) There are some two-byte program relative Jump instructions.

A memory reference instruction that uses the IX or IY register will include a single data displace- | Z80
ment byte. The 8-bit value provided by the instruction object code is added to the 16-bit value | INDEXED
provided by the identified Index register in order to compute the effective memory address: ADDRESSING

PROGRAM
MEMORY

XorlY

OP  }==— Op Code } Memory

Ref
N 1 dd [~at— Displacement eterence

instruction

Effective Address = ppqq + dd ~——————gt

p. q and d represent any hexadecimal digits;
dd represents an 8-bit, signed binary value.

This is standard microcomputer indexed addressing and is less powerfu! than having the memory
reference instruction provide a 16-bit base address or displacement; for a discussion of these addressing modes see
“Volume 1 — Basic Concepts”, Chapter 6.

The program relative, two-byte Jump instructions provided by the Z80 provide standard two-byte, program relative ad-
dressing. A single. 8-bit displacement is provided by the Jump instruction’s object code; this 8-bit displacement is ad-
ded. as a signed binary value, to the contents of the Program Counter — after the Program Counter has been incre-
mented to point to the sequential instruction:

MEMORY  Address

ppPaG-2
ppaq-1 Program Counter
Branch instruction op code =3 X X ppaq
Displacement ——j- dd ppqq + 1
ppaq +2

ppaq + 2 + dd

The next instruction object code will be fetched from memory location ppag+2+dd. p. g. and d represent any hex-
adecimal digits. dd represents a signed binary, 8-bit value.

For a discussion of program relative addressing. see “Volume 1 - Basic Concepts’™.
The 280 addressing enhancements are of significant value when comparing the Z80 to the 8080A.

The value of the Index register comes not so much from having an additional addressing option. but rather IX and 1Y
allow an efficient programmer to husband his CPU register space more effectively. Look upon IX and 1Y as performing
memory addressing tasks which the 8080A would have to perform using the BC and DE registers. By freeing up the BC
and DE registers for data manipulation, you can significantly reduce the number of memory reference instructions ex-
ecuted by the Z80.

7-6



The two-byte program relative Jump instruction is useful because in most programs 80% of the Jump instructions
branch to a memory location that is within 128 bytes of the Jump. That is the rationale for most microcomputers offer-
ing two-byte as well as three-byte Jump instructions.

280 STATUS

The Z80 and 8080A both use the Program Status Word in order to store status flags. These are the Z80 status
flags:

Carry (C)

Zero (2)

Sign (S)
Parity/Overflow {P/0O)
Auxiliary Carry (Ac)
Subtract (N)

Statuses are recorded in the Program Status Word by the Z80, as compared to the 8080A, as follows:

7 65 4 3 2 1 0 ~a——piNo.

EBEE{NE 280 Program Status Word

76 5 4 3 2 1 0 --—gitNo.

LSJ Z] X ]fc__[ X] PJ XE}‘-—— 80BOA Program Status Word

The Parity/Overflow and Subtract statuses differ from the 8080A. All other statuses are the same. Note that
the 280, like the 8080A, uses borrow philosophy for the Carry status when performing subtract operations. That is
to say. during a subtract operation, the Carry status takes the reciprocal value of any Carry out of the high-order bit. For
details see the BOBOA Carry status descriptions given in the 80B0A chapter.

The 8080A has a Parity status but no Overflow status. The Z80 uses a single status fiag for both operations. which
makes a lot of sense. The Z80 Overflow status is absolutely standard, therefore only has meaning when signed binary
arithmetic is being performed — at which time the Parity status has no meaning. Within the Z80, therefore, this single
status is used by arithmetic operations to record overflow and by other operations to record parity. For a complete dis-
cussion of the Overflow status see “"Volume 1 » Basic Concepts”

The Subtract status is used by the DAA mstructnon for BCD operations, to differentiate between decimal addition or
subtraction. The Subtract and Auxiliary Carry statuses cannot be used as conditions for program branching {condi-
tional Jump. Call or Return instructions).

Z80 CPU PINS AND SIGNALS

The 280 CPU pins and signals are illustrated in Figure 7-4. Figure 7-2 provides the direct comparison between
Z80 CPU signals and the standard 8080A, 8228, 8224 three-chip systems.

Let us first look at the Data and Address Busses.

The 16 address lines A0 - A15 output memory and 1/Q device addresses. The address lines are tristate; they may
be floated by the Z80 CPU, giving external logic control of the Address Bus. There is no difference between Z80 and
8080A Address Bus lines.

The Data Bus lines DO - D7 transmit bidirectional data into or out of the Z80 CPU. Like the Address Bus lines, the
Data Bus lines are tristate. The Z80 Data Bus lines do differ from the 8080A equivalent. The 8080A Data Bus is
multiplexed: status output on the Data Bus by the 8080A during the T2 clock period of very machine cycle is strobed
by the SYNC pulse. The Z80 does not multiplex the Data Bus in this way. The Z80 Data Bus lines operate at normal TTL
levels, whereas the 8080A Data Bus lines do not.

Control signals are described next; these may be divided into system control, CPU control | Z80 SYSTEM

and Bus control. First we will describe the System control signals. CONTROL
SIGNALS

M1 identifies the instruction fetch machine cycle of an instruction’s execution. Its function
is similar, but not identical to the 8080A SYNC puise. The Z80 PIO device uses the low M1
pulse as a reset signal if it occurs without IORQ or RD simulitaneously low.

MREQ identifies any memory access operation in progress; it is a tristate control signal.

IORQ identifies any 1/0 operation in progress. When IORQ is low. A0 - A7 contain a valid I/O port address. IORQ is
also used as an interrupt acknowledge; an interrupt is acknowledged by M1 and IORQ being output low —a uni-
gue combination, since M7 is otherwise low only during an instruction fetch, which cannot address an |/O device.

7-7



RD is a tristate signal which indicates that the CPU wishes to read data from either memory or an /O device, as
identified MREQ or IORQ.

WR is a tristate control signal which indicates that the CPU wishes to write data to memory or an I/O device as in-
dicated by MREQind IORQ. Some Z80 1/0 devices have no WR input. These devices assume a Write operation when
IORQ is low and RD is high. RD low specifies a Read operation.

The various ways in which the three control signals, M1, TORQ, and RD. may be interpreted are summarized in Table
7-5, which occurs in the description of the Z80 PIO device.

RFSH is a control signal used to refresh dynamic memories. When RFSH is output low, the current MREQ signal
should be used to refresh dynamic memory. as addressed by the lower seven bits of the Address Bus, AQ - AB.

Next we will describe CPU control signals.

A1l ——-———g 40 p——— A10
A2 -———y ) 39 P AQ
813 et 3 38— A8
Al4 g 4 37 - A7
A15 g 5 36 b A6
¢ —l 6 35 bt A5
D4 ] 7 M As
03 —-p———pg 8§ 33 b———— A3
D5 -—e—ee——Pi 9 32 i A2
06 it 10 Z80 31— Al
+ 5V el {1 CcPU 30 g A0
D2 gy 12 29 p——e——— GND
D7 eyt 13 28 p————-— RFSH
D0 ~at—a-] 14 27— w1
Dl g 15 . 26 j—egp———— RESET
INT ] 16 o 25 fatp———u BUSRQ
NMI ] 17 24 bt WAIT
7Y S— Y 23 b BUSAK
MREQ ~——q 19 22 p——— WR
TORQ ~~———{ 20 21 j—» RD
PIN NAME‘_ DESCRIPTION TYPE '
AQ - A15 Address Bus Trstate, Output
DO - D7 Data Bus Tristate, Bidwectional
M1 ldentifies instruction fetch machine cycle Output
WzE'd . Memory request — indicates that CPU Trstate, Output
— is performing memory access
IORQ 1/0 request — indicates /0 operation Tristate, Output
in progress
RD CPU read from memory or /0 device Tristate, Output
VV-_R_ ~ CPU write to memory or 1/0 device Tristate, Output
RFSH Refresh dynamic memories Output
HALT CPU Halt executed Output
;V-ATF- Wait state request Input
ﬁ Interrupt request Input
W Nonmaskable interrupt request Input
RESET Reset and initialize CPU v Input
BUSRQ Request for control of Address, Data Input
and Control Busses
BUSAK Bus acknowledge Output
o CPU clock Input
+ 5V, GND Power and Ground

Figure 7-4. 280 CPU Sighals and Pin Assignments

7-8



HALT is output low following execution of a Halt instruction. The CPU now enters a Halt state | Z80 CPU

during which it continuously re-executes a NOP instruction in order to maintain memory refresh | CONTROL
activity. A Halt can only be terminated with an interrupt. SIGNALS
WAIT is equivalent to the 8080A READY input. External logic which cannot respond to a CPU

access request within the allowed time interval extends the time interval by pulling the WAIT input low. In response to
WAIT low. the Z80 enters a Wait state during which the CPU inserts an integral number of clock periods: taken
together. these clock periods constitute a Wait state.

INT and NMI are two interrupt request inbuts. The difference between these two signals is that NMI has higher
priority and cannot be disabled.

There are two Bus control signals. 280 BUS
T ; . . . CONTROL
RESET is a standard reset contro! input. When the Z80 is reset, this is what happens: SIGNALS

The Program Counter, 1V and R registers” contents are all set to zero.
Interrupt requests via INT are disabled.

All tristate bus signals are floated.

BUSRQ and BUSAK are bus request and acknowledge signals. In order to perform any kind of DMA operation, ex-
ternal logic must acquire control of the microcomputer System Bus. This is done by inputting BUSRQ low:; at the con-
clusion of the current machine cycle, the ZBO CPU will float all tristate bus lines and will acknowledge the bus request

by outputting BUSAK low.

Z80 - 8080A SIGNAL COMPATIBILITY
If you are designing a new product around the Z80 CPU, then questions of Z80 - 8080A signal compatibility
are irrelevant; you will design for the CPU on hand.

If you are replacing an 8080A with a 280, then it would be helpful to have some type of lookup table which
directly relates 8080A signals to Z80 signals. Unfortunately, such a lookup table cannot easily be created. The -
problem is that the Z80 is an implementation of three devices; the 8080A CPU, the 8224 Clock. and 8228 System Con-
trofler; but there are very many 8080A configurations that do not include an 8228 System Controller.

Possibly the most important conceptual difference between the Z80 and 8080A involves read and write control signals.
The 8228 System Controller develops four distrete control signals for memory read, memory write, I/0 read and
1/0 write. The Z80 has a general read and a general write, coupled with an /0 select and a memory select. By
adding logic, it would be easy enough to generate the four discrete 8080A signals from the two Z80 signal pairs: here

is one elementary possibility:

280 8080A Equivalent
Signals Signals
MREQ
MEMR
RD
MREQ
MEMW
WR
IORQ —_— -
— I/OR
RD
IORQ —
—_— I/OW
WR

7-9



If your design allows it. however. it would be wiser to extend the Z80 philosophy to the various suppart devices sur-
rounding the CPU. Recall from our discussion of 8080A support devices in Chapter 4 that every device requires sepa-
rate device select and device access logic. For some arbitrary read operation, timing might be illustrated as follows:

Select Y '3
Read v ' m

Strobe

With an 8080A scheme, select logic is decoded from Address Bus lines, while strobe logic depends on one of the four
control lines I/OR, I/OW, MEMR or MEMW. Using the Z80 philosophy. the memory select (MREQ) or I/0 select ((ORQ)
control lines become part of the device select logic. while the read (RD) or write (WR) controls generate the strobe.

The Z80 has no interrupt acknowledge signal; rather it combines IORQ with M1 as follows:

IORQ

INTA

M1

Some Z80 support devices also check for a “Return-from-Interrupt” instruction object code appearlng on the Data Bus
during an instruction fetch {when MT and RD will both be low). This condition is used to reset interrupt priorities
among Z80 support devices.

The 8080A HOLD and HLDA signals are functionally reproduced by the Z80 BUSRQ and BUSAK signals.

The 8080A SYNC pulse has no direct Z80 equivalent. M1 is pulsed low during an instruction fetch, or an interrupt
acknowledge. but it is not pulsed low during the initial time periods of an instruction’s second or subsequent machine -
cycles. Frequently the complement of M1 can be used instead of SYNC to drive those 8080A peripheral devices
that require the SYNC pulse.

The Z80 has no signals equivalent to 8080A INTE, WAIT or ®2. There is also no signal equivalent to the 8228
BUSEN.

If for any reason external logic must know when interrupts have been disabled internally by the CPU, then the Z80 will
be at a loss to provide any signal equivalent to the 8080A control signals. Remember INTE in an 8080A system tells ex-
ternal logic when the CPU has enabled or disabled all interrupts;since external logic can do nothing about interrupts
being disabled. and requesting an interrupt at this time does neither good nor harm, knowing that the condition exists
is generally irrelevant.

The single Z80 WAIT input serves the function of the 8080A READY input. Irrespective of when the WAIT is requested.
a Wait clock period will only be inserted between T and T3; moreover. as we will see shortly, there are certain Z80 in-
structions which automatically insert a Wait state, without waiting for external demand. You would need relatively
complex logic to decode instruction object codes, clock signal and the WAIT input if your Z80 system is to generate the
equivalent of an 8080A WAIT output. In all probability, it would be simpler to find an alternative scheme that did not
require a signal equivalent to the 8080A WAIT output.

The Z80 simply has no second clock equivalent to 8080A ®2. Any device that needs clock signal ®2 cannot easily be
used in Z80 configurations.

The 8228 BUSEN input is used by external logic to float the System Bus. In a Z80 system, CPU logic floats.the System .
Bus; therefore BUSEN becomes irrelevant.

The 8080A CPU has no signals equivalent to 280 RFSH, HALT and NMI.
RFSH applies to dynamic memory refresh only; it is irrelevant within the context of a Z80 - 8080A signal comparison.

NMI. being a nonmaskable interrupt request. also'has no 8080A equivalent logic.

The 280 HALT output needs some discussion. One of the more confusing aspects of the 8080A is the interac-
tion of Wait, Halt and Hold states. Let us look at these three states, comparing the Z80 and 8080A configura-
tions and in the process we will see the purpose of the Z80 HALT output.

The purpose of the Wait state is to elongate a memory reference machine cycle in deference to slow external memory
or 1/0 devices. The Wait state consists of one or more Wait clock periods inserted between T2 and T3 of a machine cy-
cle. The 8080A and the Z80 handle Wait states in exactly the same way, except for the fact that the Z80 has no Wait
acknowledge output and under certain circumstances will automatically insert Wait clock periods.



The purpose of the Hold condition is to allow external logic to acquire control of the System Bus and perform Direct
Memory Access operations. Again both the Z80 and the B080A have very similar Hold states. The only significant
difference is that the Z80 initiates a Hold state at the conclusion of a machine cycle. whereas the 8080A initiates the
Hold state during time period T3 or T4. The 8228 System Controller also needs a high BUSEN input in order to float its
Data and Control Busses while the Z80 has no equivalent need.

The big difference between the Z80 and the 8080A comes within the Halt state. When the B0B0A executes a Halt in-
struction, it goes into a Halt state, which differs from a Hold state. There are some complex interactions between Hold,
Halt, Wait and interrupts within 8080A systems. None of these complications exists in the Z80 system, since the Z80
has no Halt state. After executing a Halt instruction, the Z80 outputs HALT iow. then proceeds to continuously execute
a NOP instruction. This allows dynamic memory refresh logic to continue operating. If you are replacing an 8080A
with a 280, you must give careful attention to the Halt state. This is one condition where unexpected incom-
patibilities can arise.

Z80 TIMING AND INSTRUCTION EXECUTION

Z80 timing is conceptually similar to, but far simpler than 8080A timing. Like the 8080A, the Z80 divides its in-
structions into machine cycles and clock periods. However, all Z80 machine cycles consist of either three or four
clock periods. Some instructions always insert Wait clock periods. in which case five or six clock periods may be pre-
sent in @ machine cycle. Recall that 8B080A machine cycles may have three, four or five clock periods.

The B080A may require from one to five machine cycles in order to execute an instruction; Z80 instructions execute in
one to six machine cycles. If we shade optional machine cycles and clock periods, Z80 and 8080A instruction time sub-
divisions may be compared and illustrated as follows:

MC1 MC31
N
Following

interrupt T

acknowledge .
nov/iedg During input

only
or output

machine cycle
only



280 clock signals are also far simpler than the BO80A equivalent. Where the 8080A uses two clock signals the Z8C
uses one. Clock logic may be compared as follows:

T T2 T3

'at N\
AW ANNAWE AW AW
® r—\_f—\ J Wy \ 280

TS5

8080A

INSTRUCTION FETCH EXECUTION SEQUENCES

As compared to the B080A, Z80 instruction timing is marvelously simple. Gone is the SYNC pulse and the decod-
ing of Data Bus for status. Every instruction’s timing degenerates into an instruction fetch, optionally followed by
memory or |/O read or write. Add to this a few variations for Wait state, interrupt acknowledge and bus floating and you
are done.

Let us begin by looking at an instruction fetch. Timing is illustrated in Figure 7-5. Look at the instruction fetch timing
in the 8080A chapter to obtain an immediate comparison of the Z80 and the 8080A.

- MC1 Cycle -
T, T, — T, T,
® 1\ ~oL_|
A0 ~ A1S ] PC REFRESH ADDR.
MREQ \ [7 \ e .
A 7
YA ¢ ‘_f L __
DBO D87 Lu!_} »
RFSH \ /

Figure 7-5. Z80 Instruction Fetch Sequence

Referring to Figure 7-5, note that the instruction fetch cycle is identified by M1 output low during T a‘nd T2 (D).
Since there is no status on the Data Bus to worry about, the Program Counter contents are output immediately on the
Address Bus and stay stable for the duration of T9 and T2

Since an instruction fetch is also a memory operation. MREQ and RD controls are both output low. This occurs half-way
through T1. at which time the Address Bus will stabilize. The falling edges of MREQ and RD can therefore be used to
select a memory device and strobe data out. The CPU polls data on the Data Bus at the rising edge of the T3 clock (D).

7-12



lock perods T3 and T4 of the instruction fetch machine cycle are used by the Z80 CPU for internal operations.
hese clock periods are also used to refresh dynamic memory. As soon as the Program Counter contents are taken off
he Address Bus (@). the refresh address from the Refresh register is output on lines AO - A6 of the Address Bus. This
ddress stays on the Address Bus until the conclusion of Ty ‘(@).

ince a memory refresh is a memory access operation, MREQ is again output low: however, it is accompanied by RFSH
ather than RD low. Thus memory refetence logic does not attempt to read data during a refresh cycle.

\ MEMORY READ OPERATION

Aemory interface iogic responds to an instruction fetch and a memory read in exactly the same way. There are,
owever, a few differeces between memory read and instruction fetch timing. Memory read timing is illustrated
1Figure 7-6. The principal difference to note is that during a memory read operation, the data is sampled on the falling
dge of the T3 clock pulse, whereas during an instruction fetch it is sampled on the rising edge of this clock pulse. Also
normal memory read machine cycle will consist of three clock periods, while the normal instruction fetch consists of
bur clock periods. Remember also that the Z8O identifies an instruction fetch machine cycle by outputting M1 low dur-
g the first two clock periods of the instruction fetch machine cycle.

Memory Read Cycle mee———ji-

T4 T2 T3
° ¢ \
A0 ~ A15 MEMORY ADDR

MREQ

RD

j___
J__...___

DATA BUS J—\

(DO -~ D7)

le'

N\
m

Figure 7-6. Z80 Memory Read Timing

et Memory Write Cycle
T1 T2 T3
¢ m
_ :
AO - A15 MEMORY ADDR
MREQ \ | [
RD
WR \ 'S
DATA BUS — DATA OUT
(D0 - D7)

Figure 7-7. Z80 Memory Write Timing

IEMORY WRITE OPERATION

jure 7-7 illustrates memory write timing for the Z80. The only differences between memory read and memory
rite timing are the obvious ones: WR is pulsed low for a write. and can be used as a strobe by memory interface
Jic to read data off the Data Bus. :



THE WAIT STATE

Like the 8080A, the Z80 allows a Wait state to occur between clock periods T2 and T3 of a machine cycle. The
Wait state frees external logic or memory from having to operate at'CPU speed.

The Z80 CPU samples the WAIT input on the falling edge of @ during T2. Providing WAIT is low on the falling edge of
® during Tp, Wait clock periods will be inserted. The number of Wait clock periods inserted depends strictly on how
long the WAIT input is held low. As soon as the Z80 detects WAIT high on the falling edge of ®, it will initiate T3 on
the next rising edge of .

Note that the single Z80 WAIT signal replaces the READY and WAIT 8080A signals. As this would imply. no sig-
nal is output telling external logic the Z80 has entered the Wait state. In the event that external logic needs to know
whether or not a Wait state has been entered, these are the rules:

1) The Z80 will sample WAIT on the falling edge of ® in To.

2) 1f WAIT is low. then the Z80 will continue to sample the WAIT input for all subsequent Wait state clock periods.
3) The Z80 will not sample the WAIT input during any clock period other than T or a Wait state.

Figure 7-8 illustrates Z80 Wait state timing.

Ml Cycle

T2 Tw Tw T3

¢

A0 ~ A15

—
T
al
|
MREQ ~ [\
T\

RD
v—— - am ——— — ] - — g ol - — .- - —— -
7 S el DA eat 1 i ma oo pestein

Figure 7-8. Z80 Wait State Timing

INPUT OR OUTPUT GENERATION
Timing for Z80 input and output generation is given in Figures 7-9 and 7-10.

The important point to note is that Zilog has acknowledged the infrequency with which typical 1/0 logic can operate at
CPU speed. One Wait clock period is therefore automatically inserted between T2 and T3 for all input or output
machine cycles. Otherwise timing differs from memory read and write operations only in that |IORQ is output low
rather than MREQ.

Note that there is absolutely nothing to prevent you from selecting 1/0 devices within the memory space. This is some-

thing we did consistently in the 8080A chapter when describing 8080A support devices. But if you adopt this design
policy, remember that your /O logic must execute at CPU speed, unless you insert Wait states.




Wait
State
g~
T T2 Tw’ T3 Ty
¢ __ \ \ \ ] \
A0 ~ A7 PORT ADDRESS 1
I0RQ \ 1
F[S ] } Read
Cycle
DATA BUS % IN fl Y
T e v — . . i e e e e = ——— i — — — ] — ———
WAIT T 7] -
RN S —— r—_~-1»— —-~—_—_1r_—’——
WR \ J Write
Cycle
DATA BUS —1———{ out —
Figure 7-9. Z80 Input or Output Cycles
Forced
Wait
State
A —
T'l T2 “ Tw' Tw T3
LA B U B N \ | -
AQ ~ A7 1 PORT ADDRESS
IORQ 1 / J
DATA BUS j —{ v} READ
E \ / J———-——-—- CYCLE
e nY s e
—_.r_—-—-—-—--a-————————-- —— e —-r—-—-—————-———
DATA BUS —+—— __ ouT | wame
— CYCLE
WR 1 /

US REQUESTS

e Z80 does not have a Hold state as described for the B080A, but Z80 bus request logic is equivalent. The Z80 will
»at Address, Data and tristate Control Bus lines upon sensing a Jlow BUSRQ signal. BUSRQ is sampled by the
30 CPU on the rising edge of the last clock pulse of any machine cycle. If BUSRQ is sampled low, then tristate lines are
vated by the CPU. which also outputs BUSAK low. The Z80 CPU continues to sample BUSRQ on the rising edge of ev-
y clock pulse. As soon as BUSRQ is sensed high, fioating will cease on the next clock pulse. This timing is illustrated

Figure 7-11.

Figure 7-10. Z80 Input or Output Cycles with Wait States

7-15




One significant difference between the Z80 and 8080A results from differences between the Hold and bus
floating states. As the logic we have described for the Z80 would imply, it will only float the System Bus in between
machine cycles. The 8080A, on the other hand. will enter a Hold state variably during T3 or T4 of the machine cycle,
depending on the type of operation in progress. It is therefore possible for the Z80 to float its bus three clock periods
later than an BO80A in a similar configuration.

Any M Cycle Bus Available States =

Last T State Tx [ Ty Tx T

® .
BUSRQ /ﬂ

ﬁg N
BUSAK

A0 ~ A15 —_t—————_— +

—
DO ~ D7 ___.._._.____-_._.__'_4..(::
S

MREQ RD p WA N R—
m IORQ Floating
RFSH

Figure 7-11. Z80 Bus Timing

Last M Cycle |

corm—— ) ——r.‘.________ Interrupt Acknowsledge
of Instruction |
1

Forced Wait State

Last T State T, T, T’ Tw' T3
*_[ \ | R W _
NT II;Z:ZX_ O Y S _TF"_—_'LZT L
A0 ~ A15 PC Y REFRESH
ar \ |
MREG -
IORQ
DATA BUS  p——
war Z 1T T _—_—_—_::___.____E: __ :E:: ___—j':" I
w |

Figure 7-12. Z80 Response to a Maskable Interrupt Request

Note also that if you are using the dynamic memory refresh logic of the Z80, then during long bus floats, external
logic must refresh dynamic memory. The simplest way around this problem in a Z80 system is to ensure that DMA
operations acquire the System Bus for many short periods of time. rather than for a single long access.

EXTERNAL INTERRUPTS

The Z80 has two interrupt request input signals: INT and NMI. The NMI {(non-maskable interrupt) input cannot
be disabled and has a higher priority than the INT interrupt input. There are three different operating or response
modes for the INT input, while the response to NMI is simple and straightforward. Let us therefore begin by
describing the INT interrupt request.

Timing for INT interrupt request and acknowledge sequence differs significantly from that of the 8080A inter-
rupt request and is illustrated in Figure 7-12.

7-16



The interrupt request signal INT is sampled by the Z80 CPU on the rising edge of the last clock puise of any
instruction’s execution. Note that there is an exception to this statement: during execution of block search and
transfer instructions, the interrupt request signal is sampled after each byte of data is transferred/compared.

An interrupt request will be denied if interrupts have been disabled under program control, or if the BUSRQ signal is
also low. Thus a DMA access will have priority over maskable interrupts.

The Z80 CPU acknowledges an interrupt request by outputting MT and TORQ low. This occurs in a special interrupt
acknowledge machine cycle, as illustrated in Figure 7-12. Note that this machine cycle has two Wait states inserted so
that external logic will have time for any type of daisy chained priority interrupt scheme to be implemented.

When TORQ is output low while M1 is low, external logic must interpret this signal combination as requiring an
interrupt vector to be placed on the Data Bus by the acknowledged external interrupt requesting source. This
interrupt vector can take one of three forms; the form depends on which of the three modes you have selected for
the Z80 under program control. )

In Mode O, the interrupt vector will be interpreted as an object code, representing the first instruction to be executed
following the interrupt acknowledge. If a multi-byte object code is supplied, then the bytes following the first must be
supplied during subsequent machine cycles. This is equivalent to the standard interrupt response of the B0B0A.
Whenever you are replacing an 80B0A with a Z80, therefore. the Z80 must operate in interrupt response Mode O.

280 interrupt response logic in Mode 1 automatically assumes that the first instruction executed following the in-
terrupt response will be a Restart, branching to memory location 00381g. |f the Z80 is in Mode 1. no interrupt vec-
tor is needed. , -

Z80 Mode 2 interrupt response has no 8080A equivalent. When you operate the Z80 in Mode 2, you must create a
table of 16-bit interrupt address vectors, which can reside anywhere in addressable memory. These 16-bit ad-
dresses identify the first executable instruction of interrupt service routines. When an interrupt is acknowledged by the
CPU in Mode 2, the acknowledged external logic must place an interrupt response vector on the Data Bus. The
280 CPU will combine the IV register contents with the interrupt acknowledge vector to form a 16-bit address,
which accesses the interrupt address vector table. Since 16-bit addresses must lie at even memory address bound-
aries, only seven of the eight bits provided by the acknowledged external logic will be used to create the table address:
the low order bit will be set to 0. Thus the table of 16-bit interrupt address vectors will be accessed as follows:

INTERRUPT
ADDRESS
VECTORS

“ Interrupt response
IV Register * vector from external logic

Jiililo

N’ JJ
JJ
KK
KK
LL
LL
MM
MM
NN
NN

16-bit address points to first
of two bytes in interrupt Address Vector

fhe Z80 CPU will execute a Call to the memory location obtained from the intérrupt address vector table.

.et us clarify this logic with a simple example. Suppose that you have 64 possible external interrupts: each interrupt
1as its own interrupt service routine, therefore 64 starting addresses will be stored in 128 bytes of memory. Let us ar-
iitrarily assume that these 128 bytes are stored in a table with memory addresses O0F0Q1g through OF7F16. Now in



order to use Mode 2. you must initially load the vaiue OF g into the Z80 IV register. Subsequently an external interrupt
request is acknowledged and the acknowledged external logic returns on the Data Bus the vector 2E14; this is what
will happen:

Memory
V Register MEMORY Address
Interrupt response
from external logic JJ 0F28
. JJ OF29
00101110 KK OF2A

KK OF2B
' LL oF2C

t o | 26 | | LL }JOF0

80 OF2E
20 OF2F }

NN OF30

NN 0F31

PP OF32

PP OF33
P’rogram . (] L
Counter ] !

207F

2080

2081

Push previous 2082

2082

contents onto

Stack 2080 _ to Program Counter.
First post-interrupt instruction
object code fetched
from here

If two Wait states are insufficient for external logic to arbitrate interrupt priorities and place | Z80 WAIT
the required vector on the Data Bus, then additional Wait states can be inserted in the usual | STATES

way by inputting WAIT low. Timing 1s illustrated in Figure 7-13. DURING
INTERRUPT
ACKNOWLEDGE
i.‘ Interrupt Acknowledge v ———
i Forced Wait State
! s et e,
T T2 Tw* L Tw T3 Ty
* _{ L \ 1 - I I
AQ -- AlS PC Y REFRESHADDR

W / In
_______ s S 14 o g S s s

IORQ \

WAIT

DATA BUS : -+ _
MREQ , I Y A

RD

Figure 7-13. Wait States During Z80 Response to 'a Maskable Interrupt Request



The response of the ZBO CPU to the non-maskable interrupt (NMI) is quite similar to Mode 1 inter- | Z80 NON-
rupt operation. There are a number of significant differences, however. First of all, the NMI inter- | MASKABLE
rupt cannot be disabled and has priority over the INT interrupt. (Remember that BUSRQ has | INTERRUPT
priority over both interrupt inputs.) .

Next. the non-maskable interrupt is an edge sensmve (negative edge mggered) input. The Z80 reacts only to the edge
of a pulse on the NMI line, rather than to a low level as is the case with the INT input. The negative edge of the NMI in-
put causes an internal flip-flop to be set in the Z80. and this flip-fiop is checked during the last cycle of an instruction
execution. The CPU response to this interrupt is similar to a normal memory read operation except that the Data Bus is
ignored on the next M1 cycle. Timing for the interrupt response to the non-maskable interrupt request is illustrated in
Figure 7-14.

The 280 pushes the contents of the Program Counter onto the external stack and then automatically executes a Restart
instruction to memory location 00661g. Thus, this response is the same as the response to an INT interrupt in Mode 1
except that the Restart call is to a different memory location.

While the Z80 CPU is responding to the non-maskable interrupt, the internal flip-flop {IFF1) used to enable maskable in-
terrupts is reset to prevent interrupts during the NMI service routine. Upon completion of the service routine, you do
not simply want to once again set the IFF1 flip-fiop. since maskable interrupts may not have been enabled prior to NMi.
This quandary is solved by using a second internal flip-flop (IFF2) for temporary storage. As the CPU begins its response
to the NMI interrupt, it saves the state of the interrupt enable flip-flop (IFF1) by copying it into IFF2. At the end of the
NMI service routine. you must execute a Return from Non-Maskable Interrupt (RETN) instruction which will copy the
contents of IFF2 back into IFF1, thus automatically restoring the correction status for the maskable interrupt enable.

—— Last M Cycle =——jpui-atgf————ee— Interrupt Acknowledge ———-;—Fl
Last T Time T, T, T, T, T
o _ I\ \ . LU g AU e U
Sz iV F i st Sl B
AC -~ A15 P PC M REFRESH
W . f
MREQ A [\ J
RD L I~
RFSH \

Figure 7-14. Z80 Response to a Nonmaskable Interrupt Request

THE HALT INSTRUCTION

When a Halt instruction is executed by the Z80 CPU, a sequence of NOP instructions is executed until an interrupt're-
quest is received. Both maskable and nonmaskable interrupt request lines are sampled on the rising edge of ® during
T4 of every NOP instruction’'s machine cycle.

The Halt state will terminate when any interrupt request is detected, at which time the appropriate interrupt
acknowledge sequence will be initiated. as illustrated in Figures 7-13 and 7-14.

Note that the Z80 executes the sequence of NOP instructions during a Halt so that it can continue to generate dynamic
memory refresh signatls.

Halt instruction timing is illustrated in Figure 7-16.



INIR MOV M.A

INX H
DCR B
JNZ LOOP

These instruction sequences input COUNT bytes from /O port PORTN, and store the data in a memory buffer
whose beginning address is START. COUNT and PORTN are symbols representing 8-bit numbers. START is an ad-
dress label. The block transfer I/0 instruction will continue executing until the B register has decremented to O.

4) Single Step Block Transfer I/O instructions. These are identical to the block transfer 1/0 instructions described in
category 3 above, except that instruction execution ceases after one iterative step. Referring to the INIR instruction
example, if the INIR instruction were replaced by an INI instruction, a single byte of data would be transferred from
PORTN to the memory location addressed by START. The address START would be incremented. Register B con-
tents would be decremented, then instruction execution would cease.

When a block transfer or single step, block transfer I/0O instruction is executed. C register contents, which identify the
I/0 port. are output on the lower eight Address Bus lines in the usual way; however, B register contents are output on
the higher eight address lines A15 - AB. Therefore external logic can. if it wishes, determine the extent of the transfer.

Let us now look at the advantages gained by having the new Z80 1/0 instructions.

The value of the Register Indirect I/0 instructions is that programs stored in ROM can access any i/0 port. If /0
port assignments change, then all you need to do is modify that small portion of program which loads the /O port ad-
dress into the C register.

The Block Transfer I/O instructions must be approached with an element of caution. In response to the execution
of a single instruction’s object code. up to 256 bytes of data may be transferred between memory and an /0 port. This
data transfer occurs at CPU speed — which means external logic must input or output data at the same speed. If exter-
nal logic cannot operate fast enough. it can insert Wait states in order to slow the CPU, but that takes additional logic:
and one might argue that the traditional methods of polling on status to effect block 1/0 transfers is cheaper than
adding extra Wait state logic. ‘

Note that all Z80 enhanced 1/0 instructions require two bytes of object code.

PRIMARY MEMORY REFERENCE INSTRUCTIONS

Instructions that we classify as Primary Memory Reference constitute a subset of the Load instructions, as classifed by
Zilog. Within the Primary Memory Reference instructions category, as we define it, Zilog offers a single enhan-
cement: base relative addressing. Instructions that move data between a register and memory may specify the
memory address as the contents of an Index register; plus an 8-bit displacement provided by the instruction object
code. Here is a programming example of Zilog base relative addressing and the 8080A eqguivalent:

Z80 8080A
LD IX.BASE LXI H,BASE
LD C.IX + DISP) X1 D.DISP
: DAD D
MOV cM

Jdbserve that the two Z80 instructions do not use any CPU registers — other than the IX Index register. The 8080A uses
‘he DE and HL registers. Here is an example of the true value that results from having Index registers. The Z80 can use
he DE and HL registers to store temporary data, which the 8080A cannot do; the B080A would have to store such tem-
Yorary data in external read/write memory.

“he biggest single advantage that accrues to the Z80 from having indexed addressing is the fact that well written Z80
rograms will contain far fewer memory reference instructions than equivalent 8080A programs; therefore Z80 pro-
yrams will execute faster.

Jther primary memory reference instructions provided by the Z80, and not present in the 8080A, include instructions
vhich load data into the Index registers and store Index registers’ contents in memory. Since the 8080A does not have
ndex registers, it cannot have memory reference instructions for them. The Z80 also has instructions which transfer
6-bit data between directly addressed memory and any register pair, except AF. Recall that in the 8080A, HL is the
nly register pair which stores to memory and loads from memory using direct addressing.

3LOCK TRANSFER AND SEARCH INSTRUCTIONS

Ve classify the Zilog Block Transfer and Search instructions in a separate category, since our hypothetical com-
uter, as described in Volume |, had no equivalent instructions.

\ Block Transfer instruction allows you to move up to 65,536 bytes of data between two memory buffers
vhich may be anywhere in memory. The H and L registers address the source buffer, the D and E registers address
he destination buffer, and the B and C registers hold the byte count.



After every byte of data is transferred, the B and C registers’ contents are decremented; instruction execution ceases
after the B and C registers decrement to zero. You have the option of incrementing or decrementing the source and
destination addresses following the transfer of each data byte. Thus you can transfer data from low to high memory. or
from high to low memory. Here is a programming example of the Z80 Block Move instruction, along with the 8080A

equivalent:

Z80 8080A :

LD BC,COUNT LXI B.COUNT
LD DE.DEST LXI D.DEST
LD HL.SRCE LXI H.SRCE
LDIR LOOP: MOV AM

STAX D

INX H

INX D

DCX B

MOV AB

ORA C

JINZ LOOP

The two instruction sequences illustrated above move a block of data, COUNT bytes long. from a buffer whose starting
address is SRCE to another buffer whose starting address is DEST. SRCE and DEST are 16-bit address labels. COUNT is
a symbol representing a 16-bit data value.

The Z80 - 8080A comparison above is one that makes the 8080A look particularly bad. This is because it emphasizes
8080A weaknesses; the 8080A requires memory addresses to be incremented as separate steps. Also, after decrement-
ing the counter in Registers B and C, status is not set. therefore BC contents are tested by loading B into A and ORing
with C.

You can use Block Move instructions in ZB0 configurations that include dynamic memory. While the Block Move
is being executed, dynamic memory is refreshed.

The Block Search instruction will search a block of data in memory, looking for a match with the Accumulator
contents. The H and L registers address memory, while the B and C registers again act as a byte counter. When a
match between Accumulator contents and a memory location'is found, the Search instruction ceases executing. After
every Compare, the B and C registers’ contents are decremented; once again you have the option of either increment-
ing or decrementing H and L registers’ contents. Thus you can search a block of memory from high address down, or
from low address up. '

The results of every step in a Block Search are reported in the Z and P/O statuses. If a match is found between Ac-
cumulator and memory contents, then Z is set to 1; otherwise Z will equal 0. When the B and C registers count out to
zero, the P/O status will be reset to 0; otherwise the P/O status will equal 1.

Here is an example of a program using the Z80 Block Search instruction, along with 8080A program equivalent:

Z80 8080A

LD A.REFC LXI BC.COUNT

LD BC.COUNT LXi HL.SRCE

LD HL,SRCE LOOP:  MVI A.REFC

CPDR © CMP M

JR Z,FOUND Jz FOUND
:NO MATCH FOUND DCX H

- DCX B

- . MoV AB
;MATCH FOUND ORA C
FOUND: JNZ LOOP

;NO MATCH FOUND

:MATCH FOUND
FOUND:

Each of the above instruction sequences tries to match a character represented by the symbol REFC with the contents
of bytes in a memory buffer. The memory buffer is origined at SRCE and is COUNT bytes long.

7-22



In the example illustrated above, SRCE is the highest memory address for the buffer, which is searched towards the low
memory address. FOUND is the label for the first instruction in the sequence which is executed if a match is found. If no
match is found, that is, the BC registers count out to O, program execution continues with the next sequential instruc-
tion. :

The 280 Block Search instruction is particularly useful when searching a large memory buffer for a byte that
may frequently occur. Suppose you have an ASCIl text in which Control codes have been imbedded. For the sake of
argument, let us assume that all Control codes are two bytes long. where the first byte has the hexadecimal value 02
and the second byte identifies the Control code. You can use one set of registers in order to search the text buffer for
Control codes, while using the second set of registers to process the text buffer after each Control code has been lo-
cated.

All you need to do in the Block Search instruction sequence illustrated above is follow the CPDR instruction with an
EXX instruction; after executing the instruction sequence following MATCH FOUND, again execute an EXX instruction
before returning to search for the next Control code.

Each of the Block Move and Block Search instructions has a single step equivalent. The single step instruction
moves one byte of data. or compares the Accumulator contents with the next byte in a data buffer; addresses and
counters are incremented and decremented as for the Block Move and Search instructions, however execution ceases
after a single step has been completed.

SECONDARY MEMORY REFERENCE (MEMORY OPERATE) INSTRUCTIONS

Instructions that we classify as Secondary Memory Reference. or Memory Operate, constitute a portion of the
arithmetic and logical instructions, as defined by the Z80. Within the Memory Operate group of instructions, the
single enhancement offered by the Z80 is a duplicate set of instructions that uses base relative addressing. We
have already discussed this enhancement in connection with anary Memory Reference instructions. Here is a pro-
gramming example with the 8080A equivalent:

Z80 8080A
LD IX.BASE LXI H.BASE
ADD (X + DISP) LXI D.DISP
DAD D
ADD: M "

The same comments we made regarding the use of indexed addressing in the Primary Memory Reference example ap-
ply to the instruction sequences above. ‘
IMMEDIATE INSTRUCTIONS

Within the group of instructions that we classify as Immediate, the Z80 offers two enhancements:
1) Instructions are provided to load immediate data into the additional Z80 registers.

2)  You can use base relative addressing to load a byte of data immediately into read/write memory.

JUMP INSTRUCTIONS

In addition to the standard Jump instruction offered by the 8080A, the Z80 has a two-byte, unconditional
Branch instruction, and two instructions which aliow you to jump to the memory location specified by an Index
register.

The two indexed Jump instructions transfer the contents of the identified Index register to the Program Counter.

The two-byte Jump instruction interprets the second object code byte as an 8-bit signed binary number, which is gd-
ded to the Program Counter, after the Program Counter has been incremented to point to the next instruction. This is a
standard program relative branch, as described in Volume 1.

Note that the Z80 uses many of the spare 8080A object codes to implement the two-byte Branch and Branch-on-Con-
dition instructions. This makes sense; it would certainly not make much sense to have two bytes of object code
followed by a single branch byte. since that would create a three-byte Branch instruction — offering no advantage over
the three-byte Jump instructions which already exist.

SUBROUTINE CALL AND RETURN INSTRUCTIONS

The Z80 instructions in this group are identical to 8080A equivalents.

IMMEDIATE OPERATE INSTRUCTIONS

Z80 Immediate Operate instructions, as we define them, are identical to those in the 8080A instruction set.



JUMP-ON-CONDITION INSTRUCTION
The 280 offers two significant Jump-on-Condition instruction enhancements over the 8080A:

1) There are two-byte equivalents for four of the more commonly used Jump-on-Condition instructions. The
two-byte Jump-on-Condition instructions execute exactly as described for the two-byte Jump instruction.

2) There is a decrement and Jump-on-Nonzero instruction which is particularly useful in any kind of iterative loop.
When this instruction is executed, the B register contents are decremented; if the B register contents, after being
decremented. equal zero. the next sequential instruction is executed. If after being decremented the B register con-
tents are not zero, then a Jump occurs. This is a two-byte instruction, where the Jump is specified by a single 8-bit
signed binary value.

Here is an example of how the DJNZ instruction may be used along with the B080A equivalent:

Z80 8080A
AND A ANA A
LD IX.VALA LXi D.VALA
LD IY.VALB LXI H.VALB
LD B.CNT MVI B.CNT
LOOP: LD A, (IX) LOOP:  LDAX D
ADC AlY) _ ADC M
LD (IX).A STAX D
INC IX INX D
INC h g INX H
DJNZ LOoP DCR B
JNZ LOOP

The two instruction sequences illustrated above perform simple multibyte binary addition. The contents of two buffers,
origined at VALA and VALB, are summed; the results are stored in buffer VALA.

The first instruction in each sequence is executed in order to clear the Carry status. Like the 8080A. the Z80 does not
have an instruction which sets the Carry status to 0. while performing no other operation.

REGISTER-REGISTER MOVE INSTRUCTIONS

Register-Register Move instructions, as we defined them in this book. constitute a subset of the Z80 Load instructions.
Al Z80 Exchange instructions, except those that exchange with the top of the Stack, are also classified as Register-
Register Move instructions.

The 280 enhancements within this instruction group apply strictly to the additional registers implemented
within the Z80. That is to say, because the Z80 has registers which the 808CA does not have, the Z80 must also have
instructions to move data in and out of these additional registers.

The instructions which exchange data between registers and their alternates need comment. Note that you can swap
the entire set of duplicated registers, or you can swap selected register pairs. If you use these instructions following an
interrupt acknowledge. you do not have to save the contents of the registers on the Stack. Of course. this will only work
for a single interrupt level. There are also occasions when the alternate set of registers can be used effectively in normal
programming logic, as we illustrated when describing the Block Search instruction.

REGISTER-REGISTER OPERATE INSTRUCTIONS

There are a few new Z80 Regiéter-Register Operate instructions which do the following:
1) Add without Carry the contents of a register pair to an Index register.

2) Add with Carry to HL the contents of a register pair.

3) Subtract with Carry from HL the contents of a register pair.

REGISTER OPERATE INSTRUCTIONS

Within this category, the Z80 has two enhancements:

1) You can increment or decrement the contents of an Index register.

2) A rich variety of Shift and Rotate instructions have been added. These instructions are illustrated in Table 7-2. In
particular, note the RLD and RRD instructions, which are very useful when performing multidigit BCD left and right
shifts.

7-24



T MANIPULATION INSTRUCTIONS

he B0BOA has no equivalent for this set of Z80 instructions. We give these instructions a separate category in Ta-
te 7-2 because of their extreme importance in microprocessor applications.

it manipulation instructions are particularly important for signal processing. A single signal is a binary entity; it is not
art of an 8-bit unit. One of the great oversights among microprocessor designers has been to ignore bit manipulation
structions. The Z80 has instructions that set to 1 (SET), reset to O (RES) or test (BIT) individual bits in memory
r any general purpose reguster The result of a bit test is reported in the Zero status.

ere are some Z80 instructions with 8080A equivalents:

Z80 8080A
BIT 4.A MOV . BA
ANI 10H
MOV AB

he 80B0A tests Accumulator bits destructively — all untested bits are cleared; Accumulator contents must therefore
e saved before testing. We can also contrive an example to emphasize the strengths of the Z80 bit instructions:

280 8080A
LD 1Y, BASE LXI H.BASE
SET 20y +DISP) - LXI D.DISP
' DAD D
MVI A4
ORA M

)nce again, note that the 8080A needs to use the D, E, H and L registers.

lote that all Z80 Bit instructions operate on memory or CPU registers. But in most microcomputer applications in-
ividual pins at 1/0 ports will most frequently be set. reset or tested. The Z80 has no 1/0 Bit instructions. If you wish,
ou can interface /O devices so that they are addressed as memory locations; however, in that case, you cannot use
lock 1/0 instructions.

he 8080A can do anything that a Z80 Bit Manipulation instruction can do but an additional Mask instruction is
eeded and the Accumulator is involved. On the syrface these seem to be small penalties: but it is the frequency with
vhich Bit Manipulation instructions are needed that escalates small penalties into major aggravations.

s TACK INSTRUCTIONS

vdditional Stack instructions provided by the Z80 allow the Z80 Index registers to be pushed onto the Stack,
opped from the Stack, or exchanged with the top of the Stack.

NTERRUPT INSTRUCTIONS

1 addition to the 8080A Interrupt instructions. the Z80 has two Return-from-Interrupt instructions. RETI and RETN are
sed to return from maskable and nonmaskable interrupt service routines, respectively.

ETI and RETN are two-byte instructions. Within the CPU these instructions enable interrupts, but otherwise ex-
cute exactly as a Return-from-Subroutine (RET) instruction. However, devices designed by Zilog to support
he Z80 CPU use the RETI and RETN instructions in a unique way. Any support device that has logic to request.an
1terrupt also includes logic which tests the Data Bus contents during the fow M1 pulse. Upon detecting the second
yte of an RETI or RETN instruction’s object code, a device which has had an interrupt request acknowledged deter-
ines that the interrupt has been serviced. .

Vhy does a support device need to know that an interrupt service routine has completed execution? The reason is that
ilog extends interrupt priority arbitration logic beyond the interrupt acknowledge process to the entire interrupt ser-
ice routine.

his is the scheme adopted by the 8269 PICU. Afier reading the next paragraph. if you are still unclear on concepts.
efer to the 8259 PICU discussion in the 8080A chapter.

onsider the typical daisy chain scheme used to set interrupt priorities in a multiple interrupt microcomputer system.
aisy chaining has been described in good detail in Volume 1. When more than one device is requesting an interrupt,
n acknowledge ripples down the daisy chain until trapped by the interrupt requesting device electrically closest to the
PU. As soon as the interrupt acknowiedge process has ceased, an interrupt service routine is executed for the
cknowledged interrupt; acknowledged external logic will now remove its interrupt request. Unless the CPU disables
irther interrupts, a lower priority device can immediately interrupt the service routine of a higher priority device. With
e Zilog system, that is not the case. A device which has its interrupt request acknowledged continues to suppress in-
rrupt requests from all lower priority devices in a daisy chain, until the second object code byte for an RET! or RETN



instruction is detected on the Data Bus. The acknowledged device responds to an RETI or RETN instruction’s object
code by re-enabling interrupts for devices with lower priority in the daisy chain.

Providing a Zilog microcomputer system has been designed to make correct use of the RET! and RETN instructions. in-
terrupt priority arbitration logic will allow an interrupt service routine to be interrupted only by a high priority interrupt
request. ‘

Here is an iflustration of the Zilog interrupt priority arbitration scheme:

Lower priority
interrupts
*Active - suppressed *Active
IREQ1 {
) 1 REQ2 IREQ3 0 IREQ4 0
DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4

\ ,

Device 2 interrupt Request

Main
Program

Main
Program

Device 2 intermupt
service routine

Only IREQ1 can be RETI instruction executed

acknovsledged vshile Device 2 here enables interrupts at
interrupt service routine is Devices 3 and 4. IREQ4
executing can novs be acknovdedged

The three IM instructions allow you to specify that the CPU will respond to maskable interrupts in Mode O, 1 or
2. These three interrupt response modes have already been described.

STATUS AND MISCELLANEOUS INSTRUCTIONS

Z80 and 8080A instructions in these categories are identical.

THE BENCHMARK PROGRAM

Our benchmark program is coded for the Z80 as follows:

LD BC.LENGTH :LOAD 10 BUFFER LENGTH INTO BC :

LD DE.(TABLE) ;LOAD ADDRESS OF FIRST FREE TABLE BYTE OUT OF FIRST TWO TABLE
;BYTES

LD HL.IOBUF :LOAD SOURCE ADDRESS INTO HL

LDIR ;EXECUTE BLOCK MOVE

The program above makes absolutely no assumptions. Both source and destination tables may have any length and
may be located anywhere in memory.

Notice that there is no instruction execution loop. since the LDIR block move will not stop executing until the entire
block of data has been moved. .

7-26



e following abbreviations are used in this chapter:

-B.C.D.EEH.L
"BC.DE" HL

(H1)

rt

The 8-bit registers. A is the Accumulator and F is the Program Status Word.
The alternative register pairs

A 16-bit memory address

Bit b of 8-bit register or memory location x

Condition for program branching. Conditions are:
NZ - Non-Zero (Z=0)

Z - Zero (Z=1)

NC - Non-carry (C=0)

C - Carry (C=1)

PO - Parity Odd (P=0)

PE - Parity Even (P=1)

P - Sign Positive (S=0)
M - Sign Negative (S=1)

An 8-bit binary data unit

A 16-bit binary data unit

An 8-bit signed binary address displacement
The high-order 8 bits of a 16-bit quantity xx
Interrupt vector register {8 bits)

The Index registers (16 bits each)

Either one of the Index registers (X or 1Y)
Least Significant Bit (Bit 0)

A 16-bit instruction memory address

The low-order 8 bits of a 16-bit quantity xx
Most Significant Bit (Bit 7)
Program Counter

An 8-bit /0 port address

Any of the following register pairs: -
BC
DE
HL
AF

The Refresh register (8 bits)
Any of the following registers:

rITIMmMgooOm)

Any of the following register pairs:
BC
DE
HL
SP

Stack Pointer (16 bits)



Table 7-4. ZBO PIO Interpretation of Control Signals

SIGNALS ®

—ﬁ?m—ﬁ- FUNCTIONAL INTERPRETATION

0 0 0 |} No function

0 0 1 }interrupt acknowledge

0 1 0 | Check for end of interrupt service routine

0 1 1 ] Reset

1 0 0 ] Read from PIO to CPU

1 0] 1 [ Write from CPU to PIO

1 1 0 | No function

1 1 1 ] No function

* These interpretations only apply if the device has been selected

80 support devices also rely on exact Z80 CPU characteristics for interrupt processing. Specifically, Z80 support
evices detect every instruction fetch, as identified by M1 and RD simultaneously low; if a return from interrupt object
ode is fetched, then Z80 support devices respond to this object code by resetting internal interrupt priority logic. Ac-
ounting for this end of interrupt logic in a non-Z80 system could be difficult.

lecause of the unique characteristics of the Z80 support devices, the Z80 PIO and CTC devices are described in
his chapter. The Z80 DMA device is described in Volume 3, however, because this device is easily used in non-Z80
onfigurations; moreover, its unique capabilities make it a highly desirable part to include in any microcomputer
ystem that has to move text or data strings. The Z80 S10 device is also described in Volume 3 because it is an ex-
eptionally powerful device; in many cases the power of the Z80 SIO device will compensate for the additional logic lt
vill demand in a non-Z80 microcomputer system.

THE Z80 PARALLEL 1/0 INTERFACE (PIO)

he Z80 PIO is Zilog's parallel interface device; it may be looked upon as a replacement for the 8255 PPI, but it
s equivalent to the PPI at a functional level only. No attempt has been made to make the Z80 PIO an upward
ompatible replacement for the 8255 PPI.

he Z80 PIO has 1€ 1/0 pins, divided into two 8-bit 1/0 ports. Each I/0 port has two associated control lines.
his makes the Z80 PIO more like the Motorola MC6820 than the 8255 PPI.

he two Z80 PIO I/0 ports may be separately specified as input, output or control ports. When specified as a
ontrol port, pins may be individually assigned to input or output. Port A may be used as a bidirectional I/O port.

he Z80 PIO also provides a significant interrupt handling capability. This includes:

The ability to define conditions which will initiate an interrupt.
Interrupt priority arbitration
Vectored response to an interrupt acknowiedge

igure 7-16 illustrates that part of our general microcomputer system logic which has been implemented on the
BO PIO.

he 280 PIO is packaged as a 40-pin DIP. It uses a single +5V power supply. All inputs and outputs are TTL-level
»mpatible. The device is fabricated using N-channel silicon gate depletion load technology.

7-45



Clock Logic

Logic to Handle

> I‘nt.en:ubt‘ Requgst's

o fromes
External Devides

'

. b

ik ey
- Arbitration -

Arithmetic and
Logic Unit

ﬁstruction Register

Control Unit

Bus Interface
Logic

]

Accumulator
Register(s)

Data Counter(s)

il

Stack Pointer

Program Counter

'

Direct Memory
Access Controt
Logic

#

2

System Bus

I;

1/0 Communication
Serial to Parallel
Interface Logic

Programmable
Timers

#

ROM Addressing
and
Interface Logic

!

Read Only
Memory

| Interface Logic -} .

] l}_’Q Ports ;

1

RAM Addressing
and
Interface Logic

]

Read/Write
Memory

Figure 7-16. Logic Functions of the Z80 PIO




80 PIO PINS AND SIGNALS

0 PIO pins and signals are illustrated in Figure 7-17. Signals are very straughtforward therefore their functions
Il be summarized before we discuss device characteristics and operation.

t us first consider the PIO CPU interface.
| data transfers between the PIO and the CPU occur via the Data Bus, which connects to pins DO - D7,

r the PIO to be selected, a low input must be present at CE. There are two additional address lines. B/A SEL
lects Port A if low and Port B if high. For the selected 1/0 port, C/D SEL selects a data buffer when low and a
ntrol buffer when high. Device select logic is summarized in Table 7-5.

Table 7-5. Z80 PIO Select Logic

SIGNAL
B/A SEL| C/D SEL

SELECTED LOCATION

Port A data buffer
Port A control buffer
Port B data buffer
Port B control buffer
Device not selected

- off
cocoolg]
X = =00
X -0 =0

0 PIO device control logic is not straightforward. Of the control signals output by the Z80 CPU, three are input to the
); M1, TORQ, and RD. WR is not input to the PIO. Table 7-5 illustrates the way in which Z80 PIO interprets M1,

RQ and RD. Observe that RD is being treated as a signal with two active states: low RD specifies a read operation,
ereas high RD specifies a write operation. Thns does not conform to the CPU, which treats RD and WR as signals
th a low active state only.

t us now look at the PIO external logic interface.

- A7 represent the eight bidirectional /O Port A lines:; 1/0 Port A is supported by two control signals, A RDY
d A STB.

£l

nilarly, I/O Port B is implemented via the eight bidirectional lines BO - B7 and the two associated control lines
DY and B STB.

e 1/0 Port A and B control lines provide handshaking logic which we will describe shortly.

w consider interrupt control signals.

and IEO are standard daisy chain interrupt priority signals. When more than one PIO is present in a system, the
hest priority PIO will have IEl tied to +5V and will connect its IEQ to the IE! for the next highest priority PIO in the

3y chain:
+5V o [———1 No connection

IEl IEO IEl IEO IEl IEO IEI IEO
PIO PiO PIO PIO
1 2 3 n
Highest Second Third Lowest
(first) priority priority priority
priority

ou are unsure of daisy chain priority networks, refer to Volume 1. for clarification.

‘is a standard interrupt request signal which is output by the Z80 PIO and must be connected as an input to the
'CPU interrupt request. Observe that there is no interrupt acknowledge line, since M1 and IORQ simultaneously low
stitute an interrupt acknowledge and will thus be decoded by the 280 PIO.

ck, power, and ground signals are absoluteiy standard. The same clock signal is used by thevPlO and the Z80
J.

ierve that there is no Reset signal to the PIO. M1 low with both RD and 1ORQ high constitutes a reset. We will
cribe the effect of a Z80 PIO reset after discussing operating modes.

7-47



D2 —-p———py 1 40 pe———pp~ D3
D7 el 39 jgfe——jm- D4
D6 ety 3 38 jrett———— D5
CE -] 4 37 |t M1
C/DSEL ——pd 5 36 Jt——— TORQ
B/A SEL =it 6 35 p-ef——— RD
Al il 7 34 }g———p B7
Af ] g 33 g g6
A5 g3y 9 32 pgp———g—- p5
Al o] 10 280 31 = B4
GND ————— 11 PO 30 fetp———3 B3
A3 el 12 29 g3 B2
A2 —agp———apd 13 28 fe————p- B1
Al ~a————-1 14 27 pet————— B0
AQ ~atfpeaeyed 15 26 + 5V
A STB =iy 16 25 et O
B8 ST =g 17 24 p-t———e— |El
A RDY et 18 23 — INT
00 — i1 19 22 - |EO
D1 20 21 - B RDY
PIN NAME DESCRIPTION TYPE
DO - D7 Data Bus Tristate, Bidirectional
T:E Device Enable Input
B/A SEL Select Port A or Port B Input
C/D SEL Select Control or Data Input
_IVT1- Instruction fetch machine cycle Input
signal from CPU 5
l-(ﬁa Input/Output request from CPU Input
FD- Read cycle status from CPU Input
AO - A7 Port A Bus Tristate, Bidirectional
A RDY Register A Ready Output
A STB Port A strobe pulse Input
BO - B7 Port B Bus Tristate, Bidirectional
B RDY Register B Ready Output
é_S—_TB- Port B strobe pulse Input
IEl Interrupt enable in Input
LEQ_ Interrupt enable out Output
INT interrupt request Output, Open-drain
¢, + 5V,GND Clock, Power and Ground

Figure 7-17. Z80 PIO Signals and Pin Assignments

74




Zz80 PIO OPERATING MODES

To the programmer, a Z80 PIO will be accessed as four addressable locations:

1/0 Port A logic ‘

l
I/0 Port A 1/0 Port A
Data A0 - A7
| ]
1 » /oPotA | ET _ ASTB
) Control = ARDY
]

]
‘ |}
|
Data Busm L-----——-—-J
DO'D7 A aED G OB 4N aE» G Gy &
r 1/0 Port B logic -:
1 1/0 Port B : BSTB
T Control ; = BRDY

]
1/0 Port B 1/0 Port B
Data A o | BO - B7
! !

L ----------J

By loading appropriate information into the Control register you determine the mode in which the I/O port is to
operate.

The Z80 PIO has operating modes which are equivalent to those of the 8255 PPI, plus an additional mode which
the 8255 PPI does not have. However, 8255 PPl Mode 0 provides 24 1/0 lines, as against a maximum of 16 1/0 lines
available with the Z80 PIO.

Zilog literature uses Mode 0, Mode 1, Mode 2. and Mode 3 to describe the ways in which the Z80 PIO can operate: in
order to avoid confusion between mode designations as used by the Z80 PIO and the 8255 PPI, mode equivalences are
given in Table 7-6.

Table 7-6. Z80 PIO And 8255 Mode Equivalences

Z80 PIO | 8255 PPI INTERPRETATION

Mode 3* | Mode O | Simple input or output

Mode O | Mode 1 | Output with handshaking

Mode 1 Mode 1 | Input with handshaking

Mode 2 | Mode 2 | Bidirectional I/0 with handshaking
Mode 3 None Port pins individually assigned as con-
trols

*Special case of Mode 3

-et us now look at the Z80 PIO modes in more detail.

Jutput mode (Mode 0) allows Port A and/or Port B to be used as a conduit for transferring data to external logic.
“igure 7-18 illustrates timing for Mode 0. An output cycle is initiated when the CPU executes any Output instruction
iccessing the 1/0 port. The Z80 PIO does not receive the WR pulse from the CPU, therefore it derives an equivalent sig-
al by ANDing RD - CE - C/D - IORQ.

"his pseudo write pulse WR* in Figure 7-18) is used to strobe data off the Data Bus and into the addressed |/O port's
Jutput register. After the pseudo write pulse goes high. on the next high-to-low transition of the clock pulse ®,_the
IDY control signal is output high to external logic. RDY remains high until external logic returns a low pulse on the ST8
cknowledge. On the following high-to-low clock pulse @ transition, RDY returns low. The low-to-high STB transition
Iso generates an interrupt request.

7-49



(Y
PORT OU':::; l // I/ \\
Y

(8 BITS) (\
RDY 'l

5 »
INT |

MOODE 0 (OUTPUT) TIMING

T

'WR*=RD - CE - C/D - IORQ

Figure 7-18. Mode 0 (Output) Timing

The RDY and STB signal transition logic has been designed to let RDY create STB. If you connect these two signals, the
RDY low-to-high transition becomes the STB low-to-high transition and RDY is strobed high for one clock pulse only
This may be illustrated as follows:

e T\ S\ .\ LPE t
RDY e e (

ST8

RDY =STB

Timing for input mode (Mode 1) is illustrated in Figure 7-19. External logic initiates an input cycle by pulsing STE
low. This low pulse causes the Z80 PO to load data from the I/O port pins into the port Input register. On the rising
edge of the STB pulse an interrupt request will be triggered.

On the falling edge of the ® clock pulse which follows STB input high, RDY will be output low informing external logic
that its data has been received but has not yet been read. RDY will remain low until the CPU has read the data, at whict
time RDY will be returned high.

It is up to external logic to ensure that data is not input to the Z80 P10 while RDY is low. If external logic does in-
put data to the Z80 PIO while RDY is low, then the previous data will be overwritten and lost — and no error status wil
be reported.

In bidirectional mode {Mode 2), the control lines supporting 1/0 Ports A and B are both applied to bidirectiona
data being transferred via Port A; Port B must be set to bit control (Mode 3).

Figure 7-20 illustrates timing for bidirectional data transfers. This figure is simply a combination of Figures 7-18 anc
7-19 where the A control lines apply to data output while the B control lines apply to data input. The only uniqué
feature of Figure 7-20 is that bidirectional data being output via Port A is stable only for the duration of the A STB low
pulse. This is necessary in bidirectional mode since the Port A pins must be ready to receive input data as soon as thé
output operation has been completed

Once again, it is up to external logic to make sure that it conforms with the timing requirements of bidirectional modé
operation. External logic must read output data while A STB is low. If external logic does not read data at this time. the
data will not be read and the Z80 PIO will not report an error status to the CPU; there is no signal that external 10gi
sends back to the Z80 PIO following a successful read.




\Iso. it is up to external logic to make sure that it transmits data to Port A only while B RDY is high and A RDY is low. If
xternal logic tries to input data while the Z80 PIO is outputting data, input data will not be accepted. if external logic
ries to input data before prevuously input data has been read. the previously input data will be lost and no error status
vill be reported.

®
STB
PORT INPUT — — S MPLE
(8 BITS) — e — ————
RDY M /

~ ‘/—43
RD* ’ L

RD*=RD . CE . C/D - IORQ

Figure 7-19. Mode 1 (input) Timing

b

A RDY \I J K

A STB \
PORT A : =

DATA OUT ATA L
DATA BUS — SAMPLE - )
INT | W— (\
= ~
B RDY j

WR*=RD - CE . C/D -IORQ

Figure 7-20. Port A, Mode 2 (Bidirectional) Timing

antrol mode {(Mode 3) does not use control signals. You must define every pin of an I/0 port in Mode 3 as an in-
1t or an output pin. The section on programming the Z80 PIO explains how to do this. Timing associated with the ac-
al transfer of data at a single pin is as illustrated in Figures 7-18 and 7-19, ignoring the RDY and STB signals. If all the
ns of a single port are defined in the same direction, then that port can be used for simple parallel input or output
rithout handshaking).

B8O PIO INTERRUPT SERVICING
e Z80 PIO has a single interrupt request line via which it transmits interrupt requests to the CPU.

1 interrupt request can originate from 1/0 Port A logic, or from I/O Port B logic. In the case of simultaneous in-
rrupt requests, 1/0 Port A logic has higher priority. -

1 interrupt request may be created in one of two ways. We have already seen in our discussion of Modes 0, 1 and 2
at appropriate control signal transitions will activate the interrupt request line; that is the first way in which an inter-
pt request may occur. In Mode 3 you can program either I/0 port to generate an interrupt request based on the status
signals at individual I/0 port pins; you can specify which 1/0 port pins will contribute to interrupt request logic and
1at the pin states must be for the interrupt request to occur. In a microcomputer system that has more than one Z80
D. interrupt priorities are arbitrated using daisy chain logic as we have already described. But there is a significant
ference between priority arbitration within a Z80 system as compared to typical priority arbitration. Figure 7-21 il-
strates interrupt acknowledge timing.

7-51



LASTT
STATE

Ty Tzl T3|

, SAMPLE
INT

1ORQ IORQ AND M1 INDICATE
INTERRUPT ACKNOWLEDGE

IEO

iEl

Figure 7-21. Interrupt Acknowledge Timing

The 280 PIO requires the CPU to execute an RET! instruction upon concluding an interrupt service routine.
Following an interrupt, an acknowledged Z80 PIO continously scans the Data Bus whenever M1 is pulsed low. Until an
RETI instruction’s object code is detected, the acknowledged Z80 PIO will continuously output IEQ low, thus disabling
all lower priority Z80 P10s. As soon as an RETH instruction’s object code is detected on the Data Bus, the Z8G PIO will
output IEQ high, thus enabling lower priority Z80 PIOs. What this means is that interrupt priorities extend to the inter-
rupt service routine as well as the interrupt request arbitration logic. Once an interrupt has been acknowledged, all
lower priority interrupt requests will be denied until the acknowledged interrupt service routine has completed execu-
tion and has executed an RETI instruction. However, higher priority interrupts can be acknowledged and in turn inter-
rupt an executing service routine. This is identical to the priority arbitration logic which we described for the 8259
PICU.

You can, if you wish, enabte lower priority interrupts by exeéuting an RETI instruction before an interrupt service |
routine has completed execution. But this requires that you execute an RET! instruction in order to return from a
subroutine within the interrupted service routine. This instruction sequence may be illustrated as follows:

;START OF INTERRUPT SERVICE ROUTINE

&ZALL ENABLE ;ENABLE ALL INTERRUPTS AT PIO DEVICES
i-?ET ;END OF INTERRUPT SERVICE ROUTINE
ENABLE RETI

If you simply executed an RETI instruction shortly after entering an interrupt service routine, you would make a hasty
exit from the routine — before completing the tasks that have to be performed in response to the acknowledged inter-
rupt.

PROGRAMMING THE 280 PIO

You program the Z80 PIO by outputting a series of commands. -

Let us start by identifying command format.

If the O bit of a command is low, then the receiving 1/0 port logic will interpret the command as an interrupt vec-
tor, with which it must respond to an interrupt acknowledge, assuming that the CPU is operating in interrupt Mode 2

76 543 2 1 O-e—a38iNo

[ [ l I l lo Command Byte

t [——— Interrupt vector specified

Output these eight bits when
an interrupt request is acknowledged




Do not confuse CPU interrupt modes with |/O port modes; they have nothing in common.

In order to define an 1/0 port's mode you must output a Control code to the I/ port’s Control buffer. This is the
Control code format:

7 6 54 3 2 1 0-—=—B8itNo

X{X11j1r11 Control Code
W\‘L—Mode Select Code
Don’t Care

00 Output, Mode 0

01 input, Mode 1

10 Bidirectional, Mode2
11 Control, Mode 3

Observe that the same address, the |/O Port A or B Control buffer address, is used when outputting a Control code, an
interrupt vector. or a mode select. The low-order four bits of the Control code determine the way in which the Control
code will be interpreted. The following Control code will enable or disable interrupts:

76 5 4 32 1 0 --w—3giNo.
XEiXIXiojogiv 1 Contro! Code

Interrupt enable contro!
Don‘t Care

{ 0 Disable interrupts

g l 1 Enable interrupts

If a Mode Select Control code is output specifying that an I/O port will operate in Mode 3, then the next byte
output is assumed to be a pin direction mask. 1 identifies an input pin, whereas O identifies an output pin. Here is a
sample instruction sequence:

LD C.{PORTAC) :LOAD PORT A CONTROL ADDRESS INTO REGISTER C
LD A.OCFH :LOAD MODE 3 SELECT INTO ACCUMULATOR

ouT (C)LA :OUTPUT TO PORT A CONTROL REGISTER

LD A.3BAH ;DEFINE PINS 5, 4, 3 AND 1 AS INPUTS,

ouT (C).A :PINS 7, 6, 2 AND 0 AS QUTPUTS

If you set an 1/0 port to Mode 3, then you can define the conditions which will cause an interrupt request; you
do this by outputting the following interrupt Control code:

76 54 3 2 | (O -~e—BitNo.

| 0] 1] 1] 1 Je——control coxte

It ——
L——————' [nterrupt controt word

' 1 if interrupt select mask follows
l 0 otherwise

’ 1 high input on selected pins is active
{ 0 low input on selfected pins is active

J 1 AND selected pins for interrupt
{ 0 OR selected pins for interrupt

§ 1 Enable interrupts
{ 0 Disable interrupts

7-53



When you output an interrupt Control code. as illustrated above, if bit 4 is 1, Z80 PIO logic will assume that the next
Control code output is an interrupt mask. An interrupt mask selects the pins that will contribute to interrupt request
logic. A O bit selects a pin. while a 1 bit deselects the pin. '

Combining the various Control codes that have been described we can now illustrate a typical sequence of instructions
for accessing a Z80 PIO. Assume that PIO I/O port addresses are:

Port A data 4
Port A command 5
Port B data 6

Port B command 7

We are going to set I/0 Port B to Mode 3, with an interrupt request triggered by either pin 6, 3 or 2 high. Pins 6, 3, 2
and 1 will be input pins, while pins 7, 6, 4 and 0 are outputs. The Port B interrupt vector will be 04. Port A will be a
bidirectional 1/O port with an interrupt vector of 02. Here is the initialization instruction sequence:

LD A.8FH :SET PORT A TO MODE 2

ouTt (5).A

LD A2 ;OUTPUT INTERRUPT VECTOR
ouT (B).A : '
LD C.7 :SET PORT B ADDRESS IN C
LD A,OCFH .SET PORT B TO MODE 3

ouT CLA

LD A4EH ;OUTPUT PIN DIRECTION MASK
ouT (C).A

LD A4 :OUTPUT INTERRUPT VECTOR
out (CLA

LD A.0B7H ;OUTPUT INTERRUPT CONTROL WORD
ouT (C)L.A ,
LD A, 0B3H ;OUTPUT INTERRUPT MASK
ouT (C)L.A

’

THE 280 CLOCK TIMER CIRCUIT (CTC)

The Z80 Clock Timer Circuit is a programmable device which contains four sets of timing logic. Each set of tim-
ing logic can be programmed independently as an interval timer or an external event counter.

The master Z80 system clock is used by interval timer logic. A time cut may be identified by an interrupt request.

An external signal is used to trigger decrement logic when the timer is functioning as an event counter. An interrupt
may be requested when the predetermined number of events count out.

if you compare the 280 CTC with the 8253 Counter/Timer described in Volume 3, you will see that the Z80 CTC
has four sets of counter/timer logic as compared to the three sets of the 8253; however, the 8253 has more pro-
grammable options. In addition to functioning as an event counter or an interval timer, the 8253 can be programmed to
generate a variety of square waves and pulse output signals.

The Z80 CTC is fabricated using N-channel depletion load technology. It is packaged as a 28-pin DIP. All pins are
TTL-level compatible.

280 CTC FUNCTIONAL ORGANIZATION

Before we examine pins, signals, and operating characterics of the Z80 CTC in detail, let us take an overall look
at device logic.

There are four counter/timer logic elements in a Z80 CTC; each is referred to as a “"channel”.



-ach of the four counter/timer channels may be visualized as consisting of three 8-bit registers and two control
ignals. This may be illustrated as follows:

s

Interrupt

Vector \

Register

8-bit Channel 0 only

Control
Register

8-bit
Time Constant
Register

f_- CLK/TRG

8-bit NN \\
Dovsn Counter ZC/TO
Register \\\\
+ Channels 0, 1, and 2 only

.

IR

Control Logic g

n initial counter or timer constant is loaded into the Time Constant register. The value in the Time Constant
gister is maintained unaltered until you write @ new value into this register.

he initial Timer Constant is loaded into the Down Counter register at the beginning of a counter or timer opera-
on; the contents of the Down Counter register are decremented. You can at any time read the contents of the Down
ounter register in order to determine how far a time interval or event counting sequence has progressed.

1e Channel Control register contains a Control code which defines the channel’s programmable options. There
e four Control registers, one for each of the four channels. Thus one channel's operations in no way influence opera-
ons for any other channel.

1ere is an Iinterrupt Vector register which is addressed as though it were part of channel O logic. This register
»ntains the address which is transmitted by the Z80 CTC upon receiving an interrupt acknowledge. The Z80
TC assumes that the Z80 CPU is operating in Interrupt mode 2 — in which mode the device requesting an interrupt
sponds to an acknowledge by providing the second byte of a subroutine address which the CPU will Call. For details
fer to our earlier discussion of the Z80 CPU.

80 CTC PINS AND SIGNALS
30 CTC pins and signals are illustrated in Figure 7-22.

D - D7 is the bidirectional Data Bus via which parallel data is transferred between the CPU and any register of the
30 CTC.

£ is the master chip select signal for the Z80 CTC. This signat must be low for the device to be selected.

7-55



While CE is low, CSO and CS1 are used to select one of the four counter/timer logic channels as follows:

CS1 CSO Channel
0 0 0
0 1 1
1 0 2
1 1 3
D4 —a——p-q | 18 D3
D5 g 2 27 pte—= D2
D6 -3y 3 26 peste—pp~- D1
D7 -t 4 25 jreatp——= 0
GND =1 5 24 p————= 4+ 5V
AD —————af 6 280 23 f——— CLK/TRGO
2C/TO0 ~e——q 7 cTC 22 p—— CLK/TRG1
2C/TO1 ~affre—d 8 21 pt—— CLK/TRG2
2C/TO2 ~agp——q 9 20 p-~tp——r CLK/TRG3
TORQ ————gd 10 19 feag—— CS1
IEQ —atfr——g 11 18 fagp——ue CSO
INT ] 12 17 Jreag—— RESET
6] g 13 16 jat—— CE
M1 14 15 $etlfeee
PIN NAME DESCRIPTION TYPE
DO-D7 Data Bus Bidirectional, tristate
CLK/TRGO,
CLK/TRAN, External Clock or timer trigger Input
CLK/TRG2, R
CLK/TRG3, 2
ZC/TO0
ZC/TO1 Zero Count or timeout indicator Output
2C/T0O2
M1 Instruction fetch machine cycle Input
signal from CPU
jORQ Input/Qutput request from CPU Input
RD Read cycle status from CPU Input
ﬁEEE? Device Reset Input
1E1 Interrupt enable in Input.
IEQ Interrupt enable out Output
INT Interrupt request Output, Open-drain
EE . Device enable Input
CS0, Cst Register select Input
@, +5V, GND Clock, power and ground

Figure 7-22. Z80-CTC Signals and Pin Assignments

7-56



0 and CS1 select registers associated with counter/timer logic. to be accessed by read and write operations. The ac-
3l register which will be accessed is determined as follows:

Write to Channel Read from channel

7 65 43 2 1 0-=—BitNo.

Y X Data wuritten Down Counter

X =0, channel =0
Select Interrupt
Vector

X =1, select Channel
Control register on
first access.

St |f Y = ( ———m—Select Time Constant register
- on next write
If Y = | =g Select Channel Control register
again on next write
(If Channel = 0, select on next
write according to X.)

the illustration above would imply. the Down Counter register is the only location of any channe! whose contents
n be read. All other registers are write only locations.

hen you write to a channiel, bits 0 and 2 of the data byte being written determine the data destination as follows:

If bit 0 is O and you are selecting channel 0. then the data is written to the Interrupt Vector register.

If bit. O is O and you select channel 1, 2 or 3. the data destination is undefined.

If bit O is 1, then on the first access of any channel the data will be written to the Channel Control register.

If within the data byte written to a Channel Control register bit 0 is 1 and bit 2 is O, then the next data byte written
to this channel will be loaded into the Time Constant register, irrespective of whether bit 0 is O or 1. The data writ-
ten will be interpreted as a time constant; select logic will immediately revert to selecting the Channe! Contro!
register or the Interrupt Vector register on the next write, depending on the condition of bit O of the next data byte.

1, IORQ and RD are three control signals input to the Z80 CTC. Combinations of these three control signals control
jic within the Z80 CTC, as described for the Z80 P10. An exception is the device Reset. The Z80 CTC has its
n RESET input. The PIO decodes a Reset when M1 is low while TORQ and ﬁie high. With the exception of the
SET function, Table 7-4 defines the manner in which the Z80 CTC interprets M1, I0RQ, and RD signals.

errupt logic has three associated signals: IEl, IEQ and INT. These signals operate exactly as described for the
0 PIO.

e Z80 CTC requests an interrupt with a low INT output.

and IEO are used to implement daisy chain priority interrupt logic as described for the PI10O.

ch of the four counter/timer channels has a CLK/TRG input control. This signal can be used to trigger timer logic:
s also used as a decrement control by counter logic.

unter/timer logic channels 0, 1 and 2 have a ZC/TO output. This signal is pulsed high on a time out or a count out.

en a low input is applied to the RESET pin, the Z80 CTC is reset. At this time all counter/timer logic is stopped.
" is output high, IEO is output at the IEl level and the Data Bus is floated. Register contents are not cleared during a
et.

30 CTC OPERATING MODES

e Z80 CTC is accessed by the CPU as four I/0 ports or four memory locations. Timing for any CTC access con-
ms to descriptions given earlier in this chapter for the CPU.

t us begin by looking at a counter/timer operating as a timer.

7-57



Using an appropriate Control code (described later) you select Timer mode for the channel and specify that an initial
time constant is to follow.

You load an initial constant into the Time Constant register, after which timer operations begin.

You have the option of using the CLK/TRG input to start the timer, in which case timer logic is initiated by external
logic. The alternative is to initiate the timer under program control, in which case the timer starts on the clock pulse
following the Time Constant register being loaded. :

When timer operations begin, the Time Constant register contents are transmitted to the Down Counter register. The
Down Counter register contents are decremented on every 16th system clock pulse, or on every 256th system clock
pulse. You make the selection via the Control code. Assuming a 500 nanosecond clock, therefore, the timer will decre-
ment the Down Counter register contents every 8 microseconds, or every 128 microseconds.

When timer logic decrements the Down Counter register contents from 1 to O a time out occurs. At this time ZC/TO is
pulsed high. the Time Constant register contents are reloaded into the Down Counter register and timer logic starts
again. Thus timer logic is free running: once started. the timer will run continuously until stopped by an appropriate
Control code.

Here is a timing example for a timer started under program control and decrementing the Down Counter register on ev-
ery 16th clock pulse:

1 2 3 4 15 16 1 15 16 1 15 16 1V 2
b
L
ZC/T0
Qutput Output Time Constant -  Decrement Down Counter Register
Control Initial to Down Counter ©  Down Counter Decrements from 1 to 0.
Code Time Register, Start Register Retoad Down Counter from
Constant Timer Time Constant Register and
restart timer

Here is a timing example for a timer whose operations are initiated by CLK/TRG, where the Down Counter register con-
tents are decremented on every 256th clock pulse:

1 2 3 2556 256 1 265 256 1 285 256 1
9o}
Ll ] g L[] .
CLK/TRG
-
zc/T0 \ \
QOutput Output Time Decrement Down Counter Restart
Control initial Constant Down Counter Register decrements Timer
Code time to Down Register from 1 t0 0.
constant Counter Reload Down
Register, Counter from
Start Time Constant
Timer register

7-58



erve that every time out is marked by a ZC/TO high pulse. INT is also output low providing interrupt logic is enabled
he channel.

he illustration above CLK/TRG is shown as a high true signal. You can specnfy CLK/TRG as a low true signal via the
innel Control code; the timer will be initiated as follows:

CLK/TRG B

exact timing requirements see the data sheets at the end of this chapter.

I can at any time write new data into the Time Constant register. If you do this while the timer is running. nothing
pens until the next time out; at that time the new Time Constant register contents will be transferred to the Down
inter register and subsequent time intervals will be computed based on the new Time Constant register contents.

bu are unfortunate enough to output data to the Time Constant register while a time out is in progress and the Time
istant register contents are being transferred to the Down Counter register, then an undefined value will be loaded
) the Down Counter register. however, following the next time out the new value in the Time Constant register will
ly; that is to say. there will only be one undefined time interval.

us now look at a counter/timer operating as a counter.

g an appropriate Control code (described iater) you select Counter mode for the channel and spec;fy that an initial
e constant is to follow.

| load an initial constant into the Time Constant register. after which counter operations begin.

en counter operations begin. the Time Constant register contents are transmitted to the Down Counter register. The
vn Counter register contents are decremented every time the CLK/TRG input makes an active transition. Counter
¢ begins on the first active transition of CLK/TRG following data being loaded into the Time Constant register. The
ve transition of CLK/TRG may be selected under program control as low-to-high or high-to-low.

en counter logic decrements the Down Counter register contents from 1 to 0, a count out occurs. At this time the
TO signat is pulsed high; an interrupt request occlrs, providing the channel's interrupt logic has been enabled. The
e Constant register contents are reloaded into the Down Counter register and counter operations begin again. That
) say. counter logic is free running and will continue to re-execute until spec:flcally stopped by an appropriate Con-
code. Counter logic timing may be illustrated as follows:

CLK/TRG f— é-\‘_
ZC/TO !

[ | I

INT
Output OQutput  Start Decrement Down Counter Restart
Control Initial Counter Down Counter register Counter
Code Time Register decrements

Constant from 1 to O

7-59



Z80 CTC INTERRUPT LOGIC

Every Z80 CTC channel has its own interrupt logic. A channel’s interrupt logic generates an interrupt request
when the channel counts out or times out. All interrupt requests are transmitted to the CPU via the INT output.
This is true if one, or more than one channel is requesting an interrupt. If more than one channel is requesting an
interrupt, then priorities are arbitrated as follows:

Highest Priority  Channel O
Channel 1
Channel 2
Lowest Priority Channel 3

Every channel's interrupt logic can be individually enabled or disabled under program control.

The 280 CTC device’s overall interrupt logic is identical to that which we have already described for thé Z80
PIO.

The interrupt request is transmitted to the CPU via a low INT signal.
The CPU acknowledges the interrupt by outputting M7 and TORQ low as illustrated in the data sheets at the end of this
chapter.

The device requesting an interrupt which is highest in the daisy chain acknowledges the interrupt. Presuming this is a
Z80 CTC, the CTC places its interrupt vector on the Data Bus; it is assumed that the CPU is operating in interrupt mode
2. The Z80 CTC immediately outputs IEQ low, disabling all devices below it in the daisy chain.

When an RETI instruction is executed, Z80 CTC logic sets IEQ high again.

For more information on Z80 interrupt logic refer to discussions of this subject given earlier in the chapter for the Z80
CPU and the PIO.

PROGRAMMING THE Z80 CTC
These are the steps required to program a Z80 CTC:

1) Output an interrupt vector once, when initializing the 280 CTC.

2) For each active counter/timer channel, output one or more Cantrol codes. Control codes are used initially to
set counter/timer operating conditions and to load the Time Constant register. Subsequently Control codes
are used to start and stop the counter/timer, or to change the initial time constant

The interrupt vector is written to a counter/timer by outputting a byte of data to counter/tlmer channel O with a 0 in the:
low order bit. The interrupt vector may be illustrated as follows:

2 1 0 —=——3Bit No.

3
Y| X l X 0]—‘——- Interrupt Vector

Must be 0 to identify Interrupt Vector
Ignored by 280 CTC wvhich substitutes
bits as follows:

00 for Channel O interrupt
0 1 for Channel 1 interrupt

7 6 5 4
YIYIY}Y

1 0 for Channel 2 interrupt
1 1 for Channel 3 interrupt

Address bits stored

7-60



The Control code which must be output to each active channel will be interpreted as illustrated in Figure 7-23.

7 65 4 3 2 1 0 ~=—gitNo.

J ] 1 Control code

A ) ]1 |
] I I I L—— Must be 1 to identify date as a Control code

RESET 1 stops channel immediately or
0 leaves it running

LOAD 1 Next data output is a time constant to be loaded into
the Time Constant register. If counter/timer is not
running, do not start until time constant has been written.
0 No time constant foliows.
TRIGGER 1 If timer is stopped, start on CLK/TRG %Timer Mode
0O if timer is stopped, start on ® Only
SLOPE 1 CLK/TRG positive edge triggered
0 CLK/TRG negative edge triggered
RANGE 1 Decrement Down counter every 256th @ pulse.} Timer Mode
0 Decrement Down counter every 16th @ pulse. } Only
MODE 1 Counter mode
0 Timer mode
IE 1 Enable channel interrupt

0 Disable channel interrupt

Figure 7-23. Z80 CTC Control Code Interpretation

Bit O must be 1 to identify the data as a Control code. If bit 0 is O, then the data is interpreted as an interrupt vector —
providing Channel O is addressed. the data is undefined otherwise.

Bit 1 is used to stop the channel when it is running. If bit 1 is O, then every time the channel times out the Down
Counter register is immediately reloaded from the Time Constant register contents and channel operations restart ac-
cording to current options. If bit 1is 1, the channet stops immediately; the ZC/TO output is inactive and channel inter-
rupt logic is disabled. The channel must be restarted by outputting a new Control code.

Bit 2 is used to output time constants. If bit 2 is 1, then the next data output to the channel will be interpreted as a time
sonstant. If bit 2 is 0, then the next data output to the channe! will be interpreted as another Control code. or an inter-
‘upt vector, depending on the bit O value.

3it 3 applies to Timer mode only; assuming that the timer is not running. it determines whether timer operations will be
nitiated by the system clock signal ®. or by CLK/TRG.

f bit 3 is 0 then timer operations are initiated by system clock signal @; the timer will start on the next leading edge of
b, unless the current Control code specifies {via bit 2) that a new time constant is to be output, in which case the timer
vill start on the rising edge of ® which immediately follows output of the time constant. Timing for these two cases has
een illustrated earlier.

f bit 3is 1, then the active transition of the CLK/TRG signal initiates the timer. Once again, if bit 2 of the current Con-
rol code spécifies that a new time constant is to be output then timer logic cannot be started until this new time cons-
ant has been output. Timing has been illustrated earlier.

lit 4 determines whether the low-to-high or the high-to-low transition of CLK/TRG is active. Assuming that bit 6 has
pecified Timer mode and bit 3 has specified the timer will be triggered externally by CLK/TRG, the active transition of
LK/TRG starts the timer. I bit 6 is not O or bit 3 is not 1, then the active transition of CLK/TRG decrements the counter.

‘ bit 4 specifies that a low-to-high transition of CLK/TRG will be active then CLK/TRG may be illustrated as follows:

CLK/TRG g ‘\

bit 4 specifies that the high-to-low transition of CLK/TRG will be active then CLK/TRG may be illustrated as follows:

CLK/TRG ? r

7-61




Bit 6 applies to Timer mode only. If bit 5 is 0, Down Counter register contents will be decremented every 16th system
clock pulse (®). If bit 5 is 1, the Down Counter register contents will be decremented every 256th system clock pulse
(P).

Bit 6 determines whether the channel will be operated as a counter or a timer. If bit 6 is 0, Timer mode is selected;
Counter mode is selected if bit 6 is 1.

Bit 7 is an interrupt enable/disable flag. If O, the channel's interrupt logic is disabled; if 1, the channel's interrupt logic
is enabled.

Let us now look at the programming example. Here are the assumed operating conditions for the Z80 CTC:

1) Channel 0 is operating as a counter with an initial time constant of 801g and interrupt logic enabled.

2} Channel 1 is operating as a timer. It decrements on every 16th system clock pulse and has an initial time constant
of 4016: its interrupts are disabled and CLK/TRG starts the timer on its low-to-high transition.

3) Channel 2 is operating as a timer. It decrements every 256th system clock pulse and has an initial time constant of
C814: its interrupts are enabled and the system clock starts the timer.

4) Channel 3 is inactive.

The CPU is operating with interrupt logic in Mode 2. CTC interrupt service routine starting addresses are stored at
memory locations 2C4016, 2C421g and 2C441g. The CTC is accessed as I/O ports B81g. B916. BA1g. and BB1s.

Here is the appropriate CTC initiation instruction sequence:

LD A.2CH .LOAD INTERRUPT VECTOR REGISTER OF CPU
LD LA
M 2 SELECT CPU INTERRUPT MODE 2

LD A, 40H ;OUTPUT INTERRUPT VECTOR TO
ouTt (0B8H).A ;CHANNEL O
;START CHANNEL O

LD - A,0C5H  ;QUTPUT THE CONTROL CODE TO CHANNEL O
ouT (088H).A _
LD A,80H :OUTPUT THE INITIAL COUNT TO CHANNEL O
ouT (OB8H).A :CHANNEL 0 BEGINS OPERATING.
:START CHANNEL1 .
LD A,1DH :OUTPUT THE CONTROL CODE TO CHANNEL 1
ouT (OB9H),A ‘
LD A,40H :OUTPUT THE INITIAL TIMER CONSTANT TO CHANNEL1

out (0B9H),A  ;CHANNEL 1 BEGINS OPERATING. (IF TRANSITION OCCURS)
;START CHANNEL 2

LD A 0ABH ;OUTPUT THE CONTROL CODE TO CHANNEL 2

ouT (OBAH).A

LD A.0C8H ;OUTPUT THE INITIAL TIMER CONSTANT TO CHANNEL 2
ouTt (OBAH),A ;CHANNEL 2 BEGINS OPERATING

7-62



Serial
Input/Qutput
Controller

‘eatures

B Two independent full-duplex channels, with

separate control and status lines for modems
or other devices.

B Data rates of 0 to 500K bits/second in
the x1 clock mode with a 2.5 MHz clock

(280 SIO), or 0 to 800K bits/second with a 4.0
MHz clock (Z80A SIO).

B Asynchronous protocols: everything
necessary for complete messages in 5, 6, 7
or 8 bits/character. Includes variable stop
bits and several clock-rate multipliers;
break generation and detection; parity;
overrun and framing error detection.

® Synchronous protocols: everything
necessary {or complete bit- or byte-oriented
messages in 5, 6, 7 or 8 bits/character,
including IBM Bisync, SDLC, HDLC,
CCITT-X.25 and others. Automatic CRC
generation/checking, sync character and
zero insertion/deletion, abort genera-
tion/detection and flag insertion.

B Receiver data registers quadruply buffered,
transmitter registers doubly buffered.

B Highly sophisticated and flexible daisy-
chain interrupt vectoring for interrupts
without external logic.

>eneral Description

The Z-80 SIO Serial Input/Output Control-
>r is a dual-channel data communication
terface with extraordinary versatility and
apability. Its basic functions as a serial-to-
arallel, paralliel-to-serial converter/controller
an be programmed by a CPU for a broad
znige of serial communication applications.

The device supports all common asyn-
hrernous and synchronous protocols, byte- or

-] D, RzDA fa————
1D, AxCh |+——
e s 1 TxDA f—
cpPU ———f D, TiCA jo—
Caus | o SHCE fa—>
| D WIRDYA pr——t CHANNKEL A
et} D
-} D, ATSE s
CTSE |+——— | moDEM
BTRE }—— [ CONTROL
——} GE  zosiO/2  DETR fwe———
————a1 RESET
SONTROL | — 1 iORQ RxDE fa—— }
FROM( I & ACB |a———
cru Tx0B p—
b T+CE [e—
— -l i WwiRDYE CHANNEL 8
RTSE p———-
DAISY | a—— iNT CTSE ja——— | MODEN
cuam J 1 57FE }—— o [ CONTROL
Z::::;I ~——1 IEQ CDE je—o )

«3V  GND CLK

Figure 1. Z80 S10-2 Logic Functions

bit-oriented, and performs all of the functions
traditionally done by UARTs, USARTs and
synchronous communication controllers com-
bined, plus additional functions traditionally
performed by the CPU. Moreover, it does this
on two fully-independent channels, with an
exceptionally sophisticated interrupt structure
that allows very fast transfers.

Full interfacing is provided for CPU or DMA

o, [ « [J 0,
o, [ 2 »[]o,
o, [ 2 sst]o,
o, T} a 3rf} o,
Wt [Ds 36 [] oRo
1B E [ sl}cE
o [ 7 34 % BIA
wiJe a{]ch
+sv[ds 2] RB
wiRova [ 1 21 [J ono
svwea [ 11 P9SI972 o 1 wwove
Ri0A [ 12 29 RxDB
mch O 28 (] RaCB
<A [ 21 [] Txce
Tx0a [ 15 26 [ ] 7«08
oTRA [ 16 25 1] OTRE
Avsa E 7 24 [ ] ATSE
tEa g e 23 [} CTSB
oo [ 18 22 [} 5COB
cux [l 2o 21 [} RESET

Figure 2. Z80 SIO-2 Pin Configuration




reneral Description (Continued)

ontrol. In addition to data communication, the
ircuit can handle virtually all types of serial
/O with fast (or slow) peripheral devices.
Vhile designed primarily as a member of the
80 family, its versatility makes it well suited to
nany other CPUs.

The Z80 SIO is an n-channel silicon-gate
depletion~load device packaged in a 40-pin
plastic or ceramic DIP. It uses a sing’e + 5V
power supply and the standard 780 family
single-phase clock.

in Description

Figures | through 6 illustrate the three pin
onfigurations (bonding options) available in
he SIO. The constraints of a 40-pin package
nake it impossible to bring out the Receive
“lock (RxC), Transmit Clock (TxC) Data Ter-
ninal Ready (DTR) and Sync (SYNC) signals
or both channels. Therefore, either Channel B
acks a signal or two signals are bonded
ogether in the three bonding options offered:

1 Z80 SIO-2 lacks SYNCB
Z80 SIO-1 lacks DTRB
Z80 SIO-0 has all four signals, but TxCB and
RxCB are bonded togsther

-l 3, R«DA t——
ot RxCA tom———
-t} D TxDA prmome——am
CPV | i, T:CA |-o——
DATA
sus | ——=jc. SYNCA pe——a
-l o, WIADYA r—-—» CHAMMEL A
-———=i T,
-, RTSA p————a=
CTSA Je————— | MOOEM
5THA p——a [ CONTROL
—d E 280 SI10-1 OCBA Ja———
——} AESET
—t RxD8 le——
INTROL ——1 CRQ RxC3 e
’2‘:: — | as Tx08 }——n
T2C8 j-tme——
f———
o8 SYNCS
- WIRDYB Pt
——n] 8/A > CHAMNEL 8
. ATSE p——m
DAiSY -———g INT TSR | e—— MOTeM
cuain L crs coNTROL
RALPT oco8 pe———
NTROL t -] &°

+5%Y  GNO CLx

Figure 3. 280 SIO-1 Logic Functions

The first bonding option above (SIO-2) is the
preferred version for most applications. The
pin descriptions are as follows:

B/A. Channel A Or B Select {input, Hzgn
selects Channel B). This input defines which
channel is accessed during a data transfer
between the CPU and the SIO. Address bit Ag
from the CPU is often used for the selection
function.

C/D. Control Or Data Select (input, High

selects Control). This input defines the type of
information transfer performed between the

0, : 1 40 bgo
0, (72 9 [J o,
o5 (33 o,
0; (7 ¢ 37 ] o,
WY (s 36 [ cAe
e [ s s CE
g0 7 i) si
w{Js s{]cd
+sv ] 12[] @o
WROYA [ 16 31 [ ] ono
Svnca ]+ 280 SIO-1 w [ ] wiadva
RxDA C 12 29 SYnC8
&CA ] 1 28 [} R:08
TXCA (T 1 27 I} AxcCB
Tioa [ 18 6 (] Tic8
OTRA [ 16 (] rics
ATSA [ 17 24 3758
&T8a e 23 [} &758
oc%a (v 22 {7 5Ca8
ek 20 21 :] AESET

Figure 4. Z80 SIO-1 Pin Counfiguration




2844B
280 Slﬂ

in Description (Continued)

PU and the SIO. A High at this input during
CPU write to the SIO causes the information
n the data bus to be interpreted as a com-
and for the channel selected by B/A. A Low
- C/D means that the information on the data
us is data. Address bit Aj is often used for

is function.

E. Chkip Enable (input, active Low). A Low
vel at this input enables the SIO to accept
>mmand or data input from the CPU during a
rite cycle or to transmit data to the CPU
iring a read cycle.

LK. System Clock (input). The SIO uses the
=ndard Z80 System Clock to synchronize
ternal signals. Thisis a smgle phase clock.

TSA, CTSB. Clear To Send (inputs, active
>w). When programmed as Auto Enables, a
>w on these inputs enables the respective

nsmitter. If not programmed as Auto
1ables, these inputs may be programmed as
:neral-purpose inputs. Both inputs are
‘hmitt-irigger buffered to accommodate slow-
setime signals. The SIO detects pulses on
sse inputs and interrupts the CPU on both
gic level transitions. The Schmitt-trigger buf-
"ing does not guarantee a specified noise-
rel margin.

-Dy. System Dcta Bus (bidirectional,

state). The system data bus transfers data

d commands between the CPU and the Z-80
D. Dg is the least significant bit.

‘DA, DCDB. Dota Carrier Detect {inputs,
ive Low). These pins function as receiver
sbles if the SIO is programmed for Auto
sbles; otherwise they may be used as
1eral-purpose input pins. Both pins are
writt-trigger buffered to accommodate slow-
itime signals. The SIO detects pulses on
se pins and interrupts the CPU on both

ic level transitions. Schmitt-trigger buffer-
r does not guarantee a specific noise-level
rgin.

RA. DTRB. Dato Terminal Ready (outputs,

ve Low). These outputs follow the state pro-

grammed into Z80 SIO. They can also be
programmed as general-purpose outputs.

In the Z80 SIO-1 bonding option, DTRB is
omitted.
IEl. /nterrupt Enable In (input, active High).
This signal is used with [EO to form a priority
daisy chain when there is more than one
interrupt-driven device. A High on this line
indicates that no other device of higher pri-
ority is being serviced by a CPU interrupt ser-

~vice routine.

IEO. /nterrupt Fnable Out {output, active
High). IEO is High only if IEI is High and the
CPU is not servicing an interrupt from this
SIO. Thus, this signal blocks lower pricrity
devices from interrupting while a higher
priority device is being serviced by its CPU

" interrupt service routine.

INT. /nterrupt Request (cutput, cpen drain,
active Low) When the SIO is reguesting an
interrupt, it pulls INT Low.

IORQ. [nput/Ouzpuf Request (input from CPU,
active Low). [ ICRQ is _is used in conjunction with
B/A, C/D, CE and RD to transfer commands
and data between the CPU and the SIO. When
CE, RD and ICRQ are all active, the channel
selected by B/A transfers data to the CPU (a
read operation). When CE and IORQ are
active but RD is inactive, the channel selected
by B/A is written to by the CPU with either
data or control information as specified by
C/D. 1f IORQ and M1 are active simultane-
ously, the CPU is acknowledging an interrupt
and the SIO automatically places its interrupt
vector on the CPU data bus if it is the highest
priority device requesting an interrupt.

Ml. Machine Cycle (input from Z80 CPU, active
Low). When M1 is active and RD is also active,
the Z80 CPU is fetching an instruction from
memory; when Ml is active while IORQ is active,
the SIO accepts M1 and IORQ as an interrupt
acknowledge if the SIO is the highest priority
device that has interrupted the 280 CPU.

RxCA., RxCB. Receiver Clocks (inputs).
Receive data is sampled on the rising edge of




’in Description (Continued)

1xC. The Receive Clocks may be 1, 16, 32 or
4 times the data rate in asynchronous modes.
hese clocks may be driven by the Z80 CTC
ounter Timer Circuit for programmable baud
ate generation. Both inputs are Schmitt-
"igger butfered (no noise level margin is
pecified).

In the Z80 SIO-0 bonding option, RxCB is
onded together with TxCB.

ID. Read Cycle Status (input from CPU,
ctive Low). If RD is active, a memory or /'O
ead operation is in progress. RD is used with
/A, CE and IORQ to transfer data from the
1O to the CPU.

'xDA, RxDB. Receive Data (inputs, active
ligh). Serial data at TTL levels.

 ESET. Reset (input, active Low). A Low

ESET disables both receivers and transmit-

2rs, forces TxDA and TxDB marking, forces

1e modem controls High and disables all

iterrupts. The control registers must be
swritten atter the SIO is reset and before data
transmitted or received.

TSA ,RTSB. Request To Sernd (outputs,
ctive Low). When the RTS bit in Write

-1 RaDA §}-o—m——o
———ai O, m ——m
- % T:0A p——a
Df:: e L—C_A. ——
guys | =% SYNCA |e—e
10 WIROVA e
R e, Y js
\ +—aiso ATSA _—“
CTSA le+—— | mooem
BTRA p——m [ CONTROL
—={ €€ 780 510_¢ 5T j=——
———n BESEY
— g—y
OMTROL | — o Ta5 axca
Mc‘:?:: ———1 70 T8 [
Tx08 pP———
——] a5 SYNCB je——n
WIRQYR et
—
RTSa
oaisy [ ——— 0 CTsE |o—— | mooEm
E::U‘P‘:J —l 5778 }——» { CONTROL
OMTROL !\ +——q IEQ 5798

1]

«35Y  GNOD CLx

Figure 5. Z80 SIO-0 Logic Functions

CHAMMEL A

CHANNEL B

Register 5 (Figure 14) is set, the RTS output
goes Low. When the RTS bit is reset in the
Asynchronous mode, the output goes High
after the transmitter is empty. In Synchronous
modes, the RTS pin strictly tollows the state of

the RTS bit. Both pins can be used as general-
purpose outputs.

SYNCA, SYNCB. Synchronization (inputs/out-
puts, active Low). These pins can act either as
inputs or outputs. In the asynchronous receive
mode, they are inputs similar to CTS and
DCD. In this mode, the transitions on these
lines affect the state of the Sync/Hunt status
bits in Read Register 0 (Figure 13), but have
no other functicn. In the External Sync mode,
these lines also act as inputs. When external
synchronization is achieved, SYNC must be
driven Low on the second rising edge of RxC
after that rising edge of RxC on which the last
bit of the sync character was received. In
other words, after the sync pattern is detected,

. the external logic must wait for two full

Receive Clock cycles to activate the SYNC
input. Once SYNC is forced Low, it should be
kept Low until the CPU informs the external
synchronization detect logic that synchroniza-

3o o000
nl 228
o

@ ® oo ow o o
o
W
ol

[[3+] 34 8ai
M1 33 folls)
+5V 12 A0
W:RDYA "0 780 SIO-0 ' pd MO
SYNCA WIRDYS
Ax0A [ 12 29 [] Svwcs
RxCA 3 23 [] 7-08
TeCA 14 27 RxT:CH
T«CA 15 28 Ti08

|
|
|
[

[~
-
B,
>
=]
et
0|
|

0]
ot
v
@)

o)
|
i

’«

Q)
(g
O]
@

g
ULUD U OO UL OL OO

o
a 0
O
x P

0|
i
v
m|
gt

Flgure §. 280 SIO-0 Pin Configuration



,..HA.,

Pin Description (Continued)

lion has been lost or a new message is about to
start. Character assembly begins on the rising
edge of RxC that immediately precedes the
(alling edge of SYNC in the External Sync
r.ode.

In the internal synchronization mode
(Mornosync and Bisync) these pins act as out-
puts that are active during the part of the
receive clock (RxC) cycle in which sync
characters are recognized. The sync condition
s not latched, so these outputs are active each
time a sync pattern is recognized, regardless
of character boundaries.

In the Z-80 SIO/2 bonding option, SYNCB
s omitted.

TxCA. TxCB. Transmitter Clocks (inputs). In
asynchronous modes, the Transmitter Clocks
may be 1, 16, 32 or 64 times the data rate;
however, the clock multiplier for the transmit-

fered for relaxed rise- and fall-time require-
ments (no noise level margin is specified).
Transmitter Clocks may be driven by the Z-80
CTC Counter Timer Circuit for programmable
baud rate generation.

In the Z80 SIO-0 bonding option, TxCB is

bonded together with RxCB.

TxDA, TxDB. 7ransmit Data (outputs, active
High). Serial data at TTL levels. TxD changes

from the falling edge of TxC.

W/RDYA, W/RDYB. Wait/Ready A, Wait/
Ready B {outputs, open drain when pro-
grammed for Wait functicn, driven High and
Low whken programmed for Ready function).
These dual-purpose outputs may be pro-
grammed as Ready lines for a DMA controller
or as Wait lines that synchronize the CPU to
the SIO data rate. The reset state is open

: drain.
'er and the receiver must be the same. The
Iransmit Clock inputs are Schmitt-trigger buf-
)
———
v e CHANNELA | }
CHANNEL A | [
INTERNAL CONTROL : —
CONTROL ANKD g
LOGIC STATUS ]
REGISTERS s
T CHANNEL A j——
b N CONTROL -——
: :> AND — }
DATA ] STATUS | I
BUS 110 < e e A A
TROL :ﬁ CHANNEL 8 -———
CONTROL -———
. AND b—a }
STATUS '
CHANNEL B
INTERRUPT #—— INTERRUPT CONTROL
CONTROL -] CONTROL AND
LINES B o | LOGIC STATUS \
REGISTERS | ———
CHANNEL B ] ', ;
-
| E—

Figure 7.

Block Diagram

SERiAL DATA

CHANNEL CLOCKS

SYNC
WAIT/READY

MODEM OR
OTHER CONTROLS

MODEM OR
OTHER CONTROLS

SERIAL DATA

CHANNEL CLOCKS
SYNC
WAIT/READY

b ¥ el



“unctional Description

The functional capabilities of the Z80 SIO

"an be described from two different points of

iew: as a data communications device, it
ransmits and receives serial data in a wide

rariety of data-communication proteccls; as a

80 family peripheral, it interacts with the
.80 CPU and other peripheral circuits, shar-
ng the data, address and control buses, as

vell as being a part of the Z80 interrupt struc-

ure. As a peripheral to other microprocessors,

MICROPROCESSOR
INTERFACE

the SIO offers valuable features such as non-
vectored interrupts, polling and simple hand-
shake capability.

Figure 8 illustrates the conventional devices
that the SIO replaces.

The first part of the following discussion
covers SIO data-communication capabilities;
the second part describes interactions between

the CPU and the SIO.

g UART il
-
— CHANMEL
A

»] SYNCHRONQUS |-
COMMUNICATIONS
~»{  CONTROLLER

p——d
INTERRUPT
CONTROLLER
UAAT |
e o
L— CHANNEL
8
] SYNCHACNOUS
COMMUNICATION
-1 CONTROLLER
——— CHAMMEL
MICROPROCESSOR — A
INTERFACE <+—»] 730510

< CHANNEL
— 8

Figure 8. Conventional Devices Replaced by the 280 SIO



1L 78440
- Z30SID

ta Communication Capabilities

I'he SIO provides two independent full-
plex channels that can be programmed for
> in any common asynchronous or synchro-
us data-communication protocol. Figure 9
istrates some of these protocols. The follow-
; is a short description of them. A more
ailed explanation of these modes can be
nd in the Z80 Family Technical Manual.

ynchronous Modes. Transmission and
eption can be done independently on each
annel with five to eight bits per character,
1s cptiona! even or odd parity. The transmit-
s can supply one, one-and-a-half or two stop
s per character and can provide a break
put at any time. The receiver break-
ection logic interrupts the CPU both at the
rt and end of a received break. Reception is
iected from spikes by a transient spike-
ection mecuamcm that checks the sicmal
=-hall & bit time alter a Low level is detected
eceive data input (RxDA or RxDB in

ure 5), If *}*e Low does not persist—as in

e ent-—the character assembly

-
& i
[ty
~1

i sia

'raming errors and CVerrun €rrors are

c uff erea togekher with the pcn ial
iracter on which they occurred. Vectored
:rrupts allow fast servicing of error condi-
1s using dedicated routines. Furthermore, a
lt-in checking process avoids interpreting a
ning error as a new start bit: a framing
or resuilts in the addition of one-half a bit
= to the point at which the search for the
t start bit is begun.
he SIO does not require symmetric transmit
' receive clock signals—a feature that
ws it to be used with a Z80 CTC or many
sr clock sources. The transmitter and
eiver can handle data at a rate of 1, 1/16,

2 or 1/64 of the clock rate supplied to the
sive and transmit clock inputs.

1 asynchronous modes, the SYNC pin may
orogrammed as an input that can be used
functions such as monitoring a ring
icator.

‘Synchronous Modes. The SIO supports both
byte-oriented and bit-oriented synchronous
communication.

Synchronous byte-oriented protocols can be
handled in several modes that allow character
synchronization with an 8-bit sync character
(Monosync), any 16-bit sync pattern (Bisync),
or with an external sync signal. Leading sync
characters can be removed without interrupt-
ing the CPU.

Five-, six- or seven-bit sync characters are
detected with 8- or 16-bit patterns in the SIO
by overlapping the larger pattern across multi-
ple in-coming sync characters, as shown in
Figure 10.

CRC checking for synchronous byte-
oriented modes is delayed by one character
time so the CPU may disable CRC checking on
specific characters. This permits implementa-
tion of protocols such as IBM Bisync.

Both CRC-16 (X!6 + XI5 + X2 + 1) and
CCITT (X16 + X12 4+ X5 + 1) error checking
polynomials are supported. In all non-SDLC
modes, the CRC generator is initialized to 0's;
in SDLC modes, it is initialized to 1's, The SIO
can be used for interfacing to peupuerals such
as hard-sectored floppy disk, but it cannot
generate or check CRC for IBM-compatible
soft-sectored disks. The SIO also provides a
feature that automatically transmits CRC data
when no other data is available for transmis-
sion. This allows very high-speed transmissions
under DMA control with no need for CPU
intervention at the end of a message. When
there is no data or CRC to send in syn-
chronous modes, the transmitter inserts 8- or
16-bit sync characters regardless of the pro-
grammed character length.

The SIO supports synchronous bit-oriented
protocols such as SDLC and HDLC by per-
forming automatic flag sending, zero insertion
and CRC generation. A special command can
be used to abort a frame in transmission. At
the end of a message the SIO automatically
transmits the CRC and trailing flag when the
transmit buffer becomes empty. If a transmit




e e
&

Data Communication Capabilities (Continued)

underrun occurs in the middle of a message,
an external/status interrupt warns the CPU of
this status change sc that an abort may be
issued. One to eight bits per character can be
sent, which allows reception of a message with
no prior information about the character struc-
ture in the information field of a frame.

The receiver automatically synchronizes on
the leading flag of a frame in SDLC or HDLC,
and provides a synchronization signal on the
SYNC pin; an interrupt can also be pro-
grammed. The receiver can be programmed to
search fcr frames addressed by a single byte to
only a specified user-zelected address or to a
glcbal broadcast address. In this mode, frames
that do not match either the user-seiected or
broadcast address are ignored. The number of
address bytes can be extended under software
control. For transmitting data, an interrupt on

PARITY

0

START

the first received character or on every
character can be selected. The receiver
automatically deletes all zeroes inserted by the
transmitter during character assembly. It also
calculates and automatically checks the CRC
to validate frame transmission. At the end of
transmission, the status of a received frame is
available in the status registers.

The SIO can be conveniently used under
DMA control to provide high-speed reception
or transmission. In reception, for exampie, the
SIO can interrupt the CPU when the first
character of a message is received. The CPU
then enables the DMA to transfer the messag=
to memory. The SIO then issues an end-of-
frame interrupt and the CPU can check the
status of the received message. Thus, the CPU
is freed for other service while the message is
being received.

MARXING LINE

i En e e N A

ASYMCHROMNMOUS

£ G
S
I SYNC T OATA [
q

[ DATA [ CRC)

r
>

MONCSYNC

¢

5>
[ SYNC [ SYNC l DATA I

L S

L DATA [ CRCy I CRC3 ]

SIGNAL BisYNC
¥ ‘s
e 2
L DATA [ DATA CRC, CRC; ]
P I I
5
EXTERNAL SYNC
ﬁ’ >
[ FLAG lADDﬂéSS[ INFORMATION [ CRC, | CRC; 1 FLAG
e ]

SOLC/HDLC/X.25

Figure 9. Some Z80 SIO Protocols

8 BITS

——
l TSYNC [ SVNCr L SYNC L DATA T DATA [ DATA L CATA J
] 1

Figure 10.



O Interface Capabilities

‘The SIO offers the choice of polling, inter-
1pt (vectored or nen-vectored) and block-
ansfer modes to transfer data, status and con-
ol information to and from the CPU. The
lock-transfer mode can also be implemented
rder DMA control.

olling. Two status registers are updated at
>propriate times for each function being per-
rmed (for example, CRC error-status valid at
e end of a message). When the CPU is
>erated in a polling {ashion, one of the SIO's
‘o status registers is used to indicate whether
e SIO has some data or needs some data
epending on the contents of this register, the
PU will either write data, read data, or just

> on. Two bits in the register indicate that a
ita transfer is needed. In addition, error and
her conditions are indicated. The second
stus register (special receive conditions) does
»t have to be read in a polling seguence,

itil a character has been received. All inter-
pt modes are disabled when operating the
:vice in a polled environment.

terrupts. The SIO has an elaborate interrupt
heme to provide fast interrupt service in
al-time applications. A control register and a
itus register in Channel B contain the inter-
pt vector. When programmed to do so, the
O can modily three bits of the interrupt vec-
- in the status register so that it points direct-
to one of eight interrupt service routines in
:mory, thereby servicing conditions in both
annels and eliminating most of the needs for
siatus-analysis routine.

Transmit interrupts, receive interrupts and
ternal/status interrupts are the main sources
interrupts. Each interrupt source is enabled
der program control, with Channel A hav-

7 a higher priority than Channel B, and with
seive, transmit and external/status interrupts
oritized in that order within each channel.
sen the transmit interrupt is enabled, the

CPU is interrupted by the transmit buffer
becoming empty. (This implies that the
transmitter must have had a data character
written into it so it can become empty.) The
receiver can interrupt the CPU in one of two
ways:

® Interrupt on first received character
B Interrupt on all received characters

Interrupt-on-first-received-character is
typically used with the block-transfer mode.
Irnterrupt-on-all-received-characters has il
option of moditying the interru pt vector in the
event of a parity error. Beth of these interrupt
modes will also interrupt under special receive
conditions on a character or message basis
(end-of-frame interrupt in SDLC, for example).
This means that the special-receive condition
can cause an interrupt only if the interrupt-on-
first-received-character or interrupt-on-all-
received-characters mode is selected. In
interrupt-on-first-received-character, an inter-
rupt can occur frem special-receive conditions

o

’excep* parity error) after the fjrst-rece;ved-

haracter interrupt {example: receive-overrun
mt»:—.:upt). 4
The main function of the exiernalistalus

interrupt is to monitor the signal transition
the Ciear To Send (CTS ), Data Carrier De
(DCD) and Synchronization (SYNC) pins
(Figures 1 through 6). In addition, an exter-

nal/status interrupt is also caused by a CRC-
sendmo condition or by the detection of a
break segquence (asynchronous mode) or gbort
sequence (SDLC mode) in the data stream.
The interrupt caused by the break/abort
sequence allows the SIO to interrupt when the
break/abort sequence is detected or ter-
minated. This feature facilitates the proper ter-
mination of the current message, correct
initialization of the next message, and the
accurate timing of the break/abor! condition in
external logic.

so*
4
l




I/ 0 Interface Capabilities (Continued)

In a 780 CPU environment (Figure 11), SIO
interrupt vectoring is “automatic”: the SIO
passes its internally-modifiable 8-bit interrupt
vector to the CPU, which adds an additional 8
bits from its interrupt-vector (I) register to form
the memory address of the interrupt-routine
table. This table contains the address of the
beginning of the interrupt routine itself. The
process entails an indirect transfer of CPU
control to the interrupt routine, so that the
next instruction executed after an interrupt
acknowledge by the CPU is the first instructicn

of the interrupt routine itself.

CPU/DMA Block Transfer. The SIO's block-
ransfer mode accommodates both CPU block
ransfers and DMA controllers (Z80 DMA or other
Jesigns). The block-transfer mode uses

he Wait/Ready output signal, which is

selected with three bits in an internal control
-egister. The Wak/Ready output signal can be
>rogrammed as a WAIT line in the CPU biock-
ransfer mode or as a READY line in the DMA
>lock-transfer mode.

To a DMA controller, the SIO READY output
ndicates that the SIO is ready to transfer data
o or from memory. To the CPU, the WAIT out-
sut'indicates that the SIO is not ready to
ransfer data, thereby requesting the CPU to
xtend the /O cycle.

SYSTEM

cpy

INT

«5Vv

=z

IEl
2ciTo.
cTC
2CiTO; INT
IEQ

1€
RxCA INT

™xXCA  IEQ

AxC8

Tics
WIRDYA
WiRDYB

BUSES

INT

OMA

RCY

1€l

(=

—

ROY

OMaA

Figure 11. Typical Z80 Environment




ternal Structure

The internal structure of the device includes a
30 CPU interface, internal control and

terrupt logic, and two full-duplex channels.
ich channel contains its own set of control

d status (write and read) registers, and con-
ol and status logic that provides the interface
modems or other external devices.

The registers for each channel are desig-
ited as follows:

WRO-WR7 — Write Registers 0 through 7
RRO-RR2 — Read Registers 0 through 2

The register group includes five 8-bit control
gisters, two sync-character registers and two
itus registers. The interrupt vector is written
to an additional 8-bit register (Write Register
in Channel B that may be read through
other 8-bit register (Read Register 2) in
1annel B. The bit assignment and functional
ouping of each register is configured to
nplify and organize the programming pro-
ss. Table 1 lists the functions assigned to

ch read or write register.

The logic for both channels provides for-

stg, synchronization and validation for data
insferred to end from the charnel interface.
e modem control inputs, Clear To Send

TS) and Data Carrier Detect (DCD), are

monitored by the external control and status
logic under program control. All external
control-and-status-logic signals are general-
purpose in nature and can be used for func-
tions other than modem control.

Read Register Functions

RRO Transmit/Receive buffer status, interrupt
status and external status

RR]1  Special Receive Condition status

RR2 Modified interrupt vector (Channel B only)

Write Register Functions

WRO Register pointers, CRC initialize, initializa-
tion commands for the various modes, etc.

WR! Transmit/Receive interrupt and data transfer
mode definition.

WR2 Interrupt vector (Channel B only)
WR3 Receive parameters and control

WR4 Transmit/Receive miscellaneous parameters
and modes

WR5 Transmit parameters and controls
WR6 Sync character or SDLC address field
WR7 Sync character or SDLC flag




Internal Structure (Continued)

Data Path. The transmit and receive data path
illustrated for Channel A in Figure 12 is iden-
tical for both channels. The receiver has three
8-bit buffer registers in a FIFO arrangement,
in addition to the 8-bit receive shift register.
This scheme creates additional time for the
CPU to service an interrupt at the beginning of
a block of high-speed data. Incoming data is
routed through one of several paths (data or
CRC) depending on the selected mode
and—in asynchronous modes—the character
length.

The transmitter has an 8-bit transmit data
buffer register that is loaded from the internal
data bus, and a 20-bit transmit shift register
that can be loaded from the sync-character
buffers or from the transmit data register.
Depending on the operational mode, outgoing
data is routed through one of four main paths
before it is transmitted from the Transmit Data
cutput (TxD).

10 DATA BUFFER

TO CHANNEL 8,
EXTERANAL STATUS LOGIC,
CONTROL LCGIC, ETC.

INTERNAL DATA 345

TT

il

!

WR6E

= TxDA

-—TxCa

) WR7
RECEIVE RECEIVE [iwc AEGISTER SYNC REQISTER TRANSMIT DATA
- — - = — S
DATA ERACA [
i FIFC FIFO < L& J L
| sTaRT
20-817 TRANSMIT SHIFT REGISTER I air
i
e
DATA Y
TRANSMIT
RECEIVE RECEIVE soLe MULTIPLEXER
xCA —] CLOCK ERROR DATA & 2.BIT DELAY
LoGic LOGIC —
HUNT MOOE (BISYNC) ZERO INSERT
——————— (5 BITS) ’
SYNC
{ ¥ CRC
SDLC.CRC
RECEIVE
1857 SYNC REG!STER - .
IXDA : pol 3 BITS lemed SHIFT AEGISTER
DELAY & ZERC DELETE }" fa 817S) CAC TRANSMIT
GENERATOR CLOCK LOGIC
| S O 5 (R PO
ASYNC DATA CRC
CRC DELAY
REGISTER
(8 8ITS)
CRC
CHECKER TRC AESULT
soLs-CAC

Figure 12. Transmit and Receive Data Peth (Channel A)




ogramming

The system program first issues a series of
>mmands that initialize the basic mode of
beration and then other commands that
1alify conditions within the selected mode.

or example, the asynchronous mode,

aracter length, clock rate, number of sto

ts, even or odd parity might be set first; then
e interrupt mode; and finally, receiver or
ansmitter enable.

Both channels contain registers that must be
ogrammed via the system program prior to
eration. The channel-select input (B ‘A) and
e control/data input (C/D) are the command-
ucture addressing controls, and are normal-
controlled by the CPU eddress bus. Figures
 and 16 illustrate the timing relationships for
ogramming the write registers and transfer-
1g data and status.

rad Registers. The SIO contains three read
gisters for Channel B and two read registers
r Channel A (RRO-RR2 in Figure 13) that can
> read to obtain the status information; RR2
ritains the mtemal‘y modifiable interrupt
ctor and is only in the Channel B register
t. The status information includes error con-
tions, interrupt vector and standard
mmunications-interface signals.
Te read the contents of a selected read
:; ster other than RRO, the system program

st first write the pomter byte to WRO in

ctly the same way as a write register opera-
n. Then, by executing a read instruction,
: contents of the addressed read register can
read by the CPU.
The status bits of RRO and RR1 are carefully
>uped to simplify status monitoring. For
smple, when the interrupt vector indicates
it a Special Receive Condition interrupt has
curred, all the appropriate error bits can be
1d from a single register (RR1).

-ite Registers. The SIO contains eight write
yisters for Channel B and seven write
jisters for Channel A (WRO-WR?7 in Figure
} that are programmed separately to con-
ure the functional personality of the chan-
ls;: WR2 contains the interrupt vector for

th channels and is only in the Channel B

register set. With the exception of WRO, pro-
gramming the write registers reguires two
bytes. The first byte is to WRO and contains
three bits {Dg-D2) that point to the selected
register; the second byte is the actual control
word that is written into the register to con-
figure the SIO.

WRO is a special case in that all of the basic
commands can be written to it with a single
byte. Reset (internal or external) initializes the
pointer bits Dg-D5 to point to WRO. This
implies that a channel reset must not be com-
bined with the pointing to any register.

READ REGISTER 0

Io- o b, 0, b, D, D7D}

Rx CHARACTER AVAILABLE
INT PENDING (CH. A ONLY)
Tx BUFFER EMPTY

I

cD
SYNC/HUNT
CTs
Tx UNDERRUN/EOM
BREAKIABORT

tUses War o Eatgrna.Siatos

i~igrruDt Mpoe
READ REGISTER 11
10- B D O, D, D; D..DJ
l-—— ALL SENT
! FIELD BITS tFIELD BITS IN
IN PREVIOUS SECOND PREVIOUS
B8YTE 8YTE
10 0 4 3
o v 0 4 4
Tt 1 0 0 5 .
0 0 1 0 3
10 1 0 7
[ B 0 8
1 1 1 1 L]
0 0 0 2 [}
L PARITY ERROR “Resioue Dats For Eght
Rx OVERRUN ERROR 2> BusiCheracter Programmed
CRC/FRAMING ERROR

b———————— END OF FRAME (SDLO)

tUsed Witr Speciai Recerve Cona:tio~ Moge

READ REGISTER 2
[Dv D,,?P;D,;D;‘]DXEDG]

INTERRUPT
V4 VECTOR
Vs
V6
v7

“Vanable if Siatus Atiects
Vector 18 Programmea

Figure 13. Read Register Bit Functions




Programming (Continued)

WRITE REGISTER 0

107{ 04} 70,0, 0

10,18,]

w00

“-0 w0

w000
—“-eOO«—-00

I

0 O REGISTERO
0 1 REGISTER
1 0 REGISTER2
1 1 REGISTER 3
0 0 REGISTER4
0 t REGISTERS
1 0 REGISTERS
1 t REGISTER7

“~wss0000 — | &

NULL CODE

SEND ABORT (SOLC)

RESET EXT/STATUS INTERRUPTS
CHANMEL RESET

ENABLE INT ON NEXT Rx CHARACTER
RESET Tx 'NT PENOING

ERACR RESET

RETURN FROM iNT {CH-A ONLY)

-~ QSO =0=-O

NULL COCE
RESET Rx CRC CHECKER

RESET Tx CART

GENERATOR

RESET Tx UNDERAUN/ECM LATCH

WRITE REGISTER 1

(021019504030 0, 00]

“~+oo

EXT INT ENABLE
Tx INT ENABLE
STATUS AFFECTS YECTOR

(CH. 8 ONLY)

Rx INT DiSABLE
Rx INT ON FIRST CHARACTER

-0 =0

VECTOR)

AJT/READY ON RIT
Al

‘REAQY FUNCTION

L————-W TT/READY ENABLE

WRITE REGISTER 2 (CHANNEL B ONLY)

[0, 70 D7Dy 0,70, 0y 0]

l vo
Al
v2

v3 INTERRUPT
v4 VECTOR
v5

vé

v7

WRITE REGISTER 3

[o. 70 75,70, 050, D, .

—--0o

-0 -0

INT ON ALL Rx CHARACTERS (PARITY AFFECTS VECTO
{NT ON ALL Rx CHARACTERS (PARITY DOES NOT AFFECT

Ow -

l I—'—Rl ENABLE
SYNC CHARACTER LOAD INHIBIT

ADCRESS SEARCH MGOE i:SOLG)

Rx CAC ENABLE
ENTER HUNT PHASE
AUTO ENABLES

Re 5 BITS/CHARACTER
Rx 7 BITSICHARACTER
Rx § BITS,CHARACTER
Rx 8 BiTS,CHARACTER

R)

WRITE REGISTER 4

T T -
(0 %% 0 0501 j0: 0

w00

“ w00
oo

l L panry ENABLE _
PARITY EVEN/ODD

SYNC MOUDES ENABLE

1 STOP BIT/CHARACTER
12 STOP BITS/ICHARACTER
2 STOP BITSICHARACTER

- _-oo
-0 .

8 BIT SYNC CHARACTER

16 8iT SYNC CHARACTER
SOLC MODE (01111110 FLAG)
EXTEANAL SYNC MODE

-0 -0

X1 CLOCK MCOE
X16 CLOCK MOOE
X32 CLOCK MOOE
X564 CLOCK MODE

WRITE REGISTER §

[P-0,705 0,70, 0, 0, 0, ]
l L ricrcenasee
ATS_
L SDLC.CRC16

Tx ENABLE
SEND BREAK

0 O Tx§BITS{ORLESSUCHARACTER

0 1 Tx7 BITSICHARACTER

1 0 Tx6BITS/CHARACTER

1 1 Tx 8 BITS,CHARACTER

L— oTA

WRITE REGISTER 8§

S

0, 9, 0; 0, 0]

SYNC T ¢
SYNC BIT ¢
SYNC 31T 2
SYNC 81T 3
SYNC BIT 4
SYNC BIT S

-

SYNC BIT 8§

SYNC BT 7

“As3 30LC Accrass Fieic

WRITE REGISTER 7

{p; 0,705 0,70;,70,70, 0,]
l l————SVNC 817 3

SYNC B!T 3
SYNC 8iT 1¢
SYNC 81T 11 \ |
SYNC 817 12
SYNC BIT 13
SYNC 8iT 14
SYNC BIT 15

*For SOLC it Must Be Programmes

10 01111110 For Fiag Recognitior

Figure 14. Write Register Bit Functions



ming

The SIO must have the same clock as the
PU (same phase and frequency relationship,
>t necessarily the same driver).

sad Cycle. The timing signals generated by
Z-80 CPU input instruction to read a data or
stus byte from the SIO are illustrated in
gure 15.

rite Cycle. Figure 16 illustrates the timing
1d data signals generated by a Z-80 CPU out-
it instruction to write a data or control byte

to the SIO.

terrupt-Acknowledge Cycle. After receiv-
g an interrupt-request signal from an SIO
NT pulled Low), the Z-80 CPU sends an
terrupt-acknowledge sequence (M1 Low, and
DRQ Low a few cycles later) as in Figure 17.
The SIO contains an internal daisy-chained
terrupt structure for prioritizing nested inter-
pts for the various functions of its two chan-
ls, and this structure can be used within

: external user-defined daisy chain that
ioritizes several peripheral circuits.

The IEI of the highest-priority device is
rminated High. A device that has an inter-
pt pending or under service forces its IEO
>w, For devices with no interrupt pending or
1der service, IEO =IEI.

To insure stable conditions in the daisy

wain, all interrupt status signals are pre-
.nted from changing while M1 is Low. When
JRQ is Low, the highest priority interrupt

cLoOCK

_ﬁl_ﬁ"l F‘L
c/b, BiA —X
Wj I
AD /'——
\n

Figure 15. Read Cycle

reqguestor (the one with IEI High) places its
interrupt vector on the data bus and sets its

internel interrupt-under-service latch.

Return From Interrupt Cycle. Figure 18
illustrates the return from interrupt cycle.
Normally, the Z-80 CPU issues a RETI (Return
From Interrupt) instruction at the end of an
interrupt service routine. RETI is a 2-Byte
opcode (ED-4D) that resets the interrupt-
under-service latch in the SIO to terminate the
interrupt that has just been processed. This is
accompl*’shed by manipulating the daisy chain

n the following way.

The normal daisy-chain operaticn can be
used to detect a pending interrupt; however, it
cannot distinguish between an interrupt under
service and a pending unacknowledged inter-
rupt of a higher priority. Whenever "ED" i
decoded, the daisy chain is modified by forc-
ing High the IEO of any interrupt that has not
vet been acknowledged. Thus the daisy chain
identifies the device presently under service as
the only one with an IEl High and an IEO Low.
If the next opcode byte is "4D,” the interrupt-
under-service latch is reset.

The ripple time of the interrupt daisy chain
(both the High-to-Low and the Low-to-High
transitions) limits the number of devices that
can be placed in the daisy chain. Ripple time
can be improved with carry-lock-ahead, or by
extending the interrupi-acknowledge cycle.

__;\1 1}1 M 1—1 5—1

CE, cID, B/A l X
1
I
ioRa ) /
{
RD f
[
. |

DATA ij x

Figure 16. Write Cycle




Timing (Continued)

For further information about techniques for
increasing the number of daisy-chained

1E1 7 i §
—— m - ——— i P

Figure 17. Interrupt Acknowledge Cycle

devices, refer to the Z80 CPU Data Sheet.

0501 ——
L /f i

1ED ' l /_—

Figure 18. Return from Interrupt Cycle

Absolute Maximum Ratings

Voltages on all inputs and outputs

with respectto GND. ... ... ... -03Vto +7.0V
Operating Ambient As Spécitied in
Temperature ........... Ordering Information
Storage Temperature. ... .... -65°Cto +150°C

Stresses greater than those listed under Absclute Maxi-
mum Ratings may cause permanent damage ‘o the device.
This is a stress rating only; operation of the device at any
conditien above these indicated in the operational sections
of these specifications is not implied. Exposure to absolute
maximum rating conditions for extended pericds may affect
device reliability.

Test Conditions

The characteristics below apply for the
following test conditions, unless otherwise
noted. All voltages are referenced to GND
(0 V). Positive current flows into the refer-
enced pin. Available operating temperature
ranges are:

m 0°Cto +70°C,
+475VsV.cs +528V

B -40°Cto +85°C,
+475VsVeecs +5.25V

B -55°Cto +125°C,
+45Vs Vs +55V

The product number for each operating
temperature range may be found in the order-
ing information section.

FROM QUTPUT
UNOER TEST

wo;FI A



rEEE T

)C Characteristics

' ymbol Parameter Min Max  Unit Test Condition
Vie Clock Input Low Voltage -0.3 +045 V
Viye Clock Input High Voltage Vee-0.6 +5.5 Vv
\4 Input Lew Voltage -0.3  +0.8 v

i Input High Voltage +2.0 +55 \Y
Ve CQutput Low Voliage +0.4 Vv I, = 20mA
Ve Output High Voltage +2.4 \' Ioy = -250 pA
I Input Leakage Current -10 +10 A O0<Vi<Vee
I, 3-State Cutput/Data Bus Input Leakage Current -10 +10 A O0< Vi< Ve
I sy SYNC Pin Lezkage Current -40 410 A O0< Vi< Vee
e FPower Supply Current 100 mA
ver specitied temperature and vollage range.
apacitance
'ymbol Parameter Max  Unit Test Condition
C lock Cepacitence 40 pF Unmeasured
Con Irput Capacitance 5 js33 pins returned
Cont CQutput Capacitance 10 pF to ground
ver spec:iied temperature range; t = (MM,




3
N

iZ

[T

)

cLX
10RQ, RO

CE, C/D, 8ia

AC Electrical Characteristics

Dg-07
10RQ
i ]
%0
INT




AC Electrical Characteristics (Continued)

78440, 1, 2 Z8440. 1. 2A 28440, 1, 2B

280 SIO Z80A SIO  Z80B SIO
Yumber Symbol Parameter Min Max Min Max Min Max Unit
1 TcC Clock Cycle Time 400 4000 250 4000 165 4000 ns
2 TwCh Clock Width (High) 170 2000 105 2000 70 2000 ns
3 TIC Clock Fall Time 30 30 15 ns
4 TrC Clock Rise Time 30 30 15 ns
5—TwCl—— Clock Width (Low) 170—2000 —105—2000 ~——70 —2000 ns——
6 T<AD(C) CE. C/D, B/A to Clock t Setup Time 160 145 60 ns
7 TsCS(C) IORQ, ED to Clock 1 Setup Time 240 115 60 ns
8 TdC/DO) Clock 1 to Data Out Delay 240 220 150 ns
9 TsDI(C) Data In to Clock 1 Setup (Write or M1 Cycle) 50 50 30 ns
10~ —TdRD:DOz)=ED ! to Data Out Float Delay 230 110 90 ns ™
i1 TdO{DOD  TORO ! to Dats Out Delay (INTACK Cycle) 340 160 100 nis
12 TsM}(C) " Ml to Clock ! Setup Time 210 90 75 ns
13 TsIEI(IO) 1E] to IORQ | Setup Time (INTACK Cycle) 200 140 120 ns
14 TdMI(IEO) Ml | to IEO | Delay (interrupt before M1) 300 190 160 ns
185=TdIEKIEOr)—IEIl t to IEO 1 Delay (after ED decode) 150 100 70 ns™
16 TdIEKIEOM) IE1 | to IEO | Delay 150 100 70 ns
17 TdC(INT) Clock 1 to INT | Delay 200 200 150 s
18 TAIO(W/RWf) IORQ I or CE | to W/RDY | Delay Wait 300 210 175 ns
Mode)
19 TdC(W/RR) Clock ! to W/RDY | Delay (Ready Mode) 120 120 100 ns
20——TdC(W/RWz)— Clock | to W/RDY Float Delay (Wait Mode) 150 130 110 ns——
21 Th Any unspecified Hold when Setup is specified 0 0 0 ns




LC Electrical Characteristics (Continued)

28440, 1,2 1Z8440,1.2A Z8440,1. 2B

280 SIO Z80A SIO  Z8OB SIO
\umber Symbol Parameter Min Max Min Max Min Max Unit
1 TcC Clock Cycle Time 400 4000 250 4000 165 4000 ns
2  TwCh Clock Width (High) 170 2000 105 2000 70 2000 ns
3 TiC Clock Fall Time 30 30 15 ns
4 TrC Clock Rise Time 30 30 15 ns
5—TwCi—Clock Width (Low) 170—2000——105—2000 70—2000 ns—
6 T<AD(C) CE, C/D, B/A to Clock 1 Setup Time 160 145 60 ns
7 TsCS(C) TORQ, RD to Clock 1 Setup Time 240 115 50 ns
8 TdC{DQO) Clock 1 to Data Out Delay 240 220 150 ngs
9 TsDIC) Deta In to Clock 1 Setup (W/rite or M] Cycle) 50 50 30 ns
10—T4RD{DOz)— RD 1 to Data Out Float Delay 230 110 a0 ns
11 TdlO(DOI)  TORO ! to Data Out Delay (INTACK Cycle) 340 160 100 ns
12 TsM}(C)" Ml to Clock | Setup Time 210 90 75 ns
13 TsIEI(IO) IET to JORQ | Setup Time (INTACK Cycle) 200 140 120 ns
14 TdMI{IEO) Ml | to IEO | Deley (interrupt before M1) 300 190 160 ns
15— TdIEKIECr)—IEl ! to IEQO 1 Delay (after ED decode) 150 100 70 ns——
16 TQIEKIEOf)  IEl | to IEO | Delay 150 100 70 ns
17 TdC(NT) Clock 1 to INT | Delay 200 200 150 ns
18 TdIO(W/RW{) TORQ !} or CE ! to W/RDY | Delay Wait 300 210 175 ns
Mode)
19 TdC{W/RR)  Clock ! to W/RDY ! Delay (Ready Mode) 120 120 100 ns
20— TdC(W./RWz)—Clock | to W/EDY Float Delay (Wait Mode) 150 130 110 ns——
0 0 o] ns

21 Th Any unspecified Hold when Setup is specified




RxD

|

%
»
2
<

|

3

AC Electrical Characteristics (Continued)




EK 5: 515TEM PROGRAMLARI

CLE

LIM A{26),
COM(1) ON
OPEN "COML:1200,14,3, 1,uJ,Da,uD FOR RANDOM RS #1

B’LC)M CiZa:

3 Ln ooea S oca

; DiZ6h, EiZeh, FiZ4), HZa), MAT{I8)

O COM(Y) GOSUR 15¢G0: GOTO 2
1500 XPFR = [NF(AHIFB): RETURN '
3 CLS
FOR 1 =110 26
RERD m(I, B(Ly, Cil, Dili, E(Ly, Fil), HUD
MEXT 1
1 CLS
FR =0
LOCATE 8, 15: PRINY “19:00 - Go:00 ARASI o PR WD 1
LOCATE 9, 15: PRINT "O&:00 - 07:00 ARASI & FHOND: 2
LOCATE 10, 13: PRINT “07:04 } ARAS PR K
LOCATE 11, 15: PRINT O h : Fit N0:
LOCATE 12, 13: PRINT O 100G ARAST & FE KO:
LOCATE 12, 13: PRINT *12:00 - [4:00 ARASI @ FR ONO:
LOCARTE 14, (53 FRINT "IH g0 - 17000 ARASD PR NO:
LGCATE 15, 15: FRINT PO - 19000 ARAS I : FROND:
LOCATE 24, 8 FRINT ¥ fﬁﬂLFHﬁ ACIELAMAST T ° "
PRINT " CIRIS ICIN © § TUHUMH BASIN®
S XA% = INKEYS

IF {As = "B" OR XA$ = "g" THEN 8OTO 20

IF XA% = "T" COF XA$ = "™ THEN GOTG 20600

iF MIDS(TIMES, 1, 2) < "05" THEW GOSUE 100

IF MIDS(TIMES, 1, 20 3= "Ok" AWD MID$(TIMES, 1, 23 < “07“ THEN GOSUR 110
IF RID$(TIHES, 1§, 20 b= "07" AND HID$(TidEs, 1, 2} { 08" THEN GOSUR 120
IF MID$(TIMES, 1, 2) &= "OB" aND MIU&{TIIE%, 1y 20 < "09" THEW GOSUR 130
IF MiD$(TIHES, 1, 20 &= "09" onD WID®iTIMES, 1, 20 ¢ "12" THEN GOSUB 140
IF WID$(TIMES, 1, 23 = "i2" i ﬁIDE(TIMEi, 1, 20 < "14" THEN GOSUR 150
IF HIB$CTINES, 1, 2) &= "{3" AnD WID$(TIMES, 1, 2 < *17* THEN GOSUB 140
IF MID$ITINES, 1, ©) = "17" Gib KID$(TIMES, 1, &) < "19" THEN GOSUR le0

IF MIDS(TINES, 1, 2)
LOCATE 1, 72 PRINT
LOCATE 2, 722 PRINT
60TC 5

’:: W 1{?”
TINMES
"FR KOy

THEN BOSUE 100

PR

1 TF PR = 1 THEN RETURN

1 IF FR= 2

120 IF FR

FR=1
FOR T =170 %6
MAT{T) = F(I)
NEXT I
GOSUE 1000
RETURN
THER RETURN

GOSUR 1000
RETLRN

3 THEN RETURN
FR =3
FOR [ =170 2
MAT (I} = R(D)
NEXT 1
6OSUE 1000
RETURN



136 IF PR = 4 THEN RETURN
PR o= 4
FOR I =1T0 28
HATCDY = CiL
MEXT 1
BOSUE 1000
RETURN
1400 1F PR = § THEN RETURN
PR = 5
FOR I =
MAT(D)
NEXT I
GOSUB 1900
RETURN
150 IF FR = & THEN RETURN
FR=14&
FOR T =170 24
MAT{1) = E(D
NEXT I
GUSUR 1000
RETURN
160 IF FR = 7 THEN RETURN
PR =7
FOR I =1T0 Z&
MAT (I} = HiD
NEAT 1
BOSUR 1004
RETURN
1600 FOR 1= 1 70 26
FRINT. #1, CHR$ (MAT(ID);
NEXT 1
RETURN
2000 CLS
LOCATE 5, 17: PRINT "CALISWAKTA CLAN PROBRARIN ACIKLAMAST™
IF FR = 1 THEN 22 ELSE IF PR = & THEN 27 ELSE IF FR = 3 THEN 24
IF PR = 4 THEW 25 ELSE IF PR = 5 THEN Z& ELEE IF PR = 6 THEN 27
IF FR = 7 THEN 2B ELSE GO0 7
22 LOCATE 14, 1G: PRINT * SU ANDA LAMBALSR SART YANIP SONWEKTEDIR *
GOT0 7

1 70 Za
= Dil)

23 LOCATE 10, 10: PRINT “ Devee Suresi G- B
LOCATE 11, 10: PRINT ® fna Yol Becis Suresi ¢ Boan ®
LOCATE 12, 1G: PRINT * Tali vol Gecis Suresi @ & ®
LOCATE 13, 10:¢ PRINT * vaya Becis Suresi &an”
LOCATE 14, 10 PRINT * Korums Sureleri Top. &spt
§O70 7

24 LOCATE 10, 10: PRINT * Devre Suresi 1 52sn?

LOCATE 11, 10s PRINT ¥ Ana Yol Gecis Suresi ¢ 20 sn °
LOCATE 12, 10: PRINT * Tal: Yol Gecis Suresi ¢ 18 sn ®
LOCATE 13, 10: PRINT ° Yaya Gecis Suresi i 8en”
LOCATE 14, 10: PRINY " Koruma Sureleri Top, ¢ & sp ”
BOTG 7

LOCATE 10, 10: FRINT " Devre Suresi : 4% sn ¥
LOCATE i1, 10: PRINT * Ana Yol becis Suresi ¢ 15 sn ™
LOCATE 1%, 10: FRIMT * Tal: Yol Becis Suresi : 13 sn
LOCATE 13, 10: PRINT " Yaya Becis Suresi : 8 sn
LOCATE 14, 10: PRINT ° Korums Sueelerl Jop. @ b osa "
BOTO 7

[
wn



ns
6

~y

L4

28

7
&

LOCATE 10, 10: FRINT " Devre Suresi

LOCATE 11, 16: PRINT * fina Yol Geciz Suresi
TE 12, 10: FRINT © Tali Yol Gecis Suresi
LOCATE 13, 10: PRINT *
LOCATE 14, 16: PRINY

L0CA

goTc 7

LOCATE 1, 105 FRINT ” Devre Sure

LOCATE 11, 10G: PRINT * fna Yol Gecis Suresi
LOCATE 14, 10: PRINT * Tali Yol Becys Suresi
LOCATE 13, 10: PRINT " Yaya becis
LOCATE

GOTG 7
TE 16, 10: FRINT " Devre Suresi

LOCA

LOCATE 11, 10: FRINT ¥ Ana Yol Gecis Suresi

LOCATE 12, 19: PRINT * Tali Yol Gecis Suresi

faye Gecis Suresy
* Koruma Sureleri Top.

Suresi
14, id: FRINT " Koruma Sureler: Top.

LOCATE 13, 10: FRINT * Yaya Becls Suresi

LOCATE 14, 14: FRINT ° foruma Sursleri Top.

G070 7

Loc

If

ATE 24, 8 FRINT "Fress any key to contin

= IKKEY$
A% = " THEN 4 ELSE &

2000 CLOSE #1

END

DATA 14,40,30,20,35,3,45
DATA 2,3,3,3,3, 5,3
DATA - '
DATA
bATA 3,3,3,1,3,3,3
DATA 12, 16,16,16,16,3,20
Dath 3,3,5,3,%,5,%
DATA 3,3,3,3,3,%,2
DATA 2,3,4,5,0,1,7
DATA 16,40,20,20,35,3,43
DATH 3 2,33
DaTA
DATH 1 .
DATA 12,bu,, 20y 20,5y 30
DATA 3,3,3,3,3,
DATA J,S,“,*,’,a,‘
DATA 2,3,4,3,6,1,7
DATA 16,40,30,20,35,3,45
DATA 3,3,3,5,3,3,3
DATA 3,3,5,3,3,3,3
DRTA 12,36,26,16,30,3,40
DATA 3,3,%,3,3,%,3
DATA 13,16,16,16,16,3,20
DATA ?,*,3,3.”,",3
DATA 3,3,3,%,%,3,

BATA :,:,4,,,a,1,f

g

: 47
: 1B
1 15
;8
: 4
HE
24
s 10
iob

W

an
8h
an

-

ah

sh
=



SRBEFERERERAEFLEARRRHE R R R AR EREHH KK

-

7-80 MICROCOMPUTER SYSTEM FROGRAM

1

3

3 MASTER CARD FROGRAMI
; ‘

i

s
ha}

i

TOFs
DIGEUF:
HEXBUF
MAFLAG:
MalR s
ENCOUNT
G TART .
CURRENTOR

OH
JF MAIN
CODES:

Y TS P S R R N

ouT
HOF
NOF




ME ITNLDOF

CONVYSEG:

CNYVILOOF

OTIR

LE 4, OFFH
T i E

LI A, OLH

LI HMaFLAGY L A
-0 HL, DIGEUF
L0 (M
XOR &
LO {CURRENTT
LDHL, i
LD aMAEDRY , HL
LD CHEXBUR Y HI

v
Lol

LD HL, O

CALL DE

FLSH L
LD A, (DE

LI ML, SEGHTABLE
CALL ADDAHL

LD E, (HLD

LD &, (DE)
ArD OFH
LD HL, SEGHMTABLE
Call aDDAHL

LD B, (HL)

FOE ML

LD {HL) B

TRC HL

Lh (HLY A

IHE HL

INC T

BEC C




JF NI, CNYLOOF
RET

SEGHTABLE: H, 11H, SEH, SEH, 71H
H, aFH, 39H, 7EH, 79H

DE 7DH, &7H, ZER, S7H, 4EH, 60H
GODAHL : ADD A, L

LD L

RET NC

INC H

HET
DELAYX: DEC HL

FEYSTATUS:

REYWALT:

FINDEEY &

FINOLF: CF B
JF 7, FINDCOL
RLCA

FINGCOL:

LD &, OO



JF NI, ROWFOUND
LD B, O5H

uu LOOH L A
‘ (MM

FOWFOUND s
ADD A, §

Ry
201

AEB
RET

FRINTDIG: LD HL, (M
L L A, COUF
L ByA
CALL

un

GDAHL
(M

a3

&0
S
AL
auT
LD A, E
NG &
CF ﬁBH
LD (CURRENTOR) L A

i
H
wr

JROA
LD {CHRRENTOR! A
RET

FEYFROG: GF 1OH
JFORC, FUNEEY
LD B,A
LD A, (MEFLAG)
CF O1H
JFOZ,ROLAS
L0 HL, (MADR)
LD A, (ML
DD AL R
ADD B A

ARD A, n

ADD A 6

UR B

LOOH) A




MEMMEOD »

ROLAG:

ADDRMOD :

FUNKEY ;

FUNCT

FUNC2:

] tHLi, A
LD {MEADR

LD A, (ML)

I.L (HEXBUF+E),H
1.0 HL, (Mapr)

LD oaH

LD (HEXEUF}gﬁ
LD A, L

D (HEXEUF+I),§
LAt LONYV7SEG
RET

LD A, B

LD HL, (MADR)
ALD HIL, HL

ARDHL ML

BDD HL, HE.

ADD HL, HL

OR L

LI L,

LD CMADR) , ML

Lo HiL, (MADR)

LD a,H
LD H, i
LG L, 4
LD (HExBUF) v HL
CALL Y7SEG
LD ML, 0o

LD (EIGHUF+4),HL
RET

AND 1y

CF 1o

JENZ Fine

LD Ry (MBFLAG)
AN 0

X0R QiH

LD (MQFL&G),A
JE 7 MEMMOD
JEALDENMOD

CF iy

IFONZ Flies

LD me, CMADR

ING |1

LD HIRDR ) |, WL

LD Ay (MAFLAG)

CF 00

B MEMEnE
JFADLEMAD

CF 1o

PN, Funes

iD HL, (MADE)

DEC i

LD HIADR) |, ML

LD Ay (MAFLAE)

CF G0y

IF 2 MEMMOD

JF ADDRMOR




FUMCE .0 HL, {(MADR)
JF o (HLY

;*%%*%%%%**%i*%%%%i%***%****%**%**%****%**

OFG  1000H
FLUSH AF
FUSH HL
FUSH BC
FLUSH DE
LD A, O3
OUYT {(&2H), A
LO Oy 47H
L0 D, 2A00H
LU B, 26
FOLL1: LD a0
GUT (D), A
FOLL IN &, (C)

BIT 0,4

sy

IN &, (42H)
LD (DED, A
LD A, Z0H
auT (0, A
INC DE
DINZ FOLLY
CALL TRANS
FOF DE

FOF EC
POF L
FOF &F
E1

RET

;i%%%*%%%**%%*%%%*%#*%%%%%%%*%%%ﬁ*%&%*%%%%

ORG 1100H
FUSH AF
PUSH HL
FUSH BC
PUSH DE
LD &, U
DUT (a2H) A
LD C, 47H
LD A0
DUT (03, A

FS1s I A, (D
BIT 0,4
IF 7, RS
IN &, (42H)
PUSH AF
LD @&, ZOH
QuT 4y, A
FOFE AF
LD HL, PO06H




CF (HL)

CALL NZ,SC4TR
CALL FCTRANS
FOF DE

FOF BC

FOE HL

FOF AR

El

RET

8 KRR IR RN RN

ORG 1200H

FUSH AF

PUSH HL

FUSH BC

FUSH DE

LD 6,01H

OuUT (&2H) , A

LD C,47H

LD A, 0

auT (0, A
P& IN A, (D)

EIT G,A

JF 7,F52

IN A, (42H)

PUSH AF

LD A, I0H

OuT Gy, A

FOE AF

LD HL,RO10H

CF (HL)

CALL NZ,SCITR

CALL FLTRANS

POF DE

FOF BC

POP HL

FOF AF

El

RET

5 bR 222 A LS e s ST LSS LTI LTSS S S ST TS

ORG 1300H
FUSH AF
FUSH HL
FUSH BC
PUSH DE
LD A, 00H
OuT (62H), A
LD C,43H
LD 4,0
auT (Ci,A
IN &, (T
BIT 0,4
JE 1,P53

=
i8]

b

MY



IN &, (42H)
PUSH AF

LD A, 30H

OuT (Ci,A

FOF AF

LD HL,F015H
CF (HL

CALL NZ,SCLTR
CALL FLTRANS
FOF DE

FOF BC

PO HL

FOF AF

El

RET

§EHHFH K EH R KRR R R R R RREEEERE

TRANS: CALL SCITR
Cakl. SCITR
CALL SCATH
RET

§ KR KN AR KRR

SCITR: LD 4,0
OUT (&2H) ,A
LD HL, 9000H
LD E,9
CALL SEND
RET

3 AR KKK RN

SC3ITR: LD @,01
OUT (&2H) , A
LD HL, F00%H
LD E,8
CALL SEND

RET
AR 2SS EE 22T RS S AT SIS ST S22 S22

SC4TR: LD @,%
ouT (62H),A
LD ML, 9011H
LD E,9
CALL SEND
RET

;*****%*******%**%*************%**************

SEND: LD A,0
OUT (43H) , A

NEEND: IN A, (43H)
EIT Z,A



JF Z,NSEND
LD &, (HL)
OUT (42H) , A
INC HL

DJNZ SEND
FET

§ TR R I IR AR W KRN

FCTRANS:LD &,3
BUT (62H) A
LD HL, 7008H
LD B, !
CALL SEND
RET



R R e R e s e e R
3 SLAVE CARD 1 PROGRAMI
RS s s ST RS S R AT e L L T e S

ORG QOH
Ji 0Z200H

R R ST R TR

ORG GO%EBH
)
FUSH AF
FUSH HL
FUGH BC
FUSH DE
LD C,43H
l.D DE, FADOH
LD K, 9
FOLLY: LD A,0
OUT (T, A
FOLL:  InN A, (C)
BIT 0,A
JE 2, POLL
IN @, (42H)
LI (DEY A
LD H.;‘S(.)ll
OUT (8,8
INEC DE
DJINZ FOLLL
F0F DE
FOF EC
FOF HL
FOP AF
£l
RET

H 32T TS ST S ETSSSILII ST LSS TS LT 2

CODES: DE 18H, 14H, Odk, 13H, OC1H, 15H, 68H

DATA: DR ULDH ODSH, 99H, 79H, 0BIH, ODAH, ODTH, OD1H
DELAYN: DE 20, ,_,]ﬂ,_,lbqu,-,i

VELLOW: DB OB7H,QFFH, 0B7H. 0FFH, OB7H, OFFH, OB 7H, OFFH

i PR T LSS ERTL LSS L S SRR LR L L aEl s

ORG ZO0H

LD SF,9FFFH
LD f,55H
OUT (20H),A
NOF

NIF

OUT (21H),A
LD A, &FH
QUT (20H) A
1D A,0FH
QUT (21H) A



LD C,43H
LD B,7
LD HL,CODES
T IR
LD &, IFH
CUT (S1H) , A
LD IY,DELAYA
LD E,9
LD HL, PACOH
LOOF: LD A, (1Y)
LD (HL) LA
INC HL
ING Ty
DJINZ LOOF
M1
El
AGAIN: LD I%,DATA
LD Iy, 7A00H
LD E,8
LD A, (IY+8)
CP o1
JF 7, ONLYYELLOW
CALL TRANSMIT
CONT: LD A, (IX)
AUT (O0H) , A
CALL DELAYX
ING 13X
INC IY
DJINZ CONT
JE ABAIN

5 R F RN HHE KW IH RN HR

DELAYX: LD C, (1Y)
DELAY1: LD DE,OFFFFH
DELAYZ: DEC DE

LD #,D

Or E

JF NZ,DELAYZ

DEC C

JFP NI, DELAYL

RET

§ F I ISR F BRI

TRANSMIT: DI
PUSH EC
LD HL, 9A00H
LD B,

TRANS: LD A,0
OUT (43H) , &

INTL1:  IN A, (43H)

BIT Z,A
JF Z,INT1
LD A, (HL)
OUT (4%H) , A



INC HI
DINZ THANS
FOF BC

El

RET

5 R AR AR TR AW I RR

ONLYYELLOW: LD I¥,YELLOW
LD A, (1)
OUT (00H) , A
CALL TRANSMIT
CALL DELAY2GN
INC I
LD &, (1X)
OUT (O0H) , A
CALL DELAY2SN
LD &, (FA0BH)
CE 1
JE 7, ONLYYELLOW
JP AGHIN

§ W H WK E TR KRR KRR

DELAYZSN: LD C,5
DELi: LD DE,OFFFFH
DELZ:  DEC DE

LD &,D

OR E

JF NZ,DELZ
DEC £

JF NZ,DELL
RET

o W R B KNI KN N R



PHEEEREREEERERKERERERERER AR R REREE R R
; SLAVE CARD 2 PROGRAMI
8RR F R IR RN E R R TR IR LERETEEL RIS R HR

ORG OGH
JEDZ00H

;i%%%*%%%%f%*ﬁ*%*%**%*%**%****%***@%

ORG O0TEH
DI
FUSH &F
FUSH HL
FUSH BC
FUSH DE
LD [, 47H
LD DE, 7A00H
LD E,9

FOLLL1: LD A,0
OUT (T, A

FOLL:  IN A, (T
BIT 0,4
JE7,POLL
IN &, (47H)
LD (DE),A
LD &, 30H
OUT (0, A
ING UE
DJIMZ FOLL1
CALL DELAYSSN

FOF HL
FOF AF
EI

RET

;*******i**%%**%****%*%***%***********%*

CODES: DB 18H, 14H,04H, 13H, OC1H, 15H, 66H
DATA: DB OCDH, GDSH, 99H, 79H, OBYH, ODAH, ODIH, 0D 1H
YELLOW: DB OB7H, OFFH

§ TR R AN AR AR KN TN KRR KRR

DELAYSSN: LD €, 10
DELS1: LD DE,OFFFFH
DELSZ: DEC DE

LD A,E

DR D

JF MZ,DELS?2

DEC ©

JF NZ,DELS1

RET



R e T ey e g

YELLOWY:

AGAIN:

CONT

ORG 200H

LD 5F, 9FFFH
LD A, 55H
QUT (20H) A
NOP

NOF:

OUT (Z1H), 6
LD &, &FH
OUT  (20H) , A
LD &, OFH
OUT (21HY, A
LD, 47H

LD &, 7

LI HL.,CODES
OTIR

LD A,TFH
QUT (OTH) , A

OuUT {03M) A
M1

El

LD Ayl

LD (9A0BH) , A
LDOTY, YELLOW
ALL TRANSHIT
LD &y, (1X)
OUT (OOH) , A
iNC IX

CalLl. DELAYZ
LD A, (IX)
QUT (OOH) A
Cabl DELAYS
LD Ay (9A0EBH)
Pt
JFOL,YELLOWY

I.D 1IX,DATA
LD 1Y, 9600H
LD B,

LD g, (TY+8)
CF 1

JF 7, YELLOWY
CALL TRANSMIT
LD A, (1K
DUT (GOH) A
CALL DELAYX
ING IX

ING TY

DJINZ CONT

JF AGAIN



PEEEREFHRE AN KR EE AR N, EHEEK A F
PELAYX: LD €, (IY)
DELAYL: LD DE,OFFFFH
DELAYZ: DEC DE
LD A,D
UR E
JF NI, DELAYZ
DEC €
JRONZ, DELAYL

RET

F FE T EE LRSS LS EIT LT LT TS LTI LIS EES TS ELEL L X LT
DELAYZ: LD C,5
DELAZL: LD D
DELAZZ: DEC DE
L A,D
OR E
JF NZ, DELAZD
DEC T

RET
§ KKK IR RN

TRANGMIT: DI

LD Hi., FA08H
LD A,G
OUT (43H) , A

INT1:  IN &, (47H)
BIT 2,A
JFOZ, IHTL
LD A, (HL
OUT (42H) , A

RET

R Y s L



RS S e s s s S e

i SLAVE CARD 3 FROGRAMI

R e e S P e
ORG O0OH
JE G LOO0H

yREREHEERREAEERRELERREEREREREREHREIK

ORG 00Z8H
Dl
JF S70H

;*%*%**%%%****%*%%*%%********%****%%

ORG 066H
JFS00H

i R R AR N A KRR

DRG O100H
L0 5F,9FFFH
LD A, 55H
OuUT (20H) A
NOF
NGF
QUT (Z1H),A
LD A, 6FH
OUT oMY LA
LD &, OFH
ouT {ZIH) LA
Lo €, 43H
LD B,7
.G HL, CODES
OTIR
LG Ay 3FH
OUT {Q1H: A4
LD A, ZFH
OUT (O3H) , A
LD I, DELAYN
Lh &,8
LD HL, PE0O0H

LOOF: LD A, (1Y)
LD (HL) , A
ING Hi
NG I
LJWZ LOOF
H
£l

AGBAIN: LD IX,DATAL
LD HL,DATAZ
LD 1Y, 9A00H
L.oB,7
LD A, (IY+7)
CF 1
JEOZ,YELLOWY
Call TRANSMIT



CONT: LD &, (1%
OUT {O0H) , A
LD &, (HL)
GUT (0ZH) A
CaLL DELAYX
ING T
ING HL
INC TV
DJINZ CONT
JF AGAIN

§ R R AT EE KA R R EE

DELAYX: LD C, (IY)
DELAY1: LD DE,OFFFFH
DELAYZ: DEC DE

LD A,D

OR E

JF NZ,DELAYZ

DEC C

JF NZ,DELAY1

RET

§ TR R AR KA AR RN R RN

TRANGMIT: DI
PUSH HL
LD HL, FA07H
LD 8,0
OUT (43H), A

INT1:  IN &, (43H)

EIT 2,4
JE 7, INT1
LD &, (HL)
QUT (42H) , i
FOF HL
£l
RET

;***%*%****%%%**%****%***%********%

YELLOWY:LD IX,YELLOWY
LD IY,YELLOW?
LD A, (IX)

OUT (GoHY , A
LD &, (I¥)
OUT (O2H) A
CALL TRANSMIT
CALL DELYZR
ING 1%

ING TV

LD A, (IX)
QUT (OOH) , A
LD @, (1Y)
OUT (O2H) , A
CALL DELYZ



LD A, (9AGTH)
CF 1

JF T, YELLOWY
JF AGATN

§ TR KRR IR AR R R RN RN

DELYZ: LD C,58H
DELL: LD DE,OFFFFH
DELZ: DEC DE
LD &,D
o~ E
JFONZ,DELZ
pEC C
JPONZ,DELL
RET

g******%**%****%%***%%%*%*%*%%**%%%*
ORG SO0H
FUSH aF
FUsBH HL
FUSH RO
FLSH DE
FLSH IY
PUSH TX
Lh C,5
CaLL DEL1
Lo A,E
oF 3
JFOL YESIL
.0 4, GDDH
OuT (00H) ;A
CAlLlL DELYZ2
LD &, OEEH
GUT  (O0H) , &
LD A,72
OUT (0ZH) A
I.D 1
Call DELL
LD A,5
OutT (OZH) LA
CALL DELYZ

YESTL:  POF IX
FaF 1Y
FOF DE
Far BC
FOR HiL
OF &F
LD A, (1X)
UT {(OOH) A
RETN



POLLL:

FOLL:

o E A H AT A K WA I H TR

CODES:
DATAL:
DELAYN:

YELLOWL:
YELLOWE DB

DETAZ:

;%***%*%%**%%*%%%%%**%*%********%**%*%*%*

ORG 570H
FUSH &F
FUSH HL
FUSH BC
FUSH DE
LI 0, 43H
LD DE, %A00H
LD E,8

LD #,0

auT (03, A
IN A, ()
RIT @, 6
JE 7, POLL
IN fy (42H)
LD (DEJ,A
LD A, 30H
puT (0, A
ING DE
DJINZ FOLLL
FOF DE
FOF EC

POF HL

FOF AF

£l

RET

DR 18H, 14H, 04H, 13H, OC1H, 15H, 6BH
DE &L, 4DH, UB6H, 0D&H, OEEH , OEEH, OEC

D u,‘_,,-l) ,‘é;,- .."...,.a.
DB GDDH, OFFH
LFFH, OFFH
D O5M, 05H, 05H, 05H, 02H, 03H, O5H

H



RS R e E S e s L i E
7 SLAVE CARD 4 FROGRAMI
5K R R IR R R R R IR IR KRR R

ORG GoH
JF GEOOH

§EERER R LN EE KRN RR R AR

ORG O0ZEH
DI
FUSH AF
PUSH HL
PUSH EC
FUSH DE
LD C,43H
LD DE, SA00H
LD E,9
FOLL1: LD A&,0
auT (Ci,A
FOLL:  IN A, (D)
BIT Q._(ﬁ
JF 7, FOLL
IN fi, (42H)
LD (DEY,A
LD A, 30H
INC DE
DJINZ FOLL1
POF DE
FOF EC
POF HL
POF AF
El
RET

§ERRHFE TR RF AR RRRRRRERREERAEARANKE

CODES: DB 18H, 14H,04H, 134, OC1H, 15H, 68H

DATA:  DE 0CDH, ODSH, 99H, 79H, ORIH, GDAH, ODIH, 0D 1H
DELAYN: DB 20,3,3,16,3,16,3,3,72

YELLOW: DE OHVH,OFFH, GE7H, OFFH, OE7H, OFFH, GB7H, OFFH

;%******%***%*%*****%*%****************%*

ORG Z00H

LD SF,9FFFH
LD A, 55H
OUT (ZOH), A
NOF

NP

OUT {21H),A
LD &, 6FH
OUT {20H) ,A
LD &, OFH
ouT (21H) LA



i.D C,43H
LD B,7
LD HL,CODES
aTIR
1D &, 7FH
OUT (O1H) ,A
LD IY,DELAYN
LD E,9
LD HL, FAOOH
LOOF: LD A, (1Y)
LD (HL},A
INC HL.
INC 1¥
DINZ LOOF
M 1
El
AGAIN: LD IX,DATA
LD TY, 9E00H
LD B,
LD A, (IY+B)
CF 1
JF 7, ONLYYELLOW
CALL TRANSMIT
CONT: LD &, (1K)
OuT (OOH) , A
CALL DELAYX
INC 13X
ING IY
DJNZ CONT
JF AGAIN

;%***%*%%**********%****%*%****

DELAYX: LD C, (IY)
DELAY1: LD DE,OFFFFH
DELAYZ: DEC DE

LD A,D

oR £

JF NZ,DELAYZ

DEC C

JE NZ,DELAY1

RET

3 KRB I3 36 I BB 53 A K R

TRANSMIT2D1
LD HL,7R08H
LD A0
OuT (43H),A

INTL: IN A, (43H)

EIT 2,A
JF Z,INTI
LD A, (HL)
CUT (42H),4A
El
RET



jRERXXKEXKHEAEH LR LT ER AL ERRE

ONLYYELLOW: LD 1%, YELLOW
LD A, (IX)
QuUT (O0H) , A
CALL TRAMSMIT
CALL DELAYZEN
INC IX
LD A, (16
OUT {00H) , A
CALL DELAYZSN
LD &, (SA08H)
CF 1
JF 7, ONLYYELLOW
JP AGAIN

5 W I3 KR

DELAYZEN: 1D C,5

DEL1: LD DE,OFFFFH

DEL¥:  DEC DE
LD A,D
OR E
JF N7, DELZ
DEC C
JF NZ,DELL
RET

5 RN I I IR0 KRN



