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ABSTRACT

Master of Science Thesis

PRESENCE DETECTION AND TDOA ESTIMATION OF

SPREAD SPECTRUM SIGNALS USING SENSOR ARRAY

Can Uysal

Anadolu University
Graduate School of Sciences

Electrical and Electronics Engineering Program

Supervisor : Assist.Prof.Dr. Tansu Filik

2015, 73 pages

In this thesis, the presence detection and time difference of arrival

(TDOA) estimation of direct-sequence spread spectrum signals (DS-SS) in low

signal to noise ratio (SNR) using the sensor array are considered. Two dif-

ferent methods are proposed for the presence detection of both the long and

short code DS-SS signals. The first proposed method is based on the phase

linearity of the cross channel terms of the spatial covariance (R) matrices. The

second detection method uses the eigenvalue ratios of the R matrices which is

a known approach in literature. But to our knowledge this approach is firstly

applied to long code DS-SS signals in this thesis. In addition, a new sample R

matrix estimation technique, which is called as block of consecutive frequency

bins (BCFB), is proposed. It is also shown that using the R matrix of the

proposed BCFB method improves the detection performance especially in low

SNR. In the second part of the thesis, TDOA of the received signals is also

estimated using only the phase slope of the estimated R matrices in the first

proposed detection method. In this way, by using the proposed presence de-

tection method, it is also possible to estimate the TDOA between the sensors.

In simulations, it is shown that the proposed TDOA estimators performance is

efficient in low SNR and it attains to the Cramer Rao Lower Bound (CRLB).

Keywords: Spread spectrum; presence detection; sensor arrays; co-

variance matrices; phase linearity; TDOA estimation.
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ÖZET

Yüksek Lisans Tezi

YAYILI SPEKTRUM SİNYALLERİN SENSOR DİZİLERİ İLE

VARLIĞININ SAPTANMASI VE VZF KESTİRİMİ

Can Uysal

Anadolu Üniversitesi
Fen Bilimleri Enstitüsü

Elektrik-Elektronik Mühendisliği Anabilim Dalı

Danışman : Yard.Doç.Dr. Tansu Filik

2015, 73 sayfa

Bu tezde, sensör dizilerini kullanarak düşük sinyal/gürültü oranında

(SNR), doğrudan sıralı yayılı spektrum sinyallerinin (DS-YS) varlığının saptan-

ması ve varış zamanları farkının (VZF) kestirimi ele alınmıştır. Hem uzun hem

de kısa kodlu DS-YS sinyallerinin varlığının saptanması için iki farklı yöntem

önerilmiştir. İlk önerilen yöntem, uzaysal ilinti (R) matrislerinin çapraz kanal

elemanlarının faz doğrusallığına dayanmaktadır. İkinci yöntem literatürde bi-

linen bir yaklaşımdır ve R matrislerinin öz değer oranlarını kullanır. Ancak,

bizim bilgimize göre bu yöntem uzun kod DS-YS sinyallerine ilk kez bu tezde

uygulanmıştır. Bununla birlikte, ardışık frekans blokları (AFB) olarak ad-

landırılan, yeni bir örneklem R matrisi kestirim tekniği önerilmiştir. Ayrıca,

önerilen AFB yöntemiyle kestirilen R matrisinin kullanılmasınin özellikle düşük

SNR’de saptama performansını iyileştirdiği gösterilmiştir. Tezin ikinci bölümü-

nde, alınan sinyallerin VZF’si, ilk önerilen saptama yönteminde kestirilen R

matrislerinin faz eğimleri kullanılarak kestirilmektedir. Böylece, önerilen varlık

tespit yöntemini kullanarak sensörler arasındaki VZF’yi kestirmek de mümkün

olmaktadır. Önerilen VZF kestiricilerinin performansının düşük SNR’de etkili

olduğu ve Cramer Rao Alt Sınırına (CRLB)’a eriştiği simülasyonlarda gösteril-

miştir.

Anahtar Kelimeler: Yayılı spektrum; sinyal tespiti; sensör dizileri;

ilinti matrisleri; faz doğrusallığı; VZF kestirimi.
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I would like to thank TÜBİTAK for their financial support with schol-

arship during my master education, as well.

I would like to thank my family for their trust and support.

Finally, I want to thank my lovely wife Sultan Uysal for her uncondi-

tional support. Words cannot express how much I love her.

iii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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1. INTRODUCTION

1.1. Overview and Motivation

The thesis is about the presence detection and the time difference of

arrival (TDOA) estimation of the spread spectrum signals using sensor array.

Characteristics which make important this technique, are the low probability

of intercept and anti-jamming capability [3]. The first patent in spread spec-

trum field was obtained by G. Guanella, considered as the inventor of spread

spectrum technique, in 1938 [4]. During World War II, this technique was

intensively used for the secure and privacy communication. In the following

years, with the development of the technology, number of applications had

been actualized. Some of these applications improved in USA are given in the

following. JTIDS (Joint Tactical Information Distribution System) was devel-

oped by DoD (Development of Defense) with the aim of secure and jamming

resistant communication and navigation [5]. Global Positioning System, GPS,

a worldwide navigation system, was improved to localize the objects on the

face of the earth accurately. This system had been utilized in military appli-

cations up to 1980s [6]. TDRSS (Tracking and Data Relay Satellite System)

using spread spectrum technology was developed by NASA to ensure ranging

and communication for the low-earth orbiting satellites. In 1960s and 1970s,

the studies of the scientists such as G. Solomon, R. Gold, T. Kasami etc.,

shaped the spread spectrum technology substantially [4]. In these years, many

studies were published in that field [7–11]. Up to end of 1970s, spread spec-

trum technologies had been developed heavily by the military institutions and

drowned in secrecy. In the following years, the spread spectrum techniques

began to be used for commercial purposes [12]. Code division multiple ac-

cess technique which employs spread spectrum technology, had been used in

military applications previously and it started to be developed commercially.

In the beginning of the 1990s, as well as the personal wireless communication

came up, the spread spectrum method gained a seat in this field and provided
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a basis for mobile cellular communication standards like IS-95, GSM. Recently,

spread spectrum techniques are used in applications such as personal commu-

nications, cellular telephony, wireless alarm systems, local-area networks, short

range telemetry and paging systems [12].

Spread spectrum signals provide secure and privacy communication

as they are low probability of intercept signals. For this reason they are com-

monly used in military applications. Therefore, presence detection of hostile

signals is very crucial in military communication and it becomes up-to-date

research topic. Firstly, common detection methods were based on energy de-

tection [13]. This methods measure the signal energy in specific time intervals

and decide the presence or absence of the signal [14]. With the developing of

spread spectrum technology, energy measurement based methods (radiometer)

became useless [15,16]. They were badly affected by the changing of noise level

because of depending on the noise power. Likewise they were also indurable

against interferences. Subsequently, new methods using cyclic feature of the

communication signal, have emerged [17]. This cyclic feature detectors exploit

the cyclostationary properties of the signal such as carrier frequency [18], chip

period [19] and spread sequence period [20]. If the autocorrelation function of

any zero mean process changes periodically in time, this signal can be defined

as cyclostationary [21]. Besides these, there are many studies using cyclosta-

tionary properties of spread spectrum signals [22, 23]. But this methods do

not work for the long-code spread spectrum signals where the period of the

spreading sequence is quite larger than the symbol period. The above prop-

erty of the long spreading codes destroys the symbol-interval cyclostationary

properties of the transmitted signal [24].

In literature, the studies on the detection of long-code spread spectrum

signals is not as rich as the studies on the short code signals. Some studies

concerning long-code signals are given in [25–28]. In [27], a spreading sequence

estimation algorithm is presented. This algorithm is the improved version of

the study in [22] and it is developed for the long code signals. In [28], in

order to estimate the spreading waveform of the long-code DS-SS signals, a
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missing data model based method is proposed. The long-code DS-SS signal

is represented as a short code DS-SS signal in this data model. In [25], a

performance analysis of the long-code DS-SS signals is given in the presence

of various interferences. The main idea in this work is to evaluate the symbol

error probability. The detection methods proposed in this thesis, can detect

both the short and long code spread spectrum signals. There are some other

studies based on higher order statistics [29–31], time-frequency analysis [32]

in literature. Eigenanalysis in spread spectrum technique is commonly used

for interference rejection [33], parameter estimation [34] and synchronization

[35] not for the multichannel signal detection. In literature, spread spectrum

signal detection methods detect the signal over a single channel. There is a

multichannel method in [36] but the used algorithm and performance details

are not clear. In this thesis, two different multichannel detection methods are

proposed for the detection of spread spectrum signals.

The presence detection and TDOA estimation of the spread spectrum

signals are crucial and challenging problems currently. The motivation of this

thesis comes from the presence detection of long code spread spectrum signals

is a open problem and there is no detection method in literature. Existing

presence detection methods are not effective in low SNR. Also, in the practical

real time applications, a computationally efficient presence detection method

is needed. In this thesis, it is aimed to propose novel multichannel presence de-

tection methods. In addition, the TDOA between the sensors can be estimated

using the estimated phase slope in the detection method.

1.2. Thesis Outline

The outline of the thesis is given below:

In Chapter 2, the background informations for spread spectrum tech-

nique are given. The basic principles, advantages and the most commonly used

types of spread spectrum technique are presented.

In Chapter 3, two different multichannel methods are proposed for the

presence detection of both the long and short code DS-SS signals. The basic

3



principles of DS-SS signals is summarized in Section 3.1. Then the properties

and the types of the spreading code which is a key parameter for the spread

spectrum signals, are described in Section 3.2. Afterwards, the signal model

and problem formulation are given in Section 3.3. The presence detection

methods for the DS-SS signals are proposed in Section 3.4 and 3.5. In addition,

a new sample spatial covariance matrix (R) estimation technique, which is

called as block of consecutive frequency bins (BCFB), is proposed in section

3.5. Finally, the detection performances of the proposed methods are given in

the various simulations.

In Chapter 4, time delay estimation problem is considered. In Section

4.1, for TDOA estimation, the previous studies in literature are discussed. The

data model is given in Section 4.2. The frequency domain TDOA estimator

is proposed in Section 4.3. Finally, the simulation results show the proposed

estimator can estimate the TDOA in quite low SNR and it attains to the

CRLB.

In Chapter 5, the conclusion of the thesis is given.

1.3. Contributions

In this thesis, two different multichannel methods are proposed for the

presence detection of both the long and short code DS-SS signals. The main

contributions of the thesis are stated in two parts as below:

1- The presence signal detection methods:

a-) Proposed Method I:

- The proposed method uses the linearity of phase slope between

the cross channels of the covariance matrices [37].

- The method is able to detect both the short and long code

spread spectrum (SS) signals in low SNR.

b-) Proposed Method II:

- A simple and efficient method uses the eigenvalue ratios of the

covariance matrices [38].

4



- A new sample spatial covariance matrix (R) estimation tech-

nique, which is called as block of consecutive frequency bins

(BCFB), is proposed.

- The proposed method can also detect both the short and long

code DS-SS signals in low SNR.

2- The proposed TDOA estimation method:

- TDOA of the received signals is estimated using only the phase slope

of the estimated R matrices in the proposed detection method I.

- The sample covariance matrices are also estimated using BCFB

explained in the proposed detection method II.

5



2. SPREAD SPECTRUM SIGNALS

Spread spectrum is a transmission technique and its main principle is to

transmit information signal with a greater bandwidth than the present band-

width [3]. This spreading operation is implemented by multiplying information

signal with a higher frequency Pseudo-Random (PN) code which is noise like

and independent from the signal [6]. As the information signal is spread over

a wider band and transmitted below the noise level, this technique is secure

and resistant to jamming, interferences.

Let’s tackle two basic models of jammer: Narrowband and barrage

jammer. The bandwidth of the narrowband jammer is quite smaller than the

spread signals bandwidth. So, the narrowband jammer corrupts the partial-

band of the spread signal, and this can be eliminated by using band-elimination

filter or shifting signal spectrum to the free zones. In the second case, the

barrage jammer, which covers the whole spectrum, is used to jam a hostile

signal. In this situation, as the power of the jammer is spread over a wider

band, its effect on the signal decreases. Thus, it can be said that the spread

spectrum technique has an anti-jamming capability [4].

The interception of hostile communications is an essential and prefer-

ential case in communications. Typically, the interceptor keeps the frequency

spectrum under surveillance and measures the transmitted power (this tech-

nique is called energy detector). As the spread spectrum communication sys-

tems operates with low radiated power, the transmitted signal is hidden into

the noise. Because of this properties, spread spectrum signals are named as

low probability of intercept (LPI) signals [39].

Unlike the other multiple access techniques, the spread spectrum sys-

tems provide multiple transmitters to share the frequency spectrum at the

same time by using unique code sequences. This technique does not require

sharing of the frequency band and time synchronization of the users. Here,

each user is assigned a code, thus they do not interfere with the each other.

Without the spreading code sequence, recovering the spread spectrum signal

6



is not possible. Thereby, this technique provides secure and confidential com-

munication to the individual users even in the presence of the other users in

the frequency spectrum.

In multipath fading case, the transmitted signal can arrive at the

receiver via different paths. Signals can reflect from various objects and atmo-

sphere e.g., buildings, towers, air crafts and others as seen in the Figure 2.1.

Direct-path

Reflected path

Reflected path

Refle
cted path

Transmitter Receiver

Figure 2.1.: Scheme of the multipath propagation.

When the spreading code multiplies by its asynchronous replica, the result

will have a very low value. Since the receiver is synchronous only with the

direct-path signal, it perceives all of the other multipath signals as a noise.

The merits of the spread spectrum systems are given as below,

• Anti-jamming and anti-interference

• Low probability of intercept

• Resistance to multipath fading

• Secure and confidential communication
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• Low power spectral density

• Multiple access

The most commonly used types of spread spectrum techniques are Frequency

Hopping Spread Spectrum (FH-SS) and Direct Sequence Spread Spectrum

(DS-SS) [1].

2.1. Frequency Hopping Spread Spectrum

The carrier frequency of the transmitted signal hops periodically be-

tween the available frequencies in the frequency hopping schedule. This opera-

tion is called Frequency Hopping (FH). Typically, data modulation is frequency-

shift keying (FSK) in frequency hopping systems [40]. The carrier frequency

hops according to the pseudo-random phases of the spread spectrum sequence

at the transmitter. The hopping frequency range is wider than the informa-

tion signal bandwidth. The time duration between the frequency hops is called

the hop period, Th, and the bit period of the information data is denoted by

Tb. According to the relation between the hop period and the bit period, FH

systems are classified into two types: Fast and slow frequency hopping.

Th ≤ Tb −→ Fast FH

Th > Tb −→ Slow FH

In other words, in fast FH system, a data symbol is transmitted with

several frequency hops. On the other hand, during one frequency hop, several

data symbols may be transmitted in slow FH systems. Even if fast FH has

some advantages to slow FH, is not preferred in practice because of its difficult

implementation [1].

At the FH receiver, the signal filtered with a wideband bandpass filter

is multiplied with an identical FH carrier. Then the output signal is filtered

again and applied to the appropriate demodulator. It should be noted that

the spreading code sequence used at the receiver must be synchronous with

the one at the transmitter in order to recover the information data correctly.
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Frequency 

synthesizer

Information 

signal

Modulator

Carrier frequency

Code generator

FH Signal

Bandpass filter

Frequency 

synthesizer

Code generator

Bandpass filter Demodulator
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Figure 2.2.: Block diagram of FH transmitter (a) and receiver (b) [1].

2.2. Direct Sequence Spread Spectrum

As similar with the basic idea of the spread spectrum, direct sequence

system expands the information signal bandwidth. Not only the signal band-

width is expanded, the transmitter power is also spread with a low power

spectral density [4].

In this technique, the information data is ’directly’ multiplied with a

spreading code sequence before the final carrier modulation at the transmitter

[41]. Then, the received signal is multiplied again with the same spreading code

at the receiver in order to recover the original signal. As is understood from

this process, when the spreading code is multiplied by its own, it is expected

to lose its effect. For this reason, spreading codes consist of ’+1’s and ’-1’s.

Thus, the result of multiplication of the spreading code by itself always will be

’1’.
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Figure 2.3.: The spreading and despreading operations.

Figure 2.3. shows the spreading and despreading operations. Here,

Tc is the chip duration and Ts denotes the symbol duration of the data. N

is the length of the spreading sequence. Rc and Rs represents chip rate and

symbol rate respectively. It is seen in the figure, bandwidth of the spread

spectrum signal is much greater than the bandwidth of the information signal

(BWinfo = Rs � BWss = Rc). The bandwidth expansion factor which is

called spreading factor is given as below,

SF = Gp =
BWss

BWinfo

=
Rc

Rs

=
Ts
Tc

= N

where, Gp is the processing gain and it equals the ratio between chip rate and

symbol rate.

DS-SS signals can be classified into two types according to the re-

lationship between the symbol duration (bit period) and the period of the

spreading sequence: The long-code (LC) and the short-code (SC) signals [28].

In the SC systems, the bit period of the signal equals to the multiplication

of spreading factor and chip duration. In the LC systems, the period of the

spreading sequence is larger than the symbol duration [27,42]. In other words,

spreading factor is larger than the length of the spreading sequence in the LC
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Figure 2.4.: Spreading scheme in time and frequency domain.

systems. While a spreading sequence is associated with one data symbol in a

SC system, it corresponds to more than one symbol in a LC system. Scheme

of the short and the long code spread signals are given in Figure 2.5..
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3. PRESENCE DETECTION OF SPREAD SPECTRUM SIGNALS

In this chapter, the basic principle of DS-SS signals is summarized firstly.

Besides a transmission system including a transmitter, a receiver and a signal

detector is figured in the first section. Then the properties and the types of

the spreading code which is key parameter for the spread spectrum signals, are

described. Afterwards, the signal model and problem formulation are given.

Finally, implemented two method for the presence detection of DS-SS signals

are investigated.

3.1. Introduction

DS-SS signals are usually preferred for secure wireless communica-

tions in military applications and also in civilian applications such as Global

Positioning System (GPS), Code Division Multiple Access (CDMA) [6]. DS-

SS signals are also resistant to narrowband interference, noise and jamming.

Furthermore, spread spectrum communications limit the energy consumption

and especially preferred in satellite downlinks. The main principle of spread-

ing the signals is to transmit information data with a larger bandwidth than

the present bandwidth. This spreading operation is implemented by multiply-

ing data with a higher frequency Pseudo-Random number (PN) code which is

noise-like and independent from data. The non-cooperative presence detection

of DS-SS signals in low SNR is challenging and important problem for the ap-

plications such as spectrum surveillance, source localization, etc. and widely

studies in literature [43]. Most of these detection methods are based on the

repeating structure of the spreading code (which is also called as Pseudo-noise

(PN)). Whereas for the very long code DS-SS signals, whose spreading code

length is larger than the spreading factor, the length of codes are on the order

of days, the cyclostationary properties of these signals are destroyed [24] and

the most of the proposed methods in literature are useless . Since these signals

are spread in wide frequency band and transmitted below noise level, wide-

band array signal processing techniques are more suitable for detection and
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parameter estimation. In this thesis, two different methods are proposed for

the presence detection of both the short and long-code DS-SS signals, which

are based on wideband array signal processing. The first proposed method

is a multichannel detection method which uses phase linearity between the

spatial covariances of the cross sensors. In the second proposed method, a

simple and computationally efficient two channel presence detection system

which based on the eigenvalue ratios of the sample spatial covariance matrices

is proposed. A transmission scheme for the DS-SS system is shown in Figure

CCCChhhhaannnnnnnnneeeellllllChannel
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Intercept
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FFT
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Figure 3.1.: A DS-SS transmission scenario.

3.1. Here, a transmitter, a receiver and multichannel detection system are seen

in the figure. In DS-SS systems, the data signal is spread by multiplying with

higher frequency PN Code as shown in the figure. Then the spread signal is

modulated to a reference frequency with a BPSK (Binary Phase Shift Keying)

modulator. PN codes have a great importance in DS-SS systems. The signal

is spread in the transmitter and despread in the receiver by PN codes. These

codes seem random but they are generated according to certain rules which
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will be described in the following section [39]. Non-cooperative multichannel

DS-SS detection system collects the signals with spatially distributed array of

M sensors as in Figure 3.1.

3.2. Spreading Codes

Spreading codes (PN, Pseudo-Noise) are very crucial parameter for

spread spectrum signals [41]. As mentioned in the previous chapters, infor-

mation signal is directly multiplied by the spreading code in spread spectrum

technique. Thus, while the bandwidth of the signal expands, the power den-

sity of the signal decreases. For an efficient transmission, PN sequence must

be different from the other PN sequences or its time shifted version. Accord-

ingly, to enable many users to share frequency spectrum without interference,

spreading codes must be selected carefully.

In cooperative spread spectrum communications, PN sequences are

known in both the transmitter and the receiver. Otherwise, the receiver has

no chance to despread the signal. PN codes are noise-like and they seem to

be random from the outside. But actually they are periodic. The spreading

sequences are formed according to some specific features [39]. The properties

of the spreading codes are given in the following.

3.2.1. Properties of the Spreading Codes

There are some important properties of the binary spreading sequences.

• Balance Property: The number of +1s of spreading code in each period

should be one more than the number of -1s.

PN = 1 1 − 1 1 − 1 − 1 1 −→
∑

= 1

• Run Property: A run is a subsequence of a single type of symbols.

Symbol number in a run states the length of the run. In a sequence, the

length of the half of the total run number is 1, the length of one fourth

is 2, and the length of one eighth is 3...
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• Correlation Property: PN sequences have some correlation proper-

ties. These are;

- Autocorrelation: It is similarity between a signal and its own or its time

shifted version.

Ra(τ) =
1

NTc

NTc
2∫

−NTc
2

pn(t) pn(t− τ)dt (3.1)

Ra(τ) =
{ 1 , τ=0, NTc, 2NTc..

− 1
NTc

, otherwise
(3.2)

NTc0

1

Ra(τ)

-Tc Tc

-1/N

τ

Figure 3.2.: Autocorrelation function of a spreading code.

If the spreading sequence is periodic, its autocorrelation function is also

periodic with the length of the spreading sequence, N . As it seen in Fig-

ure 3.2., the autocorrelation function of the signal peaks only where two

sequences are correlated with each other. In spread spectrum commu-

nication, the synchronization between the transmitter and the receiver

is provided by this feature. Thus, that despreads the received signal

correctly. In the absence of synchronization, only noise can be obtained.
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f

-Rc RcDC=0

1/NTc

Figure 3.3.: Power spectral density of a spreading code.

- Cross correlation: It is the measurement of similarity between two differ-

ent signals. In the case of dissimilarity between the spreading codes, the

cross correlation function takes too small value. Such codes are called

as orthogonal. Especially in the multiple access applications, if the user

codes are orthogonal, the receiver can distinguish the information came

from different users, and the privacy in communication is emerged. Oth-

erwise, interference between the users increase and signals begin to be

affected by each other.

Rc(τ) =
1

NTc

NTc
2∫

−NTc
2

pn1(t) pn2(t− τ)dt (3.3)

3.2.2. Types of Spreading Code

There are some common types of the spreading codes:

Maximum Length Sequence (M-sequence): This sequences are the most

common type of the spreading codes used in spread spectrum systems. They

are also called as M-sequences. In general, they are used in single-user appli-

cations. M-sequences have all above properties of the spreading codes. Linear

17



feedback register circuits and modulo-2 adders are used in order to generate

m-sequences.

1 2 3 4

Modulo-2 

adder

clock

PN 

sequence

Figure 3.4.: M-sequence generator scheme [2]

A simple m-sequence generator is shown in Figure 3.4. The period of

the sequence is N = 2m−1, where m is the number of registers. Initial state is

crucial for the periodic cycle of the states [3]. For example, if the initial value

is 1111, the m-sequence will be 111101011001000. This sequence has the all

characteristics of the spreading codes. The N states indicate the N different

stages of the m-sequences. Another property of m-sequence is that, modulo-2

summation of the m-sequence and its any shifted phase gives a different phase

of the same m-sequence.

Gold Codes: These codes are generated with modulo-2 summation of

the preferred pairs of m-sequences in the same length, as seen in the Figure 3.5.

A pair of m-sequences, which have a cross correlation limited with three values,

are called preferred pairs [39]. As they have lower cross correlation values

than m-sequences, they are preferred in the multiple user CDMA systems.

Depending on rapid synchronization, secure communication and good cross

correlation properties, Gold codes are commonly used in GPS systems [2].

Hadamard-Walsh Codes: Totally, there are N = 2n codes in the length

of N .
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Figure 3.5.: Scheme of the generation of Gold Codes.

HN =

 HN/2 HN/2

HN/2 −HN/2

 with H1 = [1]

Walsh codes are generated from Hadamard matrices and they are also

called as Hadamard-Walsh Codes . Each row or column in Hadamard matrix

corresponds to a Walsh code sequence in n length [39]. Owing to the orthog-

onality between the codes, their cross correlation values become zero. This

situation prevents the interference between the signals using the same band in

CDMA systems. In Hadamard matrix, N
2

elements of each row (or column)

are different from another row (or column).
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3.3. Signal Model and Problem Formulation

General signal detection problem with binary hypothesis test is ex-

pressed below,

H0 : ym[n] = wm[n], n = 1, ..., N

H1 : ym[n] = sm[n] + wm[n], m = 1, ...,M
(3.4)

Here, H0 and H1 are cases of the absence of signal and the presence of signal,

respectively. N is the number of samples collected from each receiver. It is

assumed that the noise, w[n] is temporally and spatially uncorrelated, white,

zero mean Gaussian and has σ2 variance. For the H1 case, the multichannel

DS-SS detection system collects the signals with spatially distributed array

of M sensors as in Figure 3.1. The received DS-SS signal by mth sensor is

modelled as,

ym[n] = x[n−∆m]c[n−∆m]︸ ︷︷ ︸
s[n−∆m]

+wm[n] (3.5)

where m is sensor index, ∆m is time shift between mth sensor and reference

sensor, x[n] is the source signal, c[n] is long spreading code with length of L.

For the long-code DS-SS signals, L is larger than the spreading factor [28]. In

multipath case, the received signal is expressed as,

ym[n] =
P∑
p=1

αmps[n−∆mp] + wm[n] (3.6)

where αmp is the attenuation factor in the pth path to the mth sensor. P is the

number of paths, ∆mp is the time delay betweenmth sensor and reference sensor

for pth path. For the ideal propagation model, frequency domain expression of

(3.5) is,

Ym[k] = e−j2πk∆m/K (X[k]⊗ C[k])︸ ︷︷ ︸
S[k]

+Wm[k], k = 1, ..., K (3.7)

where k is the index of frequency bin, K is the total number of frequency bins

(K ≤ N) and ⊗ denotes convolution. The sensor output vector of M sensors
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in frequency domain is given as,

Y[k] = A[k]S[k] + W[k], k = 1, ..., K (3.8)

The wideband spatial covariance matrix of kth frequency bin is defined as,

R[k] = E{Y[k]YH [k]} (3.9)

R[k] = A[k]Rs[k]AH [k] + σ2I[k] (3.10)

where (.)H denotes the conjugate transpose of a matrix, A[k] is the manifold

vector and I[k] is the identity matrix. It is assumed that, there is a single

wideband signal, S[k], and the signal covariance is,

Rs[k] = E{S[k]SH [k]} (3.11)

3.4. Detection of DS-SS Signal Based on Phase Linearity

DS-SS signals are noise-like signals and are transmitted below the noise

level. If the wideband DS-SS signal is present, as the propagation velocity

of the source signal x[n] is constant, the phase response of wideband cross

channel covariance terms will be linear along the signal bandwidth [44]. In the

presence of the signal, the amplitude and phase response of one of the cross

channel terms are given in Figure 3.6. and Figure 3.7. respectively. On the

contrary, in noise only case, the phase response of the covariance matrix cross

elements is far from the linearity as shown in Figure 3.8.

In this section, a method which uses the linearity of the phase response

of the wideband spatial covariance matrix cross elements of sensor arrays, is

proposed. The steps of this proposed method is given in the following section.

In wideband signal processing, wideband signals are decomposed into

many narrowband signals using Discrete Fourier Transform (DFT) in order to

apply narrowband techniques to the wideband signals [45]. Then, the narrow-

band frequency components are processed separately and the final estimate is

averaged over all the frequency components. The steps of this approach are

summarized below.
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Figure 3.6.: The amplitude response of wideband cross channel covariance terms (R (1, 2))

in the presence of a signal.
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noise only case.

• Wideband signal is divided equally into non-overlapping B snapshots.

• The temporal Discrete Fourier Transform (DFT) of the B snapshots is

computed and spatial covariance matrices are estimated as below,

R̂p =
1

B

B∑
b=1

Yb,pY
H
b,p

p=1,...,P
b=1,...,B (3.12)

where, B is the total number of snapshots and P is the number of frequency

bins in each snapshot. Yb,p represents bth snapshot and the pth frequency com-

ponent of the sensors output. Furthermore, R̂p is an M ×M matrix and there

are total P covariance matrices. For the pth frequency bin, the phase value of

the cross terms of R̂p is given as,

φp(i, j) = arg(R̂p(i, j)),
p=1,...,P

i=1,..,M−1, j=2,..,M
i<j

(3.13)
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where i is the row and j is the column index of the matrix in (3.12). Accord-

ingly, φp(i,j) is computed for P frequency components and the phase response

is obtained with the combining all the estimated phase values. The phase

response of the first and second wideband cross channel covariance terms is

shown in Figure 3.7. As seen in figure, in the presence of a signal, the phase

response has linear characteristics along the bandwidth of the signal. As well

as being slope differences, there is also a linearity in the phase responses of

other cross terms. A straight line is fitted to the phase response throughout

F frequency bins by using a linear model which is defined as,

φf (i, j) = α(i, j) + β(i, j)f, f =
P − F

2
+ 1, ...,

P + F

2
(3.14)

where f is the frequency bin index, α(i, j) is an initial (intercept) point and

β(i, j) is the slope of the fitted line. The F frequency bins (F < P ) which

should be in the bandwidth of the signal are chosen symmetrically from the

both sides of center frequency of the signal. The model in (3.14) can be

expressed for each ith, jth cross terms in covariance matrix form as,

v(i, j) = Hθ(i, j) + w (3.15)

where v(i, j) =
[
φP−F

2
+1(i, j) . . . φP+F

2
(i, j)

]T
is the observed data set

and w =
[
wP−F

2
+1 . . . wP+F

2

]T
is the unknown noise which represents the devi-

ation from the model. H is the known observation matrix,

H =


1 P−F

2
+ 1

...
...

1 P+F
2


F×2

(3.16)

and finally θ(i, j) is the unknown parameter vector θ(i, j) = [α(i, j) β(i, j)]T .

Hence, the parameters of the fitted lines for each cross terms of (3.12) can be

estimated as,

θ̂(i, j) = (HTH)−1HTv(i, j) (3.17)

24



which is the minimum variance unbiased estimator for the given model in

(3.15). Thus, the estimated coefficients in (3.17) are the optimum line param-

eters of φ̂f (i, j) = α̂(i, j) + β̂(i, j)f .

3.4.1. Detection Algorithm

• Step 1: Measure the total difference between the phase response and the

optimum fitted lines for all cross channel terms. In order to measure the

difference, we use normalized total root mean square error, TotalRMSE is,

TotalRMSE =

√√√√ 2
M(M−1)F

M−1∑
i=1
i<j

M∑
j=2
i 6=j

F∑
f=1

(φf (i, j)− (α̂(i, j) + β̂(i, j)f))2 (3.18)

• Step 2: The test statistic is the TotalRMSE in (3.18) which measures

the amount of the deviation between linear phase response of all sensor

pairs and the fitted lines. Figure 3.9. and Figure 3.10. show the distri-

bution of 1000 TotalRMSE values of the noise-only and signal plus noise

cases for the array of 4 sensors in the short code and long code systems

respectively. As shown in figure, it is possible to determine a threshold

value, γthreshold, which decides the presence of a hidden DS-SS signals as,

TotalRMSE

{<γthreshold→present
≥γthreshold→not present

As it is seen TotalRMSE is normalized according to the number of frequency

points and the number of sensor pairs. The TotalRMSE can be modelled as a

Gaussian random variable with a specified mean and variance. As shown in

Figure 3.9. and Figure 3.10. the mean and the variance of the distribution is

maximum in the noise-only case. In the opposite, the mean and the variance

is close to zero in the case of high SNR DS-SS signal. γthreshold value is speci-

fied according to the distribution of the TotalRMSE for the noise-only case by

checking the standard normal distribution table (Z table) with the required

false alarm rate (FAR). Note that the TotalRMSE value is based on the phase

measurements of the wideband spatial covariance matrix, hence it does not

depend on the noise power.
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Figure 3.9.: Histograms of the 1000 TotalRMSE values for the noise-only case and SNR =-20

dB, -10 dB, 0 dB cases in the short code system.
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3.5. Detection of DS-SS Signal Based on Eigenvalue Ratio

In this thesis, a simple and computationally efficient two channel pres-

ence detection system is proposed for the noise-like long code DS-SS signals.

We first proposed a new method in order to estimate sample spatial covariance

matrix for the wideband signal detection in low SNR. Secondly, the presence

detection algorithm is proposed which is based on the Eigen Value Ratios

(EVR) of the spatial covariance matrices.

In order to process the wideband signals, a common approach is to

sample the incoming signals for each channel to form the narrowband fre-

quency components. These narrowband frequency components are processed

separately and combined to obtain the final result which is known as incoher-

ent signal-subspace processing (ISSP) method [46]. But the presence detection

performance of this approach may be insufficient for the long-code DS-SS sig-

nals in low SNR. However, the coherent signal-subspace methods (CSM), which

uses focusing matrices to transform the spatial covariance matrices to specific

frequency bin, are suitable for solving the wideband signal processing problems

with the narrowband methods such as the Akaike information criterion (AIC)

and the minimum description length (MDL) algorithms [47]. But the presence

detection of the long code DS-SS signals is a pretreatment phase and there is

a need for methods which are computationally efficient.

In this thesis, the block of consecutive frequency bins are combined

in order to estimate the sample spatial covariance matrices for the presence

detection. The relation between the numbers of consecutive frequency bins (in

terms of signal bandwidth) and the EV Rs of the covariance matrices of the two

channel sensor array is shown numerically. As is known, mixing the different

frequency component will increase the number of significant eigenvalues which

prevents the detection [27]. On the other hand, the covariance matrix estimates

which are obtained from the sufficient block of consecutive frequency bins are

more stable and suitable for signal detection. In this thesis, a computationally

efficient presence detection algorithm is proposed which uses spatial covariance
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matrices which are estimated using the block of consecutive frequency bins.
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Figure 3.11.: Scheme of the R matrix estimation using the BCFB method.

A 2× 2 spatial covariance matrix in (3.9) and its elements are shown

as R =

 a b

b∗ c

 , the eigenvalues (λ1 and λ2) of this matrix can be calculated

using its trace (T = a+ c) and determinant (D = a× c− b× b∗) as,

λ1 =
T

2
+

√
T 2

4
−D, λ2 =

T

2
−
√
T 2

4
−D (3.19)

where * stands for conjugate.

In the presence of DS-SS signals, the difference between maximum (λ1)

and minimum (λ2) eigenvalues increases. The ratio of maximum eigenvalue to

minimum one is a decisive parameter. In the presence of signals, this ratio is

very high and in the noise-only case since all eigenvalues of R matrix represent

noise subspace, this ratio is close to one. When the frequency bins combined

properly, the ratio between maximum and minimum eigenvalues (EigenValue

Ratio, EV R = λ1/λ2) is determined to be used as an effective test statistics

for the presence detection of DS-SS signals.

In order to estimate sample covariance matrices, we proposed a new

method which is presented in Section 3.5.2. Firstly, a well-known approach for

wideband signal processing, ISSP is overviewed in Section 3.5.1.

28



3.5.1. Estimating R Matrix Using Incoherent Signal-Subspace

Processing (ISSP) Method

In wideband signal processing, the wideband signal is decomposed into

narrow bands and the narrowband signals are processed individually. Then the

results from each individual bands are combined to obtain the final result [48].

This technique is called as incoherent signal-subspace processing (ISSP). The

steps of this approach are summarized below.

• Wideband signal is divided equally into non-overlapping B snapshots.

• The temporal Discrete Fourier Transform (DFT) of the B snapshots is

computed and spatial covariance matrices are estimated as below,

R̂ISSP
p =

1

B

B∑
b=1

Yb,pY
H
b,p

p=1,...,P
b=1,...,B (3.20)

where, B is the total number of snapshots and P is the number of frequency

bins in each snapshot. Yb,p represents bth snapshot and the pth frequency

component of the sensors output. Furthermore, R̂p is an M ×M matrix and

there are total P covariance matrices. It is possible to use all the matrices in

(3.20) for the presence detection of DS-SS signals using the proposed algorithm

in section 3.5.3.

3.5.2. Estimating R Matrix Using The Block of Consecutive Fre-

quency Bins (BCFB) Method

In the practical real time applications, the detection methods using

whole components of the received signal are not efficient due to high computa-

tional cost. Therefore, transmitting the whole signal from a receiver to another

receiver in the multichannel detection system, is very hard. To overcome this

difficulty, a new R matrix estimation method not using the whole signal com-

ponents is proposed. In this method, some frequency bins are sufficient for

the signal detection and the parameter estimation. Firsly, the Discrete Fourier
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Transform (DFT) of the outputs at each sensor are computed. The total num-

ber of frequency bins (K) are equal to the length of the sensor output data.

It is assumed that the baseband signal is in the middle of the band. Then the

total F number frequency points (F < K) which should be in the bandwidth

of spread spectrum signal are chosen symmetrically from the both sides of

center frequency of the receivers. Then, the chosen data is divided into non

overlapping frequency blocks. But only the some frequency bins in each block

will be used. L is the used number of consecutive frequency bins in each block.

R̂p is the estimated matrix from pth block in sparse structure as the following,

R̂BCFB
p =

1

L

kp+L−1∑
k=kp

Y[k]YH [k] p = 1, ..., P (3.21)

where P is the number of total blocks and kp is the beginning of pth frequency

band. The sparsity is stated in terms of percentage as below,

%Sp =
F − L× P

F
× 100 (3.22)

Furthermore, R̂p is a matrix of dimension 2×2 and there are total P covariance

matrices.

(1) The selection of L and P parameters

When estimating a R matrix, the band of the signal that can be

manipulated fully or sparsely, is separated into consecutive frequency blocks.

The amount of sparsity is specified respect to the selection of L and P . Ideally,

as the whole band is used, there is no gap and no overlap amongst the blocks.

In this case, L×P value covers the signal bandwidth. On the other hand, the

number of P can be decreased to avoid high computational complexity which

causes sparsely structure.

Besides, the selected P values determine the number of covariance

matrices. In order to calculate each spatial covariance matrix in (3.21), L

number of frequency bins are used. The selection of L is crucial and directly
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Figure 3.12.: The maximum and minimum eigenvalue ratios (λ1/λ2) with respect to L in

terms of bandwidth (BW) of the signal.

effects the detection performance of the method. When L is chosen as to cover

the whole signal bandwidth, the number of the significant eigenvalues of the R

matrix increases which prevents to distinguish signal and noise subspaces [45].

The maximum and minimum eigenvalue ratios of (3.21) with respect to L (in

terms of the signal’s bandwidth (BW )) are shown in Figure 3.12. for different

SNR levels and for the noise-only case. As it is seen for the noise-only case,

increasing L makes this ratio close to one which is desired. On the other hand,

when L is chosen bigger than some value (BW/100), this ratio is decreasing

which is undesired. For these reasons ideally L should be chosen between

BW/200 and BW/100. After specifying L value, the selection of the P value

will specify the sparsity level.
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3.5.3. Detection Algorithm

• Step 1: Calculate EV Rs of all the computed P spatial covariance ma-

trices as,

EV Rp =
λ1

λ2

=
1 +

√
1− 4Dp

Tp2

1−
√

1− 4Dp
Tp2

(3.23)

• Step 2: The average eigenvalue ratio is calculated by averaging EVR

values computed in Step-1 as,

EV R =
1

P

P∑
p=1

EV Rp (3.24)

• Step 3: The EVR value in (3.24) is used as a test statistic in order to

detect the DS-SS signals. Figure 3.13. shows the distribution of 1000

EV R values for the noise-only and signal plus noise cases for the array

of two sensors. As shown in figure, this ratio is statistically separated

each other presence of a DS-SS signal and noise-only case. The thresh-

old value (γthreshold) is determined according to distribution of EV R in

noise-only case and the presence of a signal above this threshold is de-

tected as below,

EV R
{>γthreshold → signal is present, H1

≤γthreshold → signal is not present, H0

The distribution of the EV R values is assumed as a Gaussian dis-

tributed random variable with a specified mean and variance as shown in

Figure 3.13. for different cases. γthreshold value is specified according to the dis-

tribution of the EV R for the noise-only case by checking the standard normal

distribution table (Z Table) using the required false alarm rate (FAR).
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-5 dB, -10 dB cases.

3.6. Simulation Results

3.6.1. Simulations for Phase Linearity Based Method

In this section, the proposed non-cooperative multichannel DS-SS sig-

nal detection method is evaluated in order to show the detection performance

of both the long-and-short code signals for various SNR levels, sensor numbers

and spreading sequence length. Besides, the detection performances of the

proposed method are given in the presence of narrowband interferences and

multipath reflections.

In simulations, the DS-SS signals are generated using the BPSK mod-

ulator. Symbol rate is 1000 sym/sec, each symbol is sampled with 8 bits. The

sampling rate of the wideband receivers is 100 MHz. The source is located

at (8000, 8000). Sensors in the array are positioned linear and equispaced in

parallel with the x-axis. The four sensors are located at (0, 0), (100, 0), (200,

0) and (300, 0), respectively. The simulation results are obtained by averaging

1000 Monte Carlo runs. The threshold value, which decides the presence of

a DS-SS signal, is selected from the Table 3.1 for the required FAR and the

number of sensors.
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(c) The received noisy signal in

the frequency domain.

Figure 3.14.: The different versions of the signal in frequency domain.

The DFT (Discrete Fourier Transform) of the signal before and after

spreading are shown in Figure 3.14.a and Figure 3.14.b, respectively. The

spreading code is a 26 − 1 bits m-sequence for the signals in the figures. As is

seen in the figures, the signal bandwidth expands at the rate of spreading code

length. After spreading, the signal is transmitted below the noise level. The

received signal in the frequency domain for the SNR=-15 dB case, is shown in

Figure 3.14.c. It is seen in the figure, the radiated power of the received signal

is below the ambient noise.

a-) For the short code (SC) DS-SS signals

Figure 3.15. shows the probability of the short-code (SC) DS-SS signal

detection of the proposed method for the different number of sensors (M =

2, 3, 4, 5 and 6) and for the various SNR levels. The length of the PN
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Sensor Number (M) False Alarm Rate (FAR) γthreshold

6 0.05 1.86

5 0.05 1.82

4 0.05 1.76

3 0.05 1.58

2 0.05 1.39

Table 3.1: γthreshold values for the required FAR and various number of sensors.

sequence is 26 − 1 bits for all performances in this figure. The period of

the PN sequence equals the symbol duration (bit period). Even in the array

of 2 sensors case, the DS-SS signal can be well detected when the SNR is

higher than -20 dB. In this case, increasing the number of sensors improves

the detection performance especially in low SNR values as expected. This

improvement is more observable up to 5 sensors. However, the cost of the

system also increases with the increasing of sensor number. At this point, the

main advantage of the proposed method is the ability of detection in quite

low SNR levels (below -15 dB). Increasing the number of sensors increases the

number of processed sensor pairs. Therefore, the amount of deviation from

the linear phase response decreases and the system performs better. The false

alarm rate of the proposed method is measured approximately as %5. But this

rate can be decreased by adjusting threshold value.

The probability of the short-code (SC) DS-SS signal detection perfor-

mances of the proposed method for the different length of the PN sequences are

shown in Figure 3.16. The proposed method does not require any assumption

on the spreading sequence. In cyclostationary based methods, the temporal or

spatial duration must be chosen to cover the length of spreading sequence. As

the proposed method uses the time delays between the sensors, its detection

performance is invariant from the PN sequence length as seen from the figure.

In other words, as the proposed method are not based on the cyclic feature of
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Figure 3.15.: The probability of the SC signal detection of 1000 trials for the array of M =

2, 3, 4, 5 and 6 sensors for various SNR values.

the signal, the length of the spreading code does not matter for the detection

performance.

Figure 3.17. demonstrates the performance comparison of the pro-

posed multichannel method and the well-known single channel detection method

(Burel’s method) [22]. The array of 4 sensors are used for the implementation

of the proposed method. The length of the short spreading code is selected

as 26 − 1 for both of two methods. In the method of Burel, the length of the

temporal window duration which is equally selected as number of frequency

bins in one snapshot of the proposed method, is larger than the period of the

spreading sequence. When the detection performances are compared, it is seen

that the proposed method performs better than the method of Burel. It is seen

in the figure, the proposed method improves the detection performance about

12 dB according to the Burel. As Burel uses the cyclostationary properties of
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Figure 3.16.: The probability of the SC signal detection of 1000 trials for array of 4 sensors

for the different PN sequence lengths.

the signal, the temporal window duration used in his method should be larger

than the length of the PN sequence. The detection performance of the Burel’s

method is badly affected with the increasing of the PN sequence length, on

the other hand our proposed method is invariant from the PN sequence length

as mentioned previously. When the PN sequence length increases, the win-

dow can not cover a spreading code period. Thus, the detection performance

worsens.

Figure 3.18. shows the detection performances of the proposed method

in the presence of multipath fading and narrowband interference. In simula-

tions, a stationary multipath scenario where the signal is received through

two distinct paths, is realized. The path delays and gains are chosen same

with the delays in [20]. It is shown in figure, in multipath case, the detec-

tion performance of the proposed method is not effected in SNRs higher than
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Figure 3.17.: The comparison of the SC detection performances between the proposed

method and Burel’s method for same PN sequence length.

-20 dB. However, a slight performance loss is experienced below -20 dB. It

is understood that the proposed method does not require line of sight condi-

tions between the transmitter and each receivers. Better performance will be

achieved with the increasing the number of sensors. In addition, Figure 3.18.

also shows the detection performance of the proposed method in the presence

of narrow band interference and both the narrow band and multipath signals.

It is seen that the proposed method is resistive to these effects.

b-) For the long code (LC) DS-SS signals

The LC signal detection performances of the proposed method ac-

cording to the different number of sensors (M = 2, 3, 4, 5 and 6) for the

various SNR levels are shown in Figure 3.19. The length of the PN sequence

is selected 212 − 1, the spreading factor is selected 455 for the signals in this

graphics. Unlike the SC DS-SS systems, the spreading factor is less than the
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Figure 3.18.: The probability of the SC signal detection of 1000 trials for array of 4 sensors

when the multipath and narrow band interference are present.

length of the spreading sequence. It is seen that the detection performances

are similar with the results for the SC DS-SS signals. Increasing the number

of sensors also enables to detect DS-SS signals in lower SNR levels. But the

detection performance does not improve dramatically with the increasing of

the sensor number after 4 sensors. As mentioned previously, long spreading

codes destroys the cyclostationary properties of the signal. Thus, the methods

which use cyclostationary properties of the signal do not work with LC DS-SS

signals. To our knowledge, there is no multichannel detection method that

uses the phase linearity for long-code DS-SS signals in literature.

The long-code signal detection performances of the proposed method

under multipath environments and narrowband interference are shown in Fig-

ure 3.20. In multipath environments, in addition to direct-path signal, the

delayed and attenuated versions of the target signal is received by each sensor.
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Figure 3.19.: The probability of the LC signal detection of 1000 trials for the array of M =

2, 3, 4, 5 and 6 sensors for various SNR values.

It is dealt that the transmitted signal is reflected from the stationary reflector

located at (2000, 2000). The multipath parameters (path delay and gain) are

chosen same as the short-code cases. It is shown in figure the long-code sig-

nal detection performance of the proposed method is not effected significantly

in multipath case. The usage of multiple sensors provide redundancy for the

signal detection under multipath environments. In addition, it is seen in the

figure, there is no performance degradation depends on the presence of a nar-

rowband interferer. It is understood that the proposed method is resistive to

these effects as well as the short-code case.

The cyclostationary-based algorithms cannot be used with long code

signals. The reason of this is referred in the previous sections. Thus, Burel’s

method in [22] which uses cyclic features of the signal does not work with LC

DS-SS signals. Hence, the only short code detection performance is compared
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Figure 3.20.: The probability of the long-code signal detection of 1000 trials for array of 4

sensors when the multipath and narrow band interference are present.

with the Burel’s method.

3.6.2. Simulations for Eigenvalue Ratio Based Method

In this part, the proposed eigenvalue ratio based method is tested

through simulations by using two-channel DS-SS detection system. The sim-

ulation results are obtained by averaging 1000 Monte-Carlo runs.

In simulations, the DS-SS signals are generated using the BPSK mod-

ulator. The length of the long spreading sequence is 212 − 1 bits. Symbol rate

is 1000 sym/sec. The threshold value which decides the presence of a DS-SS

signal is calculated as 1.36 by using standard normal distribution table for the

FAR=0.05.

In order to estimate sample covariance matrices, we used two methods.

The first method is the ISSP method. The number of blocks in (3.20) is selected
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Figure 3.21.: Comparison of detection performances between the proposed method based

on BCFB and ISSP for array of two sensors for different SNR values.

as B = 640 and each block has 500 samples. The number of DFT points in

each block is 200. The second one is the proposed BCFB method and the

parameters in (3.21) are selected as P = 3 and L = BW/200.

Figure 3.21. shows the effect of the R estimation to the detection

performance of the proposed methods. It is seen in the figure that using R

matrices of the proposed method BCFB method improves the detection per-

formance about 8 dB. The BCFB method gives stable R estimates especially

in low SNR. At this point, the main advantage of the proposed method is the

ability of detection in quite low SNR levels (below -10 dB). When SNR is be-

low -8 dB, the performance of ISSP dramatically decreases as expected since

that is an incoherent method.

Figure 3.22. shows the ROC curves (Pd vs. Pfa) for some low SNR

values (-20 dB, -18 dB, -17 dB, -16 dB and -14 dB). The probability of signal

detection takes different values according to different FAR (threshold) values.
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As seen in ROC curves, the probability of signal detection of the proposed

method reaches 1 at Pfa = 0.03 when SNR=-16 dB. It is understood from the

figure, when the FAR changes, which values the probability of signal detection

will take, is determined according to the different SNR levels.
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Figure 3.22.: ROC curves (Probability of signal detection (Pd) - probability of false alarm

(Pfa)) in different SNR for array of two sensors.

The detection performance of the proposed method in multipath case

for various sensor number is shown in Figure 3.23. The signal is transmitted

through two distinct path in a stationary multipath scenario. The path delays

and gains are chosen as same with the values in [20]. As seen from the figure,

the detection performance of the system decreases in the presence of multipath

reflections. It is also seen that increasing the number of sensors improves the

detection performance as expected. Furthermore, the proposed method can

be implemented for M channel sensor arrays.

The execution times comparison between the proposed eigenanaly-

sis based detection method and the proposed phase linearity based detection
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Figure 3.23.: The direct path-multipath performances of the proposed method for the array

of M = 2, 3 and 4 sensors.

method are given in Table 3.2. Only the short-code signals are tackled for the

computation. The values in the table are the total execution durations of the

1000 runs. The simulations run on the computer which has Intel Core(TM) i7-

3770K CPU @ 4.60 GHz Processor and 16 GB RAM. The execution times may

vary depend on the features of the computer. The eigenvalue ratio algorithm

is an applicable technique in practical real time applications due to its simple

and fast structure. It is seen in Table 3.2 that the second proposed method

is 26 times faster than the first proposed method for the array of 2 sensors.

While the detection performance of the first proposed method is better than

the second proposed method, the computational cost of the second one is much

lower than the first one.

44



Method I (Phase Linearity) Method II (Eigenvalue Ratio)

2 Sensor 690 sec 25.90 sec

3 Sensor 716 sec 40.31 sec

4 Sensor 750 sec 55 sec

Table 3.2: The total execution times for the Phase Linearity and Eigenvalue

Ratio algorithms as a result of 1000 trial.

3.7. Conclusion

In this thesis, two different multichannel methods are proposed for

the presence detection of both the long and short code DS-SS signals. The

proposed methods can detect the DS-SS signals in a stable way in low SNR

without any prior information and assumption on target signal. The first pro-

posed method uses the phase linearity of the cross channel terms of the spatial

covariance matrices along to the signal bandwidth. It is shown in simulations

that the proposed multichannel method can decidedly detect the DS-SS signals

in low SNR. It is seen, increasing the number of sensors improves the detection

performance as expected. The proposed method can also effectively detect the

short-code DS-SS signals which outperforms Burel’s method in [22]. In the

method of Burel, the temporal window length should be chosen approximately

in order to detect the SC DS-SS signals. Finally, it is shown in simulations that

the proposed method is resistive to narrowband interferences and multipath

fading.

In the second proposed method, we proposed a statistical signal de-

tection algorithm using average of eigenvalue ratios of the spatial covariance

matrices (R) of the wideband signal. In addition, a new sample spatial covari-

ance matrix (R) estimation technique, which is called as block of consecutive

frequency bins (BCFB), is proposed. The BCFB method gives a stable R esti-

mate especially in low SNR. Also the proposed BCFB method is not using the

whole frequency components of the signal. It is shown in various simulations
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that the proposed detection methods can detect DS-SS signals in a stable way

in low SNR. It is also shown that using the sample covariance matrix of the

proposed BCFB method improves the detection performance especially in low

SNR. In the presence of multipath reflections, it is seen that increasing the

number of sensors improves the detection performance.
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4. TDOA ESTIMATION OF SPREAD SPECTRUM SIGNALS

4.1. Introduction

Source localization is an important problem in applications such as

target tracking, surveillance, navigation, and others. Generally, target signals

can be localized by using the time of arrival (TOA), the time difference of

arrival (TDOA), the angle of arrival (AOA), the received signal strength (RSS)

and Doppler frequency shift measurements [49–51].

Time delay estimation is still an active research field and there are

some important applications in many areas such as radar, sonar and wireless

communication systems for localizing and tracking targets. If we have a priori

knowledge for the transmitted signal, it is possible to estimate time delays.

On the other hand, in the case of unknown transmitted signal, only the time

difference of arrival (TDOA),τ , between the spatially distributed sensors can

be estimated. Here, one of the sensors should be defined as the reference

sensor. The time difference,τ , between the reference sensor and the mth sensor

is defined as,

τ =
dm − dr

c
(4.1)

where, dm and dr are the distances from the source to mth sensor and to the

reference sensor, respectively. c is the propagation speed. A simple TDOA

illustration is shown in Figure 4.1., here one source is assumed to be in the far

field and two sensors are utilized. TDOA measurements can be used to local-

ize a radio [52], sonar [53] or acoustic emitting sources [54–57]. TDOA-based

localization is widely studied in literature. These methods can be classified in

pairs as the following: Likelihood based method and least square technique,

linear approximation and direct numerical optimization (maximization and

minimization), and iterative and closed form algorithms [58]. Some of these

studies have been concentrate on the TDOA-based maximum likelihood (ML)
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Figure 4.1.: The TDOA illustration

localization [59–61]. Generally, the ML approaches need an initial guess and it-

erative solutions to converge the optimal solution, and also convergence cannot

be guaranteed. Hence, in the real-time applications of a source localization,

ML estimators are not convenient [58]. To overcome this disadvantages, the

closed-form solutions have been developed [62–65]. Closed-form algorithms

utilize the least square technique which is the other common approach for

TDOA-based localization. Linear least square technique is widely preferred

because of its computational efficiency. In [63], a closed-form localization tech-

nique which is called spherical-interpolation (SI) method, is proposed. In the

SI method, linear least squares minimization is used for the derivation of the

localization formulas. In [58], the linear-correction least-squares approach have

been proposed for the source localization problem. This method use the ad-

ditive measurement error model, and this model assumes that additive errors

are independent from the measurements. This least square estimator has a

closed-form algorithm and it is suitable for the real-time applications. In [66],

an importance sampling method is proposed in order to determine a global

solution to the ML source localization problem. But this method requires an

initial estimate for the source location.
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In order to estimate TDOA, there are various methods which are based

on cross-correlation technique [67], phase data [44, 68–71], least squares [68–

70] and maximum likelihood [69, 72]. Well-known time difference of arrival

estimation techniques are based on cross correlation of the received signals

at different sensors. The peak of the cross correlation output gives the time

difference of arrival between the sensors. Cross correlation based methods

can be implemented easily and they are simple methods as well. For this

reason, they are widely used in the estimation systems. On the other hand,

this techniques are not effective in the presence of multipath reflections. In

[73], a TDOA estimator for acoustic signals which uses a multichannel spatio-

temporal prediction algorithm is presented. This method uses both the spatial

and temporal information in minimum mean square error sense. In [71], a time

delay estimator using the phase differences between two sensors is proposed.

The main idea in this method is averaging the phase differences in the pass

band frequency. In [68], a least squares algorithm is developed to estimate

TDOA in multipath environments. The algorithm in this method gives least

squares estimates of the time delay of each signal path. In [72], a maximum

likelihood (ML) time delay estimator which uses a non-iterative approach is

developed. They proposed a importance sampling technique to find the global

maximum of the likelihood function. As this method uses the importance

sampling method, it does not require grid search and any initial guess unlike

the conventional ML techniques.

In this thesis, an efficient frequency domain time difference of arrival

estimation method for the spread spectrum signals is proposed. The proposed

TDOA estimator uses the phase slope of the previously estimated sample co-

variance (R) matrices in the first proposed detection method. The phase values

of the all R matrices are estimated with the well-known Root-MUSIC algo-

rithm. Thus, the phase response is obtained with combining all the estimated

phase values. After phase unwrapping which is the process that corrects phase

angles to produce smoother phase plots, a line is fitted to unwrapped phase

response along the signal bandwidth in least square senses. Then TDOA is
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estimated by using the slope of the fitted lines.

4.2. Data Model

In this section, the used data model is given. The DS-SS signal is

received by two widely separated sensors.

Non-cooperative two channel DS-SS system collects the wideband sig-

nals. These sensors are located at known positions [xi, yi], i = 1, 2. If the sen-

sors (wideband receivers) are coherent and synchronously sampled, the base-

band output of ith sensor is,

yi[n] = s[n−∆i] + wi[n], n = 1, ..., N (4.2)

where s[n] is the transmitted signal, i is sensor index, ∆i is time shift between

ith sensor and reference sensor. N is the number of samples collected from

each receiver. The ith sensor output in frequency domain is given as,

Yi[k] = e−j2πk∆i/KS[k] +Wi[k], k = 1, ..., K (4.3)

where k is the index of the frequency bins, K is the total number of frequency

points. The sensor output vector of 2 sensors in frequency domain is given as,

Y[k] = A[k]S[k] + W[k], k = 1, ..., K (4.4)

The wideband spatial covariance matrix of kth frequency bin is defined as,

R[k] = E{Y[k]YH [k]} (4.5)

R[k] = A[k]Rs[k]AH [k] + σ2I[k] (4.6)

where (.)H denotes the conjugate transpose of a matrix. It is assumed that the
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noise, W is temporally and spatially uncorrelated, white, zero mean Gaussian

and has σ2 variance. A is the manifold matrix and I is the identity matrix. It

is assumed that, there is a single wideband signal, S[k], and the signal covari-

ance is,

Rs[k] = E{S[k]SH [k]} (4.7)

4.3. Time Difference of Arrival Estimation Based on the R Matrix

In previous chapter, two different multichannel presence detection

methods for the DS-SS signals are proposed and discussed. In this part, a

new TDOA estimation method uses the phase linearities similar to detection

methods for the localization of the DS-SS signals.

4.3.1. Estimating the Sample R Matrices

In order to estimate wideband sample covariance matrix, R, we used

two methods. The first technique is a well-known Incoherent Signal Subspace

Processing (ISSP) method which is given in Section 3.5.1. In this technique,

the wideband signal is divided into equally narrow bands and the narrow band

data are processed individually. Subsequently, the results from each band are

combined to obtain the final result [48]. The sample covariance matrices are

estimated as below,

R̂ISSP
p =

1

B

B∑
b=1

Yb,pY
H
b,p

p=1,...,P
b=1,...,B (4.8)

where, B is the total number of snapshots and P is the number of frequency

bins in each snapshot. Yb,p represents bth snapshot and the pth frequency com-

ponent of the sensors output. Furthermore, R̂p is an M ×M matrix and there

are P covariance matrices.

We proposed a new wideband sample covariance matrix, R, estima-

tion method [38]. The proposed method, which is called as block of consecutive
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frequency bins (BCFB), uses a sparse estimation. In this method, firstly, the

Discrete Fourier Transform (DFT) of the output at each sensors are computed.

The total number of frequency bins (K) are equal to the length of the sensor

output data. It is assumed that the baseband signal is in the middle of the

band. Then the total F number frequency points (F < K) which should be

in the bandwidth of spread spectrum signal are chosen symmetrically from

the both sides of center frequency of the receivers. Then, the chosen data is

divided into non overlapping frequency blocks. But only the some frequency

bins in each block will be used. L is the used number of frequency points of

the blocks. R̂p is the estimated matrix from pth block in sparse structure as

the following,

R̂BCFB
p =

1

L

kp+L−1∑
k=kp

Y[k]YH [k] p = 1, ..., P (4.9)

where P is the number of total blocks and kp is the beginning of pth frequency

band. The sparsity is stated in terms of percentage as below,

%Sp =
F − L× P

F
× 100 (4.10)

Furthermore, R̂p is an 2× 2 matrix and there are total P covariance matrices.

In both approaches, the total P sample covariance matrix, R̂p is estimated and

the phase values of each matrix is estimated with well-known Root-MUSIC

algorithm. It is also straightforward to expand this approach to M channel

case.

4.3.2. Phase Estimation with the Root-MUSIC Algorithm

The Root MUSIC is the root version of the well-known MUSIC (Multi-

ple Signal Classification) algorithm [74]. In order to estimate the phase content

of the signal, the Root MUSIC algorithm performs eigenvector analysis of the

sample covariance matrix of the signal [75]. This algorithm is very useful for
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the signals embedded in additive white Gaussian noise. The main idea of the

Root MUSIC algorithm is to find the roots of the polynomial of order 2(M−1),

where M is the number of sensors [76]. This method is only applicable to lin-

early shaped sensor arrays.

For a linear array, the array manifold vector is given as,

vz(z) = [1 z ... zN−1]T , (4.11)

the array manifold vector in terms of phase shift is shown as,

[vz(z)]z=ejφ = ej(
N−1

2
)φv(φ). (4.12)

The MUSIC algorithm is defined in [77] as,

Q̂MU,z(z) = vTz (
1

z
)ÛNÛ

H

Nvz(z) (4.13)

here, ÛN represents eigenvectors of the noise subspace. Then (4.13) can be

written as,

Q̂MU,z(z)|z=ejw = Q̂MU(φ). (4.14)

Then, number of D roots of Q̂MU(φ) are computed that corresponds D source

signals. These roots are given as,

φ̂i = arg ẑi, i = 1, 2, ..., D (4.15)

As a summary, the steps of the Root MUSIC algorithm are given in the fol-

lowing,

• Estimate the sample covariance matrices according to (4.8) or (4.9).

• Compute the eigenvectors corresponding signal and noise subspaces.

• Compute the roots of Q̂MU(φ) in (4.14).

• Find the phase as in (4.15).
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4.3.3. Phase Unwrapping and Line Fitting

After the phase estimation, the obtained phase responses (total P

phase values) are unwrapped for the smooth slope calculation. Phase unwrap-

ping (PU) is the process of recovering the absolute phase φ from the wrapped

phase ψ [78].

φ = ψ + 2kπ (4.16)

where φ and ψ are the true phase value and the wrapped (modulo-2π) phase

value, respectively. k is an integer for the number of 2π multiples. After un-

wrapping, a straight line is fitted to the phase response throughout Z points

by using a linear model which is defined as,

φz = α + βz, z =
P − Z

2
+ 1, ...,

P + Z

2
(4.17)

where z is the frequency bin index, α is an initial point and β is slope of the

fitted line. P is the number of phase values in the phase response. The Z points

(Z < P ) which should be in the mid-part of the phase response are chosen

symmetrically from the both sides of center point of the phase response. The

model in (4.8) can be expressed as,

v = Hθ + w (4.18)

where v is the observed data set and w is the unknown noise which represents

the deviation from the model. H is the known observation matrix,

H =


1 P−Z

2
+ 1

...
...

1 P+Z
2


Z×2

(4.19)
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and finally θ is the unknown parameter vector θ = [α β]T . Hence, the param-

eters of the fitted lines can be estimated as,

θ̂ = (HTH)−1HTv (4.20)

which is the minimum variance unbiased estimator for the given model in

(4.18). Thus, the estimated coefficients in (4.20) are the optimum line param-

eters of φ̂z = α̂ + β̂z.

In some cases especially in low SNR, the phase is not unwrapped

correctly. Accordingly, this situation causes that the slope of the fitted line

is estimated incorrect. An unwrapped phase response and a line fitted to
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Figure 4.2.: An unwrapped phase and a fitted line to this phase.

this phase are shown in Figure 4.2. In this case, the estimated TDOA value

is quite different from the actual value. Therefore, the error between the
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real and the estimated value will be very high. To overcome this situation,

phase unwrapping algorithm is improved. In the well-known phase unwrapping

algorithm, it is tackled whether the difference between the consecutive phase

values bigger or smaller than ±π. In the improved algorithm, the sum of the

differences between the consecutive two phase pair is considered. Thus, the

incorrect unwrapping in the phase response are inhibited and the error rate

decreases. This case are shown in Figure 4.3.
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Figure 4.3.: An unwrapped phase after error correction and a fitted line to this phase.

4.3.4. Slope Calculation

As in the first proposed detection method, to estimate TDOA, in this

method,

- The sample covariance (R) matrices are estimated.

- The phase of the cross channel terms of R is computed and the phase

response is obtained.
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- A straight line is fitted to the phase response.

- The slope of this fitted line is estimated.

And using this slope, TDOA is calculated. The phase value of the one of the

cross channel terms of the R matrix equals,

φk =
2πk∆

K
(4.21)

where k is the frequency bin index and K is the number of total frequency

bins. According to the K frequency bins, the equation of the fitted line is

defined as φ̂k = β̂ × k. Then time delay is obtained as following,

∆̂ =
β̂ ×K

2π
(4.22)

As the R matrices are estimated using the ISSP method, the phase response

is plotted with P points. Accordingly, the slope of the fitted line changes ac-

cording to the P points. Then the new slope equals β′ = β × P
K

. In this case,

TDOA is estimated as following,

∆̂′ =
β̂ × P

2π
(4.23)

The slope of the fitted lines changes according to amount of the used frequency

bins. When the R matrices are estimated using the BCFB method, a phase

value represents F/P frequency bins. Consequently, the slope changes with

this ratio, β′ = β × P
F

. In this case, TDOA is estimated as below,

∆̂′ =
β̂ ×K
F
P
× 2π

(4.24)
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4.3.5. Cramer-Rao Lower Bound on TDOA Estimation

In the estimation problems, the Cramer-Rao lower bound (CRLB)

which is a well-known term, is used as a lower bound for the error variance

of unbiased estimators. A comprehensive derivation of the CRLB for TDOA

estimation is given in [79, 80]. The CRLB is defined for a time continuous

model as the following,

CRLB(∆t) =
3

16π2TW 3

1 + 2SNR

SNR2
(4.25)

where, T is acquisition interval, W is the bandwidth of the signal, the SNR

between the signal with power σ2
s and the ambient noise with variance σ2

n

is defined as SNR = σ2
s

σ2
n
. In order to transform discrete time, the signal is

sampled with fs. Then the time delay equals ∆ = ∆tfs is determined. ∆t is

the time delay in continuous time. Thus the CRLB in discrete-time is defined

as,

CRLB(∆) = f 2
s CRLB(∆t) (4.26)

The bandwidth of the signal is chosen as fs = 4W in simulations. So, inserting

fs = 4W into (4.25) and (4.26),

CRLB(∆) =
12

π2Tfs

1 + 2SNR

SNR2
(4.27)

Finally, the number of samples (N) equals N = Tfs and the final CRLB

expression is given as,

CRLB(∆) =
12

π2N

1 + 2SNR

SNR2
(4.28)
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4.4. Simulation Results

In this section, two different estimation performances of the proposed

method are given in order to see the effect of the estimating R matrices.

We used two approaches in order to estimate the sample R matrix as men-

tioned previously. Thus, the TDOA estimation performances of the proposed

BCFB based and ISSP based estimation methods are given in simulations.

Besides, the estimation performance of the proposed method is compared with

the CRLB. The performance criterion is the root-mean square error (RMSE)

which is defined as following,

RMSE =

√
E{(∆̂−∆)2}

where, ∆̂ is the estimated value and the ∆ is the exact value.

In simulations, a chirp signal is used as a wideband signal. The time

duration of the signal is 0.1 sec. The bandwidth of the signal is W = 250 kHz

and the sampling frequency is chosen as 1 MHz. The source is located at (4000,

4000). The reference sensor is located at (0, 0) and the second sensor is located

at (100, 0). The simulation results are determined by 1000 independent Monte

Carlo trials.

The two independent estimation performances of the proposed method

are shown in simulations. This is because the spatial covariance matrices are

estimated in two different ways. The first approach is based on ISSP. The

number of blocks in (4.8) is selected as B = 200 and each block has 500

samples. The number of DFT points in each block is also 500. The second

proposed approach is based on BCFB method and the parameters in (4.9) are

selected as P = 80 and L = 312.

Figure 4.4. shows the estimation errors of the proposed estimator us-

ing BCFB which is proposed and the ISSP approaches. The estimation per-

formances of the two estimators are also compared to the CRLB which shows

the physical lower bound on variance of the estimators. As seen in the fig-
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Figure 4.4.: The effect of the R matrix estimation to the estimation performance. The

CRLB is given for comparison.

ure, the proposed BFCB based estimator goes along with the CRLB when the

SNR is higher than -14 dB. Using the BCFB method improves the estimation

performance especially in low SNR. In quite low SNR (below -14 dB), the

performance of the estimator diverges from the CRLB depending on the noise

effect. And there is also that, the estimator using ISSP method deviates from

the estimator using BFCB and the CRLB when the SNR is below -11 dB.

In Figure 4.5., the estimation performances of the proposed estimator

using BCFB to estimate R matrices according to sparsity level are shown.

Sparsity level changes according to the parameters in (4.10). In figure, de-

pending on the value of L, the sparsity level of the used data is determined

and the estimation performances vary. As shown in figure, the best perfor-

mance is obtained when the full data is used. With the increasing of sparsity

level, the estimator performance degrades especially in quite low SNR (below

-12 dB). When the amount of the used data drops under a definite level (in
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%70 sparsity case), the estimation performance is affected. Concordantly, the

system has much more computational cost when the used data increases. This

is an undesired case in real time applications.
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Figure 4.5.: The RMSE of the estimator according to the sparsity level.

Figure 4.6. shows the RMSE of the proposed estimator for the DS-

SS signal according to the sparsity level. As seen in the figure, the TDOA

estimator works for the DS-SS signals even in quite low SNR. The frequency

components in the signal bandwidth is fully and sparsely used. The estimator

performances in the form of two usage of the frequency data are close to each

other up to -5 dB. When the SNR decreases below -5 dB, the estimator used

sparse signal experiences a loss of performance. The estimator used a signal

without sparsity performs close to the CRLB as shown in figure.
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Figure 4.6.: The RMSE of the estimator for the DS-SS signal according to the sparsity level.

The CRLB is also given for comparison.

4.5. Conclusion

In this section, a frequency domain TDOA estimator is proposed and

the estimation performances in terms of root mean square error are given for

various SNR cases. In order to estimate TDOA, the proposed method uses

the phase slope of the estimated sample covariance matrices. In simulations,

the proposed estimator is tested for the chirp signals and also for the DS-SS

signals. In order to estimate sample covariance matrices, two different methods

are used, the ISSP method and the proposed BCFB method. The ISSP is

a well-known wideband signal processing method and the BCFB method is

proposed in this thesis. In the BCFB method, the frequency components in

the signal bandwidth is fully or sparsely utilized. The computational cost is

reduced by using the sparse R matrices which is suitable for practical real

time applications. The simulation results show that the proposed estimator
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can estimate the TDOA in quite low SNR and it attains to the CRLB. In

simulations, two sensors are used but it is possible to increase the number

of sensors in array. In this case, the signal subspace based MUSIC or Root-

MUSIC algorithms can be used to estimate cross phase terms.
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5. CONCLUSION

In this thesis, the presence detection and TDOA estimation of direct sequence

spread spectrum (DS-SS) signals are presented. In the first part of the thesis,

the presence detection of DS-SS signals in white Gaussian noise is investigated

by using a spatially distributed wideband sensor array. The presence detectors

determines whether a signal is present or not. For the presence detection of

both the long and short code DS-SS signals, two different multichannel meth-

ods are proposed. The first proposed detection method uses the phase slope

of the cross channel terms of the spatial covariance matrices along the signal

bandwidth. The normalized total root mean square error (TotalRMSE) is used

as the test statistic for the signal detection. It is shown in simulations that

the detection performance of the first proposed method is invariant from the

spreading code length. It is also shown, it is possible to detect DS-SS signals

in the presence of narrowband interferences and multipath reflections. The

second proposed detection method is based on the eigenvalue ratio of the spa-

tial covariance matrices. In addition, a new sample spatial covariance matrix

(R) estimation technique, which is called as block of consecutive frequency

bins (BCFB), is proposed. In this technique, the sample covariance matrices

are estimated in a sparse structure. Therefore, the proposed BCFB method is

not requiring the whole frequency components of the signal. Also the BCFB

method gives a stable R estimate especially in low SNR. It is shown that us-

ing the sample covariance matrix of the proposed BCFB method improves the

detection performance especially in low SNR. It is also shown in various sim-

ulations that the proposed methods can detect the DS-SS signals in a stable

way in quite low SNR without any prior information and assumption on target

signal.

In the second part of the thesis, a frequency domain TDOA estimator

is proposed for the DS-SS signals. TDOA of the received signals is estimated

using only the phase slope of the estimated R matrices in the first proposed

detection method. In this way, by using the proposed the sensors and hence
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the location of the target signal. In simulations, the estimation performances

in terms of root mean square error are given for various SNR levels. It is also

shown that the proposed TDOA estimator’s performance is efficient in low

SNR and it attains to the Cramer Rao Lower Bound (CRLB).
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