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Modi�ed tests for comparison of group means
under heteroskedasticity and non-normality caused

by outlier(s)
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Abstract

There are several approximate tests proposed such as Welch's F-test
(W), the Parametric Bootstrap Test (PB) and Generalized F-test (GF)
for comparing several group means under heteroskedasticity. These
tests are powerful and have nominal type 1 error rates but they are not
performing satisfactorily under non-normality caused by outlier(s). To
handle this problem, we investigate tests that are powerful and pro-
vide nominal type 1 error rates by using robust estimators both for
location and scale parameters. The performance of the modi�ed tests
are examined with Monte-Carlo simulation studies. Results of simu-
lations clearly indicate that Generalized F-test modi�ed with Huber's
M-estimators achieves the nominal type 1 error rate and provide higher
power than alternative methods.
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1. Introduction

Classical F-test (CF) is most commonly used procedure in testing the equality of
group means when the assumptions are hold. When one or more of these assumptions
are violated, CF test can give wrong results. Some modi�cations based on weighting are
used for solving this problem especially in the case of violation of variance homogeneity
[2][3][17][20][31]. Welch (1951) proposed a test procedure based on weighting for com-
paring the several population means with unequal variances. Welch recalculated the test
statistics of Classical F-test with the ratio of sample sizes and sample variances. Equal-
ity of group means under heteroskedasticity can be tested safely by Welch procedure.
With the developments in the computer simulations, many procedures are improved in
the statistical analysis such as bootstrap methods. Krishnamoorthy (2007) proposed the
Parametric Bootstrap test based on bootstrap sampling for comparing the group means
under heteroskedasticity. Also, Weerahandi (1995) improved the Generalized F-test (GF)
based on generalized p-value (GPV) method that can be calculated with Monte-Carlo
simulations for comparing group means under heteroskedasticity. Generalized p-value
method proposed by Tsui and Weerahandi (1989) provides test statistics independently
of nuisance(unknown) parameters. Besides the Generalized F-test, many procedures are
proposed based on GPV method for comparing the group means [10][23][28][30]. Gam-
age and Weerahandi (1998) compared the performance of the tests used for comparing
the group means under heteroskedasticity with Generalized F-test and they indicated
GF test is more powerful than the alternatives. GF test is not only used for normal
distributed groups but also used for skewed distributions such as log-normal, inverse
normal[10][12][16][21][22][23][24][25]. PB is not only used for normal distributed groups
[4][5].

Some approximate tests such as W, PB and GF are considered in this study for
comparing of group means. These tests are constructed on normality assumption so
the violation of that assumption may cause the decrement in the power of the tests.
Normality can be violated by many reasons. One of the most common reason of this
violation is outlier. Outlier can be explained as extremely high or low value in the
data[1]. Outlier has been a basic problem for statistical analysis for many decades. After
detection of the outlier, it is ignored in the analyses in earlier studies. Later, some
transformation methods are used for rasping the e�ect of the outlier. Robust methods
are improved without using any ignoring or transformation since these methods cause
missing information. First Box (1953) proposed several robust methods which can be
used in the presence of outlier.

In this study, it is aimed that to obtain powerful methods for comparing group means
under heteroskedasticity and non-normality caused by outlier. Although approximate
tests are powerful under heteroskedasticity, power of the tests are decreasing in the case
of violation of normality and type 1 error rates of the tests in�ate.[6] We modify the
approximate tests because of the performance of the robust procedures in the presence of
outlier. For obtaining these modi�cations, the maximum likelihood mean and variance
estimators are replaced with robust estimators such as trimmed mean and variance, me-
dian and median absolute deviation, Huber's M-estimators. There are many studies that
includes modi�ed tests based on robust estimators [2][18][19][31][32][33][41]. Tan and
Tabatabai (1985) proposed the modi�ed Brown-Forsythe test with Huber's M-estimators
and compared it with previous methods for presenting the e�ciency of the proposed
method. Wilcox (1995) proposed modi�cation to F-test using with trimmed mean to-
wards the outlier e�ect. Fan and Hancock (2012) proposed Robust Mean Modelling
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approach. Karagoz (2015) tried to compare Weibull distributed group means with mod-
i�ed Welch F-test using with robust estimators. Karagoz and Saracbasi (2016) proposed
a modi�cation to Brown-Forsythe test for the same purposes.

In this study, we modi�ed the Generalized F-test, Parametric Bootstrap Test and
Welch's F-test to handle the outlier(s) by replacing the MLE estimators with some robust
estimators. The performances of these tests are examined in detail in terms of power of
the test and type 1 error rates with Monte-Carlo simulations.

The paper is organized as follows. The approximate tests are introduced in Section 2.
Some robust estimators will be replaced in test statistics are given in the Section 3. The
results of the Monte-Carlo simulations are presented in Section 4. In the last section, the
performance of the modi�ed tests are explained in detail.

2. Methodology

Consider the problem of comparing the means of k populations. Assume Xi1,
Xi2, ..., Xni1 , i = 1, 2, ..., k are observations of k independent groups from the normal
distribution N(µ, σ2

i ). The sample means and the sample variances of the k independent
groups are denoted as X̄ = (X̄1, X̄2, ..., X̄k) and S2 = (S2

1 , S
2
2 , ..., S

2
k) respectively, where

(2.1) X̄i =

∑ni
j=1 xij

ni
and S2

i =

∑ni
j=1(xij − x̄i)2

ni − 1

The observed values of these random variables are x̄ = (x̄1, x̄2, ..., x̄k),s2 = (s2
1, s

2
2, ..., s

2
k)

respectively. The hypotheses of this problem as follows

H0 : µ0 = µ1 = ... = µk

H1 : µi 6= µj for some i 6= j

When all σ2
i are equal, the F-test statistic is

(2.2) F =

∑k
i=1 nix̄

2
i−nx̄

2

(k−1)∑k
i=1

∑ni
j=1 x

2
ij−

∑k
i=1 nix̄

2
i

(n−k)

where n =
∑k
i=1 ni is the total number of observations and x̄ =

∑k
i=1 x̄i is the grand

mean average of all observations. F test statistic has an F distribution with k − 1 and
n− k degrees of freedom.[38]

When the population variances are equal σ2
1 = σ2

2 = ... = σ2
k, the classical F-test is

appropriate for testing the equality of the group means. Nevertheless, the assumption of
variance homogeneity is frequently violated in practice. Some approximate tests given in
below are proposed for handling this violation.

2.1. Welch test. Welch proposed a test based on weighting for comparing several group
means under heteroskedasticity. The weights wi = ni

s2i
are used to de�ne population

characteristics. The sample mean is estimated by weighted mean as follows

(2.3) SSB = x̄w =

k∑
i=1

wi(x̄i − x̄w)2

Now let vi = ni − 1 be the degrees of freedom in the i.th sample and a correction of
degrees of freedom in the test statistics is stated as follows

(2.4) C =

∑k
i=1[1− ( wi∑k

i=1 wi
)]2∑k

i=1 vi



496

and the Welch F-test statistic is

(2.5) W =
SSB

(k − 1)

[
1 +

2(k − 1)C

(k2 − 1)

]−1

has F distribution with degress of freedom v1 = k − 1 and v2 = (k2 − 1)/3C under the
null hypothesis of equality of group means. [40]

2.2. Parametric bootstrap test. Bootstrap methods are generally used in which ob-
taining the test statistics is not easy. Krishnamoorthy et al. improved the Parametric
Bootstrap Test for comparing the equality of several group means under heteroskedas-
ticity.

Let xB = (x1, x2, ..., xm) be a sample obtained from x = (x1, x2, ..., xn) by taking
m (m < n) observations uniformly from x with replacement. Computation of the sample
means and sample variances with bootstrapping of k independent groups

(2.6) x̄Bi =

∑m
j=1 xij

m
and s2

Bi =

∑m
j=1(xij − x̄i)2

m

where x̄Bi ∼ Zi(0, si/
√
ni) and Zi ∼ N(0, 1), the Parametric Bootstrap test statistic can

be calculated as follows

(2.7) PB =

k∑
i=1

Z2
i (ni − 1)

χ2
ni−1

−

∑k
i=1

√
niZi(ni−1)

s2iχ
2
ni−1∑k

i=1
ni(ni−1)

s2iχ
2
ni−1

where Parametric Bootstrap test statistics, PB is distributed chi-squared distribution
with (k − 1) degrees of freedom. [20]

2.3. Generalized F-test. Generalized F-test is proposed by Weerahandi in the pres-
ence of nuisance parameter and test statistic is computed by the simulation methods.
Consider standardized the sum of squares between groups

(2.8) s̃B =

k∑
i=1

nix̄
2
i

s2
i

−
(
∑k
i=1 nix̄i/s

2
i )

2∑k
i=1 ni/s

2
i

Let the nuisance parameter s2
i replaced by random chi-squared variables χ2

(k−1) with

(k − 1) degrees of freedom.

(2.9) GF = E

[
s̃B

(
n1s

2
1

Y1
,
n2s

2
2

Y2
, ...,

nks
2
k

Yk

)]
where Generalized F-test statistic, GF is distributed chi-squared distribution with (k−1)
degrees of freedom and the expectation is taken with respect to the independent Yi
random variables. The computation of the test statistic can be given in the following
steps:

(1) Generate a sample of large number of random numbers from each chi-squared
random variable Yi ∼ χ2

ni−1

(2) For each sample compute the t = χ2
(k−1)

(3) Compute their averages t̄

t̄ is the test statistic of Generalized F-test, distributed by chi-squared distribution with
(k − 1) degrees of freedom. [37]
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3. Robust estimators

Robust procedures provide methods not e�ected by outliers or departures from as-
sumptions. In the case of data include outlier(s), classical estimators show poor perfor-
mance so these procedures are preferred in estimating of location and shape parameters.
There are some measurements for comparing the e�ectiveness of estimators, used in ro-
bust theory.

Let X1, X2..., Xn be a random sample and we want to estimate location and scale pa-
rameters of this sample with robust estimators.

3.1. Trimmed mean and trimmed variance. Let X1, X..., Xn be a random sample
and let X(1) ≤ X(2) ≤ ... ≤ X(n) be the observations in ascending order. The value
X(i) is called the ith order statistic. The trimmed mean is computed by removing the
r largest and the r smallest observations and averaging the remain values as classical
mean computation. The trimmed mean is X̄t = X(r+1) +X(r+2) + ...+X(n−r)/(n− 2r).
Trimmed variance is calculated with the based on winsorized variance. Although of the
trimmed, the idea of winsorized calculates after replacing the observations at he high
and low point with the most extreme remaining values. Consider the random sample
in above, it is converted X(r) ≤ X(r) ≤ X(r) ≤ ... ≤ X(n−r) ≤ X(n−r) ≤ X(n−r) with
winsorization. Winsorized variance can be used instead of trimmed variance as follows

(3.1) s2
t =

∑n
i=1(Wi − W̄ )2

n2(1− 2r)2

where W is the winsorized mean and Wi's are winsorized observations. [41]

3.2. Median and median absolute deviation. Median is the most popular location
estimator in robust statistics. It is easily obtained as the middle observation on the
data. Therefore, it is not e�ectted from outliers as much as the mean. Median absolute
deviation is computed based on median as follows

(3.2) MAD = b|medxi −med(x)|

The constant b in above is needed to make estimator consistent for the parameter of
interest. In the case of Normal distribution is present, the value of constant is 1.4826.
Median Absolute Deviation is used instead of standard deviation so we can use its squared
instead of variance.

3.3. Huber's M-estimators. Let X1, X2, ..., Xn be a random sample from a distri-
bution of the type (1/σ)f((x − µ)/σ). Huber proposed a method to estimate location
parameter µ as follows

(3.3) lnL = −nlnσ +

n∑
i=1

lnf(zi), zi = (x− µ)/σ

If the functional form of f is known, the Maximum Likelihood estimator of µ is the
solution of the equation

(3.4)
∂lnL

∂µ
=

1

σ

n∑
i=1

ξ(zi) = 0, ξ(z) = −f ′(z)/f(z)

Writing wi = wi(z) = ξ(zi)/zi so the equation is above can be written as
∑n
i=1 wi(xi −

µ) = 0 so that µ =
∑n
i=1 wixi/

∑n
i=1 wi. Huber proposed a function ξ(z) as

(3.5) ξ(z) =

{
z, if |z| ≤ c
csign(z), if |z| > c
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The m-estimation equation can be solve by iteration with the known function ξ(z). The
choice of c is 1.345 for normal distribution in the tails[29]. Also, Huber suggested chang-
ing MAD to MAD/0.6745 estimator of σ.[34]

Wu (1985) examined the estimator in his study according to their robustness properties
in detail. It is very extensive study for comparing the estimators with variety aspects.
We emphasize the performance of the estimators on the data include outlier(s). Me-
dian and its derivatives and Huber's M-estimators show similar performance according
to breakdown point and in�uence function. This study revealed the Huber's M-estimator
is better than others according to their relative e�ciencies in case of outlier(s) is present.

4. Modi�ed tests for comparing of group means under

non-normality

There many procedures are proposed for comparing of group means under heteroskedas-
ticity such as Welch F-test, Parametric Bootstrap test and Generalized F-test. In the
case of violation of normality caused by outlier, instead of these procedures, some mod-
i�ed tests are developed with robust estimators. Modi�ed tests are considered in this
secton respectively.

4.1. Modi�ed Welch's F-test. Welch proposed the Welch F-test that can be shown
as Equation 2.5. In this test statistic, the sum of squares between groups is calculated
as the follows

(4.1) SSB = x̄w =

k∑
i=1

wi(x̄i − x̄w)2, wi =
ni
s2
i

where xi and s2
i denoted as the maximum likelihood estimators of sample mean and

variance respectively. The proposed modi�ed Welch F-test correspond to the standard
Welch F-test statistic in which the maximum likelihood estimator of sample mean and
variance are replaced with robust estimators such as trimmed mean and variance, median
and median absolute deviation and Huber's M-estimators.

4.2. Modi�ed parametric bootstrap test. Krishnamoorthy et al. proposed the
Parametric Bootstrap test as in Equation 2.7 with the computation of the sample mean
and variance with bootstrapping of k independent groups as in Equation 2.6. The max-
imum likelihood estimators are used for computation of the sample mean and variance.
The proposed modi�ed Parametric Bootstrap test correspond to the standard the Para-
metric Bootstrap test statistic in which the maximum likelihood estimator of sample
mean and variance are replaced with robust estimators such as trimmed mean and vari-
ance, median and median absolute deviation and Huber's M-estimators.

4.3. Modi�ed generalized F-test. Weerahandi proposed the Generalized F-test as
in Equation 2.9. The generalized sum of squares between groups are used for calculating
of the test statistic as follows

(4.2) s̃B =

k∑
i=1

nix̄
2
i

s2
i

−
(
∑k
i=1 nix̄i/s

2
i )

2∑k
i=1 ni/s

2
i

where xi and s
2
i denoted as the maximum likelihood estimators of sample mean and vari-

ance respectively. The proposed modi�ed Generalized F-test correspond to the standard
Generalized F-test statistic in which the maximum likelihood estimator of sample mean
and variance are replaced with robust estimators such as trimmed mean and variance,
median and median absolute deviation and Huber's M-estimators.
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5. Simulation study

The performances of the modi�ed tests are investigated under heteroskedasticity and
non-normality caused by outlier(s). Powers and type 1 error rates of the proposed tests
are calculated by Monte-Carlo simulations with 1000 replications for the nominal value
α = 0.05. In this study, three con�guration factors were taken into account to evaluate
the performance of type 1 error rates and powers; sample size, e�ect size and outlier. In
the following subsections, the performance of the tests and modi�ed tests are examined
in details.

5.1. Performances of the tests. In this section, performances of the tests under
heteroskedasticity and non-normality caused by outlier(s) are examined in terms of power
of the test and type 1 error rates. Monte-Carlo simulation studies are con�gurated
according to unbalanced (n1 = 5, n2 = 10, n3 = 15)-balanced (n1 = 10, n2 = 10, n3 = 10)
designs under heteroskadastic variances (σ2

1 = 0.2, σ2
2 = 0.4, σ2

3 = 0.6), various e�ect
sizes and outlier combinations. The nominal level of α = 0.05 is taken for computing
type 1 error rates. Box-Whisker plot is used for generating outlier in simulations. The
observations are de�ned as outliers sample variance distance from the whiskers. After
1000 replications, power of the tests and type 1 error rates are calculated and tabulated.
In the tables, (o1, o2, o3) display the number of outliers in the groups and (µ1, µ2, µ3)
display the population means.
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Table 1: Powers of the tests
(n1, n2, n3) (5, 10, 15) (10, 10, 10)

(o1, o2, o3) (µ1, µ2, µ3) CF GF PB W CF GF PB W

(0,0,0.3) 0.152 0.210 0.181 0.150 0.167 0.172 0.158 0.146
(0,0,0.6) 0.534 0.557 0.474 0.502 0.497 0.458 0.416 0.427

(0, 0, 0) (0,0,0.9) 0.875 0.886 0.805 0.841 0.847 0.780 0.735 0.765
(0,0,1.2) 0.989 0.992 0.971 0.985 0.986 0.952 0.916 0.952
(0,0,1.5) 0.999 0.999 0.996 0.999 1 0.999 0.989 0.998

(0,0,0.3) 0.085 0.144 0.125 0.107 0.133 0.121 0.095 0.095
(0,0,0.6) 0.359 0.441 0.331 0.370 0.381 0.315 0.268 0.282

(0, 0, 1) (0,0,0.9) 0.714 0.754 0.691 0.705 0.638 0.578 0.515 0.551
(0,0,1.2) 0.920 0.932 0.920 0.905 0.831 0.774 0.752 0.756
(0,0,1.5) 0.985 0.994 0.988 0.987 0.945 0.889 0.903 0.883

(0,0,0.3) 0.091 0.144 0.104 0.116 0.125 0.118 0.073 0.098
(0,0,0.6) 0.332 0.409 0.338 0.343 0.317 0.312 0.232 0.279

(0, 1, 1) (0,0,0.9) 0.639 0.713 0.645 0.676 0.569 0.566 0.495 0.533
(0,0,1.2) 0.865 0.908 0.879 0.895 0.782 0.757 0.732 0.730
(0,0,1.5) 0.971 0.983 0.980 0.981 0.911 0.892 0.900 0.883

(0,0,0.3) 0.104 0.140 0.117 0.120 0.124 0.092 0.085 0.091
(0,0,0.6) 0.341 0.402 0.344 0.371 0.312 0.277 0.232 0.268

(1, 1, 1) (0,0,0.9) 0.662 0.709 0.669 0.697 0.558 0.517 0.476 0.505
(0,0,1.2) 0.881 0.905 0.891 0.886 0.772 0.726 0.710 0.711
(0,0,1.5) 0.973 0.982 0.974 0.980 0.910 0.871 0.874 0.862

(0,0,0.3) 0.143 0.223 0.098 0.168 0.215 0.186 0.078 0.149
(0,0,0.6) 0.373 0.446 0.296 0.395 0.413 0.368 0.216 0.356

(0, 0, 2) (0,0,0.9) 0.605 0.649 0.587 0.614 0.572 0.541 0.450 0.525
(0,0,1.2) 0.783 0.820 0.850 0.793 0.707 0.672 0.694 0.657
(0,0,1.5) 0.919 0.935 0.965 0.918 0.813 0.789 0.842 0.778

(0,0,0.3) 0.136 0.202 0.106 0.164 0.188 0.186 0.064 0.143
(0,0,0.6) 0.368 0.435 0.310 0.393 0.388 0.369 0.202 0.345

(0, 1, 2) (0,0,0.9) 0.578 0.633 0.597 0.605 0.528 0.523 0.423 0.513
(0,0,1.2) 0.749 0.803 0.829 0.763 0.657 0.650 0.689 0.632
(0,0,1.5) 0.899 0.928 0.950 0.914 0.800 0.778 0.857 0.761

(0,0,0.3) 0.161 0.204 0.092 0.179 0.197 0.159 0.057 0.134
(0,0,0.6) 0.361 0.417 0.321 0.390 0.379 0.326 0.202 0.308

(1, 1, 2) (0,0,0.9) 0.595 0.641 0.594 0.605 0.534 0.523 0.423 0.502
(0,0,1.2) 0.787 0.811 0.852 0.803 0.679 0.656 0.676 0.649
(0,0,1.5) 0.912 0.936 0.956 0.927 0.819 0.782 0.867 0.766

(0,0,0.3) 0.185 0.266 0.089 0.213 0.310 0.282 0.096 0.246
(0,0,0.6) 0.412 0.461 0.253 0.414 0.460 0.427 0.230 0.402

(0, 0, 3) (0,0,0.9) 0.561 0.602 0.556 0.572 0.541 0.531 0.445 0.521
(0,0,1.2) 0.701 0.747 0.817 0.703 0.612 0.603 0.647 0.600
(0,0,1.5) 0.840 0.882 0.949 0.847 0.699 0.691 0.779 0.680

(0,0,0.3) 0.177 0.263 0.117 0.228 0.216 0.229 0.098 0.189
(0,0,0.6) 0.353 0.462 0.355 0.424 0.378 0.398 0.253 0.374

(0, 2, 2) (0,0,0.9) 0.570 0.666 0.650 0.646 0.534 0.559 0.480 0.542
(0,0,1.2) 0.751 0.820 0.881 0.794 0.680 0.688 0.718 0.670
(0,0,1.5) 0.882 0.941 0.970 0.933 0.791 0.801 0.868 0.787

(0,0,0.3) 0.205 0.218 0.162 0.242 0.263 0.217 0.125 0.237
(0,0,0.6) 0.362 0.401 0.375 0.405 0.407 0.363 0.291 0.374

(2, 2, 2) (0,0,0.9) 0.558 0.609 0.633 0.609 0.541 0.527 0.483 0.526
(0,0,1.2) 0.750 0.808 0.808 0.798 0.679 0.669 0.685 0.666
(0,0,1.5) 0.890 0.923 0.938 0.910 0.814 0.781 0.829 0.771
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Table 2: Type 1 error rates of the tests
(5, 10, 15) (10, 10, 10)

(o1, o2, o3) CF GF PB W CF GF PB W

(0,0,0) 0.032 0.068 0.062 0.046 0.062 0.076 0.072 0.057
(0,0,1) 0.025 0.067 0.036 0.048 0.058 0.076 0.044 0.060
(0,1,1) 0.030 0.078 0.039 0.049 0.061 0.076 0.043 0.058
(1,1,1) 0.037 0.069 0.044 0.048 0.040 0.055 0.036 0.045
(0,0,2) 0.040 0.108 0.035 0.072 0.096 0.102 0.043 0.079
(0,1,2) 0.044 0.113 0.031 0.067 0.098 0.112 0.027 0.074
(1,1,2) 0.055 0.111 0.046 0.085 0.091 0.077 0.020 0.070
(0,0,3) 0.065 0.157 0.035 0.096 0.222 0.192 0.051 0.162
(0,2,2) 0.081 0.158 0.056 0.111 0.138 0.159 0.055 0.116
(2,2,2) 0.133 0.144 0.103 0.171 0.193 0.124 0.072 0.169

(0,0,0) 0.032 0.068 0.062 0.046 0.062 0.076 0.072 0.057
(0,0,1) 0.015 0.066 0.032 0.041 0.045 0.063 0.034 0.047
(0,1,1) 0.026 0.064 0.018 0.040 0.051 0.054 0.018 0.033
(1,1,1) 0.029 0.023 0.019 0.031 0.038 0.025 0.018 0.029
(0,0,2) 0.033 0.103 0.028 0.058 0.092 0.090 0.028 0.076
(0,1,2) 0.033 0.081 0.018 0.054 0.094 0.108 0.016 0.069
(1,1,2) 0.037 0.030 0.013 0.035 0.096 0.056 0.009 0.053
(0,0,3) 0.037 0.117 0.026 0.067 0.215 0.178 0.033 0.140
(0,2,2) 0.073 0.149 0.040 0.103 0.152 0.157 0.030 0.103
(2,2,2) 0.180 0.111 0.084 0.162 0.185 0.101 0.069 0.160

(0,0,0) 0.032 0.068 0.062 0.046 0.062 0.076 0.072 0.057
(0,0,1) 0.015 0.065 0.023 0.035 0.034 0.051 0.023 0.040
(0,1,1) 0.016 0.048 0.012 0.025 0.037 0.035 0.008 0.017
(1,1,1) 0.030 0.014 0.011 0.016 0.023 0.017 0.006 0.021
(0,0,2) 0.015 0.083 0.022 0.046 0.081 0.084 0.021 0.066
(0,1,2) 0.021 0.050 0.010 0.030 0.083 0.090 0.010 0.044
(1,1,2) 0.026 0.016 0.009 0.022 0.085 0.035 0.008 0.042
(0,0,3) 0.015 0.076 0.020 0.042 0.177 0.151 0.022 0.115
(0,2,2) 0.049 0.096 0.018 0.058 0.129 0.135 0.019 0.084
(2,2,2) 0.124 0.035 0.047 0.080 0.167 0.074 0.038 0.147

According the results in the Table 1, tests lose their powers in the presence of
outlier(s). The decreasing of powers is higher in the balanced designs. Besides
the decreasing power of the tests, the type 1 error rates are higher than nominal
level in the presence of outlier. For handling this problem, some modi�cations will
be proposed using the robust estimators in the following sections. Trimmed mean
and variance, median and median absolute deviation, Huber's M-estimators are
replaced with maximum likelihood estimators in the test statistics for obtaining
modi�ed tests. More powerful tests and nominal type 1 error rates are attempted
to obtain by this modi�cations.
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5.2. Performances of the modi�ed tests by the trimmed mean and vari-

ance. In this section, trimmed mean and variance are used instead of maximum
likelihood estimators to estimate location and scale parameters in the test statis-
tics for comparing group means under heteroskedasticity and nonnormality. The
performance of the modi�ed tests are examined with Monte-Carlo simulations in
terms of power of the test and type 1 error rates.

Table 3: Powers of the modi�ed tests by trimmed mean and variance
(n1, n2, n3) (5, 10, 15) (10, 10, 10)

(o1, o2, o3) (µ1, µ2, µ3)CF GF PB W CF GF PB W

(0,0,0.3) 0.196 0.602 0.544 0.550 0.191 0.531 0.505 0.512
(0,0,0.6) 0.542 0.874 0.845 0.856 0.517 0.808 0.785 0.796

(0, 0, 0) (0,0,0.9) 0.868 0.984 0.978 0.979 0.818 0.956 0.947 0.953
(0,0,1.2) 0.983 0.999 0.999 0.999 0.968 0.997 0.996 0.997
(0,0,1.5) 0.999 1 1 1 0.998 1 1 1

(0,0,0.3) 0.091 0.541 0.497 0.500 0.086 0.464 0.423 0.440
(0,0,0.6) 0.345 0.856 0.815 0.829 0.327 0.734 0.701 0.713

(0, 0, 1) (0,0,0.9) 0.715 0.974 0.966 0.968 0.653 0.917 0.904 0.907
(0,0,1.2) 0.943 0.998 0.997 0.998 0.891 0.992 0.986 0.989
(0,0,1.5) 0.994 1 1 1 0.986 0.999 0.998 0.999

(0,0,0.3) 0.051 0.498 0.448 0.468 0.041 0.401 0.353 0.369
(0,0,0.6) 0.265 0.802 0.768 0.778 0.231 0.670 0.633 0.642

(0, 1, 1) (0,0,0.9) 0.622 0.965 0.951 0.954 0.527 0.899 0.881 0.886
(0,0,1.2) 0.888 0.995 0.995 0.995 0.818 0.985 0.978 0.981
(0,0,1.5) 0.980 1 1 1 0.958 1 0.998 0.999

(0,0,0.3) 0.047 0.366 0.328 0.336 0.033 0.366 0.329 0.342
(0,0,0.6) 0.233 0.757 0.702 0.716 0.206 0.659 0.628 0.642

(1, 1, 1) (0,0,0.9) 0.624 0.965 0.947 0.950 0.501 0.886 0.871 0.880
(0,0,1.2) 0.908 0.996 0.995 0.996 0.810 0.979 0.975 0.977
(0,0,1.5) 0.990 1 1 1 0.958 0.999 0.999 0.998

(0,0,0.3) 0.052 0.518 0.471 0.489 0.064 0.426 0.389 0.403
(0,0,0.6) 0.246 0.802 0.767 0.773 0.263 0.669 0.631 0.650

(0, 0, 2) (0,0,0.9) 0.596 0.958 0.941 0.944 0.555 0.848 0.821 0.830
(0,0,1.2) 0.866 1 0.997 0.996 0.796 0.965 0.956 0.961
(0,0,1.5) 0.982 1 1 1 0.938 0.994 0.993 0.993

(0,0,0.3) 0.040 0.518 0.471 0.485 0.036 0.370 0.329 0.348
(0,0,0.6) 0.216 0.775 0.739 0.750 0.179 0.630 0.598 0.607

(0, 1, 2) (0,0,0.9) 0.542 0.944 0.925 0.929 0.486 0.840 0.815 0.825
(0,0,1.2) 0.837 0.994 0.991 0.992 0.774 0.955 0.949 0.952
(0,0,1.5) 0.971 0.999 0.999 0.999 0.930 0.995 0.993 0.994

(0,0,0.3) 0.034 0.383 0.334 0.347 0.026 0.334 0.302 0.311
(0,0,0.6) 0.203 0.712 0.669 0.679 0.166 0.617 0.581 0.600

(1, 1, 2) (0,0,0.9) 0.562 0.932 0.916 0.922 0.471 0.835 0.812 0.819
(0,0,1.2) 0.869 0.996 0.994 0.993 0.768 0.953 0.944 0.947
(0,0,1.5) 0.981 1 1 1 0.935 0.996 0.995 0.995

(0,0,0.3) 0.065 0.501 0.459 0.465 0.185 0.383 0.339 0.352
(0,0,0.6) 0.237 0.736 0.698 0.708 0.377 0.498 0.470 0.479

(0, 0, 3) (0,0,0.9) 0.549 0.915 0.884 0.896 0.542 0.632 0.608 0.616
(0,0,1.2) 0.820 0.986 0.982 0.984 0.656 0.728 0.701 0.714
(0,0,1.5) 0.960 0.998 0.997 0.998 0.798 0.817 0.793 0.804

(0,0,0.3) 0.031 0.464 0.422 0.437 0.038 0.348 0.310 0.323
(0,0,0.6) 0.176 0.771 0.730 0.743 0.181 0.603 0.572 0.590

(0, 2, 2) (0,0,0.9) 0.516 0.954 0.937 0.945 0.451 0.812 0.787 0.795
(0,0,1.2) 0.825 0.997 0.996 0.996 0.719 0.944 0.932 0.935
(0,0,1.5) 0.971 1 1 1 0.904 0.994 0.989 0.992

(0,0,0.3) 0.043 0.363 0.318 0.334 0.036 0.322 0.295 0.308
(0,0,0.6) 0.200 0.663 0.618 0.637 0.143 0.576 0.536 0.554

(2, 2, 2) (0,0,0.9) 0.508 0.899 0.882 0.886 0.414 0.801 0.778 0.788
(0,0,1.2) 0.814 0.985 0.979 0.982 0.696 0.932 0.925 0.929
(0,0,1.5) 0.958 0.999 0.997 0.998 0.905 0.991 0.985 0.987
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Table 4: Type 1 error rates of the modi�ed tests by trimmed mean and variance
(5, 10, 15) (10, 10, 10)

(o1, o2, o3) CF GF PB W CF GF PB W

(0,0,0) 0.053 0.417 0.374 0.387 0.089 0.395 0.353 0.268
(0,0,1) 0.013 0.368 0.319 0.337 0.026 0.323 0.291 0.302
(0,1,1) 0.013 0.322 0.292 0.297 0.014 0.272 0.234 0.249
(1,1,1) 0.007 0.202 0.167 0.174 0.013 0.215 0.195 0.202
(0,0,2) 0.007 0.372 0.336 0.355 0.025 0.314 0.286 0.302
(0,1,2) 0.009 0.326 0.279 0.298 0.008 0.236 0.201 0.212
(1,1,2) 0.005 0.214 0.186 0.196 0.009 0.200 0.173 0.183
(0,0,3) 0.011 0.381 0.353 0.361 0.084 0.319 0.276 0.294
(0,2,2) 0.005 0.293 0.245 0.264 0.008 0.235 0.210 0.219
(2,2,2) 0.009 0.250 0.212 0.222 0.006 0.205 0.180 0.186

(0,0,0) 0.053 0.417 0.374 0.387 0.089 0.395 0.353 0.368
(0,0,1) 0.005 0.399 0.340 0.362 0.013 0.344 0.311 0.324
(0,1,1) 0.004 0.300 0.269 0.277 0.006 0.307 0.272 0.280
(1,1,1) 0.001 0.237 0.202 0.213 0.001 0.246 0.210 0.217
(0,0,2) 0.009 0.406 0.364 0.380 0.011 0.365 0.324 0.339
(0,1,2) 0.002 0.316 0.284 0.300 0.004 0.317 0.285 0.299
(1,1,2) 0 0.228 0.197 0.204 0.001 0.273 0.246 0.254
(0,0,3) 0.001 0.396 0.355 0.377 0.063 0.305 0.260 0.269
(0,2,2) 0 0.347 0.314 0.329 0.001 0.338 0.291 0.312
(2,2,2) 0.011 0.238 0.187 0.198 0 0.302 0.268 0.280

(0,0,0) 0.053 0.417 0.374 0.387 0.089 0.395 0.353 0.368
(0,0,1) 0.004 0.402 0.354 0.371 0.011 0.373 0.337 0.352
(0,1,1) 0.001 0.382 0.345 0.353 0.002 0.366 0.328 0.339
(1,1,1) 0 0.266 0.227 0.236 0.001 0.322 0.290 0.295
(0,0,2) 0 0.397 0.352 0.373 0.003 0.383 0.345 0.359
(0,1,2) 0 0.370 0.338 0.351 0.002 0.377 0.338 0.354
(1,1,2) 0 0.269 0.237 0.240 0 0.351 0.319 0.334
(0,0,3) 0 0.384 0.354 0.369 0.030 0.273 0.235 0.246
(0,2,2) 0 0.369 0.334 0.348 0 0.368 0.327 0.342
(2,2,2) 0.005 0.223 0.161 0.175 0 0.371 0.343 0.348

Although decreasing power of the tests in the case of nonnormality caused by out-
lier, approximate tests are more powerful with the modi�cation of trimmed mean
and variance. However, the type 1 error rates are more in�ated with this modi�-
cation even exceed the level of 0.2. Modi�ed tests obtained by trimmed mean and
variance are not recommended for comparing group means under heteroskedastic-
ity and nonnormality because of in�ated type 1 error rates. Thus, other robust
modi�cations will be examined in the following sections.
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5.3. Performances of the modi�ed tests by median and median abso-

lute deviation. In this section, median and median absolute deviation are used
instead of maximum likelihood estimators to estimate location and scale parame-
ters in the test statistics for comparing group means under heteroskedasticity and
nonnormality. The performance of the modi�ed tests are examined with Monte-
Carlo simulations in terms of power of the test and type 1 error rates.

Table 5: Powers of the modi�ed tests by median and median absolute deviation
(n1, n2, n3) (5, 10, 15) (10, 10, 10)

(o1, o2, o3) (µ1, µ2, µ3) CF GF PB W CF GF PB W

(0,0,0.3) 0.235 0.331 0.286 0.299 0.233 0.299 0.266 0.276
(0,0,0.6) 0.539 0.620 0.561 0.576 0.521 0.562 0.526 0.534

(0, 0, 0) (0,0,0.9) 0.808 0.861 0.816 0.822 0.810 0.802 0.774 0.786
(0,0,1.2) 0.956 0.975 0.961 0.965 0.940 0.941 0.925 0.931
(0,0,1.5) 0.991 0.998 0.996 0.996 0.986 0.983 0.977 0.979

(0,0,0.3) 0.135 0.317 0.276 0.288 0.162 0.313 0.287 0.295
(0,0,0.6) 0.377 0.581 0.522 0.536 0.371 0.523 0.481 0.498

(0, 0, 1) (0,0,0.9) 0.698 0.844 0.794 0.802 0.621 0.731 0.707 0.715
(0,0,1.2) 0.889 0.970 0.951 0.961 0.825 0.888 0.872 0.876
(0,0,1.5) 0.972 0.998 0.996 0.996 0.926 0.975 0.969 0.971

(0,0,0.3) 0.108 0.333 0.291 0.301 0.096 0.314 0.279 0.290
(0,0,0.6) 0.338 0.601 0.543 0.557 0.283 0.503 0.473 0.489

(0, 1, 1) (0,0,0.9) 0.608 0.814 0.777 0.789 0.519 0.741 0.710 0.720
(0,0,1.2) 0.817 0.955 0.938 0.943 0.741 0.904 0.884 0.892
(0,0,1.5) 0.946 0.992 0.986 0.987 0.900 0.975 0.969 0.972

(0,0,0.3) 0.093 0.385 0.347 0.361 0.087 0.313 0.273 0.288
(0,0,0.6) 0.297 0.643 0.605 0.621 0.265 0.508 0.468 0.483

(1, 1, 1) (0,0,0.9) 0.609 0.884 0.849 0.867 0.514 0.743 0.707 0.725
(0,0,1.2) 0.844 0.978 0.967 0.972 0.745 0.894 0.877 0.886
(0,0,1.5) 0.953 0.998 0.997 0.997 0.892 0.964 0.958 0.960

(0,0,0.3) 0.093 0.303 0.255 0.270 0.096 0.243 0.224 0.228
(0,0,0.6) 0.290 0.546 0.484 0.500 0.287 0.465 0.430 0.445

(0, 0, 2) (0,0,0.9) 0.578 0.806 0.759 0.773 0.542 0.701 0.656 0.671
(0,0,1.2) 0.828 0.952 0.925 0.929 0.789 0.863 0.844 0.851
(0,0,1.5) 0.954 0.991 0.983 0.984 0.909 0.944 0.931 0.936

(0,0,0.3) 0.086 0.343 0.304 0.316 0.059 0.227 0.200 0.206
(0,0,0.6) 0.280 0.581 0.520 0.543 0.203 0.462 0.411 0.431

(0, 1, 2) (0,0,0.9) 0.556 0.818 0.769 0.784 0.480 0.711 0.678 0.689
(0,0,1.2) 0.791 0.942 0.922 0.925 0.751 0.874 0.857 0.863
(0,0,1.5) 0.921 0.990 0.980 0.986 0.904 0.949 0.938 0.942

(0,0,0.3) 0.083 0.386 0.353 0.363 0.059 0.264 0.232 0.244
(0,0,0.6) 0.268 0.635 0.589 0.604 0.217 0.471 0.430 0.439

(1, 1, 2) (0,0,0.9) 0.536 0.859 0.825 0.832 0.479 0.709 0.674 0.687
(0,0,1.2) 0.799 0.964 0.955 0.958 0.737 0.883 0.861 0.871
(0,0,1.5) 0.941 0.994 0.992 0.993 0.908 0.953 0.947 0.952

(0,0,0.3) 0.074 0.268 0.235 0.246 0.109 0.245 0.213 0.229
(0,0,0.6) 0.236 0.517 0.453 0.463 0.276 0.400 0.370 0.383

(0, 0, 3) (0,0,0.9) 0.534 0.797 0.739 0.753 0.505 0.601 0.576 0.587
(0,0,1.2) 0.800 0.936 0.914 0.920 0.717 0.760 0.734 0.744
(0,0,1.5) 0.944 0.985 0.978 0.978 0.858 0.875 0.859 0.863

(0,0,0.3) 0.055 0.278 0.229 0.239 0.047 0.213 0.186 0.194
(0,0,0.6) 0.211 0.549 0.479 0.503 0.199 0.429 0.394 0.406

(0, 2, 2) (0,0,0.9) 0.509 0.807 0.769 0.781 0.450 0.654 0.617 0.629
(0,0,1.2) 0.792 0.952 0.929 0.936 0.702 0.867 0.838 0.852
(0,0,1.5) 0.934 0.994 0.991 0.992 0.881 0.942 0.931 0.934

(0,0,0.3) 0.053 0.216 0.194 0.202 0.045 0.191 0.165 0.172
(0,0,0.6) 0.230 0.486 0.443 0.458 0.180 0.402 0.378 0.390

(2, 2, 2) (0,0,0.9) 0.497 0.771 0.730 0.742 0.431 0.658 0.625 0.641
(0,0,1.2) 0.783 0.936 0.920 0.923 0.680 0.836 0.816 0.819
(0,0,1.5) 0.928 0.991 0.985 0.986 0.864 0.937 0.928 0.928
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Table 6: Type 1 error rates of the modi�ed tests by median and median
absolute deviation
(5, 10, 15) (10, 10, 10)

(o1, o2, o3) CF GF PB W CF GF PB W

(0,0,0) 0.099 0.206 0.176 0.186 0.118 0.186 0.162 0.174
(0,0,1) 0.041 0.200 0.166 0.181 0.069 0.207 0.179 0.193
(0,1,1) 0.049 0.229 0.206 0.213 0.052 0.214 0.191 0.195
(1,1,1) 0.033 0.271 0.251 0.260 0.054 0.240 0.216 0.226
(0,0,2) 0.031 0.207 0.179 0.189 0.041 0.170 0.154 0.158
(0,1,2) 0.023 0.236 0.196 0.209 0.021 0.163 0.132 0.144
(1,1,2) 0.023 0.278 0.261 0.266 0.023 0.177 0.152 0.165
(0,0,3) 0.023 0.204 0.165 0.180 0.038 0.163 0.139 0.151
(0,2,2) 0.012 0.157 0.134 0.143 0.015 0.137 0124 0.129
(2,2,2) 0.016 0.137 0.108 0.112 0.012 0.115 0.096 0.105

(0,0,0) 0.099 0.206 0.176 0.186 0.118 0.186 0.162 0.174
(0,0,1) 0.017 0.211 0.177 0.190 0.044 0.193 0.159 0.170
(0,1,1) 0.006 0.168 0.148 0.155 0.022 0.182 0.160 0.169
(1,1,1) 0.005 0.167 0.135 0.144 0.011 0.160 0.139 0.144
(0,0,2) 0.017 0.217 0.185 0.197 0.026 0.168 0.141 0.153
(0,1,2) 0.003 0.185 0.163 0.169 0.010 0.163 0.137 0.148
(1,1,2) 0.002 0.164 0.142 0.151 0.004 0.153 0.138 0.139
(0,0,3) 0.002 0.213 0.182 0.191 0.011 0.185 0.163 0.169
(0,2,2) 0.002 0.183 0.156 0.167 0.003 0.146 0.125 0.219
(2,2,2) 0.003 0.136 0.106 0.111 0.001 0.133 0.111 0.117

(0,0,0) 0.099 0.206 0.176 0.186 0.118 0.186 0.162 0.174
(0,0,1) 0.012 0.216 0.183 0.193 0.027 0.189 0.161 0.174
(0,1,1) 0.003 0.210 0.181 0.184 0.004 0.188 0.161 0.169
(1,1,1) 0.001 0.158 0.112 0.119 0.002 0.174 0.152 0.159
(0,0,2) 0.001 0.218 0.180 0.196 0.005 0.185 0.155 0.169
(0,1,2) 0.002 0.207 0.174 0.187 0.002 0.186 0.158 0.169
(1,1,2) 0 0.154 0.108 0.120 0 0.164 0.137 0.149
(0,0,3) 0 0.201 0.179 0.189 0.001 0.186 0.168 0.175
(0,2,2) 0 0.186 0.162 0.173 0 0.163 0.135 0.143
(2,2,2) 0 0.108 0.078 0.081 0 0.159 0.135 0.143

Similar to previous section, the power of the modi�ed tests with median and
median absolute deviation are higher but type 1 error rates are higher than the
nominal level. Thus, this modi�cation is also can not be recommended instead of
approximate tests under heteroskedasticity and nonnormality. In the next section,
Huber's M-estimator modi�cation will be tried to obtain modi�ed tests.
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5.4. Performances of the modi�ed tests by Huber's M-estimators. In
this section, Huber's M-estimators are used instead of maximum likelihood estima-
tors to estimate location and scale parameters in the test statistics for comparing
group means under heteroskedasticity and nonnormality. The performance of the
modi�ed tests are examined with Monte-Carlo simulations in terms of power of
the test and type 1 error rates.

Table 7: Powers of the modi�ed tests by Huber's M-estimators
(n1, n2, n3) (5, 10, 15) (10, 10, 10)

(o1, o2, o3) (µ1, µ2, µ3) CF GF PB W CF GF PB W

(0,0,0.3) 0.165 0.170 0.123 0.133 0.168 0.152 0.120 0.129
(0,0,0.6) 0.534 0.521 0.443 0.455 0.508 0.416 0.374 0.394

(0, 0, 0) (0,0,0.9) 0.874 0.850 0.802 0.817 0.834 0.743 0.707 0.725
(0,0,1.2) 0.989 0.982 0.975 0.979 0.981 0.935 0.917 0.921
(0,0,1.5) 0.999 0.999 0.997 0.997 0.999 0.996 0.993 0.996

(0,0,0.3) 0.080 0.147 0.115 0.124 0.076 0.123 0.108 0.112
(0,0,0.6) 0.327 0.479 0.412 0.419 0.316 0.377 0.330 0.347

(0, 0, 1) (0,0,0.9) 0.733 0.845 0.778 0.795 0.658 0.665 0.626 0.650
(0,0,1.2) 0.955 0.978 0.954 0.963 0.895 0.890 0.874 0.878
(0,0,1.5) 0.996 1 0.999 0.999 0.978 0.976 0.965 0.970

(0,0,0.3) 0.040 0.151 0.114 0.123 0.054 0.131 0.104 0.115
(0,0,0.6) 0.259 0.467 0.386 0.407 0.245 0.383 0.339 0.358

(0, 1, 1) (0,0,0.9) 0.625 0.824 0.763 0.773 0.532 0.644 0.605 0.622
(0,0,1.2) 0.893 0.969 0.948 0.951 0.821 0.878 0.857 0.868
(0,0,1.5) 0.985 0.998 0.996 0.996 0.958 0.971 0.961 0.968

(0,0,0.3) 0.051 0.147 0.120 0.129 0.038 0.131 0.109 0.117
(0,0,0.6) 0.253 0.482 0.406 0.428 0.223 0.350 0.319 0.329

(1, 1, 1) (0,0,0.9) 0.654 0.818 0.769 0.785 0.519 0.662 0.613 0.638
(0,0,1.2) 0.911 0.973 0.952 0.960 0.807 0.871 0.851 0.861
(0,0,1.5) 0.995 0.998 0.995 0.997 0.954 0.971 0.956 0.967

(0,0,0.3) 0.066 0.166 0.123 0.132 0.123 0.139 0.105 0.118
(0,0,0.6) 0.280 0.438 0.364 0.382 0.344 0.336 0.295 0.313

(0, 0, 2) (0,0,0.9) 0.609 0.738 0.673 0.686 0.565 0.538 0.513 0.522
(0,0,1.2) 0.852 0.915 0.884 0.887 0.748 0.710 0.685 0.697
(0,0,1.5) 0.974 0.993 0.982 0.985 0.882 0.846 0.828 0.833

(0,0,0.3) 0.054 0.166 0.124 0.136 0.095 0.132 0.104 0.113
(0,0,0.6) 0.240 0.452 0.380 0.398 0.284 0.332 0.299 0.312

(0, 1, 2) (0,0,0.9) 0.561 0.728 0.671 0.684 0.500 0.544 0.511 0.528
(0,0,1.2) 0.821 0.918 0.888 0.890 0.709 0.711 0.684 0.699
(0,0,1.5) 0.961 0.990 0.982 0.986 0.869 0.854 0.838 0.849

(0,0,0.3) 0.054 0.175 0.147 0.149 0.094 0.125 0.109 0.114
(0,0,0.6) 0.253 0.432 0.388 0.396 0.261 0.311 0.267 0.284

(1, 1, 2) (0,0,0.9) 0.572 0.748 0.688 0.706 0.512 0.557 0.531 0.539
(0,0,1.2) 0.845 0.923 0.894 0.904 0.715 0.772 0.707 0.712
(0,0,1.5) 0.973 0.992 0.986 0.986 0.869 0.864 0.845 0.852

(0,0,0.3) 0.122 0.193 0.150 0.158 0.314 0.192 0.154 0.169
(0,0,0.6) 0.324 0.410 0.358 0.370 0.464 0.346 0.313 0.324

(0, 0, 3) (0,0,0.9) 0.549 0.614 0.576 0.581 0.539 0.487 0.460 0.478
(0,0,1.2) 0.760 0.801 0.764 0.764 0.606 0.572 0.556 0.564
(0,0,1.5) 0.911 0.935 0.907 0.916 0.699 0.656 0.644 0.651

(0,0,0.3) 0.075 0.194 0.156 0.168 0.112 0.158 0.125 0.136
(0,0,0.6) 0.254 0.454 0.400 0.407 0.298 0.341 0.305 0.317

(0, 2, 2) (0,0,0.9) 0.530 0.727 0.678 0.690 0.496 0.560 0.523 0.539
(0,0,1.2) 0.795 0.912 0.878 0.888 0.698 0.719 0.694 0.701
(0,0,1.5) 0.947 0.987 0.979 0.982 0.838 0.856 0.834 0.843

(0,0,0.3) 0.093 0.195 0.160 0.170 0.124 0.186 0.155 0.166
(0,0,0.6) 0.282 0.415 0.367 0.380 0.298 0.351 0.321 0.329

(2, 2, 2) (0,0,0.9) 0.550 0.696 0.654 0.667 0.489 0.532 0.506 0.515
(0,0,1.2) 0.801 0.888 0.864 0.868 0.695 0.706 0.682 0.689
(0,0,1.5) 0.937 0.969 0.960 0.964 0.848 0.840 0.823 0.829
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Table 8: Type 1 error rates of the modi�ed tests by Huber's M-estimators
(5, 10, 15) (10, 10, 10)

(o1, o2, o3) CF GF PB W CF GF PB W

(0,0,0) 0.037 0.053 0.036 0.044 0.070 0.067 0.053 0.055
(0,0,1) 0.009 0.047 0.031 0.032 0.033 0.068 0.056 0.062
(0,1,1) 0.013 0.063 0.041 0.044 0.018 0.069 0.057 0.062
(1,1,1) 0.010 0.047 0.040 0.042 0.016 0.059 0.042 0.047
(0,0,2) 0.010 0.063 0.050 0.054 0.048 0.074 0.064 0.065
(0,1,2) 0.011 0.061 0.045 0.049 0.029 60.0680.051 0.058
(1,1,2) 0.010 0.075 0.054 0.062 0.024 0.063 0.047 0.052
(0,0,3) 0.028 0.076 0.058 0.063 0.224 0.126 0.099 0.104
(0,2,2) 0.019 0.074 0.055 0.060 0.056 0.090 0.068 0.073
(2,2,2) 0.040 0.128 0.099 0.107 0.063 0.115 0.085 0.096

(0,0,0) 0.037 0.053 0.036 0.044 0.070 0.067 0.053 0.055
(0,0,1) 0.002 0.048 0.039 0.042 0.011 0.058 0.041 0.049
(0,1,1) 0.002 0.055 0.035 0.041 0.008 0.056 0.045 0.047
(1,1,1) 0.003 0.044 0.033 0.036 0.003 0.047 0.038 0.043
(0,0,2) 0.009 0.064 0.045 0.054 0.027 0.077 0.061 0.063
(0,1,2) 0.003 0.059 0.044 0.048 0.014 0.082 0.054 0.062
(1,1,2) 0.002 0.044 0.027 0.033 0.008 0.057 0.046 0.050
(0,0,3) 0.003 0.065 0.050 0.052 0.219 0.107 0.077 0.091
(0,2,2) 0.001 0.069 0.051 0.059 0.017 0.080 0.059 0.061
(2,2,2) 0.043 0.104 0.072 0.080 0.015 0.097 0.071 0.082

(0,0,0) 0.037 0.053 0.036 0.044 0.070 0.067 0.053 0.055
(0,0,1) 0.002 0.051 0.041 0.044 0.006 0.059 0.045 0.052
(0,1,1) 0.001 0.052 0.031 0.034 0 0.059 0.044 0.050
(1,1,1) 0 0.040 0.029 0.032 0.001 0.050 0.038 0.038
(0,0,2) 0.001 0.058 0.040 0.048 0.003 0.072 0.056 0.062
(0,1,2) 0 0.049 0.039 0.040 0.002 0.083 0.064 0.072
(1,1,2) 0 0.042 0.023 0.029 0.002 0.063 0.047 0.049
(0,0,3) 0 0.058 0.041 0.043 0.184 0.088 0.066 0.072
(0,2,2) 0 0.057 0.040 0.044 0.002 0.077 0.058 0.061
(2,2,2) 0.027 0.070 0.041 0.047 0.002 0.091 0.072 0.077

The modi�ed tests with Huber's M-estimators have expected performance in terms
of power of the test and type 1 error rates as seen on Table 7 and Table 8. Type
1 error rates of the modi�ed tests with Huber's M-estimators are close to nominal
level. Especially, modi�ed generalized F-test are more powerful than others and
its type 1 error rate is closest to nominal level. It is suggested that, the modi�ed
generalized F-test with Huber's M-estimators can be used for comparing group
means under heteroskedasticity and nonnormality.
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6. Results and conclusions

The motivation of this study is to propose a powerful test for comparing sev-
eral group means under heteroskedasticity and nonnormality caused by outlier(s).
There are many procedures developed for comparing group means under required
assumptions. In the real life, these assumptions are not realistic. Most encoun-
tered violation is heteroskedasticity for comparing group means procedures. Han-
dling with heteroskedasticity, various alternative procedures are proposed such as
Welch F-test, Brown-Forsythe test, Parametric Bootstrap test and Generalized
F-test called approximate tests. Although approximate tests show better perfor-
mance under heteroskedasticity, it is negatively e�ected from the violation of the
normality assumption. Powerful tests can be obtained by o�ering some modi�-
cations to the approximate tests. Cornerstone modi�cation approach is provided
by replacing maximum likelihood estimators with robust estimators in the test
statistic. In this study Welch F-test, the Parametric Bootstrap test and the Gen-
eralized F-test are modi�ed with trimmed mean and variance, median and median
absolute deviation, Huber's M-estimators. The performance of the modi�ed tests
are compared in terms of power of the tests and type 1 error rates by various
Monte-Carlo simulations.

It has been shown in Section 4.1, approximate tests did not perform enough
under heteroskedasticity and nonnormality caused by outlier by the Monte-Carlo
simulation studies. To overcome this problem, approximate tests are modi�ed with
replacing maximum likelihood estimators for location and scale parameters in the
test statistics with robust alternatives. Trimmed mean and variance, median and
median absolute deviation, Huber's M-estimators are considered for location and
scale parameters respectively. As seen on Section 4, while modi�ed tests with
trimmed mean and variance, median and median absolute deviation achieve ex-
pected level of power, but the type 1 error rates of them are not close to nominal
level. According to these results, using of modi�ed tests with mentioned modi-
�cations can cause the wrong decisions when comparing the group means under
heteroskedasticity and nonnormality. Huber's M-estimators modi�cation to the
approximate tests provide powerful test procedures and have nominal type 1 error
rates.

Especially for small sample sizes, modi�ed generalized F-test can be safely used
for comparing group means under heteroskedasticity and nonnormality caused by
outlier. It has better power and provides nominal type 1 error rates comparing
with the alternatives.
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