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2Department of Physics, Faculty of Science, Anadolu University, Tepebaşı, Eskişehir, Turkey
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Abstract:This study investigates whether the electromagnetic and gravitoelectromagnetic energy conservation equations

are obtained together by using octonion algebra or not. Maxwell and Maxwell-like equations for linear gravity with

magnetic monopole terms are used in the SI unit system. A new complex octonionic field term is suggested for the first

time. The complex octonionic source equation is then obtained. Finally, Poynting theorems for both electromagnetism

and gravitoelectromagnetism are defined for the first time by using higher dimensional algebra.
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1. Introduction

As physical problems or applications can be solved by using vector, tensor, and matrix algebras, they may be

also represented by quaternions, octonions, and sedenions [1–5]. These algebraic structures are also known as

hypernumber systems and are useful tools for the representations and generalizations of quantities in differ-

ent physical subfields such as electromagnetism (EM), gravitoelectromagnetism (GEM), quantum mechanics,

acoustics, group theory, or supersymmetric quantum mechanics. There are many studies about EM and GEM

with different algebras in the literature [6–29].

Octonions with 8 components have both noncommutative and nonassociative algebraic properties and

they satisfy alternative division rings. According to the different physical systems, octonions have some

types such as real, complex, split, and hyperbolic forms. In this paper, energy conservation equations for

both EM and GEM are expressed by using complex octonions. Some studies related to complex octonions

can be summarized as follows: Tolan et al. reformulated classical electromagnetism [22], Tanışlı and Kansu

studied electromagnetism for bi-isotropic media [23], Tanışlı and Jancewicz represented electromagnetic Lorenz

conditions with magnetic monopoles [24], and Kansu et al. showed electromagnetic energy conservation without

sources [25].

To date, classical electromagnetism and energy conservation equations have been presented using com-

plexified quaternions by Tanışlı [26] and complex octonions by Kansu et al. [25]. Additionally, Tanışlı studied

energy conservations with quaternions for acoustics [27]. Due to the analogy between EM and GEM, it is

thought that the Poynting theorem can be adapted together in higher dimensions alternatively. Therefore,
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complex octonion algebra with 16 components has valid and useful hypercomplex numbers.

After the introduction of this study, octonion algebra and its properties are given in Section 2. In the

next section, Maxwell and Maxwell-like equations for gravity are expressed with magnetic and gravitomagnetic

monopole terms. The energy conservation equations for EM and GEM are then written in vectorial forms. In

Section 4, the complex octonionic differential operator and field equation are presented. In addition, by obtaining

the complex octonionic source equation, the energy conservation equations, energy fluxes, and densities in terms

of EM and GEM are attained via octonionic representations. The results, conclusions, and fundamental features

of this study are presented in the last section.

2. Octonion algebra

Octonions are included among the hypercomplex numbers. They have 8 real components and generate a normed

alternative division algebra over the real numbers. They were discovered by John T. Graves in 1843 and were

independently developed by Arthur Cayley in 1845. Therefore, octonions are also known as “Cayley numbers” in

the literature. Octonion algebra has both noncommutative and nonassociative algebraic structures [2,3,22–25].

A real octonion, A, is shown as follows:

A =

7∑
n=0

anen = a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7. (1)

Here, the an and e n terms represent the real numbers and basis elements of the real octonion, respectively.

For 2 real octonions A and B , some algebraic processes can be defined. The summation and subtraction are

given as:

A±B =
7∑

n=0
(an ± bn) en

= (a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7)

± (b0e0 + b1e1 + b2e2 + b3e3 + b4e4 + b5e5 + b6e6 + b7e7) .

(2)

The real octonion A consists of 2 parts: scalar and vectorial. The scalar and vectorial parts can be given as

below, respectively:

SA = a0e0, (3)

VA = a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7. (4)

Therefore, the real octonion A can be written briefly as:

A = SA + VA = a0e0 + A⃗, (5)

where A⃗ denotes the other vectorial notation of the real octonion. Before multiplying 2 real octonions, the

product rules between the basis elements should be given. There are many multiplication rules in the literature.

In this study, Cayley–Dickson construction rules are used with the following properties:

−e4e i = e ie4 = ê i, e4ê i = −ê ie4 = e i, e4e4 = −e0,

e iej = −δije0 + εijkek, ê iêj = −δije0 − εijkek, i, j, k ∈ (1, 2, 3) ,

−êje i = e iêj = −δije4 − εijkêk.

(6)

Here, êk ≡ e4+k , k ∈ (1, 2, 3) and e0 = 1 [22-25]. These rules can also be summarized as a table.
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Table. Cayley–Dickson multiplication rules for octonions.

e0 e1 e2 e3 e4 e5 e6 e7

e0 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 -1 e3 -e2 e5 -e4 -e7 e6

e2 e2 -e3 -1 e1 e6 e7 -e4 -e5

e3 e3 e2 -e1 -1 e7 -e6 e5 -e4

e4 e4 -e5 -e6 -e7 -1 e1 e2 e3

e5 e5 e4 -e7 e6 -e1 -1 -e3 e2

e6 e6 e7 e4 -e5 -e2 e3 -1 -e1

e7 e7 -e6 e5 e4 -e3 -e2 e1 -1

By using these rules, the product of 2 real octonions, A and B , is equal to the following expression:

AB=a0b0 + a0B⃗ + A⃗b0 − A⃗ · B⃗ + A⃗× B⃗ . (7)

Octonions also have an octonionic conjugate, denoted by changing all signs of the vectorial part.

Ā = SA − VA = a0e0 − A⃗ (8)

The octonionic conjugate process can be also applied for 1 or 2 real octonions, A and B , as follows:(
¯̄A
)
= A,

(
A+B

)
= Ā+ B̄ ,

(
AB

)
= B̄Ā. (9)

If there are no scalar parts in Eq. (7), the scalar and vectorial products of real octonions A and B are given

the following manner, respectively [22–25]:

A⃗ · B⃗ = −1

2

[
AB +

(
AB

)]
, (10)

A⃗× B⃗ =
1

2

[
AB −

(
AB

)]
. (11)

The norm of the real octonion A is obtained by multiplying the octonion and its octonionic conjugate; the

result is a real number.

N (A) = AĀ = ĀA =
7∑

n=0

a2n (12)

The norm process for 2 real octonions is multiplicative, as follows:

N (AB) = N (A)N (B) . (13)

Nonzero octonions also have a multiplicative inverse. The inverse of the real octonion, A, is denoted by A−1 ,

and this term can be obtained by the norm and the conjugate of the octonion.

A−1 =
Ā

N (A)
(14)

Let X be a complex octonion. It can be expressed by a linear combination of 2 real octonions, A and A′ , with

a complex unit i:

X = A+ iA′, (15)
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X = (a0e0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7)

+i (a′0e0 + a′1e1 + a′2e2 + a′3e3 + a′4e4 + a′5e5 + a′6e6 + a′7e7) ,
(16)

X =
7∑

n=0
(an + ia′n) en =(a0 + ia′0) e0 + (a1 + ia′1) e1 + (a2 + ia′2) e2 + (a3 + ia′3) e3

+(a4 + ia′4) e4 + (a5 + ia′5) e5 + (a6 + ia′6) e6 + (a7 + ia′7) e7,
(17)

X =

7∑
n=0

xnen = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7. (18)

Here, xn ’s are complex numbers and i denotes the complex unit
(
i =

√
−1

)
. While complex octonions have

similar algebraic properties to real ones, they differ in having 16 components and an additional complex unit

i. This means that there exists an additional complex conjugate of a complex octonion. Octonion conjugate X̄

and complex conjugate X∗ are written as shown below [25].

X̄ = (a0 + ia′0) e0 − (a1 + ia′1) e1 − (a2 + ia′2) e2 − (a3 + ia′3) e3

− (a4 + ia′4) e4 − (a5 + ia′5) e5 − (a6 + ia′6) e6 − (a7 + ia′7) e7

(19)

X∗ = (a0 − ia′0) e0 + (a1 − ia′1) e1 + (a2 − ia′2) e2 + (a3 − ia′3) e3

+(a4 − ia′4) e4 + (a5 − ia′5) e5 + (a6 − ia′6) e6 + (a7 − ia′7) e7

(20)

The other algebraic properties, such as multiplication, norm, inverse, are similar processes to those of the real

octonions.

3. EM and GEM equations for energy conservation

Maxwell equations are central for the description of classical electromagnetism, electromagnetic wave theory,

and optics. Maxwell equations are presented in the SI unit system [30] as shown below.

∇⃗ · E⃗ = ρe

∇⃗ · H⃗ = 0

∇⃗ × E⃗ = −∂H⃗
∂t

∇⃗ × H⃗ = J⃗e +
∂E⃗
∂t

(21)

Here, E⃗ , H⃗ , ρe , and J⃗e are the electric field, magnetic field, electrical charge density, and electrical current

density, respectively. The constitutive equations of D⃗ = ε0E⃗ and B⃗ = µ0H⃗ equalities are given for EM

in isotropic media. Here, the terms D⃗ , B⃗ , ε0 , and µ0 represent electrical displacement, magnetic flux

density, permittivity, and permeability constants for free space, respectively. There is a usual assumption

that ε0 = µ0 = 1 for theoretical studies in physics. Eq. (21) in EM has been derived from electric charges.

This state is related to the Coulomb law in electricity.

Maxwell equations are popular and fundamental elements for physical systems. They are also invariant

under the Lorentz and duality transformations. However, Eq. (21) does not satisfy duality transformations.

In order to obtain both symmetry and duality invariance of Maxwell equations, Dirac proposed the magnetic
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monopole term [31,32]. Thus, generalized Dirac–Maxwell equations gain a new form in vectorial notation as

follows:

∇⃗ · E⃗ = ρe

∇⃗ · H⃗ = ρm

∇⃗ × E⃗ = −J⃗m − ∂H⃗
∂t

∇⃗ × H⃗ = J⃗e +
∂E⃗
∂t ,

(22)

where ρm and J⃗mare magnetic charge and magnetic current densities, respectively.

Duality transformations are given by the following expressions in the literature [10–12]:

E⃗ → E⃗cosθ + H⃗sinθ , H⃗ → −E⃗sinθ + H⃗cosθ. (23)

For a special case of theta angle as θ = π/2, these transformations can be rewritten as:

E⃗ → H⃗ , H⃗ → −E⃗. (24)

Duality transformations can be also rearranged by using matrix notations as below:[
E⃗

H⃗

]
→

[
cosθ sinθ
−sinθ cosθ

] [
E⃗

H⃗

]
, (25)

[
E⃗

H⃗

]
→

[
0 1
−1 0

] [
E⃗

H⃗

]
. (26)

These transformations are also applied for source and current densities as follows:

ρe → ρm , ρm → −ρe

J⃗e → J⃗m , J⃗m → −J⃗e.
(27)

In order to prevent the symmetry disappearance, Dirac used these transforms, and then Maxwell equations

were written as in Eq. (22). It is easily seen that the fields, charge, and current densities can be converted to

one another in Eq. (22) by using duality processes.

Recently, similarly to Maxwell equations in EM, some equations have been set in linear gravity. This can

be connected to Newton’s law as a body mass in a gravitational field. In addition, the moving matter (mass

current) generates a gravitomagnetic field according to Einstein’s general relativity just as a magnetic field is

produced in Maxwell’s equations by the moving charges (electric current). Hence, the set of governing equations

related to gravity can be expressed in a similar form with their electromagnetic counterparts. This theoretical

analogy between the Maxwell equations and gravity was first proposed by Heaviside in 1893 [15,16]. The new

equation set is named as Maxwell-like equations for linear gravity, and they can be presented as shown below.

∇⃗ · Ẽ = −ge

∇⃗ · H̃ = −gm

∇⃗ × Ẽ = J̃m − ∂H̃
∂t

∇⃗ × H̃ = −J̃e +
∂Ẽ
∂t

(28)
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Here, Ẽ , H̃ , ge , gm , J̃e , and J̃m terms are the gravitoelectric field, gravitomagnetic field, gravitoelectric charge

density, gravitomagnetic charge density, gravitoelectric current density, and gravitomagnetic current density,

respectively. Due to the similarity to Maxwell equations, it is seen that these equations are also invariant under

duality transformations. Therefore, the following transformations can be given:

Ẽ → H̃ , H̃ → −Ẽ

ge → gm , gm → −ge

J̃e → J̃m , J̃m → −J̃e.

(29)

From the third and fourth Maxwell equations in Eq. (22), the expression for the electromagnetic energy equation

(termed the Poynting theorem) may be derived from:

−E⃗ ·
(
∇⃗ × H⃗

)
+ H⃗ ·

(
∇⃗ × E⃗

)
+ E⃗ · ∂E⃗

∂t
+ H⃗ · ∂H⃗

∂t
= −E⃗ · J⃗e − H⃗ · J⃗m. (30)

Using the vectorial identities as ∇⃗·
(
A⃗× B⃗

)
= B⃗ ·

(
∇⃗ × A⃗

)
−A⃗ ·

(
∇⃗ × B⃗

)
, this equation may then be described

as the conservation law for electromagnetic energy as

∂u

∂t
+ ∇⃗ · S⃗ = −E⃗ · J⃗e − H⃗ · J⃗m, (31)

where

S⃗ = E⃗ × H⃗ (32)

is termed the Poynting vector. The changing of the energy density ∂u
∂t is defined as [25,30]:

∂u

∂t
=

1

2

∂

∂t

(
E2 +H2

)
=

1

2

∂

∂t

(
E⃗ · E⃗ + H⃗ · H⃗

)
. (33)

Additionally,
(
E⃗ · J⃗e

)
and

(
H⃗ · J⃗m

)
denote the power or change of work depending on both electric and

magnetic fields.

All calculations in terms of the energy conservation equation for EM can also be adapted for a GEM

system. In a similar way, the gravitoelectromagnetic energy equation (termed the gravito-Poynting theorem)

may be derived from the third and fourth Maxwell-like equations in Eq. (28).

−Ẽ ·
(
∇⃗ × H̃

)
+ H̃ ·

(
∇⃗ × Ẽ

)
+ Ẽ · ∂Ẽ

∂t
+ H̃ · ∂H̃

∂t
= Ẽ · J̃e + H̃ · J̃m (34)

With the necessary mathematical operations, the Poynting theorem can be obtained for GEM as:

∇⃗ · S̃ +
∂ũ

∂t
= Ẽ · J̃e + H̃ · J̃m, (35)

where S̃ , ũ ,
(
Ẽ · J̃e

)
, and

(
H̃ · J̃m

)
are gravitoelectromagnetic energy flux, gravitoelectromagnetic energy

density, gravitoelectric power, and gravitomagnetic power, respectively. Here, gravitoelectromagnetic Poynting

vectors S̃ and ũ are denoted as:

S̃ = Ẽ × H̃, (36)

∂ũ

∂t
=

1

2

∂

∂t

(
Ẽ · Ẽ + H̃ · H̃

)
. (37)
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4. Complex octonionic representation of energy conservations

The complex octonionic differential operator and its octonionic conjugate are defined in terms of Cayley–Dickson

notation in the literature as below [22–25]:

Dt = i
∂

∂t
e0 +

∂

∂x
e5 +

∂

∂y
e6 +

∂

∂z
e7, (38)

D̄t = i
∂

∂t
e0 −

∂

∂x
e5 −

∂

∂y
e6 −

∂

∂z
e7. (39)

The multiplication of these operators is commutative and the result is equal to

DtD̄t = D̄tDt = − ∂2

∂t2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= ∆− ∂2

∂t2
= ∇2 − ∂2

∂t2
, (40)

where the symbol ∆ denotes the Laplacian operator in Cartesian coordinates.

In order to obtain energy conservation equations for EM and GEM, a field F should be suggested in terms

of electric, magnetic, gravitoelectric, and gravitomagnetic fields. The new complex octonionic field equation

can be defined by the following expressions:

F = E + iH

=
(
E⃗ + iH⃗

)
+
(
Ẽ + iH̃

)
=

(
Ẽ + E⃗

)
+i

(
H⃗ + H̃

)
,

(41)

F =
(
Ẽxe1 + Ẽye2 + Ẽze3 + Exe5 + Eye6 + Eze7

)
+i

(
Hxe1 +Hye2 +Hze3 + H̃xe5 + H̃ye6 + H̃ze7

)
.

(42)

It should be noticed that the last field equation includes 12 components and each field term has different basis

elements. By operating a complex octonionic differential operator on this field term, the following equality is

obtained in terms of Maxwell equations for EM and GEM as shown below.

DtF = e0

(
−∇⃗ · E⃗

)
+e1

[
−∂Hx

∂t −
(
∇⃗ × E⃗

)
x

]
+ e2

[
−∂Hy

∂t −
(
∇⃗ × E⃗

)
y

]
+ e3

[
−∂Hz

∂t −
(
∇⃗ × E⃗

)
z

]
+e4

(
∇⃗ · Ẽ

)
+e5

[
−∂H̃x

∂t −
(
∇⃗ × Ẽ

)
x

]
+ e6

[
−∂H̃y

∂t −
(
∇⃗ × Ẽ

)
y

]
+ e7

[
−∂H̃z

∂t −
(
∇⃗ × Ẽ

)
z

]
+ie0

(
−∇⃗ · H̃

)
+ie1

[
∂Ẽx

∂t −
(
∇⃗ × H̃

)
x

]
+ ie2

[
∂Ẽy

∂t −
(
∇⃗ × H̃

)
y

]
+ ie3

[
∂Ẽz

∂t −
(
∇⃗ × H̃

)
z

]
+ie4

(
∇⃗ · H⃗

)
+ie5

[
∂Ex

∂t −
(
∇⃗ × H⃗

)
x

]
+ ie6

[
∂Ey

∂t −
(
∇⃗ × H⃗

)
y

]
+ ie7

[
∂Ez

∂t −
(
∇⃗ × H⃗

)
z

]

(43)

The last equation can be reduced to charge and current densities.

J = −ρee0 + Jmxe1 + Jmye2 + Jmze3 − gee4 − J̃mxe5 − J̃mye6 − J̃mze7

+igme0 + iJ̃exe1 + iJ̃eye2 + iJ̃eze3 + iρme4 − iJexe5 − iJeye6 − iJeze7

(44)
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This expression is called a complex octonionic source equation. It can be easily seen that the relationship

between the complex octonionic field and source equation is summarized in a basic and economical form, as

follows:

DtF = J. (45)

In order to arrive at the Poynting theorem for both EM and GEM, the result of F∗ · (DtF) or F∗ ·J equalities

should be found. These equalities are related to Eq. (10). Namely, they must be confirmed by the scalar

product rule of octonions. This state was explained in previous studies by Kansu et al. [25] and Tanışlı [26,27].

Therefore, the equalities depending on differential operator and source terms can be written as:

F∗ · (DtF) = F∗ · J
−1

2

[
F∗ (DtF) + F∗ (DtF)

]
= −1

2

[
F∗J+ F∗J

]
,

(46)

where F∗ represents the complex conjugate of the complex octonionic field term as follows:

F∗ =
(
Ẽxe1 + Ẽye2 + Ẽze3 + Exe5 + Eye6 + Eze7

)
−i

(
Hxe1 +Hye2 +Hze3 + H̃xe5 + H̃ye6 + H̃ze7

)
.

(47)

First, by multiplying F∗ (DtF) and F∗ (DtF) in octonion forms and with the help of the necessary mathematical

processes, the following equality is obtained.

F∗ (DtF)=F∗ (DtF) = e0

[
Ẽ · ∂H⃗

∂t + Ẽ ·
(
∇⃗ × E⃗

)
− H̃ · ∂E⃗

∂t + H̃ ·
(
∇⃗ × H⃗

)
+E⃗ · ∂H̃

∂t + E⃗ ·
(
∇⃗ × Ẽ

)
− H⃗ · ∂Ẽ

∂t + H⃗ ·
(
∇⃗ × H̃

)]
+ie0

[
−Ẽ · ∂Ẽ

∂t + Ẽ ·
(
∇⃗ × H̃

)
− H̃ · ∂H̃

∂t − H̃ ·
(
∇⃗ × Ẽ

)
−E⃗ · ∂E⃗

∂t + E⃗ ·
(
∇⃗ × H⃗

)
− H⃗ · ∂H⃗

∂t − H⃗ ·
(
∇⃗ × E⃗

)]
(48)

It is easily seen that the result is found in terms of only the scalar component. In other words, the vectorial

components zeroize each other. This means that the energy is a scalar quantity. Similar octonionic multiplication

can be also applied for F∗J and F∗J on the right side of Eq. (46). The result of this product can be obtained
as:

F∗J =F∗J = e0

[
−Ẽ · J⃗m + E⃗ · J̃m − H⃗ · J̃e + H̃ · J⃗e

]
+ie0

[
−Ẽ · J̃e + E⃗ · J⃗e + H⃗ · J⃗m − H̃ · J̃m

]
.

(49)

Similarly to Eq. (48), all components in the same bases without e0 scalar bases zeroize one another. It is

clear that there is no contribution to the energy conservation equations from e0 bases of Eqs. (48) and (49)

Because, the field components of EM and GEM are mixed with each other and they have no physical meaning.

Therefore, the components with ie0 bases for Eqs. (48) and (49) are valid. By using electromagnetic energy

flux and density, Eqs. (48) and (49) can be equaled together as follows:

[
∇⃗ · S⃗ +

∂ (u)

∂t
+ ∇⃗ · S̃ +

∂ (ũ)

∂t

]
=

[
−E⃗ · J⃗e − H⃗ · J⃗m + Ẽ · J̃e + H̃ · J̃m

]
, (50)

162



KANSU et al./Turk J Phys

where S⃗ , u, S̃ , and ũ represent electromagnetic energy flux, electromagnetic energy density, gravitoelectromag-

netic energy flux, and gravitoelectromagnetic energy density, respectively. As a result, the Poynting theorems

for EM and GEM are separately obtained using octonion algebra once again as below:

∇⃗ · S⃗ +
∂ (u)

∂t
= −E⃗ · J⃗e − H⃗ · J⃗m, (51)

∇⃗ · S̃ +
∂ (ũ)

∂t
= Ẽ · J̃e + H̃ · J̃m. (52)

5. Results and conclusions

The energy conservation law is one of the most important laws for physics and its applications. It is known that

there is an analogy between EM and GEM in the literature. The main purpose of this study is to generalize

Poynting theorems for both EM and GEM in higher dimensions. For this process, an algebraic structure with 12

components is needed. Therefore, octonion algebra is used in this study. However, real octonions were not used

due to their number of components and their not providing the same results with mathematical operations.

Namely, complex octonions are more suitable than real ones for this study with their algebraic structures.

Octonions are one of the members of higher dimensional algebra. They are useful favorable, alternative tools

for representing physical systems in theory. Although sedenions have 16 components like complex octonions,

octonion algebra has alternative division rings due to its dimensions. That is, octonions are the last member of

verifying division algebra in hypernumber systems. The Poynting theorem is an energy conservation equality

for EM. In this study, as distinct from previous studies [25,26], Maxwell equations have been chosen with the

source terms, and then the Poynting theorem has been verified in this sense. In addition, this state has also

been adapted for linear gravity.

The new field term, consisting of both electromagnetic and gravitoelectromagnetic components, has first

been defined in terms of octonion basis elements. Then, by applying a complex octonionic differential operator

to this field, the complex octonionic source equation has been written in a more elegant, useful, and simple form.

By using the scalar product rule of octonions, the energy conservation equation has been obtained with the

source terms for both EM and GEM for the first time. Although electromagnetic and gravitoelectromagnetic

field components have been written in a different octonion basis, the Poynting theorem for both EM and GEM

has been obtained in the same scalar basis. This case indicates that the energy is a scalar quantity in physics.

As a result, both electromagnetic and gravitoelectromagnetic Poynting theorems have been combined under the

same scalar elements by using nonassociative algebra. This study shows that the field term denoted in Eq. (42)

is similar to our previous field [25] without the gravity field components. Our previous study relying on energy

conservation [25] does not include electromagnetic equations with sources.

In the following stages of work, similar processes for EM and GEM will be applied by using Lorentz

transformations. In addition, it is planned to investigate whether these applications could be rearranged or not

with different higher dimensional algebras such as octons, sedenions, or sedeons.
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[14] Demir, S.; Tanışlı, M.; Candemir, N. Adv. Appl. Clifford Algebra 2010, 20, 547–563.
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[16] Demir, S.; Tanışlı, M. Eur. Phys. J. Plus 2011, 126, 115.

[17] Candemir, N.; Özdaş, K.; Tanışlı, M.; Demir, S. Z. Naturforsch. A 2008, 63, 15–18.
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