Three different methods for numerical solution of the EW equation
Abstract
Numerical solutions of the equal width wave (EW) equation are obtained by using a Galerkin method with quartic B-spline finite elements, a differential quadrature method with cosine expansion basis and a meshless method with radial-basis functions. Solitary wave motion, interaction of two solitary waves and wave undulation are studied to validate the accuracy and efficiency of the proposed methods. Comparisons are made with analytical solutions and those of some earlier papers. The accuracy and efficiency are discussed by computing the numerical conserved laws and L-2, L-infinity error norms
Source
Engineering Analysis With Boundary ElementsVolume
32Issue
7Collections
- Makale Koleksiyonu [257]
- Scopus İndeksli Yayınlar Koleksiyonu [8325]
- WoS İndeksli Yayınlar Koleksiyonu [7605]