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ABSTRACT

PERFORMANCE OF SPLINE-BASED GAM IN THE PRESENCE OF
OUTLIERS AND MULTICOLLINEARITY

HURUY DEBESSAY ASFHA

Department of Statistics
Anadolu University, Graduate School of Sciences, May, 2017

Supervisor: Assoc. Prof. Dr. Betül KAN KILINÇ

Generalized additive models (GAMs) are extension of additive models as generalized
linear models (GLMs) are to ordinary linear regression model. �ere are di�erent
approaches of ��ing these kinds of models one of which is the smoothing bases
approach, where variety alternatives of smoothing functions are used to de�ne the
bases of the model matrix. Penalized regression spline which is estimated by penalized
regression techniques is one alternative method for representing GAM models.

In this thesis, three penalized regression splines; cubic spline, p-spline, and
thin-plate spline are proposed to �t GAM for a simulated data. �e performance
of these smoothers is evaluated and compared for tolerance of the e�ect of outliers,
multicollinearity and both when they exist together. Results of the experiments showed
that the GAMs ��ed using these nonparametric regression techniques are less prone to
multicollinearity and outliers compared to their parametric counterparts.

Keywords: Generalized additive models, Smoothing, Penalized regression spline,
Outlier, Multicollinearity.
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ÖZET

SPLAYN-TABANLI GAM’IN ÇOKLU BAĞLANTI VE AYKIRI DEĞER
VARLIĞINDA PERFORMANSLARI

HURUY DEBESSAY ASFHA

İstatistik Anabilim Dalı
Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Mayıs, 2017

Danışman: Doç. Dr. Betül KAN KILINÇ

Doğrusal regresyon modellerinin genelleştirilmiş doğrusal modellerin bir uzantısi oması
gibi genelleştirilmiş toplamsal modeller de toplamsal modellerin bir uzantısıdır. Bu tür
modellerin veriye uyumu için kullanılan değişik yaklaşımlardan biri olan düzleştirme,
model matrisinde çeşitli düzleştirme fonksiyonlarının kullanıldığı yaklaşımlardandır.
Cezalı regresyon splaynları, genelleştirilmiş toplamsal modelleri oluşturmak cezalı
regresyon tekniği ile kestirilen bir diğer yöntemdir.

Bu tez çalışmasında, üç farklı regresyon splaynları, kübik, p-splayn ve ince tabakalı
splaynlar veri üretmede kullanılır. Bu düzleştiricilerin, aykırı değer, çoklu bağlantı ve her
iki durum söz konusu olduğunda performansları karşılaştırılır. Sonuçlar elde edildiğinde
genelleştirilmiş toplamsal modellerin, parametrik olan regresyon tekniklerine göre
aykırı değer ve çoklu bağlantıdan daha az etkilendiğini ortaya konmuştur.

Anahtar Kelimeler: Genelleştirilmiş toplamsal modeller, Düzleştirme, Cezalı
regresyon splaynları, Aykırı değer, Çoklu bağlantı.
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1. INTRODUCTION

Regression analysis, a technique used for investigating and modeling the relationships
among variables, plays a vital role and can safely be argued that it holds a central point in
statistical data analysis. Generally, regression models can be categorized as parametric,
nonparametric and semiparametric (have behaviors of parametric and nonparametric).
Linear regression is the basic parametric model and is wri�en in the form of

y =Xβ + ε (1.1)

where,X is model matrix,β is a vector of unknown model coe�cients, andy is response
variable. ε is random error term which follows N(0, σ2) distribution.

�ese kind of models are simple to use however, there are �ve key strict
assumptions to be considered while applying linear regression models. �ese
assumptions are:

• Linear relationship between response and predictor variables. E(y/X) = β0 +
β1x1 + β2x2 + ... + βkxk.

• Response variable is normally distributed;
f(y/X) ∼ N(µ,σ2)

• No or li�le multicollinearity among covariates

• No autocorrelation:
Cov(εi, εj) = 0.

• Homoscedasticity;
σ2

1 = σ2
2 = ... = σ2

k

However, these assumptions do not always hold true. Generalized linear models
(GLMs) are introduced to relax the strict assumptions of normality and homoscedasticity
in ordinary linear regression. In GLM, distribution of response variable has to be one
of the exponential family distributions among which are normal, binomial, Poisson,
exponential and gamma distributions [1, 2].

y ∼ exponential family distributions

However, the assumption of linear dependence in the classical linear models is carried
over without modi�cations to GLMs [3]. In GLMs, the similarity in considerably several
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properties of the exponential family distributions allows us to use the same technique
to estimate model coe�cients using the likelihood concept of estimation. �e general
form of GLMs is [4, 3, 5],

g(µ) = η =X ′β = β0 + β1x1 + ... + βpxp (1.2)

where, g is a link function which connects the systematic component, η (called linear
predictor), and the random component (response variable) of the model [6]. �e expected
response is then obtained as,

E(y) = g−1(η) = g−1(X ′β)

Here, if the response variable follows normal distribution and an identity link function
is used, the generalized linear model turns out to be an ordinary linear regression model.

In parametric regression, the functional form of the model is known in advance
and is then �t to the data with global estimates. In the absence of a strong evidence for
the prede�ned functional form to represent the data appropriately, an alternative has to
be used; estimating the functional form from the data is the best way to proceed [6]. In
order to estimate the functional form from the data, the global estimation in parametric
models has to be replaced with local estimates. �ese methods of locally estimating of the
functional form from the data itself is generally described as nonparametric techniques
[6].

Nonparametric regression models allow one to �t a �exible nonlinear model to the
data in order to represent the relationship between the response and predictor variables.
As parametric models, nonparametric models are useful both for modeling and diagnosis
of the nonlinear relationships.

A detailed explanation of some nonparametric model ��ing techniques (smoothers
which apply the local estimation principle) can be found in Hastie and Tibshirani,
1990. �e most popular methods of nonpara-metric regression techniques include local
polynomial smoothing, kernel smoothing and splines [7, 8].

When the linear predictors in GLM model (Eq:1.2) are replaced with additive
predictors, the model is called generalized additive model (GAM), thus, GAMs are
regarded as extensions of GLMs.

g(µ) = η = β0 + f1(x1)β1 + f2(x2)β2 + ... + fp(xp)βp + ε (1.3)

�e fi’s in generalized additive models are smoothing functions which can be any
of kernels, local regression (loess) or smoothing splines. Due to the fact that GAMs

2



can incorporate nonparametric models into parametric ones, they can sometimes
be described as semiparametric regression models [6]. In semiparametric models,
some predictor variables are modeled parametrically while others are modeled using
nonparametric regression. In GAMs, while the assumption of standard linear models of
the linear dependency of y onX is relaxed, the additivity assumption still holds true and
it is this additivity property that makes GAMs easier to interpret than other algorithms
such as supportive vector machines (SVM), neural networks, … etc. [6].

Generally, GAMs are computationally expensive techniques compared to the linear
models due to the fact that they build the model using local �ts. However, di�erent
algorithms have been developed to �t GAM models iteratively. �e gam package was
developed based on the work of Hastie and Tibshirani, 1990 to �t generalized additive
models to the data of concern [9, 10]. �is gam function constructs GAM models by
combining di�erent smoothing methods using back��ing algorithm. Another package
used to �t GAM models in R is the mgcv package of Wood, 2006. It employs the approach
of penalized regression spline to �t a model [4]. By default, the degree of smoothness of
the �t is chosen internally by the algorithm. Automatic selection of smoothing parameter
is an advantage for the reason that it avoids the subjectivity and work of choosing it
by the user. However, it can fail to obtain the best degree of smoothness and human
intervention could sometimes be needed [10].

In parametric regression analysis, there are di�erent causes of model disturbances
one of which is the existence of abnormal observations in the dataset which distorts the
model parameters. Furthermore, this in turn may result in an in�ated estimate of σ2,
the residual sum of squares. Similarly [11], in nonparametric regression the presence
of small percentage of such anomalous observations in the data a�ects the estimated
smooth functions causing the model to be more close to them. In literature, some outlier-
resistant GAM ��ing techniques have been developed. Alimadad and Salibian-Barrera,
2011 discussed a robust method of GAM ��ing technique by using those derived from
robust quasi-likelihood equations in place of the maximum likelihood based weights
in the local scoring algorithm [11]. �e rgam in R is an implementation of this robust
method. Wong et al., 2014 proposed an M-type robust estimating technique to �t a more
robust generalized additive model in the presence of outliers and was implemented in R
as robustGAM. �e core idea of this method is to decompose the overall M-type problem
into a sequence of additive models ��ing problems [12].

�e existence of concurvity which leads to a poor estimation of model parameters
and underestimation of their standard error is another cause of model disturbance.
According Buja et al., 1989 concurvity is a nonlinear relationship among predictor
variables which causes degeneracy of the system equations which in turn results to
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non-unique solutions. Moreover, in the presence of concurvity, the easy interpretability
feature of additive models may no more be useful because e�ect of a predictor to the
response variable may be a�ected by other variables [13, 14]. In the literature, some
approaches were proposed to �t GAM models when the covariates have nonlinear
relationships. Here, the question comes how the existence of linear relationship in
covariates a�ects the model goodness of �t.

�e objective of this thesis is therefore, to examine throughly the performance
of three smoothing spline bases: Cubic regression spline, p-spline and thin plate
spline which are commonly used in ��ing GAM models under the following three
situations. First, the performance of these techniques is evaluated when ��ed to
data containing outlier values in the response variable. In the second experiment,
the methods are compared when applied to data with multicollinearity. �is is to
see how these GAM models perform in situations where the classic linear regression
models are not appropriate due to the violence of the assumption. Finally, presence
of abnormal observations in the response variable and existence of linear relationships
among covariates are both considered to evaluate and compare how these GAM ��ing
penalized smoothing splines perform.

�is thesis is organized as follows.

• Section 2: Discuses brie�y what smoothing is and its importance. It brie�y
addresses splines and how they can be used to interpolate data points. It then
presents how penalized splines can be used as smoothers.

• Section 3: �is section addresses the concept of ��ing GAM models as penalized
GLMs. It also discusses model degrees of freedom and a method for estimating
smoothing parameter.

• Section 4: �e simulation procedures used to generate outlier-contaminated data
as well as data with multicollinearity are addressed in this section.

• Section 5: Results and discussion of the study is presented in this section.

• Section 6: �is �nal section addresses the conclusions based on the �ndings and
includes recommendations of the thesis.

4



2. SMOOTHING

Smoothing is a method of estimating a nonlinear e�ect of one or more predictor variables
on the response variable by le�ing the data suggest the appropriate functional form
[7, 15]. �ere are di�erent techniques of smoothing data. Some of the popular method
of data smoothing techniques are local polynomial smoothing, kernel smoothing,
regression splines, and penalized regression splines.

Figure 2.1. An example where a linear model is not a best �t to the data

In this section, the concept of splines is discussed �rst and later it is shown what
regression splines and how to incorporate penalty to control the roughness of the curve
which in turn leads to the topic of penalized regression splines are.

2.1 Splines

�e term spline was originally used to name a �exible strip that was being using by
dra�smen to draw curves by joining given points. �e purpose was to �x the strip at its
edges and calibrate it in order to pass through all the points so that the resulting shape
will be used as a smooth interconnecting curve [16].

In mathematical sciences, splines are piecewise polynomial functions which are
constrained to be connected at the junction points. Given a tabulated data (xi, yi) for
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i = 1,2, .., n, each point is joined by a polynomial function which results in a group
of piecewise curves. A spline is then, the function which is made of these piecewise
polynomials joined together at points called knots.

Figure 2.2. Piecewise linear spline with 9 knots interpolating the function 1
1+x2 sin(x) for

x ∈ [−4,4].

Linear spline is a simple form of interpolation in which the piecewise functions
which connect the knots are straight lines [6]. Figure 2.2 shows a simple linear spline
interpolation (solid line) to estimate the function given by the do�ed line. It can clearly
be seen that the linear interpolation fails to capture the curvature of the function.
One could use more knots to improve the accuracy of the interpolation, however, it is
important to note that these kinds of interpolating functions are not continuous on their
�rst derivatives at the knots. �is can be avoided by using higher order polynomials.

Now, consider the points {(xi, yi), for i = 1,2, ..., n}, where, xi < xi+1. A function,
g(x), interpolating all these points which is constructed by joining sections of cubic
polynomials (degree 3), one for each [xi, xi+1], so that the whole function is continuous
in values and on its �rst two derivatives is called a cubic spline [17]. Cubic splines are
the most popular interpolators.

2.1.1 Natural cubic spline

Natural cubic splines are a special case of cubic splines where the second derivative at
the two end points are constrained to have zero value. �ey are called natural for they
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are a solution of an optimization problem [18, 17]. In general, a natural cubic spline
satis�es the following:

1. It interpolates the points (x, y) i.e. g(xi) = yi

2. Its second derivative at the two end points is zero;
g′′(x1) = g′′(xn) = 0.

3. Natural cubic spline is the smoothest interpolator. If f(x) is any continuous
function on the interval [x1, xn] and has continuous �rst and second derivatives,
and interpolates the points (xi, yi), then the natural cubic spline g(x) is smoothest
in the sense of minimizing the roughness measure.

∫
xn

x1
g′′(x)2dx ≤ ∫

xn

x1
f ′′(x)2dx,∀f ∈ C2 (2.1)

To demonstrate the smoothness of a cubic spline [17, 19] de�ne a function;

h(x) = f(x) − g(x).

Since, both f(x) and g(x) are interpolators of the points,
f(xi) = g(xi) = yi which in turn leads to

f(xi) = h(xi) + g(xi) = 0, for i = 1,2, ..., n. (2.2)

From Eq:2.2, f ′′(x) = h′′(x) + g′′(x). Squaring both sides gives,

f ′′(x)2 = h′′(x)2 + g′′(x)2 + 2h′′(x)g′′(x)

Integrating both sides yield,

∫
xn

x1
f ′′(x)2dx = ∫

xn

x1
h′′(x)2dx + ∫

xn

x1
g′′(x)2dx

+2∫
xn

x1
h′′(x)g′′(x)dx (2.3)

Now, let the right most hand side of Eq: 2.3 is zero.

2∫
xn

x1
h′′(x)g′′(x)dx = 0 (2.4)

Using the rule of integration by parts, it can be shown that

(g′′(x)h′(x))′ = g′′′(x)h′(x) + g′′(x)h′′(x).
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Figure 2.3. Natural cubic spline with 7 interior knots
Source:Wood, 2006, p.124

�erefore, of Eq:2.4 can be wri�en as,

∫
xn

x1
g′′(x)h′′(x)dx = ∫

xn

x1
(g′′(x)h′(x))′dx − ∫

xn

x1
g′′′(x)h′(x)dx

= g′′(x)h′(x)∣
xn

x1

− ∫
xn

x1
g′′′(x)h′(x)dx

= [g′′(xn)h′(xn) − g′′(x1)h′(xn)] − ∫
xn

x1
g′′′(x)h′(x)dx

= 0 − ∫
xn

x1
g′′′(x)h′(x)dx

By de�nition of natural cubic spline, since g(x) is a piecewise polynomial, g′′′(x)
is a piecewise constant, say g′′′(x) = ci on each interval [xi, xi+1]. Furthermore, the
constraints of this spline imply that

g′′(x1) = g′′(xn) = 0.

�us,

∫
xn

x1
g′′(x)h′′(x)dx = −

n−1

∑
i=1
ci∫

xi+1

xi
h′(x)dx

= −
n−1

∑
i=1
ci[h(xi+1) − h(xi)]

However, since both f and g are equal at the points, h(x) = 0 for all the knots. �erefore,
as claimed in Eq:2.4,

∫
xn

x1
g′′(x)h′′(x)dx = 0.

Since, the integration of the squared derivatives of f , g and h are all positive. From

8



Eq:2.3, it can be implied that

∫
xn

x1
g′′(x)2dx ≤ ∫

xn

x1
f ′′(x)2dx = ∫

xn

x1
h′′(x)2dx + ∫

xn

x1
g′′(x)2dx

�erefore,
∫

xn

x1
g′′(x)2dx ≤ ∫

xn

x1
f ′′(x)2dx, (2.5)

where f is any twice di�erentiable function. �e proof is complete and hence, natural
cubic splines have the smoothest curvature among all smooth curves which interpolate
the data points.

2.1.1.1 Derivation of natural cubic spline

Computationally it is tedious to �nd a natural cubic spline that interpolates the points
(xi, yi), where xi < xi+1. However, a simple algorithm can be developed to generate a
natural cubic spline g(x). Let zi = g′′(xi) and hi = xi+1 − xi. By de�nition of natural
cubic splines, then, z0 = zn = 0.

Lagrange form of the second derivative of the spline is given by [19],

g′′i (x) =
zi+1

hi
(x − xi) −

zi
hi

(x − xi+1).

By integrating g′′i (x), we obtain g′i(x).

∫ g′′i (x)dx = ∫
zi+1

hi
(x − xi)dx − ∫

zi
hi

(x − xi+1)dx

g′i(x) =
zi+1

2hi
(x − xi)2 − zi

2hi
(x − xi+1)2 +Ci −Di

Here, two arbitrary constants are added for ease of calculations.

∫ g′i(x)dx = ∫
zi+1

2hi
(x − xi)2dx − ∫

zi
2hi

(x − xi+1)2dx + ∫ Cidx − ∫ Didx

gi(x) =
zi+1

6hi
(x − xi)3 − zi

6hi
(x − xi+1)3 +Ci(x − xi) −Di(x − xi+1)

Recall that cubic spline interpolates the given points (knots). �erefore,
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1. gi(xi) = yi

yi =
zi+1

6hi
(xi − xi)3 − zi

6hi
(xi − xi+1)3 +Ci(xi − xi) −Di(xi − xi+1)

yi = −
zi
6hi

(−hi)3 −Di(−hi)

= zi
6hi

(hi)3 +Di(hi)

Di =
yi
hi
− zihi

6
(2.6)

2. gi(xi+1) = yi+1

yi+1 =
zi+1

6hi
(xi+1 − xi)3 − zi

6hi
(xi+1 − xi+1)3 +Ci(xi+1 − xi) −Di(xi+1 − xi+1)

yi+1 =
zi+1

6hi
(hi)3 +Ci(hi)

Ci =
yi+1

hi
− zi+1hi

6
(2.7)

Substituting Ci and Di in g(x) yields

gi(x) =
zi+1

2hi
(x − xi)

3 − zi
6hi

(x − xi+1)
3 + (yi+1

hi
− hizi+1

6
)(x − xi) − (yi

hi
− zihi

6
)(x − xi+1)

(2.8)

and �rst derivative of g(x) is given by,

g′i(x) =
zi+1

2hi
(x − xi)2 − zi

2hi
(x − xi+1)2 + yi+1 − yi

hi
− zi+1 − zi

6
hi

Let the fraction yi+1−yi
hi

which is a constant be denoted by bi. By de�nition of cubic
splines, g(x) has continuous �rst derivative;

g′i−1(xi) = g′i(xi), for i = 1,2, ..., n − 1.

g′i(xi) = −
hizi
2

+ bi −
zi+1 − zi

6
hi

and,

g′i−1(xi) =
zi
hi

(x − xi−1)2 − zi−1

2hi−1

(x − xi)2 + bi−1 −
zi − zi−1

6
hi−1

= zi
2
hi−1 + bi−1 −

zi − zi−1

6
hi−1

10



Equating g′i−1(xi) and g′i(xi),

g′i−1(xi) − g′i(xi) =0
zihi−1

2
− zi − zi−1

6
hi−1 +

hizi
2

+ zi+1 − zi
6

hi =bi − bi−1

3(zihi−1) − (zi − zi−1)hi−1 + 3hizi + (zi+1 − zi)hi =6(bi − bi−1)

hi−1zi−1 + 2(hi−1 + hi)zi + hizi+1 =6(bi − bi−1)

�ere are a total of n − 1 linear equations. Since z0 = zn = 0, the �rst and last
equations have only two terms at the le� hand side of the equality. �e linear equations
can be wri�en in a matrix form;

H.z = b (2.9)

where,

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2d1 h1 0 0 ⋯ 0 0 0

h1 2d2 h2 0 ⋯ 0 0 0

0 h2 2d3 h3 ⋯ 0 0 0

0 0 h3 2d4 ⋱ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 2dn−3 hn−3 0

0 0 0 0 ⋯ hn−3 2dn−2 hn−2

0 0 0 0 ⋯ 0 hn−2 2dn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

z1

z2

z3

⋮
zn−2

zn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6(b1 − b0)
6(b2 − b1)
6(b3 − b2)

⋮
6(bn−2 − bn−3)
6(bn−1 − bn−2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where di = hi−1 + hi, hi = xi+1 − xi and bi = yi+1−yi
hi

.

�e fact that H is symmetric, tridiagonal, and diagonal dominant ensures that
Eq:2.9 has unique solutions for the unknown variables (z′is). Once obtained, substituting
values of zi’s in Eq:2.8 will result in a cubic polynomial function which is the desired
natural cubic spline.

11



2.1.2 Roughness measure of a curve

�ere are di�erent ways of measuring roughness of a curve g de�ned on an interval
[a, b] [17]. Given it is twice di�erentiable function, one common way of quantifying the
wiggliness of g is given by the integration of its squared second derivative;

J(g) = ∫
b

a
[g′′(x)]2

dx (2.10)

Some motivating ways of this measure of wiggliness are explained in Green and
Silverman [17]. From the mathematical perspective, ∣g′′(x)∣ measures the turning rate
of the curve at a speci�c value of x [20]; this measure should not be a�ected by a linear
or constant terms in the model. �us, two functions which di�er only by a constant or a
linear term should have the same quantity of second derivatives at a given point. Based
on this intuitive idea, it becomes logical to use Eq:2.10 as a measure of global wiggliness
of a curve.

2.2 Smoothing Bases

A smoothing function can best be described by considering a univariate model with only
one smoothing function.

yi = f(xi) + εi (2.11)

where, f is a smoother, and εi are i.i.d random variables which follows a distribution of
N(0, σ2).

Here, a basis expansion can be used to de�ne the dimensions of the model matrix
so that a more �exible smoothing function can be achieved [21]. Choosing the basis
function allows the smoother to be wri�en as a linear combination of these bases.

Let bi(x) be the ith basis function for i = 1,2, ..., q. �en, f is wri�en as;

f(x) =
q

∑
i=1
bi(x)βi (2.12)

where, βi’s are unknown parameters. �erefore, substituting Eq:2.12 in Eq:2.11 yields a
linear model given by,

yi = b1(x)β1 + b2(x)β2 + ... + bq(x)βq + εi (2.13)

Di�erent functions can be employed to de�ne the bases. Some common bases are
discussed below.
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2.2.1 Polynomial basis

Based on how many basis functions should be used to estimate the smoother, a given
order polynomial would be chosen. For example, if a fourth order is chosen, the bases
functions are given by, b1(x) = 1, b2(x) = x, b3 = x2, b4 = x3 and b5 = x4 and the
smoothing function is then wri�en as,

f(x) = β1 + xβ2 + x2β3 + x3β4 + x4β5. (2.14)

�e ith row of the model matrix is given by,

X i = [1, xi, x2
i , x

3
i , x

4
i ].

Here, an ordinary least square method is used to determine the model parameters.

Figure 2.4. An illustration of smoothing data using polynomial bases of varying degrees.

In polynomial regression approach, a higher-order may generally represent the
data well [18]. However, using a higher-degree polynomial means more model
parameters will be included which may result in over-��ing. Figure 2.4 shows how
an increase in order of the polynomial basis in�uences goodness of �t of the model.
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2.2.2 Spline bases

Splines are among the popular ways of smoothing data by ��ing the underlying
function. �ey are more advantageous than their polynomial counterparts for di�erent
reasons [6].

1. Splines are superior in a sense that they have analytical foundation; it can be
proved that a spline smoother provides a �t with a minimum mean square error.

2. In smoothing splines, a term which controls the trade-o� between over-��ing
and goodness of �t can be added to the optimization problem which polynomial
regression lacks to have.

3. For the reason that a lot of new studies about splines are being done while that
of polynomials are more or less static, so�wares which implement splines are
superior to those which implement polynomial regression.

Figure 2.5. Cubic regression spline with di�erent number of knots.

As discussed before, (natural) cubic splines are the smoothest among all
interpolators. For this reason, a cubic regression spline will be considered to show how
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splines are used to �t a univariate model. Given knots, x∗j for j = 1,2, ..., q, there are
di�erent ways of representing cubic basis. For simplicity [4, 22], consider the following
simple representation of cubic smoothing spline for x ∈ [0,1]. �e cubic bases are given
by, b1(x) = 1, b2(x) = x, and bj+2(x) = R(x,x∗j ), where,

R(x,x∗j ) =
[(x∗j − 1

2)2 − 1
12
][(x − 1

2)2 − 1
12
]

4
−

[(∣x − x∗j ∣ − 1
2)4 − 1

2(∣x − x∗j ∣ −
1
2)2 + 7

240
]

24
(2.15)

�e smoother is then given by,

f(x) = β1 + β2x +
q

∑
j=1
βj+2Ri(x,x∗j ) (2.16)

�e model matrix is an n by q + 2 where, the ith row is given by,

X i = [1, xi,R(xi, x∗1),R(xi, x∗2), ...,R(xi, x∗q)] (2.17)

In Figure 2.5, the model does not seem good enough to �t the data when three
knots are chosen. On the other hand, if too many knots are used (e.g. the �t with seven
knots) the problem of over-��ing occurs; the �t becomes too wiggly. �erefore, one
has to choose appropriate number of knots in order to get the best �t. In reality, this is
somehow subjective and not the best way to smooth large data for it is hard to guess
the appropriate number of knots. A wiggliness controlling mechanism should then be
addressed in modeling with smoothing functions [4].

As discussed above, the model roughness is controlled by se�ing the basis
dimension appropriately �xed. It can clearly be seen that the goodness of �t of the
model depends on the location and number of knots. Using too many knots results too
wiggly �t and on the other hand, a model with fewer knots may not �t the data well.

A be�er way of controlling the wiggliness of a model �t is by using a penalized
regression spline where a roughness of penalty is added to the least square ��ing
optimization in order to control the smoothness. In this case, the number of knots are
chosen to be a li�le more than believed could be desired [4]. �e objective in penalized
regression spline is to �t the model by minimizing,

∥y −Xβ∥2 + λ∫ [f ′′(x)]2
dx (2.18)

where, the integrated term is the roughness measure, λ is a smoothing parameter which
controls the trade-o� between smoothness and goodness of �t of a model. If λ → ∞, f
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will approach to a straight line �t, where as if λ = 0, f will be identical to the regression
spline ��ing technique for it will not be penalized.

Figure 2.6. Penalized regression spline with di�erent number of knots

Wood, 2006 showed that the penalty term can be wri�en in quadratic form of β;

∫ [f ′′(x)]2
dx = βTSβ (2.19)

Replacing Eq:2.19 in Eq:2.18 yields,

∥y −Xβ∥2 + λβTSβ (2.20)

Computationally, Eq:2.20 is more favorable in comparison with the somewhat
complicated form of Eq:2.18. Elements of matrix S are known coe�cients which are
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calculated using the given knots by using Eq:2.15 and is wri�en as,

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 ⋯ 0 0

0 0 0 0 ⋯ 0 0

0 0 R(x∗1, x∗1) R(x∗1, x∗2) ⋯ R(x∗1, x∗q−1) R(x∗1, x∗q)
0 0 R(x∗2, x∗1) R(x∗2, x∗2) ⋯ R(x∗2, x∗q−1) R(x∗2, x∗q)
⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 R(x∗q , x∗1) R(x∗q , x∗2) ⋯ R(x∗q , x∗q−1) R(x∗q , x∗q)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In a similar way to that of ordinary least square method, the penalized least square
estimator, minimizer of Eq:2.18 is

∂

∂β
[(y −Xβ)T (y −Xβ) + λβTSβ] =0

(y −Xβ)(−XT ) + λSβ =0

β̂ = (XTX + λS)−1
XTy

and the hat or in�uence matrix is then given by,
A =X(XTX + λS)−1

XT .
Further details of this estimator and its implementations can be found in Wood, 2006.

In the previous section (see Figure 2.5), it has been clearly shown how the increase
of knot size disturbs the model smoothness. Moreover, Figure 2.6 shows how penalized
regression method controls the roughness of the model by adding a penalty term to the
minimization objective. As it can be seen from those two graphs, the more wiggly 7-
knots model in the unpenalized regression can safely be argued that it produced the best
�t a�er introducing the penalty term.

Furthermore, Figure 2.7 illustrates smoothing data with polynomial basis of order
4, cubic regression spline (unpenalized) and penalized (cubic) regression spline. �e
penalized �t seems to represent the data be�er. �erefore, it is reasonable to adopt
penalized regression spline for smoothing.

Following, three smoothing spline techniques which incorporate a penalty term
will be discussed. �ese are among the commonly used smoothing splines which are
implemented in the mgcv package [4].

2.2.2.1 Cubic spline

�ere are di�erent possible ways of de�ning a cubic smoothing spline basis. One simple
representation of cubic spline was introduced in previous sections. Another way of
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Figure 2.7. Representing univariate smoothing functions using di�erent bases;
Polynomial basis of degree 4, cubic regression spline with 4 knots, and

penalized regression spline with 7 knots.

representing this kind of splines which has an advantage of easy interpretation of model
parameters [4] is given by Eq:2.21. In this approach, the parameters are given in terms
of the knot values.

Recall constructing a cubic spline function f(x), de�ned for knots x1, x2, ..., xk. If
we let βj = f(xj) and δj = f ′′(xj), then f(x) with basis functions a−j , a+j , c−j , and c+j is
given by,

f(x) = a−j (x)βj + a+j (x)βj+1 + c−j (x)δj + c+j (x)δj+1 if xj ≤ x ≤ xj+1 (2.21)

�e basis functions are de�ned in Table 2.1. It can easily be shown that βj = f(xj)
and δj = f ′′(xj).

Table 2.1. Basis functions for a cubic spline; hj = xj+1 − xj

a−j (x) =
xj+1−x
hj

c−j (x) =
(xj+1−x)3

hj
−hj(xj+1−x)
6

a+j (x) =
x−xj
hj

c+j (x) =
(x−xj)3

hj
−hj(x−xj)
6
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Re-writing f(x) by pu�ing the basis functions in,

f(x) =
xj+1 − x
hj

βj +
x − xj
hj

βj+1 +
(xj+1−x)3

hj
− hj(xj+1 − x)
6

δj +
(x−xj)3
hj

− hj(x − xj)
6

δj+1

(2.22)

To �nd f(xj), substitute xj in Eq:2.22

f(xj) =
xj+1 − xj

hj
βj +

xj − xj
hj

βj+1 +
(xj+1−xj)3

hj
− hj(xj+1 − xj)
6

δj

+
(xj−xj)3

hj
− hj(xj − xj)
6

δj+1

=
hj
hj
βj + 0 +

h2
j − h2

j

6
δj + 0

= βj

�e second derivative of f(x) is given by,

f ′′(x) =
xj+1 − x
hj

δj +
x − xj
hj

δj+1

�erefore, similarly substituting xj in f ′′(xj) yields,

f ′′(xj) =
xj+1 − xj

hj
δj +

xj − xj
hj

δj+1

=
hj
hj
δj + 0

= δj

By de�nition, a natural cubic spline is continuous to second derivative and has
zero second derivative values at the two end knots, say x1 and xk. In this case, to show
that f(x) satis�es these properties is equivalent to showing Eq:2.23 holds true.

Bδ− =Dβ (2.23)

where, δ− = (δ2, δ3, ..., δk−1)T [because f ′′(x1) = δ1 = δk = f ′′(xk) = 0]. �e matrices
B and D are given below. Continuity of the �rst derivative of the spline implies that
the the derivative of the sections to the le� and right xj are equal [4]. Hence, it can be
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wri�en as;

−
βj
hj

+
βj+1

hj
+ δj

hj
6
+ δj+1

3hj
6

− δj+1

hj
6
= −

βj+1

hj+1

+
βj+2

hj+1

− δj+1

3hj+1

6
+ δj+1

hj+1

6
− δj+2

hj+1

6

Multiplying both sides by −1 and a simple rearrangement of the above equality results
in,

1

hj
βj + ( 1

hj
+ 1

hj+1

)βj+1 +
1

hj+1

βj+2 =
hj
6
δj + (hj

3
+
hj+1

3
)δj+1 +

hj+1

6
δj+2

For j = 1,2, ..., k − 2, the terms in Eq:2.23 can be wri�en as;

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
h1

( 1
h1
+ 1
h2

) 1
h2

0 ⋯ 0 0 0 0

0 h2 ( 1
h2
+ 1
h3

) 1
h3

⋯ 0 0 0 0

0 0 h3 ( 1
h3
+ 1
h4

) ⋯ 0 0 0 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 0 1

hk−2
( 1
hk−2

+ 1
hk−1

) 1
hk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 ⋯ 0 0 0 0

h1
6 (h13 + h2

3 ) h2
6 0 ⋯ 0 0 0 0

0 h2
6 (h23 + h3

3 ) h3
6 ⋯ 0 0 0 0

0 0 h3
6 (h33 + h4

3 ) ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 0 hk−2
6 (hk−23 + hk−1

3 ) hk−1
6

0 0 0 0 ⋯ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

In Eq:2.23, let F − =B−1D, and by augmenting this new matrix as,

F =

⎡⎢⎢⎢⎢⎢⎢⎣

0
F −

0

⎤⎥⎥⎥⎥⎥⎥⎦

δ can be wri�en in terms ofB,D andβ as, δ = Fβ. Consequently, we can write Eq:2.21
in terms of β as,

f(x) = a−j (x)βj + a+j (x)βj+1 + c−j (x)F jβ + c+j (x)F j+1β, xj ≤ x ≤ xj+1 (2.24)
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and this can be re-wri�en in the general form as

f(x) =
k

∑
i=1
bi(x)βi

�e wiggliness measure of the spline [4] is given by,

∫
xk

x1
(f ′′(x))2dx = βTDTB−1Dβ (2.25)

where the penalty matrix is S =DTB−1D.

2.2.2.2 P-spline

For (natural) cubic spline, there is high tendency for the columns of the model matrixX ,
to be correlated for they are in someway transformed version of the predictor variable(s)
[6]. �is dependency may cause multicollinearity or concurvity which may result in
numerical instability and imprecision in the spline �t [6, 18]. To somehow get rid o�
this problem, a B-spline basis which is re�ned form of a cubic spline, can be employed.
�is kind of splines can be used to represent cubic splines as well as higher order splines.

B-spline basis, a strictly local type of spline is non-zero only on the intervals
between m + 3 adjacent knots where m + 1 is the order of the basis (i.e. m = 2 for
cubic spline) [4]. In B-spline basis, m + 1 knots are added on two sides of the speci�ed
knots so that totally there will be (m + 1) + k + (m + 1) knots. �e spline is however,
de�ned only on the interval [xm+2, xk] which implies that the �rst m + 1 and last m + 1

knots are arbitrary. Any spline of order m + 1 can then be represented as:

f(x) =
k

∑
i=1
Bm
i (x)βi (2.26)

where the B-spines can recursively be wri�en as,

Bm
i (x) = x − xi

xi+m+1 − xi
Bm−1
i (x) + xi+m+2 − x

xi+m+2 − xi+1

Bm−1
i+1 (x), i = 1,2, ..., k

�erefore, based on Eq:2.26 a cubic B-spline function (m = 2) with its B-spline
bases are respectively wri�en as;

f(x) =
k

∑
i=1
B2
i (x)βi (2.27)
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Figure 2.8. An illustration of representing a smooth curve by B-spline. Dashed (or do�ed)
curves are B-spline bases functions multiplied by their coe�cients where each
nonzero over 3 intervals in the le� panel (m=1), and 4 intervals in the right

panel (m=2) (solid curves represents the desired curve).
Source: Wood, 2006, p.153

and each of the B-spline bases (B’s) for i = 1,2, ..., k are given by,

B2
i (x) =

x − xi
xi+3 − xi

B1
i (x) +

xi+4 − x
xi+4 − xi+1

B1
i+1(x)

B1
i (x) =

x − xi
xi+2 − xi

B0
i (x) +

xi+3 − x
xi+3 − xi+1

B0
i+1(x)

B0
i (x) =

x − xi
xi+1 − xi

B−1
i (x) + xi+2 − x

xi+2 − xi+1

B−1
i+1(x)

B−1
i (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if xi ≤ x < xi+1

0 otherwise

(2.28)

Basically, a B-spline basis is a rescaling of the piecewise functions, which is the
same principle with rescaling explanatory variables by mean subtraction in order to
minimize collinearity [6]. In a very similar way, the rescaling in B-spline reduces
collinearity between the bases of the model matrix X . �is is generally true if large
number of knots are used, otherwise, the B-spline would not be stable [4, 6, 23].

P-splines, a penalty incorporated B-splines, are proposed by Eilers and Marx, 1996
as a more stable version of the B-spline bases particularly for lower rank smoothing.
�ey are generally de�ned on an equidistant knots and use a di�erence penalty applied
to adjacent coe�cients, βi, directly. For example, as given in Wood, 2006 if a squared
di�erence of adjacent parameters is to be used as penalty measure, it looks like,

P =
k−1

∑
i=1

(βi+1 − βi)2 = β2
1 − 2β1β2 + 2β2

2 − 2β2β3 + 2β2
3 + ... + β2

k (2.29)
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In matrix form, it can be wri�en as,

P = βT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 ⋯ 0 0 0 0

−1 2 −1 0 ⋯ 0 0 0 0

0 −1 2 −1 ⋯ 0 0 0 0

0 0 −1 2 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 2 −1 0 0

0 0 0 0 ⋯ −1 2 −1 0

0 0 0 0 ⋯ 0 −1 2 −1
0 0 0 0 ⋯ 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

β

By increasing the di�erences parameter, a higher order penalty can be produced.
�e advantage of p-spline is that they are easy to set up and use. Additionally, they
are �exible in the sense that any order of penalty can be incorporated to any order of
B-spline basis. However, if knots are unevenly spaced, p-splines lose their simplicity
behavior [4].

2.2.2.3 Thin plate spline

For an arbitrary spaced data (xi,yi), thin plate spline, say f(xi, yi), is a two-dimensional
interpolation scheme which is an extension of the natural cubic spline for one
dimensional data [25]. Splines of these types are good solutions for the smoothing
function problem of more than one predictor variables [4]. In thin plate spline, the
problem of estimating a smoothing function, f , is an estimation of a surface while in
natural cubic spline, it is a curve estimation problem [17].

Green and Silverman, 1994 put forth the general properties of the extended cubic
spline in order to develop a methodology (thin- plate interpolant) for bivariate (for
simplicity a bivariate case is used) case. �e properties of the roughness penalty, say
J , for data points (x1, x2) can be summarized as,

1. If the second derivatives of f are square-integrable over R2, J is �nite.

2. If f has high local curvature, J will be large resulting in a large second derivative.
Intuitively, it can be seen that J measures the wiggliness of f .

3. Rotating the coordinates in R2 does not a�ect J .

4. �e wiggliness penalty, J , is zero if and only if f is a linear function.
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In smoothing procedure, J is used as roughness penalty and in interpolation,
subjected to the interpolation conditions, it is used to �nd the natural thin-plate
interpolator [17].

Now, consider the smoothing function, f(x), estimation problem,

yi = f(xi) + εi

where εi is the random error term and x is a d−vector from n (≥ d) observations (xi, yi).
In this case , thin plate can be used to estimate the smoothing function, f , of the data
points (xi, yi), where i = 1,2, ..., n (n ≥ d) by �nding the function g [4, 26] which
minimizes

∥y − g∥2 + λJmd(g) (2.30)

where, g=(g(x1), g(x2), ..., g(xn))T , y=(y1, y2, ..., yn)T . Jmd(g) is the penalty function
which measures the wiggliness of the smoother, g, whereas, λ is the smoothing
parameter. Here, the roughness penalty function [4, 17, 26] is given by

Jmd = ∫ ...∫
Rd

∑
v1+v2+...+vd=m

m!

v1!...vd!
( ∂mg

∂xv11 ...∂x
vd
d

)
2

dx1...dxd. (2.31)

For two dimension (d = 2, m = 2), this measure of wiggliness is wri�en as

J22 = ∫ ∫ (∂
2g

∂x2
1

)
2

+ 2( ∂2g

∂x1∂x2

)
2

+ (∂
2g

∂x2
2

)
2

dx1dx2

Given the restriction 2m > d is true, Wood, 2006 put forth that the minimizer of
Eq:2.30 has the form of

g(x) =
n

∑
n=1

δiηmd(∣∣x − xi∣∣) +
m

∑
j=1
αjφj(x), (2.32)

where δ and α are vectors of coe�cients to be estimated in which δ is subject to the
linear constraint T Tδ = 0 where Tij = φj(xi). �e φj functions span ’null space’ of
functions for which Jmd is zero. Ifm = d = 2 for example, these basis functions are given
by φ1(x) = 1, φ2(x) = x1, and φ3(x) = x2. Moreover, the other basis functions in Eq:2.32
are given by

ηmd(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−1)m+1+d/2
22m−1πd/2(m−1)!(m−d/2)!r

2m−dlog(r) d is even
Γ(d/2−m)

22mπd/2(m−1)!r
2m−d d is odd

(2.33)
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Here, it is important to note that thin plate splines can be used for any number
of predictors [4]. In addition, there is no need of specifying knot positions. On the
other hand, the disadvantage of these kind of smoothers is their being computational
expensive; there are as many parameters to be estimated as there are data points [26].

2.2.3 Additive models

Now let us consider a model with two covariates, x and z, for a response variable yi.
�en Eq:2.11 is extended in an additive form as,

yi = f1(xi) + f2(zi) + εi (2.34)

fj’s are smoothers, and εi are i.i.d random variables N(0, σ2). From Eq:2.34, it can be
noted that the e�ects of the covariates to the response variable are assumed to be strictly
additive. Additive models (AM) as well can be represented using penalized regression
spline in a similar way to that of univariate models. Each smoother can independently
be wri�en as a linear combination of the basis.

f1(x) = δ1 + δ2x +
q1

∑
i=1
δi+2Ri(x,x∗i )

and
f2(x) = γ1 + γ2x +

q2

∑
i=1
γi+2Ri(z, z∗i )

where f1 has q1 + 2 unknown parameters, δi, whereas f2 has q2 + 2 parameters, γi. �e
knot locations of these two smoothers are given by x∗i and z∗i respectively.

�e problem of identi�ability in additive models can clearly be seen from
these equations where the constants are confounded. �is can easily be avoided by
constraining one of them to zero [4]. Let γi = 0, then the ith row of the additive model
matrix is

X i = [1, xi,R(xi, x∗1),R(xi, x∗2), ...,R(xi, x∗q1), zi,R(zi, z∗1),R(zi, z∗2), ...,R(zi, z∗q2)]

and similarly, the conjugated parameters of the two smoothers will be,

β = (δ1, δ2, ..., δq1 , γ2, γ3, ..., γq2).

Having all this, the roughness measure of the smoothers can then be wri�en [4]
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in exactly similar way to Eq:2.10 as,

∫ f ′′1 (x)2dx = βTS1β and ∫ f ′′2 (x)2dx = βTS2β

where, S1(i+2,j+2) = R(x∗i , x∗j ) for i, j = 1,2, ..., q1 and S2(i+q1−1,j+q1−1) = R(z∗i , z∗j )

�e optimization problem to be minimized in order to �t the additive model using
penalized least squares method is then given by,

∥y −Xβ∥2 + λ1β
TS1β + λ2β

TS2β.

�e smoothing parameters, λ1 and λ2, control the smoothness of f1 and f2 respectively
and give more weight to the one which is more close to the objective model.

Similarly, the additive model with two covariates discussed here can be extended
into a model with more covariates. Moreover, bases other than the above given cubic
regression basis can be used to �t additive models.
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3. GENERALIZED ADDITIVE MODELS

In this chapter, the nonparametric (or semi-parametric) regression model, generalized
additive models (GAMs), will be discussed. �e core point of this chapter will be
to present a commonly used method of ��ing a GAM model; the smoothing spline
basis approach which is used in mgcv package [28]. Given a spline basis is selected,
a GAM model ��ing will be discussed in relation to that of GLMs. For this reason, �rst,
generalized linear (GLM) model and its ��ing method will be discussed.

In application, ��ing GAM is an estimation of model parameters as well as
smoothing parameters. Appropriate techniques of estimating smoothing parameters
will be presented as well as a part of the model estimation. Furthermore,
multicollinearity and outliers in a data and their e�ect to a ��ed model will be addressed.

3.1 Generalized Linear Models (GLMs)

Recall that generalized linear models (GLMs) are an extension of the ordinary linear
regression model [3] in a sense that they can model any response variable which follows
any of the exponential family distributions. GLMs consider a response variable y whose
distribution is from the exponential family distributions [2, 4, 27]. Any distribution with
a probability density function of the form

f(yi; θi, φ) = exp [yiθi − b(θi)
a(φ)

] + h(yi, φi) (3.1)

belongs to the exponential family distributions. Here, a, b, and h are any arbitrary
functions, φ is a scale parameter, θi is the so called natural location parameter, whereas
yi for i = 1,2, ..., n represents the predictor variables. For exponential family members
[2],

µ = E(y) = b′(θ)

V (y) = b′′(θ)a(φ) (3.2)

Here, a(φ) is any function of the scale parameter φwhich is usually given by a(φ) = φ/ω
for a known constant ω, hence [4], V (y) = b′′(θ)φ/ω.
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GLMs can be wri�en in linear form of the parameters as,

ηi = g(E(yi)) = g(µ) =X ′
i
β

and note that the expected response is given by,

E(yi) = g−1(ηi) = g−1(X ′
i
β)

If the link function, g, is chosen in such a way that ηi = θi, then ηi is called canonical
link [2]. Table 3.1 provides the canonical links (η = θ) of some exponential family
distributions. However, there are others that can be used as link function in GLM [2].

Table 3.1. Canonical Links for exponential family distributions

Distribution f(y) θ φ a(φ) b(θ)

Normal 1
σ
√

2π
exp(−(y−µ)

2

2σ2 ) µ σ2 φ(= σ2) θ2

2

Poisson µyexp(−µ)
y! log(µ) 1 φ(= 1) exp(θ)

Binomial (n
y
)(µn)y(1−

µ
n)n−y log( µ

1−µ) 1 φ(= 1) n log(1 + eθ)
Source: Wood, 2006 and Montgomery et al., 2012

Now, assuming the canonical link function is used, the likelihood of β (since yi’s
are independent) is

L(β) =
n

∏
i=1
f(yi; θi, φ),

and hence, the log-likelihood function is given by,

l(β) =
n

∑
i=1
log(f(yi; θi, φ))

=
n

∑
i=1

yiθi − b(θi)
a(φ)

+ h(yi, φ)

�us, the equations to be solved in order to �nd estimate of β are given by

∂l

∂βj
= 1

φ

n

∑
i=1

[yi − b′i(θi)]
b′′i (θi)/ωi

∂µi
∂βj

= 1

φ

n

∑
i=1

yi − µi
V (µi)

∂µi
∂βj

for ∀j
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Substituting Eq:3.2 yields,

∂l

∂βj
= 1

φ

n

∑
i=1

yi − µi
V (µi)

∂µi
∂βj

= 0 for ∀j (3.3)

If V (µi) were known and independent from β, the least square optimization objective
would be

S =
n

∑
i=1

(yi − µi)2

V (µi)
(3.4)

where, µi depends on β nonlinearly. Now, let β̂
[k]

be estimates at the kth iteration,
elements of vectors η[k] and µ[k] are respectively given as η[k]i = Xiβ̂[k] and µ[k]

i =
g−1(η[k]i ). In each iteration [4], Eq:3.4 can be wri�en as,

S = ∥
√
V −1
[k][y −µ(β)]∥

2

≈ ∥
√
W [k](z[k] −Xβ)∥

2

(3.5)

where, V[k]ii = V (µ[k]
i ), elements of the diagonal matrix V . �e pseudo-data, z[k]i is,

z
[k]
i = g′(µ[k])(yi − µ[k]

i ) + η[k]i

and elements of the diagonal weight matrixW [k] are given by

w
[k]
ii = 1

V (µ[k]
i )g′(µ[k]

i )2

�e method of iterative re-weighted least square (IRLS) [4] iterates to convergence
where the converged β̂ solves Eq:3.3.

1. Using µ[k] and η[k] obtain z[k] and the weight matrix,W [k].

2. Minimize Eq:3.5 with respect to β in order to obtain β[k+1], and hence η[k+1] =
Xβ[k+1] and µ[k+1].

It can be noted that as initial values only µ[0] and η[0] are needed but not β̂
[0]

.
Usually, initial values are taken as µ[0]

i = yi with slight adjustment in order to avoid
in�nite for η[0]i (for example, when yi = 0 with a log link) and η[0]i = g(µ[0]

i ).
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3.2 Generalized Additive Model as Penalized GLMs

In section 2.2.3, a basic additive model with two covariates was presented. As GLMs are
to linear models, generalized additive models [7] are generalization of additive models.

�e general structure of a GAM modeling a response variable, y with multiple
predictors is,

g(µi) =X∗
i
θ + f1(x1i) + f2(x2i) + ... (3.6)

where, µi = E(yi) and g is a function mapping yi’s through a mathematical
transformation to the linear predictor, hence called a link function. In order the mapping
to be ensured, a g must be twice di�erentiable monotonic function [4]. �e most
commonly used link functions are identity, logit, probit, and log [6]. In Eq:3.6, the
GAM model has a parametric and smooth (nonparametric) components; Xi is ith row
of a model matrix for the parametric component with θ being its vector of parameters,
whereas, fj is smoother of the predictor variable, xj .

In literature, di�erent approaches of GAM estimating method were proposed.
Here, the smoothing spline basis approach which is a method incorporated in mgcv::gam
[28] will be addressed.

One approach to estimate a GAM model is by choosing a basis for the smoothing
function and a wiggliness measure. In this approach, model estimation implies
estimation of smoothing parameter as well as model coe�cients for a penalized
likelihood maximization objective. �is section puts forth the representation of a
smoothing function using a basis and turn the GAM model into a penalized GLM, in
which then the estimation will be accomplished in a similar way.

As discussed in section 2, given a basis function bji is chosen, a smoother, fj , can
be wri�en as;

fj(xj) =
qj

∑
i=1
βjibji(xj) (3.7)

where, βji’s are parameters which need to be estimated. To construct the model matrix,
let f̃j be a vector where its jth element is given by f̃j i = fj(xji) and vector of parameters
of the jth smoother be given by β̃j = [βj1, βj2, ..., βjqj]. Combining all together, it is easy
to see that the model matrix for the jth smoother is given by,

f̃j = X̃jβ̃j (3.8)

where, X̃j,ik = bjk(xji). As discussed in section 2.2.3, for bivariate additive model, Eq:3.6
su�ers from identi�ability problem. �is can be avoided by constraining the sum or
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mean of f̃j to zero [4].
1TX̃jβ̃j = 0

By re-parameterization in concept of constraining [4], a matrix Z which satis�es
the condition,

1TX̃jZ = 0

and has the property that its qj − 1 columns are orthogonal can be found. Writing
β̃j = Zβj , by re-parameterizing the smooth in terms of qj−1 new parameters, βj , a new
model matrix for the jth smoothing function given byXj = X̃jZ , such that fj =Xjβj

that satis�es the centering constraint will be obtained.

Once the model matrices of each smoothing function are centered (matrix), Eq:3.6
is wri�en as

g(µi) =X iβ + εi (3.9)

where, βT = [θT ,βT
1
,βT

2
, ...] and X = [X∗ ∶X1 ∶X2 ∶ ...], a binded matrix of the

parametric model matrix and all the centered ones.

3.2.1 Model parameter estimation

It can be seen now that Eq:3.9 is a GLM form, and its likelihood, say l(β) can be wri�en
down in the same way as that of its GLM counterpart.

However, as it was discussed in section 2, if large qj (number of knots) are used
to represent the smoothers, fj , and the method of maximum likelihood is used to
estimate β, the model parameters, then, there is possibility of over-��ing. �is is the
reason why penalized likelihood maximization is preferred over the ordinary likelihood
maximization to estimate GAMs [4].

Given the roughness measure of each smoother, βSjβ, the penalized likelihood is
wri�en as;

lp(β) = l(β) −
1

2
∑
j

λjβ
TSjβ, (3.10)

Assuming the λj , smoothing parameters, are known, estimates of β, β̃, can be found by
maximizing Eq:3.10 [4, 29].

For notational easiness, Eq:3.10 can be wri�en as,

lp(β) = l(β) −
1

2
βTSβ

where, S = ∑j λjSj . Now, by se�ing its derivatives with respect to β to zero, lp(β) can
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be maximized.

∂lp
∂βj

= ∂l

∂βj
− [Sβ]j =

1

a(φ)

n

∑
i=1

yi − µi
V (µi)

∂µi
∂βj

− [Sβ]j = 0

In a similar way to that in section 3.1, the above system equation are those that
would have to be solved to maximize the penalized non-linear least square optimization
problem;

Sp =
n

∑
i=1

(yi − µi)2

V (yi)
+βTSβ (3.11)

Again, assuming V (yi) are known, Eq:3.11 can be approximated as [4],

Sp ≈ ∥
√
W [k](z[k] −Xβ)∥

2

+βTSβ (3.12)

where the vector of pseudo-data, z[k] and values of the diagonal weight matrix W [k]

are respectively given by,

z
[k]
i = g(µ[k]

i )(yi − µ[k]
i ) +xiβ̂

[k]
and w

[k]
ii = 1

V (µ[k]
i )g′(µ[k]

i )2

�us, given the smoothing parameters, λi’s, the maximum penalized likelihood
estimates, β̂, are obtained by repeating the following steps [4];

1. Given β̂
[k]

, �nd z[k] and w[k]
ii .

2. To �nd β̂
[k+1]

, minimize Eq:3.12 with respect to β. Repeat until convergence.

�e same initial values are considered as that of IRLS method presented in section 3.1.

3.2.2 Degrees of freedom

Given the parameters are identi�able based on the data, degrees of freedom in ordinary
linear regression model is equal to tr(A) where A is the in�uence matrix, and that of
the error term is tr(I −A) = n − tr(A) [17].

In GAMs, the size of smoothing parameters involved in the process of penalized
regression a�ects how many degrees of freedom a model will have. If the smoothing
parameters (since there are several smoothing parameters in additive models) are all
equal to zero then the ��ed model would have degrees of freedom equal to the dimension
of β, on the other end, if the smoothing parameters are all too large, then the model will
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be over smoothed and this in turn results to a somewhat an in�exible model with few
degrees of freedom [4].

Here, the so called e�ective degrees of freedom of a �t can be de�ned in various
ways, one of which is using tr(A) where A is the in�uence matrix. For the reason
that di�erent smoothing parameters would be used to smooth the penalty functions
di�erently and a�ects the degrees of freedom di�erently, it is natural to look at the
e�ective degrees of freedom by breaking down for each smooth. And this could be seen
as equivalent to �nd the degrees of freedom for each model parameter, β̂i, since they are
a�ected di�erently by the smoothing too.

From section 2.2.2, if we letD = (XTX +λS)−1
XT , then it follows that β̂ =Dy

and A = XD which implies that tr(A) = tr(XD). Now, let D0
i be equal to D when

all it rows except the ith row are zeroed. As a result, the elements of the vectorD0
iy will

be all zero except the ith value which is β̂i. Consequently, trace ofA can be wri�en as;

tr(A) =
D

∑
i=1
tr(XD0

i )

�erefore, tr(XD0
i ) can be regarded as the e�ective degrees of freedom associated

with the βi. However, tr(XD0
i ) = (DX)i,i. Now, if we de�ne

R =DX = (XTX +S)−1XTX,

it can be seen that the leading diagonal ofR is the vector of e�ective degrees of freedom
of the model parameters and tr(R) = tr(A). �erefore, similar to that of the parametric
models, the e�ective degrees of freedom of the model is given by tr(A) and that of the
residuals is tr(I −A) [4, 17].

To have an intuitive understanding about the e�ective degrees of freedom, it’s
worthy of relating it with that of an unpenalized estimates. It can be recalled from simple
regression that the estimate of an unpenalized model is given by,

β̃ = (XTX)−1XTy

whereas, estimates of penalized model are given by

β̂ =(XTX +S)−1XTy

=(XTX +S)−1XTX(XTX +S)−1XTy

=Rβ̃

Here,R is a mapping matrix between the unpenalized estimates and their corresponding
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penalized ones. Since, the unpenalized parameters have one degrees of freedom each,
the term ∂β̂i

∂β̃i
=Rii is the change in the penalized parameter, β̂i, for a unit change of the

unpenalized parameter, β̃i. �is means that the penalty involved in the model dwindles
the degrees of freedom of the ith term by a value of Rii, thus, Rii is regarded as the
e�ective degrees of freedom of the ith model parameter.

3.2.3 Smoothing parameter selection

�e problem of choosing an appropriate smoothing parameter is omnipresent in ��ing
a curve. Choosing the degree, in polynomial regression estimation and se�ing the basis
dimension in regression spline are equivalent to the choice of a smoothing parameter.
Figure 3.1 shows the e�ect of smoothing parameter in the penalized regression spline
estimation technique at di�erent values. If λ is too small, the �t will be too wiggly and
if λ is too large, it will be over smoothed where in both cases the estimated spline f̂
can’t approximate the true function f . Instead of arbitrarily picking value of λ, it would
be good to use some techniques to �nd the optimum value so that f̂ will be as close as
possible to f yet a be�er one though there are other suggested estimators.

Figure 3.1. E�ect of smoothing parameter in model ��ing using penalized regression
spline (as the value of the smoothing parameter increases, the �t approaches

to a straight line)
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�ere are two di�erent and somehow opposing philosophical approaches into the
smoothing parameter choosing problem [17]. �e �rst one is a subjective choice of
the parameter which hypothetically allows to explore the features of the data, and the
second approach is that there should be an automatic method by which the data chooses
the smoothing parameter by itself. Cross-validation is one of the most commonly used
automatic ways of selecting a smoothing parameter.

3.2.3.1 Ordinary cross validation

In curve estimation, taking into consideration that the error term has zero mean, the best
predictor of yi is f(xi), where f(x) is the ideal curve. Consequently, the best estimator
(f̂(x) of the true curve is the one that minimizes the term (y − f̂(x))2 for a ”new value”
y at a given point x. �is is the fundamental motivation for using cross-validation to
choose smoothing parameter [17]. �eoretically, acceptable criteria to obtain λ so that
f̂ minimizes

M = 1

n

n

∑
i=1

(f̂i − fi)
2
. (3.13)

In reality, there is no ”new value/observation” when a smoothing is applied to the
whole dataset. In cross validation, however, the smoothing curve is estimated by leaving
one observation (yi, xi) out in order to have that ”new observation” used for prediction
and this one-leave-out estimator is denoted by f̂−1. As in every other regression models,
how good f̂−1 in predicting a new observation is possibly determined by how close it is
to yi.

Now, let f̂−1 be the model ��ed to the remaining data when yi is le� out. Ordinary
cross validation (OCV) is then given by,

νo =
1

n

n

∑
i=1

(f̂−1
i − yi)

2 (3.14)

Replacing yi by fi + εi,

νo =
1

n

n

∑
i=1

(f̂−1
i − fi − εi)

2

= 1
n

n

∑
i=1

(f̂−1
i − fi)

2 − 2(f̂−1
i − fi)εi + ε2i .

For the fact that E(εi) = 0 and εi and f̂−1
i are independent, the expected value of the
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second term is zero. Consequently,

E(νo) =
1

n
E(

n

∑
i=1

(f̂−1
i − fi)

2 + ε2i)

With the concept of large sample, it’s fairly true that f̂−1 ≈ f which in turn results to
the conclusion that E(νo) ≈ E(M) + σ2. �us, it is a reasonable approach to choose λ
that minimizes νo.

Calculating νo appears to be tedious for the reason that n separate smoothing
curves (f̂−1) have to be ��ed in order �nd the OCV score value. However, there is
a simpli�ed way of obtaining νo using the in�uence or hat matrix of the penalized
regression model [17, 30] which is given by,

νo =
1

n

n

∑
i=1

( yi − f̂i
1 −Aii

)
2

(3.15)

where,A =X(XTX +λS)−1
XT is the in�uence matrix and f̂ is the smoothing spline

obtained from all the data. Detailed proof of Eq:3.15 can be found in Green and Silverman
[17] and Wahba [30].

In Eq:3.14, given the diagonal values, Aii, are provided, OCV score can easily be
calculated from the residuals, (y − f̂ ), of the spline obtained by smoothing all the data.

3.2.3.2 Generalized cross validation

�e problem with ordinary cross validation is that, �rstly it is computationally expensive
especially in the additive case where there are more than one smoothing

parameters to be estimated and another is, given the penalized regression
optimization problem for additive models which is given by

∥y −Xβ∥2 +
p

∑
i=1
λiβ

TSiβ,

it normally should have identical solutions in terms of β even when for any orthogonal
matrixQ, it is rotated as,

∥Qy −QXβ∥2 +
p

∑
i=1
λiβ

TSiβ.

However, these two optimization problems generally results in di�erent OCV scores,
which is labeled as invariance problem of OCV [30].
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Figure 3.2. Optimal smoothing parameter using ordinary cross validation and
generalized cross validation; λ = 1.5i ∗ 10−8

Source: Wood, 2006; p. 131

�e approach of generalized cross validation (GCV) is an extension of the ordinary
cross validation technique in which the weights (1 −Aii) are replaced by their average
value, tr(I −A)/n. �e GCV score is then obtained as,

νg = n
∑ni=1 (yi − f̂)

2

[tr(I −A)]2
(3.16)

Figure 3.2 shows that νo and νg were optimized at di�erent iterations. And, the
smoothing parameters, λ, from the two methods were used to �t smoothing splines
shown in Figure 3.3 in which a slightly di�ering models were obtained for the univariate
dataset used.

3.2.4 Model deviance

Model evaluation plays a fundamental role in regression analysis; comparisons can be
made between models to obtain the be�er of them. In linear regression, mean square
error (MSE) is regarded as the building blocks of most model evaluation techniques
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Figure 3.3. GCV and OCV optimal �t

and inferences made for it measures how far the model estimations from the actual
observations are. In GLMs and GAMs, it is necessary to have a quantity which is
equivalent in importance and interpretation to residual sum of squares for ordinary
linear modeling [4].

As minimizing MSE is to least square �ts, in models ��ed using maximum
likelihood estimation (MLE), the quantity to be minimized is the deviance. Maximizing
the likelihood in those models corresponds to minimizing the deviance of the model [27].
Model deviance is de�ned as twice the di�erence in log-likelihood between the saturated
model and the full model (model of interest) [2, 31, 32]. It is given by,

D =2[l(β̂max) − l(β̂)]φ

=
n

∑
i=1

2ωi[yi(θ̃i − θ̂i) − b(θ̃i) + b(θ̂i)] (3.17)

where l(β̂)max is maximum likelihood of the saturated model: the model which have
separate parameter for each observation and a perfect �t, µ̂ = y [4, 27]. θ̃ and θ̂

are respectively the maximum likelihood estimates of canonical parameters which are
provided in Table 3.1 for the saturated model and model of interest [4]. ω is a constant
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which in most cases is equal to 1. Deviance of a model can be regarded as the lack of
�t between the model and the data points. It is used for model adequacy checking; the
smaller the deviance is the be�er the model.

3.3 Multicollinearity

In multiple regression analysis, if the predictor variables are orthogonal, then inference
can relatively be easily done. By orthogonality, it means that the regressors have no
linear relationship. However, multicollinearity, the presence of near-linear dependencies
among the predictors, has serious e�ects on the least square estimates of the model.
Montgomery et al., 2012 puts forth the e�ects of multicollinearity; it overestimates the
variance of the estimators, V (β̂) as well as the absolute values of the estimators.

Consider a linear model of y with two regressors, x1 and x2 which is given by;

y = β1x1 + β2x2 + ε, (3.18)

and let all the variables are scaled to a unit length [2]. �e normal equations of the
least-squares approach are

(X ′X)β̂ =X ′y
⎡⎢⎢⎢⎢⎣

1 r12

r12 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

β̂1

β̂2

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

r1y

r2y

⎤⎥⎥⎥⎥⎦

where r12 is correlation coe�cient between x1 and x2. Similarly, the correlation between
y and the predictors are respectively given by r1y and r2y. �e inverse of the matrixX ′X

is

C = (X ′X)−1 =
⎡⎢⎢⎢⎢⎣

1
1−r212

−r12
1−r212

−r12
1−r212

1
1−r212

⎤⎥⎥⎥⎥⎦
.

Hence, the estimates of the model coe�cient are given by

β̂1 =
r1y − r12r2y

1 − r2
12

and β̂2 =
r2y − r12r1y

1 − r2
12

(3.19)

In matrix form, the variance of model coe�cients is V (β̂) = σ2(X ′X)−1 = Cσ2.
�us, the individual variance of β̂1 and β̂2 are respectively given by V (β̂1) = C11σ2 and
V (β̂2) = C22σ2. In general, the variance of β̂i in a linear regression model with multiple
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predictors is wri�en as V (β̂i) = Ciiσ2 and covariance of β̂i and β̂j isCov(β̂i, β̂j) = Cijσ2.

In the existence of multicollinearity, the correlation between x1 and x2, r12, will
be large which in turn a�ects the variance of model coe�cients. if ∣r12∣ → 1 then
V (β̂1) → ∞, V (β̂2) → ∞ and ∣Cov(β̂i, β̂j)∣ → ∞. �is makes clear that existence
of multicollinearity produces model coe�cients with in�ated variance. Furthermore,
Montgomery et al., 2012 put forth that the least-square estimates, β̂j , are too large in
absolute value if multicollinearity exists.

3.4 Outlier

Outlier is an abnormal observation which di�er greatly from the rest of the data.
In parametric regression analysis, presence of outliers in dataset disturbs the quality
of least-square estimates [2] because the optimization is to minimize the squared
deviations. Least-square estimates can be in�uenced by abnormal observations both in
the response variable as well as in the predictor variables. Data points which are remote
from the rest of the data in terms of some values of the regressors while the value of the
response variable is consistent are referred as leverage points. In this paper, only outliers
(extreme points in the response variable) and the consequence they have in regression
analysis will be considered.
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4. SIMULATION

�is section discusses the simulation studies performed to explore the performance of
GAM models based on three di�erent smoothing spline bases under multicollinearity
and outliers. Speci�cally, data were generated with and without outliers with di�erent
predictor functions and proportion and location of outliers and di�erent degrees of
multicollinearity.

4.1 Data with Outliers

In this section, a simulation study is provided to compare the performance of GAM
models for binomial and Poisson response variables. Recall that for data {(xj, yj), j =
1,2, ..., n}, univariate additive model is given by

yj = f(xj) + εj (4.1)

where f is one of cubic spline, p-spline or thin-plate spline.

Four scenarios were considered to generate the data {(xj, yj), j = 1,2, ..., n} using
the functions adopted from [11] and [12].

Scenario 1: �e covariate X follows a uniform distribution X ∼ U(0,1). �e response
variable, Y , was simulated from the distribution, Y /X ∼ Poisson(λ(X)), where
λ(X) = g−1(h1(X)). Here, g is a log-link function.

h1(X) = 4cos(2π(1 −X)2) (4.2)

For a speci�ed outlier proportion value given by δ ∶ 0,0.1,0.2, a total of nδ were
randomly selected to be changed to outliers in the following manner. �e randomly
selected Y -values were multiplied by uu21 as given in Eq:4.3, and the result was rounded
to the nearest integer.

Y = Y uu21 (4.3)

where, u1 ∼ U(2,5) and u2 ∈ (−1,1).

Scenario 2: Here, a binomial response variable was generated from the distribution
Y /X ∼ Binomial(1, p(X)) with p(X) = g−1(h1(X)) where g is the logit-link function.
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Covariate X is generated as given in scenario 1. �e proportion of outliers given in
scenario 1 are also applied here without any change. Outliers were included to the
response variable in such a way that if the randomly selected value of Y is 1, then it
is replaced by 0 otherwise by 1.

Scenario 3: In this scenario, the covariate is given byX = i for i = 1,2, ..., n and response
variable is generated from the distribution
Y /X ∼ Poisson(λ(X)) where λ(X) = g−1(h2(X)) and g is a log-link function.

h2(X) = sin(2X/120) + cos(7X/60) + 1 (4.4)

In this case, outliers was included into the response variable by using Eq:4.5.

yj = (1 − zj)yj + zjwj, j = 1,2, ..., n (4.5)

where zj ∼ Binomial(1, δ) and wj ∼ Poisson(30).
Scenario 4: �e covariate X used in scenario 3 was also used here as it is.

However, here a binomial response variable was simulated from the distribution Y /X ∼
Binomial(10, p(X)). �e parameter p is given by p(X) = g−1(h3(X)) where g is the
logit link function.

h3(X) = −sin(5X/120)/0.8 − 1 (4.6)

For including outliers in the response variable, the procedure given by Eq:4.5 was used.
All the se�ings used in scenario 3 for outlier inclusion were kept �xed except wj = 10.

Table 4.1. Generating parameter for Poisson and binomial response variables

Distribution Parameter

Poisson λ = exp(hi(x)) i = 1,2

Binomial p = exp(hi(x))
1+exp(hi(x)) i = 1,3

In scenarios 3 and 4, the number of outliers included in the response variables is
random which is controlled by the values of δ [11].
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4.2 Data with Multicollinearity

�is section presents a simulation study for generating data with varying degrees of
multicollinearity between covariate variables. To generate data with a desired degrees
of multicollinearity, the simulation design given by McDonald and Galarneau, 1975 is
adopted.

First, independent standard normal pseudo random numbers, zij for i = 1,2, ..., n

and j = 1,2, ...,5 were generated. �en, Eq:4.7 was used to generate a total of four
covariates with a speci�ed degree of linear relationship.

xij = (1 − ρ2)1/2zij + ρzi5, i = 1,2, ..., n; j = 1,2,3,4. (4.7)

where ρ is speci�ed so that the correlation between any two covariates will be
approximately equal to ρ2. Here, three di�erent values of ρ (0.9, 0.99, 0.999) were
considered.

�e response variable is then generated using

Y = 2 + 5X1 + 3X2 + 4X3 + 8X + ε (4.8)

where ε is the error term which is generated from N(0, σ2). In this study, four values of
the error variance (σ2 = 1,9, 25 and 100) were used. �e coe�cients given in Eq:4.8 are
arbitrary.

In order to understand how these techniques behave with varying sample size,
data with size of n = 50,100,500 were simulated under the above speci�ed constraints
of degrees of linear relationship and error variances. Here, it is important to note that
the reason for not using a smaller sample size (n < 50) is that the number of parameters
to be estimated are exceeding the sample size.

4.3 Data with Both Outliers and Multicollinearity

�is section addresses a simulation study for generating data with linearly related
covariates and a response variable containing outliers. All the se�ings used in section 4.2
are carried over to this section except that outliers are included to the response variable,
Y . �e inclusion of outliers was achieved by randomly selecting 10% of response values
and multiplying them by 20 in order to in�ate them in their absolute values. For the
same reason discussed in section 4.2, the sample sizes used here are n = 50,100,500.
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5. RESULTS AND DISCUSSION

�is section presents the results of the analysis conducted in the study. Data generated
using the procedures discussed in section 4 were used to evaluate the performance of
the three smoothing splines; cubic regression, p-spline and thin plate spline. For the
analysis and model building procedures, themgcv package [28] inR statistical so�ware
was used.

It is important to note that, in each scenario mentioned in section 4.1, sample
sizes of 20,50,100,200, and 500 were simulated and for each sample size a total of 500
repetitions were generated. Each of the three smoothing splines were used to �t a GAM
model for all the samples. �en a�er, the mean and standard deviation of the model
deviances for each smoother were obtained. In addition, the proportion of the number
of times a model resulting in the smallest deviance was obtained.

5.1 Performance of Models in the Presence of Outlier

Mean and standard deviation of deviances of the models ��ed using cubic regression
spline(cr), p-spline (ps) and thin-plate spline (tp) bases are presented in Table 5.1 and
Table 5.2. Additionally, proportion of the number of times each model produced smaller
deviance is provided. In cases where response variable is Poisson, data generated using
scenario 1 and scenario 3 of section 4 are used, whereas, for the binomial response case
data are simulated using the procedures given in scenarios 3 and 4.

For the cases where Poisson response variable is considered, the results of the
experiments are provided in Table 5.1. �e results show that an increase in the number
of outliers included in the response variable has in�ated the mean deviances of all the
models. To illustrate this, one sample size (e.g n = 20) can be considered for comparison
of the outcomes when di�erent number of outliers are included in the data. In cases
where an outlier is not included, the mean deviances of cubic, p and thin plate splines are
respectively 9.09,9.17, and 8.91, however, when some outliers (δ = 0.1) are introduced
in the response variable their respective mean deviances are 37.62,36.3, and 35.37

respectively. Similarly, for δ = 0.2 as well, the mean deviances are seen to be increasing.
Similarly, results obtained using scenario 3 supports this argument.

Results from scenario 1 demonstrate that for n = 20 thin plate spline produced
a smaller mean deviance regardless of the outlier proportion included. For larger
sample sizes (n ≠ 20) however, p-spline performed be�er in all combinations of outlier
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Table 5.1. Mean, standard deviation and proportion of the number of times a model
resulted in a small deviance for a Poisson response variable with outliers

cr ps tp cr ps tp
δ n MD SD MD SD MD SD P

Scenario 1
20 9.09 4.35 9.17 4.32 8.91 4.34 0.33 0.29 0.38
50 33.21 9.41 33.01 9.05 33.08 9.47 0.32 0.39 0.29

0 100 74.63 13.38 72.95 12.51 74.43 13.27 0.21 0.59 0.2
200 159.9 19.46 155.48 18.38 159.75 19.33 0.11 0.79 0.09
500 414.72 29.71 402.13 28.05 414.58 29.64 0.03 0.93 0.04
20 37.62 44.29 36.3 45.53 35.37 43.51 0.34 0.36 0.3
50 187.22 126.95 181.54 124.81 183.95 125.08 0.27 0.44 0.29

0.1 100 456.72 224.2 443.83 215.01 451.23 219.91 0.17 0.53 0.3
200 971.63 327.34 956.48 323.52 967.13 325.73 0.14 0.65 0.21
500 2609.78 552.51 2583.97 548.34 2605.96 551.26 0.09 0.76 0.15
20 64.37 64.85 61.78 70.41 59.38 63.98 0.3 0.36 0.33
50 325.57 173.34 316.41 175.07 320.13 174.73 0.21 0.44 0.35

0.2 100 797.04 284.76 777.25 279.71 788.55 284.35 0.15 0.58 0.27
200 1767.44 437.71 1741.02 434.11 1758.91 437.08 0.13 0.64 0.23
500 4690.62 705.33 4653.87 698.59 4683.45 704.91 0.13 0.71 0.16

Scenario 3
20 16.35 5.79 16.66 5.85 17.14 6.19 0.31 0.39 0.3
50 48.04 9.65 48.21 9.57 48.04 9.64 0.32 0.37 0.31

0 100 98.12 14.7 98.39 14.58 98.15 14.73 0.37 0.34 0.28
200 243.33 24.6 343.27 32.8 209.8 21.5 0 0 1
500 1565.1 70.98 1559.9 70.69 1564.21 70.88 0.05 0.72 0.23
20 46.72 28.19 48.07 29.32 46.44 27.49 0.41 0.35 0.24
50 240.68 85.29 249.89 89.56 241.49 85.76 0.45 0.27 0.28

0.1 100 494.37 115.59 497.91 116.38 494.7 115.56 0.41 0.37 0.23
200 1123.61 185.11 1194.98 188.11 1100.93 186.17 0.13 0.04 0.83
500 3992.12 316.7 3994.41 316.41 3992.6 316.65 0.33 0.4 0.27
20 77.48 38.15 79.11 37.16 77.18 37.83 0.4 0.37 0.23
50 378.56 91.91 391.63 91.87 380.52 92.15 0.48 0.25 0.28

0.2 100 756.26 113.98 761.37 112.19 756.98 113.46 0.4 0.36 0.24
200 1670.21 164.73 1717.14 163.7 1655.21 164.64 0.21 0.08 0.72
500 5419.24 271.15 5420.84 269.46 5419.02 271.62 0.3 0.42 0.29

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance.

proportion (δ) and sample sizes. In addition to this, the results obtained from p-spline
where more consistent; In most cases standard deviation of model deviances produced
using p-spline are found to be smaller. Furthermore, the proportion of smaller deviance
scored by each method is another evidence that p-spline outperformed the others. �e
proportion of p-spline is higher in all the cases except for the combination of δ = 0 and
n = 20. Moreover, it can be noted that dominance of p-spline increases with the increase
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of sample size. For example, for δ = 0.1, p-spline produced smaller deviance only 36%

of the times, however, for n = 500 and δ = 0.1, 76% of the time it produced a smaller
deviance.

On the contrary, results from scenario 3 do not show the same trend as that of
scenario 1, rather, p-spline seems to be outperformed by both cubic and thin plate splines.
Almost in all the cases, the mean deviance obtained from it was found to be larger than
that of the others. Despite this, it produced the smallest standard deviation in majority
of the cases which indicates that the models ��ed using p-spline for the 500 samples
were more consistent among each other than those ��ed using either cubic regression
spline or thin plate spline.

Looking at the proportions of scenario 3, the number of small deviances produced
by each method is almost the same when there is no outlier and n ≤ 100, where as, in
the presence of outliers, proportion of ”smaller deviance” of cubic regression is larger in
most cases. Nevertheless, when a sample size of n = 200 is considered, thin plate spline
dominates the others in an exceptional way; it produced smaller deviance 100% when
δ = 0, 83% when δ = 0.1 and 72% of the times when δ = 0.2 .

Figure 5.1 and Figure 5.2 display the models ��ed for Poisson data simulated with
an without outliers using scenarios 1 and 3 respectively for n = 100. In both cases, the �t
of the three models have similar trend. It is however important to note that the presence
of outliers have an impact on the model �t. All the models tend to depart from the true
mean in positions where outlier is present.

Table 5.2 shows the mean deviances of the three models of interest along with the
proportions of their small deviance when a binomial response variable is considered.
�e �rst block under Scenario 2 provides the outputs when the models are applied to
�t data generated using Scenario 2 of section 4 while, the second block is for the results
obtained when the data simulated using Scenario 4 is used.

As in the case of Poisson response variable, presence of abnormal observations in
binomial response in�ates the deviance of the models. For elaboration, take the case for
n = 20 under scenario 2 of Table 5.2. When data free of outliers are used, the obtained
mean deviances in order of their occurrence in the table are 2.53,3.69, and 3,45, whereas
for n = 20 and δ = 0.2, model deviances are 8.88, 13.23 and 14.38 respectively. Similarly,
in the case of the second simulation, for the same combinations of n and δ, the mean
deviation increased from 15.67,15.78, and 16.12 at δ = 0 to 32,34.25 and 34.16 for
δ = 0.2. It is important however not to compare the magnitude of the change in cases of
Poisson and binomial response variables for they have di�erent units.

In situations where no outlier is included for data simulated using scenario 2, the
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(a) δ = 0

(b) δ = 0.2

Figure 5.1. GAM models ��ed using cubic regression, p-spline and thin-plate spline for
data with Poisson response which is generated using Scenario 1

proportion of the models are close to each other regardless of the size of n. With the
increase of outlier proportion and sample size however, the frequency of p-spline looks
inferior to that of the rest spline techniques under consideration. Cubic regression and
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(a) δ = 0

(b) δ = 0.2

Figure 5.2. GAM models ��ed using cubic regression, p-spline and thin-plate spline for
data with Poisson response which is generated using Scenario 3

thin plate splines produced relatively similar deviances in most cases. If the case of
scenario 4 is considered, remarkably, cubic regression outperformed both p-spline and
thin plate spline in the sense of producing smaller mean deviance. Generally speaking,
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despite producing be�er results in the case of Poisson response, p-spline was found to
be the least best when a binomial response is used.

Table 5.2. Mean, standard deviation and proportion of the number of times a model
resulted in a small deviance for a binomial response variable with outliers

cr ps tp cr ps tp
δ n MD SD MD SD MD SD P

Scenario 2
20 2.53 3.85 3.69 4.66 3.45 4.52 0.37 0.34 0.29
50 16.63 10.31 17.65 10.18 16.15 10.56 0.33 0.35 0.32

0 100 42.98 13.89 43.56 13.53 42.67 14.02 0.34 0.33 0.34
200 94.84 17.7 95.73 17.64 94.99 17.58 0.33 0.35 0.32
500 247.74 28.56 248.28 28.52 247.71 28.43 0.35 0.35 0.3
20 5.38 6.54 8.54 7.1 8.6 7.44 0 0.44 0.34 0.22
50 34.22 10.32 36.03 9.47 34.73 10.62 0.39 0.33 0.28

0.1 100 81.61 9.51 82.1 9.46 81.55 9.76 0.33 0.32 0.35
200 170.89 13.02 171.82 12.79 170.81 12.96 0.37 0.26 0.37
500 435.27 18.54 436.46 18.76 435.16 18.74 0.37 0.21 0.42
20 8.88 8.4 13.23 8.25 14.38 8.39 0.48 0.37 0.15
50 48.21 8.5 49.31 8.09 49.09 8.4 0.31 0.41 0.28

0.2 100 105.94 7.62 106.44 7.47 106.07 7.7 0.3 0.33 0.37
200 218.04 9.45 218.73 9.49 217.95 9.48 0.35 0.25 0.39
500 554.97 14.45 556.41 14.13 554.91 14.4 0.4 0.19 0.42

Scenario 4
20 15.67 4.75 15.78 4.76 16.12 4.87 0.32 0.41 0.27
50 47.2 7.54 47.39 7.57 47.82 7.69 0.26 0.47 0.26

0 100 87.77 11.37 87.98 11.45 87.88 11.42 0.27 0.42 0.31
200 164.9 15.7 165.21 15.71 164.86 15.69 0.28 0.44 0.28
500 414.93 24.57 481.06 28.29 411.01 24.67 0.19 0 0.81
20 23.97 9.37 25.81 10.74 25.75 10.37 0.4 0.34 0.26
50 108.31 26.7 110.91 27.91 110.52 27.38 0.45 0.3 0.25

0.1 100 202.99 35.34 206.29 35.78 204.47 35.65 0.46 0.25 0.29
200 387.06 47.63 387.18 47.63 387 47.56 0.34 0.38 0.28
500 942.57 68.78 984.95 68.93 939.87 68.74 0.31 0.02 0.67
20 32 12.28 34.25 13.97 34.16 14.04 0.4 0.34 0.26
50 150.18 27.93 153.36 29.47 152.04 29.24 0.4 0.34 0.27

0.2 100 279.8 35.9 283.17 35.75 281.12 36.11 0.44 0.28 0.28
200 526.96 41.88 526.15 42.27 526.79 41.82 0.31 0.43 0.25
500 5419.24 271.15 5420.84 269.46 5419.02 271.62 0.3 0.42 0.29

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance

Figure 5.3 and Figure 5.4 show GAM models ��ed using cubic regression (cr),
p-spline (ps) and thin-plate spline (ps) for data simulated using Scenarios 2 and 4
respectively. For the sake of illustration only the case when n = 100 and δ = 0.2 is
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shown here.

(a) δ = 0

(b) δ = 0.2

Figure 5.3. GAM models ��ed using cubic regression spline, p-spline and thin-plate
spline for data with binomial response which is generated using Scenario 2
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(a) δ = 0

(b) δ = 0.2

Figure 5.4. GAM models ��ed using cubic regression, p-spline and thin-plate spline for
data with binomial response which is generated using Scenario 4

51



Predictions of the ��ed models and the true mean are (black-colored line). From
these �gures, one can see that all the three methods are pulled away from the true
mean at positions where outliers exist which makes clear that existence of abnormal
observations somehow in�ates GAM model deviances. Particularly, p-spline shows more
�uctuations because of outliers.

5.2 Performance of Models in the Presence of Multicollinearity

Before proceeding with modeling the datasets, the presence of multicollinearity was
checked using VIF method. From Table 5.3, it can be seen that it is less likely the
generated data to su�er from multicollinearity when ρ is less than 0.9 which is why
greater values are considered in the simulation.

Table 5.3. VIF values of a simulated sample for n = 100 and σ2 = 1

ρ x1 x2 x3 x4

0.8 2.27 2.28 2.07 2.04

0.9 5.52 4.74 6.36 5.42

0.99 40.00 49.55 37.89 47.73

0.999 347.51 341.81 396.64 309.72

Summary of the experiments of ��ing GAM models using the three smoothing
spline bases to datasets of varying size and di�erent degree of collinearity are provided
in Table 5.4. In addition, performance measures of GLM model is provided. �e results
in all the cases show that the GAM models have resulted in a smaller mean deviance
compared to GLM. Only in a very few situations (δ = 0.99, 0.999 and n = 50), GLM
scored few small deviances. Inexplicably, this result shows that penalized regression
spline based GAM models are less prone to the e�ect of multicollinearity than GLMs.

When the case of multicollinearity is taken into consideration to compare GAMs
��ed using the three penalized regression splines, cubic regression spline was found to
be the dominant which in all the cases has produced smaller mean deviance. More than
40% of the times, model produced using cubic regression showed smaller deviance. �is
being the fact, the standard deviation of model deviances using cubic regression spline
are found larger than the others which indicates that this method is less consistent than
the others. As it was presented in section 5.1, in the presence of multicollinearity too,
p-spline was found �t models which are more close to each other.

Despite the fact that an increase in error variance increases the model deviances,
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Table 5.4. Mean, standard deviation and proportion of the number of times a model
resulted in a small deviance in the presence of multicollinearity

glm cr ps tp glm cr ps tp
ρ σ2 MD SD MD SD MD SD MD SD P

n = 50
1 45.21 9.24 31.67 11.88 35.45 10.63 36.49 10.7 0 0.53 0.3 0.17

0.9 9 406.91 83.17 285.33 107.28 319.11 95.77 328.41 96.28 0 0.54 0.31 0.15
25 1130.3 231.02 792.87 297.69 886.33 265.98 912.19 267.45 0 0.54 0.31 0.15
100 4521.2 924.08 3180.44 1205.32 3547.06 1064.18 3649.8 1070.79 0 0.54 0.32 0.14
1 45.21 9.21 33.33 12.37 37.66 10.93 38.37 10.94 0 0.5 0.28 0.22

0.99 9 406.88 82.87 302.37 113.29 340.66 99.99 345.42 98.55 0.01 0.48 0.28 0.23
25 1130.23 230.19 841.23 314.93 945.84 278.01 959.69 273.66 0 0.47 0.29 0.24
100 4520.93 920.76 3365.54 1266.69 3787.68 1112.85 3838.7 1094.66 0.01 0.48 0.29 0.23
1 45.21 9.2 37.03 13.09 40.39 11.04 41.19 10.71 0.02 0.39 0.28 0.31

0.999 9 406.86 82.78 334 117.85 364.68 100.01 371.45 96.82 0.06 0.38 0.28 0.29
25 1130.18 229.93 929.73 327.45 1010.37 276.18 1032.82 269.24 0.06 0.38 0.27 0.29
100 4520.7 919.74 3712.1 1312.18 4043.48 1105.66 4130 1076.04 0.07 0.39 0.27 0.28

n = 100
1 95.26 12.96 83.34 14.54 86.24 14.38 87.1 14.61 0 0.48 0.3 0.22

0.9 9 857.33 116.66 750.05 130.85 776.19 129.43 783.87 131.59 0 0.49 0.3 0.22
25 2381.48 324.06 2083.76 363.55 2156.07 359.54 2177.41 365.53 0 0.49 0.31 0.2
100 9525.94 1296.25 8338.95 1458.85 8625.28 1440.24 8709.62 1462.11 0 0.49 0.31 0.2
1 95.27 12.97 85.47 15.29 88.22 14.43 88.86 14.49 0 0.44 0.31 0.24

0.99 9 857.46 116.76 773.8 141.55 794.31 129.92 799.77 130.42 0 0.43 0.32 0.24
25 2381.83 324.34 2149.52 391.9 2206.03 361.03 2221.56 362.21 0 0.42 0.34 0.23
100 9527.32 1297.37 8596.86 1563.1 8825.63 1445.27 8886.22 1449.08 0 0.42 0.36 0.22
1 95.28 12.98 88.03 16.1 90.24 14.47 91.54 14.24 0 0.38 0.29 0.33

0.999 9 857.51 116.8 793.08 143.84 814.13 130.44 824.05 128.14 0 0.37 0.31 0.32
25 2381.97 324.43 2207.08 403.65 2264.32 365.1 2289.04 355.87 0 0.36 0.29 0.34
100 9527.89 1297.72 8819.16 1604.72 9051.43 1457.74 9155.99 1423.1 0 0.36 0.28 0.36

n = 500
1 492.36 34.63 481.22 35.11 482.4 34.84 483.8 34.95 0 0.42 0.36 0.22

0.9 9 4431.24 311.68 4331.35 316.51 4341.6 313.57 4354.23 314.56 0 0.42 0.36 0.22
25 12309 865.78 12031.52 879.2 12059.99 871.03 12095.1 873.79 0 0.42 0.37 0.21
100 49235.99 3463.12 48127.12 3519 48239.97 3484.13 48380.38 3495.15 0 0.43 0.36 0.21
1 492.38 34.63 482.38 35.54 484.04 35.27 485.67 35.51 0 0.4 0.33 0.27

0.99 9 4431.39 311.64 4341.66 320.26 4356.34 317.39 4371.04 319.61 0 0.41 0.36 0.24
25 12309.43 865.68 12063.12 889.66 12100.94 881.63 12141.78 887.81 0 0.4 0.35 0.25
100 49237.7 3462.72 48254.71 3563 48403.76 3526.53 48567.11 3551.24 0 0.43 0.38 0.2
1 492.38 34.63 483.68 35.59 485.31 35 488.52 35.47 0 0.39 0.3 0.31

0.999 9 4431.44 311.64 4359.66 322.16 4368.11 314.97 4396.72 319.29 0 0.36 0.35 0.29
25 12309.57 865.67 12109.08 894.94 12132.98 874.73 12213.11 886.9 0 0.37 0.33 0.3
100 49238.27 3462.68 48436.13 3577.02 48534.62 3500.11 48852.45 3547.61 0 0.36 0.35 0.29

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance

the proportion of ”smaller deviance” of a model for di�erent values of σ2 was found to
be similar for a given sample size and correlations coe�cient.

5.3 Performance of Models in the Presence of both Outliers and
Multicollinearity

In addition to checking for the presence of multicollinearity as in section 5.2, the
existence of abnormal observations was also checked using boxplot method. Figure 5.5
shows the existence of abnormal observations in one random sample of the simulation.
It assures that there exists outliers as desired.
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(a) ρ = 0.9

(b) ρ = 0.99

(c) ρ = 0.999

Figure 5.5. Boxplot for checking the presence of outliers for one sample of size n = 100
with δ = 0.1
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In this section, a data with multi-collinear covariates and outlier containing
response variable were used to evaluate the performance of the penalized regression
spline smoothers. All the se�ings used in section 5.2 are carried over to this section
except that outliers (δ = 0.1) are introduced to the response variable, y.

Table 5.5. Mean, standard deviation and proportion of the number of times a model
resulted in a small deviance in the presence of multicollinearity and outliers

glm cr ps tp glm cr ps tp
ρ σ2 MD SD MD SD MD SD MD SD P

n = 50
1 517272 281082.1 208930.1 152117 184011.1 141645.6 213666 159647.1 0 0.35 0.4 0.25

0.9 9 531121.2 287580.2 222386.2 165438.5 195637.5 149765 224407.3 166229.7 0 0.35 0.4 0.25
25 559605.7 303409.1 242757.9 181462.2 216131.4 162565.4 248508.6 184494.8 0 0.35 0.42 0.23
100 694846.2 383903.6 337406.8 256052.3 325533.8 240610.5 360383.4 263712.8 0 0.4 0.37 0.23
1

0.99 9 606551.2 322717.6 257337.5 198589.6 231280.8 180014.7 2 56090.3 207382.5 0 0.3 0.39 0.3
25
100 768214.1 419584.9 373753 281735.7 357824.5 271167.6 388436.7 291616.8 0.01 0.32 0.35 0.32
1 601828.5 319564.3 291836.2 214038.6 253975.4 202350.5 335633.1 253379.2 0.03 0.26 0.43 0.28

0.999 9 614941.4 325758.4 302522 224347.3 264924.2 209010 350831.8 266307.5 0.04 0.27 0.4 0.29
25 642683.7 341598 326311 243205.3 286354.5 224546 372788.7 281339.9 0.04 0.26 0.39 0.3
100 776043.2 422774.5 430559.1 323636.1 398028.1 303840.9 492275.8 361984.3 0.04 0.28 0.38 0.3

n = 100
1 1039693 435334.4 690920.8 276243.3 571711.2 242400.5 615236.8 255431.9 0 0.16 0.58 0.26

0.9 9 1073763 452668.3 718051.2 290205.4 599539.9 261785.1 642825.2 270443.2 0 0.18 0.58 0.24
25 1138978 483395.7 773008.3 319731.7 656419.8 294378.1 701056.4 302359.5 0 0.21 0.55 0.25
100 1438268 618015.7 1030875 444948.5 920297 434962.8 972294.6 450249.8 0 0.27 0.5 0.24
1 1187865 492116.3 788311.3 320400.5 639734.5 278077.5 701328.9 307867.4 0 0.16 0.57 0.27

0.99 9 1221594 507637.6 816830.7 337033.1 674028.7 301376.7 729744.5 328405.1 0 0.17 0.53 0.3
25 1286474 536655.2 871105.9 363237.3 730138.3 328053.1 784078.2 366654.8 0 0.2 0.5 0.3
100 1584954 667887.4 1125960 485262.9 996720.1 461848.9 1054633 492437.2 0 0.23 0.49 0.28
1 1204589 497665.9 825424.8 336694 685864.1 319013.9 795739 376898.9 0 0.15 0.58 0.28
9 1238168 512657 861077.3 365384 714995.2 335129.9 825148.2 389829.5 0 0.16 0.56 0.28
25 1302898 541129.8 917778.7 393644.5 772964.4 364406.1 884510.2 415520.8 0 0.18 0.57 0.25
100 1601014 671098.7 1180302 525893.6 1049903 494016.7 1175404 543748.3 0 0.21 0.52 0.27

n = 500
1 5605144 994099.6 5141729 849183 4651736 765800.4 4913665 798060.2 0 0.03 0.82 0.15

0.9 9 5764672 1030860 5298754 889697.4 4809807 801570.8 5072344 837334.2 0 0.03 0.8 0.17
25 6083831 1098075 5612594 959166.2 5127225 863057.7 5389632 908623 0 0.03 0.8 0.18
100 7580117 1392780 7083469 1256762 6608243 1143752 6870437 1199873 0 0.06 0.75 0.19
1 6366311 1121806 5880103 964508.1 5271732 849479.1 5620942 910032.7 0 0.02 0.83 0.15

0.99 9 6528053 1159690 6039524 1007990 5437500 891081 5785616 955548.7 0 0.02 0.82 0.16
25 6849422 1228252 6354631 1080549 5752976 953712.3 6106812 1027134 0 0.03 0.83 0.14
100 8351220 1526513 7826701 1378739 7249060 1247056 7595846 1322976 0 0.05 0.79 0.15
1 6443169 1132450 5971687 979141.2 5421672 891407.2 5809956 951467.4 0 0.02 0.84 0.13

0.999 9 6605561 1170367 6132023 1022491 5584804 917395.5 5968423 989574.7 0 0.02 0.85 0.12
25 6927581 1239039 6449151 1096999 5906202 986484.6 6291122 1063839 0 0.03 0.84 0.14
100 8430996 1537732 7928056 1403790 7407992 1274173 7796092 1383570 0 0.04 0.8 0.16

MD: Mean deviance; SD: Standard Deviation
P: proportion of the number of times a model produced smaller deviance

Table 5.5 provides mean, standard deviation and proportion of smaller deviances
of models ��ed using glm and the three smoothing splines for situations where both
outliers and multicollinearity are present in the dataset.

�e results show that in all the situations, p-spline produced a smaller mean
deviance. Moreover, this method was found to be more consistent in the performance of
the model ��ed for di�erent samples. Considering the proportions of how many times a
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model produced a smaller deviance, the most striking result was emerged from p-spline
method. It is remarkable that with the increase of sample size the number of times the
p-spline method produced a smaller deviance has increased drastically. To illustrate this
consider the combinations (n = 50, ρ = 0.9) and (n = 500, ρ = 0.999): in the �rst case
approximately 40% of the times a smaller deviance was a�ained using p-spline whereas,
in the later case p-spline produced smaller deviance more than 80% of the times. On the
other hand, cubic regression loses its dominance of producing smaller mean deviance
when outliers are included to the data. More essentially, it is demonstrated that the mean
deviance of all the models increased with the increase of the degree of linear relationship
given n and σ2 are kept �xed.
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6. CONCLUSION

In this thesis, three penalized regression spline smoothers are evaluated in ��ing
generalized additive model for a simulated data which contain outliers in the response
variable or have predictor variables with linear relationship among them. �e �rst
is cubic spline, a curve made up of sections of cubic polynomials which are joined
together and are continuous up to second derivatives. Another is the p-spline, which
is ��ed using b-spline with penalty. With cubic or p-splines, on top of de�ning the basis
functions, knots have to be speci�ed in order to operate the ��ing procedure. �e third
is the thin-plate spline which avoids selection of basis functions and specifying knots
positions.

In this thesis, three main studies have been performed; the �rst is a comparative
study to �nd out a be�er performing method based on their model deviance when
outliers are included in response variable. In general, in cases where outliers are present,
p-spline is found to perform least best.

�e second part of the study is performed under the existence of multicollinearity.
In this study, model ��ed using the smoothing splines of interest are compared with
that of generalized linear model. Here, cubic regression was found to produce a be�er
models.

In the last part of the study where existence of both multicollinearity and outliers
were taken into consideration, models ��ed using p-spline resulted in a smaller mean
deviance.

By way of conclusion, the results seem to demonstrate that penalized smoothing
splines could be used instead of generalized linear models when multicollinearity and
outliers are present in a dataset.
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