Reproducing kernels for harmonic Besov spaces on the ball
Özet
Besov spaces of harmonic functions on the unit ball of R '' are defined by requiring Sufficiently high-order derivatives of functions lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels turn out to be weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. To cite this article: S. Gergun et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).
Kaynak
Comptes Rendus MathematiqueCilt
347Sayı
13-14Koleksiyonlar
- Makale Koleksiyonu [257]
- Scopus İndeksli Yayınlar Koleksiyonu [8325]
- WoS İndeksli Yayınlar Koleksiyonu [7605]