Anti-lung Cancer and Anti-angiogenic Activities of New Designed Boronated Phenylalanine Metal Complexes
Abstract
Background: Drug design and discovery studies still remain of great importance in the search for more convenient chemotherapeutic to avoid the drug resistance, systemic toxicity or the long-term side effects. Objective: A series of mononuclear gold (III) and platinum (II) complexes based on 4-dihydroxyborylDL-phenylalanine (BPA) was designed and synthesized, for the first time, by using 2, 2'-dipyridyl (L1) and 4, 4'-diaminobibenzyl (L2) ligands. Characterization of the synthesized complexes was achieved by using 1H-NMR, IR, MS and elemental analyses. Method: MTT cell viability, endothelial tube formation, cancer cell colony formation and TRITC-phalloidin cytoskeleton staining assays were performed on human umbilical vein endothelial (HUVEC) and human lung adenocarcinoma (A549) cells to establish the anticancer and anti-angiogenic activities of the complexes. It was determined that the organometallic complexes that include 2, 2'-dipyridyl ligand have higher antiproliferative activity than L2-based complexes in the micromolar range. Colony formation experiments showed that the anchorage-independent growth ability of A549s was significantly affected by the complexes in a concentration-dependent manner though L1-based complexes were more effective than L2-based ones. Results: It was also clearly observed that the complexes have significant anti-angiogenic and cytoskeleton alterative activities. Consequently, the phenylalanine-based organometallic complexes seem to have anti-lung cancer and anti-angiogenic activities depending on the ligand type and a great potential in oncology drug development because phenylalanine amino acid has an ability to cross the cell membrane by using L-amino acid transport system. Conclusion: Design, synthesis and activity studies with amino acid analogs should be therefore increased to discover more efficient drugs to cure cancer diseases.