

Rec. Nat. Prod. 6:2 (2012) 184-188

records of natural products

Essential Oil Composition and Antimicrobial Activities of *Tanacetum chiliophyllum* (Fisch. & Mey.) Schultz Bip. var. *monocephalum* Grierson from Turkey

Kaan Polatoğlu^{1,3,*}, Fatih Demirci², Betül Demirci², Nezhun Gören³ and Kemal Hüsnü Can Başer⁴

¹Department of Pharmaceutical Analytical Chemistry, 10, Near East University, Mersin, Türkiye
²Department of Pharmacognosy, 26470, Anadolu University, Eskişehir, Türkiye
³Department of Biology, 34210, Yıldız Technical University, İstanbul, Türkiye
⁴Department of Botany and Microbiology, 11451, King Saud University, Riyadh, Saudi Arabia

(Received May 2, 2011; Revised June 11, 2011; Accepted June 26, 2011)

Abstract: Water-distilled essential oils from aerial parts of *Tanacetum chiliophyllum* (Fisch. & Mey.) Schultz Bip. var. *monocephalum* Grierson from Turkey were analyzed by GC and GC/MS. The flower and stem oils were characterized by camphor (17.3%, 10.4%), 1,8-cineole (8.3%, 2.5%) and unknown compounds M⁺ 218 (6.6%, 10.4%), M⁺ 220 (Stem: 9.2%). Root oil was characterized with hexadecanoic acid (37.5%), alismol (6.3%), geranyl isovalerate (5.3%). Antibacterial activity of the flower and stem oils were evaluated on *Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterobacter aerogenes, Proteus vulgaris, Salmonella typhimurium, Staphylococcus epidermis, Bacillus cereus, Bacillus subtilis, and Meticillin resistant <i>S. aureus* microorganisms by using a micro-dilution assay. Flower oil inhibited the growth of *Bacillus cereus* with the MIC 62.5 μg/mL which was 2 fold less concentration than the positive control chloramphenicol. Both flower and stem oils showed relative toxicity to *Vibrio fischeri* in the TLC-bioluminescence assay.

Keywords: Asteraceae; *Tanacetum chiliophyllum* var. *monocephalum*; essential oil; *Vibrio fischeri* TLC-bioluminescence cytotoxicity assay; antimicrobial activity; camphor; 1,8-cineole; hexadecanoic acid; alismol.

1. Plant Source

Tanacetum chiliophyllum (Fisch. & Mey.) Schultz Bip. var. monocephalum Grierson (Asteraceae) grows naturally in NorthWestern Iran, Azerbaijan, Armenia and East Turkey. Flowering time for this species is between May and June on volcanic, limestone slopes between 1200-3200 m altitude. Tanacetum chiliophyllum is represented in Turkey with four varieties which are var. monocephalum, var. chiliophyllum, var. oligocephalum and var. heimerlei [1]. Plant materials were collected in June 2006 from South East province of Van Turkey at 2954 m altitude. Plant material was identified by Dr. Kerim Alpınar and herbarium specimens have been deposited at the Herbarium of the Faculty of Pharmacy, Istanbul University with Voucher No: ISTE 83478

2. Previous Studies

Previous investigations reported essential oil composition of T. chiliophyllum var. chiliophyllum from different locations with different main components. According to these reports it seems there are three different chemotypes of this plant with camphor (28.5%), 1,8-cineole (17.1%), camphene (7.1%), isobornyl propionate (5.4%) [2]; camphor (17.9%), 1,8-cineole (16.6%), borneol (15.4%), dihydro- α -cyclogeranyl hexanoate (10.1%)

^{*} Corresponding author: E-mail: kaanpolatoglu@gmail.com

[3] and camphor (16.8%), cis-chrysanthenyl acetate (16.3%), α -thujone (12.5%) as main constituents [4]. Chemovariation is a well known fact in *Tanacetum* species which is encountered on species level [5-7], and on subspecies level [8,9]. In our previous investigations on Tanacetum genus we have identified essential oil compositions of T. cadmeum ssp. orientale [8], T. densum ssp. sivasicum, T. densum ssp. amani [10,11], T. macrophyllum [12], T. armenum, T. balsamita, T. haradjani, T. argyrophyllum var. argyrophyllum, T. argenteum ssp. argenteum var. canum, T. argenteum ssp. argenteum, T. praeteritum ssp. praeteritum, and T. praeteritum ssp. massicyticum, T. parthenium, T. zahlbruckneri, T. tabrisianum [4,13-16]. Various biological activities and rich sesquiterpene content of Tanacetum extracts are well known [17]. Previous reports indicate isolation of sesquiterpene lactones from this species which include isolation of tamirin from T. chiliophyllum var. chiliophyllum [18]; new chiliophyllin, heimerlein and known spiciformin, deacetyllauerenbiolide, 1α-hydroperoxy-1-desoxo chrysanolide, tabulin, tanachin, tamirin, dentatin from T. chiliophyllum var. heimerlei [19,20]. To the best of our knowledge, except a report on the (+)-linalool content of its oil [21] there is no previous report on the phytochemistry, essential oil composition, antibacterial activity or cytotoxicity of T. chiliophyllum var. monocephalum. In the course of our biological activity screening project of Tanacetum species growing in Turkey. here we report on the essential oil compositions, antibacterial and cytotoxic activities of T. chiliophyllum var. monocephalum oils.

3. Present Study

Isolation of the Essential Oils: Flower, stem and roots (100g each) of the air dried plant samples were separately subjected to hydrodistillation for 4h using a Clevenger-type apparatus to obtain the oils. Yellow colored oil was obtained from each part of the plant with 0.06%, 0.05% (v/w) yields for flower and stem oils respectively. Root oil (<0.01%) was retrieved from the apparatus with n-hexane.

Gas Chromatography-Mass Spectrometry Analysis: Results of the analysis were given in Table 1. Method employed in the analysis was given in supporting information S1.

Antibacterial Activity test: Method employed in the tests was given in supporting information S2. Results of the antibacterial tests were given in Table 2 which was given in supporting information S4.

Vibrio Fischeri Toxicity: Method employed in the tests was given in supporting information S3. Results of the *Vibrion fischeri* toxicity tests were in Table 2 which was given in supporting information S4.

Composition of the oils were given in Table 1 with their relative percentages. The essential oils obtained from various parts of *T. chiliophyllum* var. *monocephalum* yielded oils with yellow color. A total of 93, 85 and 29 compounds were identified in flower, stem and root oils which represent 57.5%, 44.5% and 63.6% of the oils, respectively. Flower and stem oils were rich in camphor (17.3%, 10.4%) and 1,8-cineole (8.3%, 2.5%). Root oils were rich in hexadecanoic acid (37.5%), alismol (6.3%) and geranyl isovalerate (5.3%). All of the oils contained a couple of unidentified compounds with high percentages. The structure of these compounds could not be identified because of the low yield of the oils and inadequate amount of the plant material. Essential oils from *Tanacetum* species are commonly rich in 1,8-cineole, camphor, borneol, thujone, chrysanthenyl esters and alcohols [4,13]. In some species essential oils were found to be rich in carvone, pinenes and irregular monoterpenes such as lavandulyl esters and alcohol, artemisia ketone [22-24].

Table 1. Composition (%) of flower stem and root oils of T. chiliophyllum var. monocephalum. (Continued overleaf)

RI	Compound	P	Percent Composition		
		A	В	C	
1014	Tricyclene	0.2	-	-	
1032	α-Pinene	0.3	-	tr	
1043	Santolinatriene	1.6	0.1	-	
1076	Camphene	3.4	0.2	-	
1093	Hexanal	0.1	-	-	
1118	β -Pinene	0.1	-	-	
1132	Sabinene	tr	tr	tr	
1135	Thuja-2,4(10)-diene	0.1	-	-	
1159	δ -3-Carene	-	-	tr	
1194	Heptanal	tr	-	-	
1195	Dehydro 1,8-cineole	tr	-	-	
1213	1,8-Cineole	8.3	2.5	-	
1255	γ-Terpinene	0.1	0.1	-	

				_
1280	p-Cymene	0.9	0.1	tr
1296	Octanal	0.1	_	_
1299	2-Methyl butyl isovalerate	0.1	0.1	_
	•			
1348	6-Methyl-5-heptene-2-one	-	tr	-
1400	Nonanal	0.1	0.1	-
1400	Tetradecane	tr	-	-
1403	Yomogi alcohol	0.1	-	-
1405	Santolina alcohol	0.6	-	-
1443	α , p -Dimethyl styrene	tr	-	-
1445	Filifolene	0.2	-	-
1465	Eucarvone	tr	-	-
1474	Camphenilone	0.1	-	-
1474	trans-Sabinene hydrate	-	0.7	-
1482	Longipinene*	0.4	0.4	-
1492	Cyclosativene	0.2	0.3	-
1497 1499	α-Copaeneα-Campholene aldehyde	0.1 tr	tr -	-
1506	Decanal	u -	tr	-
1532	Camphor	17.3	10.4	_
1535	β -Bourbonene	-	tr	_
1538	trans-Chrysanthenyl acetate	0.9	0.9	_
1541	Benzaldehyde	- -	tr	_
1547	Dihydro achillene	0.1	tr	_
1553	Linalool	0.2	0.2	_
1556	cis-Sabinene hydrate	-	0.1	-
1562	Octanol	-	0.2	-
1571	trans-p-Menth-2-ene-1-ol	tr	0.1	-
1582	cis-Chrysanthenyl acetate	-	0.2	-
1583	Junipene (longifolene)	0.1	0.1	-
1586	Pinocarvone	1.4	1.3	-
1590	Bornyl acetate	0.3	0.2	-
1599	Chrysanthenyl propionate	0.5	0.4	-
1611	Terpinene-4-ol	1.3	0.9	-
1638	cis-p-Menth-2-ene-1-ol	tr	0.1	-
1643	Dehydrosabinaketone	tr	-	-
1648	Myrtenal	0.3	0.3	-
1651	Bornyl isobutyrate	0.1	0.2	-
1656 1657	Chrysanthenyl isobutyrate Umbellulone	0.1	0.1 0.1	-
1668	(Z) - β -Farnesene	0.2	0.1 -	0.4
1669	Sesquisabinene	-	0.1	0.4
1670	trans-Pinocarveol	1.1	0.8	_
1682	δ-Terpineol	0.1	0.1	_
1683	trans-Verbenol	-	0.1	_
1684	trans-chrysanthemol	0.2	-	_
1685	Isovaleric acid	tr	_	_
1688	Selina-4,11-diene	-	tr	_
1689	trans-Piperitol (=trans-p-Menth-1-en-3-ol)	-	0.1	-
1694	Sylveterpineol	-	0.1	-
1700	1-Heptadecane	-	0.1	-
1704	Myrtenyl acetate	-	0.1	-
1704	γ-Muurolene	-	0.1	-
1706	α-Terpineol	0.3	-	-
1719	Borneol	2.9	1.2	-
1725	Verbenone	0.1	-	-
1726	Germacrene D	tr	tr	-
1740	cis-a-Bisabolene	-	0.2	-
1741	β-Bisabolene	- 0.1	-	1.7
1743	Chrysanthenyl isovalerate I Carvone	0.1	0.4	-
1751 1758	cis-Piperitol	0.2	0.2	-
1760	Chrysanthenyl isovalerate II	0.3	0.2	-
1763	Naphthalene	0.3	0.1	0.5
1766	1-Decanol	-	tr	0.5
1773	δ -Cadinene	<u>-</u>	0.6	tr
1782	cis-carvyl acetate	-	0.2	-
1802	Cumin aldehyde	0.1	0.1	_
1804	Myrtenol	-	0.3	-
1808	Nerol	-	-	0.3
1819	(E)-2-Decen-1-ol	-	tr	-
1827	(E,E)-2,4-Decadienal	tr	0.1	tr
1838	(E) - β -Damascenone	0.1	-	-
1849	Calamenene	0.1	0.2	-
1857	Geraniol	0.1	0.1	-

1864	p-Cymen-8-ol	0.1	tr	-
1868	(E)-Geranyl acetone	0.1	-	0.4
1882	α -ar-himachalene	-	0.1	-
1889	ar-himachalene	0.1	-	-
1893	Geranyl isovalerate	-	0.3	5.3
1900	epi-Cubebol	0.3	0.6	tr
1900	Nonadecane	-	0.1	tr
1941	α-Calacorene	tr	0.1	-
1945	1,5-epoxysalvial-4(14)-ene	-	0.1	-
1957	Cubebol	-	1	tr
1958	(E) - β -Ionone	0.1	-	-
	Unknown I	6.6	10.4	2.6
2008	Caryophyllene oxide	0.6	0.4	0.6
2016	Isoamyl phenylacetate	-	0.1	-
2037	Salvial-4(14)-ene-1-one	0.1	0.1	0.3
2041	Pentadecanal	tr	-	-
2050	(E)-Nerolidol	tr	3.2	3.3
2073	p-Mentha-1,4-diene-7-ol	tr	-	-
2080	Cubenol	tr	tr	_
2000	Unknown II	- -	9.2	2. 2.
	Unknown III	5.2	-	8.7
2098	Globulol	tr	_	-
2113	Cumin alcohol	0.3	_	_
2131	Hexahydrofarnesyl acetone	0.2	1.3	0.5
2144	Spathulenol	0.6	0.3	1.4
2148	Marsupellol	1.4	1	-
2140	Unknown IV	3	7.4	3.1
2183	γ-Decalactone	0.9	-	J.1 -
2186	Eugenol	-	_	0.6
2198	Thymol	_	0.3	-
2209	T-muurolol	0.2	-	_
2214	ar-Turmerol	0.2	_	_
2232	α-Bisabolol	0.2	1	0.4
2257	β-Eudesmol	0.6	0.3	-
2264	Alismol	0.0	0.4	6.3
2298	Decanoic acid	0.4	0.4	-
2300	Tricosane	0.5	_	-
2316	Caryophylladienol I	0.3	_	_
2369	Eudesm-4(15),7-dien-1 β -ol	0.3	_	0.8
2400	Tetracosane	0.1	_	-
2500	Pentacosane	1	_	0.9
2607	1-Octadecanol	0.2	0.7	0.3
2622	Phytol	-	2.8	-
2670	Tetradecanoic acid	0.1	2.0	tr
2700	Heptacosane	0.7	0.5	-
2900	Nonacosane	tr	0.3	2.1
2931	Hexadecanoic acid	2.5	3.5	37.5
		7.4	0.9	0
Monoterpene Hydrocarbons		37.8	23.4	6.6
Oxygenated Monoterpenes		0.7		2.1
Sesquiterpene Hydrocarbons Oxygenated Sesquiterpenes			1.8	
	Sesquiterpenes	4.7	9.7	13.6
Others		6.9	8.7	41.3
Total Identi		57.5	44.5	63.6
. cniiiophyllun	ı var. monocephalum – Flower Oil; B: T. chiliophyllum var. mo	onocepnatum – Stem Oil; C: T. chiliophyl	ıum var. monoceph	aum – Koot Oil.

t: trace; A: *T. chiliophyllum* var. monocephalum – Flower Oil; B: *T. chiliophyllum* var. monocephalum – Stem Oil; C: *T. chiliophyllum* var. monocephalum – Root Oil.

Unknown I EI/MS 70 ev m/z (rel. abun.) M* 218 (12), 203 (4), 190 (4), 175 (9), 161 (8), 147 (11), 132 (53), 125 (27), 119 (28), 107 (100), 91 (34), 77 (19), 67 (9), 55 (14), 41 (17)

Unknown II EI/MS 70 ev m/z (rel. abun.) M* 220 (14), 205 (5), 191 (4), 177 (30), 163 (17), 149 (28), 135 (24), 124 (95) 109 (100), 95 (80), 81 (97), 67 (55), 55 (43) 41 (48)

Unknown III EI/MS 70 ev m/z (rel. abun.) M* 222 (15), 204 (11), 189 (5), 178 (35), 159 (84), 147 (9), 134 (33), 119 (100), 108 (52), 93 (30), 81 (31), 71 (22), 56 (18), 43 (42)

Unknown IV EI/MS 70 ev m/z (rel. abun.) M* 220 (5), 206 (6), 187 (15), 177 (7), 159 (29), 145 (38), 132 (95), 119 (100), 107 (100), 91 (74), 79 (41), 67 (25), 55 (29), 41 (38)

The essential oils obtained from flowers and stems of T. chiliophyllum var. monocephalum inhibited all microorganisms at various MIC. Most significant inhibition was observed against Bacilius cereus with 62.5 μ g/mL, which is found to be 2 fold less diluted than the positive control chloramphenicol (125 μ g/mL) under the same test conditions. B. cereus is responsible for some of the food poisoning cases. It causes severe nausea, vomiting and diarrhea. Growth of this bacteria on food results in the production of enterotoxin causing the food poisoning [25,26]. Toxicity tests, activity guided isolation and structure elucidation studies are still required to understand the active principle in the oil and to find potential use for this oil with beneficial activity. For all other microorganisms MIC of positive control were lower than the oils. Both flower and stem oils showed toxicity to Vibrio fischeri which was observed as black spots on the TLC. This procedure was used to evaluate general toxicity of the oils as an initial indicator. The toxicity results observed at low concentrations when compared to Vitamin C which confirm that the oil inhibits the growth of V. fischeri. Results of antibacterial and cytotoxicity tests were given in Table 2 in supporting information S4.

References

- [1] P. H. Davis (1975). Flora of Turkey and The East Aegean Islands. Vol:5, University Press, Edinburgh.
- [2] E. Bağcı, M. Kürşat, A. Kocak and S. Gür (2008). Composition and Antimicrobial Activity of the Essential Oils of *Tanacetum balsamita* L. subsp. *balsamita* and *T. chiliophyllum* (Fisch. Et Mey.) Schultz Bip. var. *chiliophyllum* (Asteraceae) from Turkey, *J. Essent. Oil Bear. Plant.* 11, 5, 476-484.
- [3] E. Salamcı, S. Kordalı, R. Kotan, A. Çakır and Y. Kaya (2007). Chemical compositions, antimicrobial and herbicidal effects of essential oils from Turkish *Tanacetum aucheranum* and *Tanacetum chiliophyllum* var. *Chiliophyllum*, *Biochem. Syst. Ecol.* 35, 569-581.
- [4] Kemal H. C. Başer, N. Gören and B. Demirci (2001). Composition of the essential oil of Tanacetum armenum (DC) Schultz Bip., T. balsamita L., T. chiliophyllum (Fisch & Mey.) Schultz Bip. var. chiliophyllum and T. haradjani (Rech. Fil.) Grierson and the enantiomeric distribution of camphor and carvone, Flavour Fragr. J. 16, 195-200.
- [5] C. S. Mathela, R. C. Padalia and R. K. Joshi (2008). Variability in Fragrance Constituents of Himalayan *Tanacetum Species: Commercial Potential*, *J. Essent. Oil Bear. Plant.* 11, 5, 503-513.
- [6] C. S. Chanotiya and C. S. Mathela (2007). Two distinct essential oil bearing races of *Tanacetum nubigenum* Wallich ex DC from Kumaon Himalaya, *Nat. Prod. Commun.* 2, 7, 785-788.
- [7] J. Rohloff, R. Mordal and S. Dragland (2004). Chemotypical Variation of Tansy (*Tanacetum vulgare L.*) from 40 different Locations in Norway, J. Agricult. Food Chem. 52, 1742-1748.
- [8] K. Polatoğlu, N. Gören, Kemal H. C. Başer and B. Demirci (2009). The variation in the essential oil composition of *Tanacetum cadmeum* (Boiss.) Heywood ssp. *orientale* Grierson from Turkey, *J. Essent. Oil Res.* 21, 98-100.
- [9] A. Judzentiene and D. Mockute (2005). The injlorescence and leaf essential oils of *Tanacetum vulgare* L. var. *vulgare* growing wild in Lithuania, *Biochem. Syst. Ecol.* 33, 5, 487-498.
- [10] K. Polatoğlu, N. Gören, Kemal H. C. Başer and B. Demirci (2009). The essential oil composition of *Tanacetum densum* (Labill.) Heywood ssp. *siyasicum* Hub.-Mor. & Grierson from Turkey, *J. Essent. Oil Res.* 21, 200-202.
- [11] K. Polatoğlu, F. Demirci, B. Demirci, N. Gören, Kemal H. C. Başer, (2010). Essential Oil Composition and Antibacterial Activity of *Tanacetum argenteum* (Lam.) Willd. ssp *argenteum* and *T. densum* (Lab.) Schultz Bip. ssp *amani* Heywood from Turkey, *J. Oleo Sci.* **59.** 7. 361-367.
- [12] B. Demirci, Kemal H. C. Başer (2007). The essential oil composition of *Tanacetum macrophyllum* (Waldst. Et Kit.) Schultz. Bip., J. Essent. Oil Res. 19, 255-257.
- [13] Kemal H. C. Başer, B. Demirci, N. Gören (2001). Composition of the essential oils of *Tanacetum* spp. from Turkey, *Flavour Fragr.* J. 16, 191-194.
- [14] K. Polatoğlu, F. Demirci, B. Demirci, N. Gören, Kemal H. C. Başer (2010). Antibacterial Activity and the Variation of *Tanacetum parthenium* (L.) Schultz Bip. Essential Oils from Turkey, *J. Oleo Sci.* **59**, 4, 177-184.
- [15] K. Polatoğlu, B. Demirci, N. Gören and Kemal H. C. Başer (2011). Essential oil composition of endemic *Tanacetum zahlbruckneri* (Náb.) and *Tanacetum tabrisianum* (Boiss.) Sosn. and Takht. from Turkey, *Nat. Prod. Res.* **25**, 6, 576-584.
- [16] K. Polatoğlu, F. Demirci, B. Demirci, N. Gören and Kemal H. C. Başer (2010). Antimicrobial Activity and Essential Oil Composition of a New T. argyrophyllum (C. Koch) Tvzel var. argyrophyllum Chemotype, J. Oleo Sci. 59, 6, 307-313.
- [17] N. Gören, N. Arda and Z. Çalışkan (2002). Chemical characterization and biological activities of the genus *Tanacetum* (*Compositae*). In Studies in Natural Products Chemistry. Vol. 27 Edited by Atta-ur Rahman, Elsevier Science Press.
- [18] V. A. Matsakanyan and L. V. Revazova (1974). Tamirin from Tanacetum chiliophyllum, Chem. Nat. Compd. (Khimiya Prirodnykh Soedinenii), 3, 396-397.
- [19] N. Gören and E. Tahtasakal (1993). Sesquiterpenes of Tanacetum chiliophyllum var. heimerlei., Phytochemistry, 4, 34, 1071-1073.
- [20] N. Gören and E. Tahtasakal (1994). Further Investigation on Tanacetum chiliophyllum var. heimerlei., Turk. J. Chem. 18, 296-300.
- [21] T. Özek, N. Tabanca, F. Demirci, D. Wedge and Kemal H. C. Başer (2010). Enantiomeric distribution of some linalool containing essential oils and their biological activities, *Rec. Nat. Prod.* 4, 4, 180-192.
- [22] M. B. Hassanpouraghdam, S. J. Tabatabaie, H. Nazemiyeh, L. Vojodi and M. A. Aazami (2008). Essential oil composition of hydroponically grown *Chrysanthemum balsamita* L. J. Essent. Oil Bear. Plant. 11, 6, 649-654.
- [23] N. Tabanca, F. Demirci, B. Demirci, D.E. Wedge and Kemal H.C. Başer (2007). Composition, enantiomeric distribution and antimicrobial activity of *Tanacetum argenteum* subsp. *flabellifolium* essential oil, *J. Pharmaceut. Biomed.* **45**, 714-719.
- [24] M. K. Kaul, S. Kitchlu, S. K. Bakshi, M. K. Bhan, R. K. Thapa and S. G. Agarwal (2006). *Tanacetum gracile* Hook. F& T. a new source of lavandullol from Ladakh Himalaya (India), *Flavour Fragr. J.* 21, 690-692.
- [25] A. Kotiranta, K. Lounatmaa and M. Haapsalo (2000). Epidemiology and pathogenesis of *Bacillus cereus* infections, *Microbes Infect.* 2, 2, 189-198.
- [26] M. Ehling-Schulz, M. Fricker and S. Scherer (2004). Bacillus cereus, the causative agent of an emetic type of food-borne illness, Mol. Nutr. Food Res. 48, 479-487.

© 2011 Reproduction is free for scientific studies