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1 Introduction
Consider the boundary value problem (BVP)

{
u′′(x) + f (x,u(x),u′(x)) = , x ∈ (, ),
u() = u() = α

∫ η

 u(s)ds,
(.)

where f : (, )× [,∞)×R → [,∞) is continuous and α,η ∈ (, ). A function u ∈ C[, ]
is said to be symmetric on [, ] if

u(x) = u( – x), x ∈ [, ].

By a symmetric positive solution of BVP (.) wemean a symmetric function u ∈ C[, ]
such that u(x) ≥  for x ∈ (, ) and u(x) satisfies BVP (.).
Recently, many authors have focused on the existence of symmetric positive solutions

for ordinary differential equation boundary value problems; for example, see [–] and
the references therein. However, multi-point boundary value problems included the most
recent works [–, –] and boundary value problems with integral boundary conditions
for ordinary differential equations have been studied bymany authors; onemay refer to [,
–]. Motivated by the works mentioned above, we aim to investigate existence results
for concave symmetric positive solutions of BVP (.) by applying the fixed point theorem
of Avery and Peterson.
The organization of this paper is as follows. Section  of this paper contains some pre-

liminary lemmas. In Section , by applying the Avery and Peterson fixed point theorem,
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we obtain concave symmetric positive solutions for BVP (.). In Section , an example
will be presented to illustrate the applicability of our result.
Throughout this paper, we always assume that the following assumption is satisfied:
(H) f ∈ C((, )× [, +∞)×R, [, +∞)), f (x,u, v) = f ( – x,u, –v) for x ∈ (,  ], and

f (x,u, v)≥  for all (x,u, v) ∈ (, )× [, +∞)×R.

2 Preliminaries
In this section, we present several lemmas that will be used in the proof of our result.

Lemma . Let h ∈ C[, ] and αη �= , then the BVP

u′′(x) + h(x) = ,  < x < , (.)

u() = u() = α

∫ η


u(s)ds, (.)

has a solution

u(x) =
∫ 



(
H(s) +G(x, s)

)
h(s)ds, (.)

where

V (s) =

{
(η – s), s ≤ η,
, η ≤ s,

H(s) =
αη

( – αη)
( – s) –

α

( – αη)
V (s), (.)

G(x, s) =

{
s( – x),  ≤ s ≤ x ≤ ,
x( – s),  ≤ x ≤ s ≤ .

(.)

Proof Suppose that u ∈ C[, ] is a solution of problem (.) and (.). Then we have

u′′(x) = –h(x).

For x ∈ [, ], by integration from  to , we have

u′(x) = u′() –
∫ x


h(s)ds.

For x ∈ [, ], by integration again from  to , we have

u(x) = u′()x –
∫ x



(∫ τ


h(s)ds

)
dτ .

That is,

u(x) = u() + u′()x –
∫ x


(x – s)h(s)ds, (.)

therefore,

u() = u() + u′() –
∫ 


( – s)h(s)ds.
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From condition (.), we have

u′() =
∫ 


( – s)h(s)ds.

Integrating (.) from  to η, where η ∈ (, ), we have

∫ η


u(s)ds = u()η + u′()

η


–

∫ η



(∫ τ


(τ – s)h(s)ds

)
dτ

= u()η + u′()
η


–



∫ η


(η – s)h(s)ds,

and from u() = α
∫ η

 u(s)ds, we have

u() =
αη

( – αη)
u′() –

α

( – αη)

∫ η


(η – s)h(s)ds,

therefore, (.) and (.) have a unique solution

u(x) =
αη

( – αη)

∫ 


( – s)h(s)ds –

α

( – αη)

∫ η


(η – s)h(s)ds

+ x
∫ 


( – s)h(s)ds –

∫ x


(x – s)h(s)ds.

From (.) and (.), we obtain

u(x) =
∫ 



(
H(s) +G(x, s)

)
h(s)ds.

The proof is complete. �

The functions H and G have the following properties.

Lemma . If α,η ∈ (, ), then we have

H(s)≥  for s ∈ [, ].

Proof From the definition of H(s), s ∈ (, ), and α,η ∈ (, ), we have H(s) ≥ . �

Lemma . G( – x,  – s) =G(x, s),  ≤ G(x, s)≤ G(s, s) for x, s ∈ [, ].

Proof From the definition of G(x, s), we get G( – x,  – s) =G(x, s) and  ≤ G(x, s)≤ G(s, s)
for x, s ∈ [, ]. �

Lemma . If f (x,u(x),u′(x)) ∈ C((, ) × [, +∞) × R, [, +∞)) and we let α,η ∈ (, ),
then the unique solution u of BVP (.) satisfies u(x) ≥  for x ∈ [, ].

Proof From the definition of u(x), Lemma ., Lemma ., and f (x,u(x),u′(x)) ∈ C((, )×
[, +∞)×R, [, +∞)), we have u(x)≥ . �

http://www.advancesindifferenceequations.com/content/2014/1/313
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Let E = C[, ]. Then E is Banach space with the norm ‖u‖ =max{‖u‖∞,‖u′‖∞}, where
‖u‖∞ =maxx∈[,] |u(x)|.
We define the cone P ⊂ E by

P =
{
u ∈ E : u(x)≥  is concave and u(x) = u( – x),x ∈ [, ]

}
.

Define the operator T : P → E as follows:

(Tu)(x) =
∫ 



(
H(s) +G(x, s)

)
f
(
s,u(s),u′(s)

)
ds for x ∈ [, ], (.)

where G(x, s) and H(s) are given by (.) and (.). Clearly, u is the solution of BVP (.) if
and only if u is a fixed point of the operator T .

Lemma . Let  < α <  and  < η < . For u ∈ P, there exists a real number M >  such
that

max
≤x≤

∣∣u(x)∣∣ ≤ M max
≤x≤

∣∣u′(x)
∣∣,

where M = 
(–αη) .

Proof For any u ∈ P, we have

max
≤x≤

∣∣u(x)∣∣ = u
(



)
, max

≤x≤

∣∣u′(x)
∣∣ = u′(),

the concavity of u implies that

u′()≥ u(  ) – u()



,

then

u
(



)
≤ u′()


+ u(). (.)

Now we divide the proof into two cases.
Case . If  < η ≤ 

 , then the concavity of u implies that

∫ η


u(s)ds≤ ηu(η),

where ηu(η) is the area of rectangle, then

u() ≤ αηu(η)≤ αηu
(



)
.

So

u() ≤ αηu
(



)
, (.)

http://www.advancesindifferenceequations.com/content/2014/1/313
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then from (.) and (.), we have

u
(



)
≤ 

( – αη)
u′(),

that is,

max
≤x≤

∣∣u(x)∣∣ ≤ 
( – αη)

max
≤x≤

∣∣u′(x)
∣∣.

Case . If 
 ≤ η < , then the concavity and symmetry of u imply that

∫ η


u(s)ds≤

∫ 


u(s)ds = 

∫ 



u(s)ds≤ u

(



)


.

So

u() ≤ αu
(



)
, (.)

then from (.) and (.), we have

u
(



)
≤ 

( – α)
u′(),

that is,

max
≤x≤

∣∣u(x)∣∣ ≤ 
( – α)

max
≤x≤

∣∣u′(x)
∣∣,

whereM =min{ 
(–αη) ,


(–α) } = 

(–αη) , these equations complete the proof. �

Lemma . Let  < α <  and  < η < . For u ∈ P, there exists a real number  < N < 
such that

min
≤x≤

∣∣u(x)∣∣ ≥ N‖u‖∞,

where N =max{ αη

αη–αη+ ,
α

–α
}.

Proof For any u ∈ P, we have

min
≤x≤

∣∣u(x)∣∣ = u() = u(), ‖u‖∞ = max
≤x≤

∣∣u(x)∣∣ = u
(



)
,

and because the graph of u is concave, we have
∫ η


u(s)ds≥ η


(
u(η) + u()

)
,

then

–u(η) ≥ αη – 
αη

u(). (.)

Now we divide the proof into two cases.
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Case . If  < η ≤ 
 , then using concavity and positivity of u, we get

u(η) – u()
η

≥ u(  ) – u()



.

So

η – 
η

u()≥ u
(



)
–

η
u(η), (.)

then from (.) and (.), we have

u() ≥ αη

αη – αη + 
u
(



)
,

that is,

min
≤x≤

∣∣u(x)∣∣ ≥ αη

αη – αη + 
‖u‖∞.

Case . If 
 ≤ η < , then using concavity and positivity of u, we get

∫ η


u(s)ds≥ (u(  ) – u()) 


+
u()


.

So

u() ≥ α

 – α
u
(



)
,

that is,

min
≤x≤

∣∣u(x)∣∣ ≥ α

 – α
‖u‖∞,

whereN =max{ αη

αη–αη+ ,
α

–α
}, and for α,η ∈ (, ), one can easily see thatN ∈ (, ). These

equations complete the proof. �

3 Existence of triple concave symmetric positive solutions for BVP (1.1)
In this section, we will apply the Avery-Peterson fixed point theorem to establish the ex-
istence of at least three concave symmetric positive solutions of BVP (.).
Let α, γ , θ , ψ be maps on P with α a nonnegative continuous concave functional; γ , θ

nonnegative continuous convex functionals, and ψ a nonnegative continuous functional.
Then for positive numbers a, b, c, d we define the following subsets of P:

P(γ ,d) =
{
u ∈ P | γ (u) < d

}
,

P(α,γ ,b,d) =
{
u ∈ P(γ ,d) | α(u) ≥ b

}
,

P(α, θ ,γ ,b, c,d) =
{
u ∈ P(γ ,d) | α(u) ≥ b, θ (u)≤ c

}
,

R(ψ ,γ ,a,d) =
{
u ∈ P(γ ,d) | ψ(u) ≥ a

}
.

http://www.advancesindifferenceequations.com/content/2014/1/313
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Now we state the Avery-Peterson fixed point theorem.

Theorem . ([, , , ]) Let P be cone in Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P, α be a nonnegative continuous concave functional on
P, and ψ be a nonnegative continuous functional on P leading to

ψ(λu)≤ λψ(u) for all  ≤ λ ≤ 

and

α(u)≤ ψ(u), ‖u‖ ≤ Mγ (u) for all u ∈ P(γ ,d) with M,d positive numbers.

Suppose T : P → P is completely continuous and there exist positive numbers a, b, c with
a < b such that

(S):
{
u ∈ P(α, θ ,γ ,b, c,d) | α(u) > b

} �= ∅ and

α(Tu) > b for u ∈ P(α, θ ,γ ,b, c,d);

(S): α(Tu) > b for u ∈ P(α,γ ,b,d) with θ (Tu) > c;

(S):  /∈ R(ψ ,γ ,a,d) and ψ(Tu) < a for u ∈ R(ψ ,γ ,a,d) with ψ(u) = a.

Then T has at least three fixed points u,u,u ∈ P(γ ,d) such that

γ (ui) ≤ d for i = , , ; ψ(u) < a;

ψ(u) > a with α(u) < b; α(u) > b.

Lemma . Assume that (H) is satisfied and let αη ∈ (, ). Then the operator T is com-
pletely continuous.

Proof For any u ∈ P, from the expression of Tu, we know

{
(Tu)′′(x) + f (x,u(x),u′(x)) = , x ∈ (, ),
(Tu)() = (Tu)() = α

∫ η

 (Tu)(s)ds.

Clearly,Tu is concave. From the definition ofTu, Lemma ., and Lemma . we see that
Tu is nonnegative on [, ]. We now show that Tu is symmetric about 

 . From Lemma .
and (H), for x ∈ [, ], we have

(Tu)( – x) =
∫ 



(
H(s) +G( – x, s)

)
f
(
s,u(s),u′(s)

)
ds

=
∫ 


H(s)f

(
s,u(s),u′(s)

)
ds +

∫ 


G( – x, s)f

(
s,u(s),u′(s)

)
ds

=
∫ 


H(s)f

(
s,u(s),u′(s)

)
ds –

∫ 


G( – x,  – s)f

(
 – s,u( – s),u′( – s)

)
ds

=
∫ 


H(s)f

(
s,u(s),u′(s)

)
ds +

∫ 


G(x, s)f

(
 – s,u(s), –u′(s)

)
ds

http://www.advancesindifferenceequations.com/content/2014/1/313
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=
∫ 


H(s)f

(
s,u(s),u′(s)

)
ds +

∫ 


G(x, s)f

(
s,u(s),u′(s)

)
ds

=
∫ 



(
H(s) +G(x, s)

)
f
(
s,u(s),u′(s)

)
ds

= (Tu)(x);

therefore, TP ⊂ P.
The continuity of T with respect to u(x) ∈ C[, ] is clear. We now show that T is com-

pact. Suppose that D ⊂ P is a bounded set. Then there exists r such that

D =
{
u ∈ P | ‖u‖ ≤ r

}
.

For any u ∈D, we have

 ≤ f
(
s,u(s),u′(s)

) ≤ max
{
f
(
s,u,u′) | s ∈ [, ],u ∈ [, r],u′ ∈ [–r, r]

}
=:M.

So, we have from (.)

∥∥(Tu)(x)∥∥∞ = max
x∈[,]

∣∣∣∣
∫ 



(
H(s) +G(x, s)

)
f
(
s,u(s),u′(s)

)
ds

∣∣∣∣
≤ M

∫ 


H(s)ds +M max

x∈[,]

∫ 


G(x, s)ds =: L

and

∥∥(Tu)′(x)∥∥∞ = max
x∈[,]

∣∣∣∣
∫ 


( – s)f

(
s,u(s),u′(s)

)
ds –

∫ x


f
(
s,u(s),u′(s)

)
ds

∣∣∣∣
≤ M


+M.

These equations imply that the operator T is uniformly bounded. Now we show that Tu
is equi-continuous.
We separate these three conditions:
Case (i).  ≤ x ≤ x ≤ 

 ;
Case (ii). 

 ≤ x ≤ x ≤ ;
Case (iii).  ≤ x ≤ 

 ≤ x ≤ .
We solely need to deal with Case (i) since the proofs of the other two are analogous. For
 ≤ x ≤ x ≤ 

 , we have∣∣(Tu)(x) – (Tu)(x)
∣∣

=
∣∣∣∣
∫ 



(
G(x, s) –G(x, s)

)
f
(
s,u(s),u′(s)

)
ds

∣∣∣∣
≤

⎧⎪⎨
⎪⎩

∫ 
 |(x – x)( – s)|f (s,u(s),u′(s))ds,  ≤ x ≤ x ≤ s≤ 

 ,∫ 
 |s(x – x)|f (s,u(s),u′(s))ds,  ≤ s≤ x ≤ x ≤ 

 ,∫ 
 |s( – x) – x( – s)|f (s,u(s),u′(s))ds,  ≤ x ≤ s ≤ x ≤ 



≤

⎧⎪⎨
⎪⎩

M
 |x – x|,
M
 |x – x|,
M
 |x – x|.
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In addition

∣∣(Tu)′(x) – (Tu)′(x)
∣∣ = ∣∣∣∣

∫ x

x
f
(
s,u(s),u′(s)

)
ds

∣∣∣∣ ≤ M|x – x|.

So, we see that Tu is equi-continuous. By applying the Arzela-Ascoli theorem, we can
guarantee that T(D) is relatively compact, which means T is compact. Then we find that
T is completely continuous. This completes the proof. �

For convenience, we denote

L =
∫ 



(
H(s) +G

(


, s

))
ds,

N =max

{
αη

αη – αη + 
,

α

 – α

}
,

M =


( – αη)
,

δ =
∫ 


H(s)ds.

Theorem . Suppose (H) holds and let α,η ∈ (, ). Moreover, there exist nonnegative
numbers  < a < b≤ dδ such that

(B) f (x,u, v)≤ d for (x,u, v) ∈ [, ]× [,Md]× [–d,d];

(B) f (x,u, v) >
b
δ

for (x,u, v) ∈ [, ]×
[
b,

b
N

]
× [–d,d];

(B) f (x,u, v) <
a
L

for (x,u, v) ∈ [, ]× [,a]× [–d,d],

then BVP (.) has at least three concave symmetric positive solutions u, u, u such that

max
≤x≤

∣∣u′
i(x)

∣∣ ≤ d for i = , , ; max
≤x≤

∣∣u(x)∣∣ < a,

max
≤x≤

∣∣u(x)∣∣ > a with min
≤x≤

∣∣u(x)∣∣ < b, min
≤x≤

∣∣u(x)∣∣ > b.

Proof BVP (.) has a solution u = u(x) if and only if u solves the operator equation
u = T(u). So we need to verify that operator T satisfies the Avery-Peterson fixed point
theorem, which will prove the existence of at least three fixed points of T .
Complete continuity of T is clear from Lemma .. Define the nonnegative functionals

α, θ , γ , and ψ by

γ (u) = max
≤x≤

∣∣u′(x)
∣∣, ψ(u) = θ (u) = max

≤x≤

∣∣u(x)∣∣, α(u) = min
≤x≤

∣∣u(x)∣∣.
Then in the cone P, θ and γ are convex as α is concave. It is well known thatψ(λu)≤ λψ(u)
for all  ≤ λ ≤  and α(u) ≤ ψ(u). Moreover, from Lemma ., ‖u‖ ≤ Mγ (u). Now, we will
prove the main theorem in four steps.
Step . We will show that T : P(γ ,d) → P(γ ,d).

http://www.advancesindifferenceequations.com/content/2014/1/313
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If u ∈ P(γ ,d), then γ (u) = max≤x≤ |u′(x)| ≤ d. Lemma . yields max≤x≤ |u(x)| ≤
Md, then the condition (B) implies that f (x,u, v) ≤ d. On the other hand, for any
u ∈ P, there is T(u) ∈ P, then T(u) is concave, symmetric, and positive on [, ] and
max≤x≤ |(Tu)′(x)| = |(Tu)′()|, and we have

γ (Tu) = max
≤x≤

∣∣(Tu)′(x)∣∣ = ∣∣(Tu)′()∣∣
=

∫ 


( – s)f

(
s,u(s),u′(s)

)
ds≤ d · 


= d.

Then (Tu) ∈ P(γ ,d). Therefore T : P(γ ,d) → P(γ ,d).
Step . To check if condition (S) of Theorem . is satisfied, we choose u(x) = b

N . Clearly,

α(u) = min
≤x≤

∣∣u(x)∣∣ = u() =
b
N

> b,

θ (u) = max
≤x≤

∣∣u(x)∣∣ = u
(



)
=

b
N
,

γ (u) = max
≤x≤

∣∣u′(x)
∣∣ = ∣∣u′()

∣∣ =  ≤ d.

Thus, u ∈ P(α, θ ,γ ,b, b
N ,d) and {u ∈ P(α, θ ,γ ,b, b

N ,d) | α(u) > b} �= ∅.
If u ∈ P(α, θ ,γ ,b, b

N ,d), then we have b ≤ u(x)≤ b
N , –d ≤ u′(x)≤ d. From condition (B),

we have f (x,u(x),u′(x)) > b
δ
, and it follows that

α
(
T(u)

)
= min

≤x≤

∣∣Tu(x)∣∣ = (Tu)()

=
∫ 



(
H(s) +G(, s)

)
f
(
s,u(s),u′(s)

)
ds

>
b
δ

∫ 


H(s)ds = b.

This shows that condition (S) of Theorem . is satisfied.
Step .We will show that condition (S) of Theorem . is satisfied. Take u ∈ P(α,γ ,b,d)

with θ (Tu) > b
N . Then from Lemma ., we have

α(Tu) = min
≤x≤

∣∣Tu(x)∣∣ ≥ N max
≤x≤

∣∣Tu(x)∣∣ =Nθ (Tu) >N
b
N

= b,

so condition (S) holds.
Step . We will show that condition (S) of Theorem . is also satisfied. Obviously,

ψ() =  < a, and we have  /∈ R(ψ ,γ ,a,d). Assume that u ∈ R(ψ ,γ ,a,d) with ψ(u) = a.
Then, from condition (B), we have

ψ(Tu) = max
≤x≤

∣∣Tu(x)∣∣ = (Tu)
(



)

=
∫ 



(
H(s) +G

(


, s

))
f
(
s,u(s),u′(s)

)
ds

<
a
L

∫ 



(
H(s) +G

(


, s

))
ds = a.

http://www.advancesindifferenceequations.com/content/2014/1/313
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It proves that condition (S) holds. All conditions of Theorem . are satisfied and we
assert that BVP (.) has at least three concave symmetric positive solutions u,u,u ∈ P
such that

max
≤x≤

∣∣u′
i(x)

∣∣ ≤ d for i = , , ; max
≤x≤

∣∣u(x)∣∣ < a,

max
≤x≤

∣∣u(x)∣∣ > a with min
≤x≤

∣∣u(x)∣∣ < b, min
≤x≤

∣∣u(x)∣∣ > b.

Therefore, our proof is complete. �

4 Example
Example . We consider the following three-point second-order BVP with integral
boundary conditions:

{
u′′(x) + f (x,u(x),u′(x)) = , x ∈ (, ),

u() = u() = 

∫ 


 u(s)ds,

(.)

where

f
(
x,u,u′) =

⎧⎨
⎩x( – x) + u +

√
|u′|

, ,  ≤ u ≤ ,

x( – x) + , +
√

|u′|
, , u ≥ .

We can see from (.) that α = 
 , η = 

 . ThenM = 
 ,N = 

 , L = 
, , δ =


, .We choose

a = , b = , d = ,. Clearly  < a < b ≤ dδ. Moreover, f satisfies (H).

(B) f (x,u, v)≤ 

+ , +

√
,
,

< d = ,

for (x,u, v) ∈ [, ]×
[
,

,


]
× [–,, ,];

(B) f (x,u, v) > , >
b
δ
= ,. for (x,u, v) ∈ [, ]× [, ]× [–,, ,];

(B) f (x,u, v) <


+  +

√
,
,

<
a
L

≈ .

for (x,u, v) ∈ [, ]× [, ]× [–,, ,].

So, by Theorem . we find that BVP (.) has at least three concave symmetric positive
solutions u, u, u such that

max
≤x≤

∣∣u′
i(x)

∣∣ ≤ , for i = , , ; max
≤x≤

∣∣u(x)∣∣ < ,

max
≤x≤

∣∣u(x)∣∣ >  with min
≤x≤

∣∣u(x)∣∣ < , min
≤x≤

∣∣u(x)∣∣ > .
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