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Abstract. Let ω be a 2-form on a 2n dimensional manifold. In previous work, we called ω
“strong self-dual, if the eigenvalues of its matrix with respect to an orthonormal frame are equal
in absolute value. In a series of papers, we showed that strong self-duality agrees with previous
definitions; in particular if ω is strong self-dual, then, in 2n dimensions, ωn is proportional to its
Hodge dual ω and in 4n dimensions, ωn is Hodge self-dual. We also obtained a local expression
of the Bonan 4-form on 8 manifolds with Spin7 holonomy, as the sum of the squares of any
orthonormal basis of a maximal linear subspace of strong self-dual 2-forms. In the present work
we generalize the notion of strong self-duality to odd dimensional manifolds and we express the
dual of the Fundamental 3-form 7 manifolds with G2 holonomy, as a sum of the squares of an
orthonormal basis of a maximal linear subspace of strong self-dual 2-forms.

1. Introduction
The mathematical framework of gauge theories consists of vector bundles over differentiable
manifolds. These vector bundles are equipped with a connection that takes values in the Lie
algebra of the structure group of the vector bundle. “Action integrals” are expressed in terms
of the inner products of the components of the curvature 2-form. The variation of the action
integral leads to the field equations of the theory. Yang-Mills theory on 4-manifolds is the
prototype of this scheme. In Yang-Mills theories, the action integral is just the norm of the Lie
algebra valued curvature 2-form of this vector bundle. Yang-Mills equations obtained by the
variation of the action integral are satisfied provided that the curvature 2-form is self dual.

In a series of papers we defined the notion of “strong self-duality” in even dimensions and we
studied the minimization of various action integrals, algebraically, by comparing inner products
and wedge products of 2-forms. Strong self-dual forms turned out to be the building blocks
for the curvature 2-forms that minimize various action integrals. [1],[2],[3],[4],[5] In the present
work, we generalize the notion of strong self-duality to odd dimensions. This generalization
relies on the results obtained in [10] pertaining skew-symmetric matrices in odd dimensions. We
present a brief overview of the properties of strong self-dual 2-forms in even dimensions and we
state without proof, relevant results in odd dimensions.

2. Self-duality and Strong Self-duality
The motivation of our definition of strong self-duality is the eigenvalue structure of self-dual
2-forms in 4-dimensions. We start by a description of their eigenvalues.
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2.1. Self-duality in 4-dimensions
Let ei, i = 1, . . . , 4 be a local, positively oriented, orthonormal basis for the cotangent bundle
T ∗M of a 4-dimentional M be a 4-dimensional, oriented Riemannian manifold M . The local
expression of a 2-form is given by

ω =
∑
i<j

ωije
ij , (1)

where eij = ei∧ej . The self-dual (∗ω = ω) and anti-self-dual (∗ω = −ω) 2-forms are eigenvectors
of the Hodge duality map, ∗, and in 4-dimensions, the 6-dimensional linear space of 2-forms is
the orthogonal direct sum of the 3-dimensional self-dual and anti self-dual 2-forms.

The ωij ’s can be viewed as a skew-symmetric matrix whose eigenvalues are pure imaginary
and occur in conjugate pairs. Denoting them as ±iλ1 and ±iλ2, it can be seen that they satisfy

λ2
1 + λ2

2 = ω2
12 + ω2

13 + ω2
14 + ω2

23 + ω2
24 + ω2

34,

λ2
1λ

2
2 = (ω12ω34 − ω13ω24 + ω14ω23)2.

Hence
λ1 ∓ λ2 =

√
(ω12 ∓ ω34)2 + (ω13 ± ω24)2 + (ω14 ∓ ω23)2.

For self-duality λ1 = λ2, while for anti-self-duality λ1 = −λ2. These two cases are distinguished
by the sign of the Pfaffian, Pf(ω) = ω12ω34 − ω13ω24 + ω14ω23. Thus in four dimensions, the
equality of the absolute values of the eigenvalues gives the usual notion of self-duality in the
Hodge sense.

2.2. Strong self-duality in even dimensions
In higher (even) dimensions, we proposed the equality of the eigenvalues in absolute value as a
definition of the self-duality of 2-forms. Let ω be a 2-form on a 2n dimensional manifold M . If
{e1, e2, . . . , e2n} is a local orthonormal basis for the cotangent bundle of M , then ω is expressed
as in (1) and the corresponding skew-symmetric matrix has eigenvalues {±iλ1, . . . ,±iλn}. We
define n ω to be strong self-dual (respectively, strong anti-self-dual) if

|λ1| = |λ2| = · · · = |λn| (2)

and ∗ωn > 0 (respectively ∗ωn < 0). [1] Note that this is equivalent to the statement that
the distinction is based on the sign of the Pfaffian of ω with respect to a positively oriented
orthonormal basis.

In terms of matrices, strong self-duality or anti self-duality can also be expressed by the
minimal polynomial requirement

ω2 + λ2I = 0 (3)

where λ2 = − 1
2nTrω

2.
In four dimensions, the strong self-duality coincides with usual Hodge duality. More precisely,

the matrices satisfying ω2 +λ2I = 0 consist of the union of the usual self-dual and anti-self-dual
2-forms (including the zero form).

2.3. Strong self-duality in odd dimensions
In odd dimensions, the right way to generalize the notion of strong self-duality is via the
minimal polynomial of the corresponding skew-symmetric matrix. In odd dimension, every
skew-symmetric matrix is necessarily singular. Thus, the closest analogue of (2) and (3) would
be to require that the kernel be 1-dimensional and the non-zero eigenvalues be equal in absolute
value. Equivalently be can require that the minimal polynomial of the corresponding matrix be

(ω2 + λ2I)ω = 0, (4)
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with λ2 = − 1
2nTrω

2 as before. Note that a strong self-dual 2-form in 2n+1 dimension restricted
to the complement of its kernel satisfies (3), hence it is essentially a strong self-dual 2 form in 2n
dimensions. The complication arises when we algebraic variety defined by (3), and in particular
linear subspaces lying in this variety.

The structure of matrices satisfying (4) has been analyzed in [10]. We adopt the notation of
[10] and denote the rank, trace, kernel and orthogonal complement of the kernel of a matrix A
by, rA, Tr(A), Ker(A) and WA. We denote the set of (2n+ 1)× (2n+ 1) matrices with minimal
polynomial (4) by S2n+1. Note that the elements of S2n+1 need not have constant rank and its
structure as an algebraic variety can be complicated. On the other hand, linear subspaces of
S2n+1, that we denote as L have a more uniform structure. We briefly quote relevant results
form [10]. If A and B are two matrices belonging to a linear subspace of S2n+1, then any linear
combination of these matrices should satisfy (4). This gives,

A2B +ABA+BA2 + λ2
AB = 0, AB2 +BAB +B + λ2

BA = 0. (5)

By Remark 1, in[10], If a vector X belongs to Ker(A), then Y = ABX belongs to Ker(B) and
it follows that matrices belonging to the same linear subspace have constant rank. The structure
of linear subspaces is determined by the Lemma below (Lemma 5 in [10]).

Lemma A. Let {A,B} be a basis for a 2-dimensional subspace in S2n+1 such that A ⊥ B.

(i)If Ker(A) = Ker(B), then AB +BA = 0.

(ii) If Ker(A) ∪Ker(B) = {0}, them KerA() ⊥ Ker(B).

Linear subspaces of S2n+1 are called to be of Type 1 or Type 2, according as pairs of matrices
satisfy (i) or (ii) of Lemma A. We quote below Lemma 8 in [10].
Lemma B. Let L be a linear subspace of S2n+1.

(i) If L is of the first type, then there exists a subspace K ⊂ S2n such that dim(L) = dim(K).

(ii) If L is of the second type, then there exists a subspace M ⊂ S2n+2 such that dim(L) =
dim(M).

3. Properties of strong self-dual 2 forms
In this section we give a brief review of the basic properties of strong self-dual 2-forms in even
dimensions and we state without proof thse properties that generalize to odd dimensions.

3.1. Eigenvalue Inequalities
Well known inequalities between elementary symmetric functions of the eigenvalues of a skew
symmetric matrix leads to inequalities between the norms of the powers of a 2-form ω. In this
setting, strong self dual 2 forms are the ones for which the norms of ωk are maximal. In 2n
dimensions, all inequalities are saturated, as shown in previous work. We start by quoting a
result from [9]

Lemma C. Let sk be the kth elementary symmetric function of the numbers {α1, α2, ..., αn},
with αi ∈ R and let the weighted elementary symmetric polynomials, qk’s, be defined by(

n

k

)
qk = sk. (6)

Then
q1 ≥ q1/2

2 ≥ q1/3
3 ≥ · · · ≥ q1/n

n , (7)
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qr−1qr+1 ≤ q2
r , 1 ≤ r < n. (8)

If all αi’s are equal, then the equalities hold and if any single equality holds, then all αi’s are
equal.

The norm ωk is related to qk as

(ωk, ωk) =
n!k!

(n− k)!
qk.

From inequalities (7), we obtain,

(ωk, ωk) ≤ n!k!

nk(n− k)!
(ω, ω)k (9)

and equalities hold if and only if ω is strong self-dual.
In (2n + 1) dimensions, a strong-self-dual 2-form has a 1-dimensional kernel and it its

restriction to the complement of its kernel is a strong self-dual 2-form in 2n dimensions.
Therefore the inequalities above hold for appropriate values of n and equalities hold again if
and only if ω is strong self-dual.

3.2. Equivalence of strong self-duality with previous definitions of self-duality
Using the eigenvalue inequalities, we have shown that (i) a 2-form ω in 2n dimensions is strong
self-dual if and only if ωn−1 is proportional to the Hodge dual of ω, and (ii) a 2-form ω in 4n
dimensions is strong self-dual if ωn is self-dual in the Hodge sense . The first condition has been
proposed as a definition of self-duality by Trautman [11] while the second one appears in the
work of Grossman et al. [8].

These properties have no direct analogues in odd dimensions. The best we can say is
the following. Given the 2-form ω in (2n + 1)-dimensions, the 1-dimensional kernel of the
corresponding skew-symmetric matrix determines a 1-form αω. Then, if ω is strong self-dual,
then

ωn−1 ∧ α = k ∗ ω, (10)

where k is a constant.

3.3. Maximal linear subspaces of strong self-dual 2-forms in eight dimensions
Maximal linear spaces of strong self-dual 2-forms on 8 manifolds 7-dimensional. We work with
the subspace with basis elements given below.

ω1 = −e12 + e34 + e56 − e78,

ω2 = −e13 − e24 + e57 + e68,

ω3 = −e14 + e23 + e58 − e67,

ω4 = −e15 − e26 − e37 − e48,

ω5 = −e16 + e25 − e38 + e47,

ω6 = −e17 + e28 + e35 − e46,

ω7 = −e18 − e27 + e36 + e45. (11)
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3.4. Maximal linear subspaces of strong self-dual 2-forms in 7 dimensions
We recall that maximal linear subspaces of strong self-dual 2-forms in (2n + 1) dimensions are
inherited from 2n or 2n + 2 dimensions. For 2n + 1 = 7, maximal linear subspaces in 2n = 6
dimensions are 1 dimensional, while the maximal linear subspaces in 2n+ 2 = 8 dimensions are
7-dimensional, as described above. The matrices corresponding these 2-forms can be computed
by solving the equations (5) and they are given in [10].

ω1 = −e12 + e34 + e56,

ω2 = −e13 − e24 + e57,

ω3 = −e14 + e23 − e67,

ω4 = −e15 − e26 − e37,

ω5 = −e16 + e25 + e47,

ω6 = −e17 + e35 − e46,

ω7 = −e27 + e36 + e45. (12)

4. Linear subspaces defined via n− 4 forms
The self-duality equations given in [7] can be described as eigenspaces of the (self-adjoint) map
defined via a 4-form φ as follows.

TΦ(ω) = ∗(Φ ∧ ω). (13)

This definition makes sense in any dimension, provided that such a (globally defined) 4-form
exists. In 8-dimensions, the strong self-dual forms given in the previous section are eigenvectors
of the map defined via the Bonan form. The restriction of the Bonan form to 7-dimensions gives
the dual of the “fundamental 3-form” φ. In 7-dimensions φ defines a linear map on 2-forms.

4.1. Bonan-form in 8-dimensions
The Bonan-form Φ, which is a Spin(7)-invariant 4-form in 8-dimensions [6], can be constructed
in terms of strong self-dual 2-forms. We consider a 7-plane L with an orthonormal basis
{η1, η2, . . . , η7} and let

Φ = η2
1 + η2

2 + · · ·+ η2
7 (14)

This expression is independent of the basis of the 7-plane. To give an explicit expression we can
use the orthonormal basis ηi = 1

2ωi, with ωi given by (11) and we obtain

Φ = −3

2
(e1234 + e1256 − e1278 + e1357 + e1368 + e1458 − e1467

−e2358 + e2367 + e2457 + e2468 − e3456 + e3478 + e5678). (15)

Furthermore, the ωi’s are eigenvalues of the map (13) defined via the Bonan form, with eigenvalue
9/2, i.e,.

∗(Φ ∧ ωi) =
9

2
ωi. (16)
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4.2. The fundamental 3-form in 7-dimensions
The properties described above for the Bonan form generalize to 7-dimensions. The Fundamental
3-form ψ is G2 invariant. We consider again a 7-plane L with an orthonormal basis
{η1, η2, . . . , η7} and let

∗ψ = η2
1 + η2

2 + · · ·+ η2
7 (17)

As above, this definition is independent of the basis of the 7-plane. We the orthonormal basis
ηi = 1√

3
ωi, with ωi given by (12) and we obtain

∗ψ = −2(e1234 + e1256 + e1357 − e1467 + e2367 + e2457 − e3456). (18)

The ωi’s are eigenvalues of the map (13) defined via the the Fundamental 3-form, with eigenvalue
4, i.e,.

∗(ψ ∧ ωi) = 4ωi. (19)

We finally note that explicit solutions related to these structure were given for Spin7 and G2

manifolds in[12] and [13] respectively.
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[2] Bilge A.H., Dereli T. and Koçak Ş., The geometry of self-dual two-forms, J. Math. Phys., 1997, V. 38, N. 8,

4804.
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