Providing predictions on hidden Markov models with privacy
Özet
Saklı Markov modelleri (SMM) tahmin üretmek için bir çok alanda yaygın olarak kullanılır. SMM sahipleri modellerini bir gözlem serisinin görülme olasılığını hesaplama ve gözlem ve durum serilerinin birleşik olasılığının maksimum olacağı durum serisinin seçilmesi için kullanır. Bazı uygulamalarda tahmin için oluşturulan model yatay veya dikey olarak iki kişi arasında bölünmüş olabilir. Tahmin üretebilmek için bu kişiler modellerini birleştirmeye karar verebilir. Fakat gizlilik ve maddi nedenlerden dolayı bu kişiler modellerini birleştirmek istemezler. Eğer gizlilik ölçütleri kullanılırsa, model sahipleri modellerini birleştirebilirler. SMMler işbirlikçi filtreleme (İF) için de kullanılabilir. Markov model düşüncesi müşterilerin gizliliklerini tehlikeye atmadan müşterilere tahmin üretmek için kullanılabilir. Bu tezde, bir gözlem serisinin görülme olasılığını iki firma arasında bölünmüş olan modele dayalı olarak model sahiplerinin gizliliğini tehlikeye atmadan hesaplayacak çözümler sunulmuştur. Ayrıca parçalanmış modele dayalı olarak gözlem ve durum serilerinin birleşik olasılığının maksimum olacağı durum serisinin gizlilikle seçilmesi için çözümler önerilmiştir. En son olarak Markov model düşüncesi kullanılarak İF işlerinin gizlilikle yapılması için yöntemler sunulmuştur. Önerilen yöntemler doğruluk, gizlilik ve performans açısından incelenmiştir. Gerçek verilere dayalı deneyler yapılmış ve sonuçlan gösterilmiştir.
Bağlantı
https://hdl.handle.net/11421/4337
Koleksiyonlar
- Tez Koleksiyonu [102]