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Abstract

Numerical solution of the Korteweg-de Vries equation is obtained by using the meshless method based on the colloca-
tion with radial basis functions. Five standard radial basis functions are used in the method of the collocation. The results
are compared for the numerical experiments of the propagation of solitons, interaction of two solitary waves and break-
down of initial conditions into a train of solitons.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Korteweg-de Vries equation (KDVE) is a nonlinear partial differential equation, which is initially intro-
duced to describe the lossless propagation of shallow water waves [1]. It represents the long time evolution
of wave phenomena, in which the effect of the nonlinear terms UU., is counterbalanced by the dispersion U,,.,.
Thus it has been found to model many wave phenomena such as waves in enharmonic crystals, bubble liquid
mixtures, ion acoustic wave and magnetohydrodynamic waves in a warm plasma as well as shallow water
waves [1-5]. The KDVE exhibits solutions such as solitary waves, solitons and recurrence [2]. The KDVE
is a completely integrable Hamiltonian system which can solved explicitly. Thus some analytical solutions
of the KDVE are found, and their existence and uniqueness have been studied for a certain class of initial
functions [2]. Usefulness of these solutions in general is limited. Therefore the numerical solutions of the
KDVE are essential because of solution which are not analytically available. Many methods have been pro-
posed for numerical treatment of the KDVE for the various boundary and initial conditions. The numerical
method proposed by calculating the solution of the KDVE must possess at least two properties. Ideally a
numerical method should be free of phase errors and the conservation properties of the equation must be
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satisfied. Since the KDVE is an integrable Hamiltonian system, then there exists infinitely many independent
conserved quantities. We will observe the well-known four conserved quantities of the KDVE for our numer-
ical solutions.

The numerical solutions of the partial differential equations can be found by using the techniques known as
the finite element, finite difference and spectral methods. However difficulty of mesh generation, especially two
or tree dimensional problems, makes these methods a difficult task to apply for finding the numerical solution
of the differential equations. In addition, these methods require regular grid system, which makes it very dif-
ficult to model the detailed topographic features of an irregular domain and are not well suited to the prob-
lems associated with extremely large deformation. In the last decade, meshless method has gained quite
importance to get the numerical solution of the various types of partial differential equations. So the develop-
ment of the meshless method is required to alleviate the meshing problems associated with methods such as the
finite element and finite difference. Various meshless methods have been developed. Meshless method based on
the collocation method has been dominant and very efficient. They have been successfully applied as tool for
collocation of the differential equations since initial development of Kansa’ work [6]. Some papers have been
written to solve partial differential equations using the collocation method with different radial basis functions
[7-12]. The choice of radial basis functions (RBF) is a flexible feature of meshless methods. The RBF can be
globally supported, infinitely differentiable, and contain free parameters, called shape parameters, which affect
both accuracy of the solutions and conditioning of the collocation matrix. Optimal shape parameters, which
mean the value of the shape parameter that can produces the most accurate results have been found by search-
ing a value from selected random regions. But the optimal choice of the shape parameters is still an open prob-
lem. In our calculation, we have selected the optimal shape parameters by brute-force as well. Some type of the
RBF have been intensively used in forming the collocation method for a solution of partial differential equa-
tions. The mathematical theory of the RBF has lagged back behind the numerical applications to PDE. But
recently there has been some progress on dealing with convergence of some types of the RBF methods in the
papers [13-16]. Error estimates for the collocation method with the RBF have been given for the linear PDE
[8,17]. There has been not much work done on the convergency of the collocation method with the RBF func-
tions in solving the time-dependent PDE. In this paper, we have expanded the use of the RBF on the numer-
ical solutions of the KDVE with propagation of soliton, solitons interaction and evolution of solitons. Thus
the collocation method with some five standard radial basis functions is applied in finding the numerical solu-
tion of the KDVE. The effect of the radial basis functions in the collocation method is investigated. In Section
2, The collocation algorithm is introduced for the solution of the KDVE. Then several numerical experiments
are presented in section of the numerical results.

2. The governing equation and radial basis method

We consider the Korteweg-de Vries equation
U +eUU, + uU,, =0 (1)
with boundary conditions
U(x,0) = f(x), (2)

where ¢, u are positive parameters and subscripts x and ¢ denote differentiation. We look for the solution on
[a,b] x [0, T] for computational purposes. When the solution remain negligibly small at both boundaries a and
b, the spatial interval [a, b] can be chosen sufficiently large to carry on the numerical experiment during the
time of interval [0, T

Ula,t) =ay, U(b,t) = oy, a<x<b, t=0. (3)

& — 0 as | x |- 0 and initial conditions

We discretize time derivative of the KDVE by using usual finite difference formula and space derivative by the
Crank—Nicolson formula between successive two time levels » and n + 1

Un+l _yr UUV n+1 + UUY n wa n+1 + Uxxv n
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The nonlinear term in the above equation is linearized by using the following term [18]:
(VU™ = U U) + UM U = U (U (5)
So time-discretized KDVE (4) can be written as

At

At A
U o5 (U0 + UU) 4G U = U= i (U (6)

2
To apply the collocation method using radial basis functions, let us choose the collocation point
x;, i=0,...,N over the problem domain [a,b] of which x;, i =1,...,N — 1 are interior points, x;, i =0, N
are boundary points. An approximate solution to the analytic solution U in Eq. (1) is sought in a form

Z (), (7)

where A’s are the coefficients to be determined, N is the number of data points. ¢ is some form of the radial
basis functions. ; =| x — x; | denotes the Euclidean norm between collocation points x and x;. x; are known as
the centers being given distinct point in the interval [a, b]. Most-widely used radial basis functions are the
following:

Multiquadric(MQ) P(r;) = /17 + 2,
Inverse multiquadric(IMQ)  ¢(r,) = 1 / SRt e
Inverse quadric(IQ) P(r;) = 1/(}’_/2- +c?),
Thin plate spline(TPS) o(r;) = r;log(r)),
Gaussian(G) $(r) =",

where c¢ is the shape parameter of the radial basis functions. Optimal shape values are found experimentally
and these values are written for each text problems. By substituting Eq. (7) into Egs. (2) and (6) and the col-
location points x;, i =0,...,N in place of x, we obtain following equations:
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and
N
> X (ry) =, i=0,N. (9)
j=0

Egs. (8) and (9) generates a system of (N + 1) linear equations in (N + 1) unknown parameters /1;.'“. In the
above system, the centers and collocation points have been chosen as the same except for the use of thin plate
spline radial basis functions on the meshless method. The collocation matrix becomes ill-conditioned during
the run of the algorithms for the thin plate spline radial basis functions. Slightly different choices of these
points gives a solvable system. Before solving the system, boundary conditions U(a,t) = oy, U(b,t) = o
are applied to the system so that a system of N x N equations is obtained. The system is solved with the
Gaussian elimination method with partial pivoting. The approximate solution can be obtained from Eq. (7)
at any point in the problem domain after finding the unknown coefficients 47, j = 1,... N at each time steps.
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3. Numerical examples and comparisons

Miura et al. [19] have shown that there are an infinite number of conservation laws for the KDVE. We have
calculated the first four conservations

[l :/ dea ]2:/ Uzdx7 13:/ <U3_%H(U’C)2) d‘x7

o 12 36
Iy = / <U4 - ?,MU(UX)z + 582;12(Um)2) dx (10)
The method has been validated by studying test problems concerning with the migration, interaction and gen-
eration of solitons. We use the L, and L., error norms to measure the difference between the numerical and
analytical solutions and hence to show how well the scheme predicts the position and amplitude of solution as
the simulation proceeds. The L, error norm defined as

N
Ly = U = Unlly = | h DU = (Un),I (11)

=0
and L., error norm defined as
Lo = U™ = Uy, = max|UF* — (Uy),| (12)
J

will be calculated to examine accuracy of proposed algorithms.

3.1. Test problem 1

We wish to solve the KDVE with the following initial condition:
U(x,0) = 3csec h*(Ax + D)
and boundary conditions
U(,1)=U(2,t)=0, t>0.
The analytical solution of the KDVE is

U(x,t) = 3csech’(Ax — Bt + D), (13)
where
A:l(sc/u)l/2 and lescA.
2 2

The above solution represents a single soliton with amplitude 3¢, initially centered at x = 0, moving from left
to the right with constant speed ¢c. To have admissible numerical solutions, the amplitude of the solitons must
be represented faithfully for many time steps in calculations.

Computation was done with parameters ¢ = 1, u=4.84 x 10, ¢ = 0.3, D = —6. Single soliton solution
was carried out on the interval [a,b] = [0,3] from ¢t =0 to z =3 with space step # = 0.01 and time step
At = 0.005. The L, and L_-error norms and conservation are illustrated in Table 1. The collocation method
with MQ and G types of radial basis functions provides higher accuracy than that with IMQ, IQ and TPS.
Analytical invariants conserve most with the collocation method with MQ. Amplitude of the soliton and loca-
tion of peak of the soliton are also given in the same table at time ¢ = 3. Peak position of the soliton for the
method with radial basis functions remain the same as 1.38. The absolute difference between analytical and
numerical soliton height is found as 0.000396 for MQ, 0.000221 for IMQ, 0.000447 for 1Q, 0.001506 for
TPS and 0.000514 for G. Numerical solutions with five radial basis functions at some times are graphed in
Fig. 1. The solution curves are indistinguishable. Maximum error variations of the algorithm with different
radial basis functions are depicted in Fig. 2 at time ¢ = 3. Maximum errors occurs around the summit of
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Table 1

Single soliton # = 0.01, Az =0.005, t =3

Method I, L I L Ly x 10° Lo x 10° Height Position
MQ 0.144606 0.086759 0.046850 0.024094 0.062 0.133 0.899604 1.38
IMQ 0.144623 0.086765 0.046847 0.023869 2.751 5.018 0.902210 1.38

IQ 0.144598 0.086759 0.046849 0.023869 1.013 2.090 0.900447 1.38
TPS 0.144261 0.086762 0.046842 0.024012 2.606 6.345 0.898494 1.38

G 0.144601 0.086760 0.046850 0.023871 0.046 0.136 0.899486 1.38
Analytic (1 = 0) 0.144598 0.086759 0.046850 0.024094 0.9 1.38

1.00 —

t=0 t=0.5 t=1 t=1.5t=2 t=2.5 t=3

0.80 —

0.60 —|

0.40 —
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Fig. 1. A single solution. The progress of solitary wave from time 0 to 3.0.

the soliton. Overall, the computed results show that the method with the MQ radial basis function is the most
efficient for single soliton experiment. The proposed method with G radial basis function is the second most
efficient in finding the single soliton solution of the KDVE. The comparison of the results is done with some
results of the methods listed in Table 2 when the space and time increments, # = 0.01, A¢ = 0.005 are used. The
proposed algorithm with both MQ and G radial basis functions gives the same results with method of Galer-
kin method based on quadratic B-spline functions [20] and better results than the finite differences [21] and
Galerkin finite element methods [22,23]. The best results are obtained when the optimal shape values
¢ = 0.00041, 5000, 0.0025,0.00335,0.00025 are used for MQ, G, IMQ, IQ and TPS radial basis functions,
respectively.

3.2. Test problem 2

The second part of the numerical study deals with two soliton interaction solution of the KDVE. The linear
sum of two separated solitons of various amplitudes is considered as the initial condition

1
U(x,1) = 3¢ sech*(A1x 4 D) + 3¢y sech* (Aox + D,),  A; = 3 (eci/p)"?, i=1,2
and the boundary conditions U(a,t) = U(b,t) = 0 are used. In this experiment, the behavior of the two sol-

itons with different amplitudes travelling in the same direction is observed to pass through each other and then
emerge unchanged. The solution represents two solitons of magnitudes ¢; and ¢, cited initially at x = —D; /4,
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Fig. 2. Errors (numerical-analytical solution) at time ¢ = 3.
Table 2

Lo-errorx10%, h = 0.01
Time Zabusky-Kruskal [21] Hopscoth [22] Galerkin quad spline [20] Petrov Galerkin [23] Modified P-G [23]

At = 0.0005 At = 0.005
0.25 5.94 3.79 0.02 4.46 0.21
0.50 13.17 9.28 0.04 7.01 0.38
0.75 21.08 14.14 0.05 10.08 0.57
1.00 28.66 18.72 0.06 13.26 0.74
MQ G IMQ IQ TPS
At = 0.005
0.25 0.0137 0.0218 1.3856 0.4880 3.1106
0.50 0.0192 0.0238 1.8558 0.6368 3.2264
0.75 0.0229 0.0263 2.0865 0.7125 3.8907
1.00 0.0260 0.0267 2.2104 0.7541 4.3381
and —D,/A4,, respectively. Choosing ¢; > ¢, ensures that the velocity, and magnitude of soliton at x = —D; /4,

is the larger and ensures that the solitons interact with increasing time. Soliton interaction problem was solved
on the interval [0, 2] for t = 0 to = 3 with ¢; = 0.3, ¢; = 0.1, D; =0, D, = 0, time step At = 0.005 and space
step 2 = 0.002. With this parameters, the soliton having larger amplitude = 0.9 are located to the left of the
smaller one having the amplitude 0.3. Since the velocity of the solitons depends upon their magnitudes, the
larger soliton passes through the smaller one as time advances. This has been shown in Fig. 3 at some times.
Amplitudes of both solitons against time are illustrated in Fig. 4 for the algorithm. Invariant values
1, I, I3, I, during the simulation are given in Table 3 from which invariants for various basis functions re-
main satisfactorily conserved. Change in the invariants /Iy, I, I3, I, is smallest for the MQ and is less than
0.004%, 0.002%, 0.007%, 0.002%, respectively. Largest change is found by less than 0.01%, 0.002%,
0.003%, 0.02% for the invariants Iy, I,, I3, 14, respectively, when TPS radial basis functions is employed in
the collocation method. Best accuracy is found by use of optimal shape parameters ¢ = 0.1,
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Fig. 3. Interaction of two solutions.

0.75,4,5,0.0001 for the collocation method with MQ, G, IMQ, IQ and TPS radial basis functions,
respectively.

3.3. Test problem 3

For the last text problem, initial condition

u(x,0) = % {1 — tanh (""%25)}

is used with boundary conditions U(—50,¢) =0, U(150,¢) = 0 for ¢ > 0. The breakdown of the above func-
tion into solitons will be studied with parameters ¢ = 0.2, u = 0.1 with Az = 0.05 and # = 0.4. The program is
run up to time ¢ = 800 to observe evolution of a train of solitons. The progress of the solutions at some times is
shown in Fig. 5. We see that the amplitudes of the solitons vary approximately linear and velocity of the lead-
ing soliton is in complete agreement with the theoretical values. Peak position of the leading soliton, amplitude
and observed velocity at time ¢ = 800 are tabulated in Table 4. The speed and amplitudes are consisted with

(14)
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Fig. 4. Time-amplitude graphs.
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Table 3

Two soliton interaction 2 = 0.01, At = 0.005

Method Time I] 12 13 14

MQ 0.00 0.228080 0.107061 0.053318 0.027018
0.75 0.228016 0.107055 0.053524 0.027358
1.50 0.228032 0.107057 0.053453 0.027231
3.00 0.227968 0.107061 0.053265 0.026953

G 0.00 0.228081 0.107062 0.053316 0.026950
0.75 0.228135 0.107058 0.053312 0.027124
1.50 0.228065 0.107059 0.053313 0.027063
3.00 0.227734 0.107061 0.053316 0.026929

IMQ 0.00 0.228081 0.107062 0.053316 0.026952
0.75 0.228964 0.107068 0.053307 0.027136
1.50 0.228917 0.107072 0.053308 0.027078
3.00 0.227399 0.107087 0.053307 0.026942

1Q 0.00 0.228081 0.107062 0.053316 0.027181
0.75 0.228456 0.107060 0.053312 0.027131
1.50 0.228386 0.107063 0.053314 0.027071
3.00 0.227576 0.107069 0.053317 0.026934

TPS 0.00 0.228079 0.107062 0.053317 0.027033
0.75 0.227689 0.107056 0.053468 0.027633
1.50 0.227633 0.107059 0.053410 0.027407
3.00 0.228071 0.107058 0.053274 0.027110

findings in Table 4. Invariants are given in Table 5. This solution is not produced well when the thin plate
spline function is used in the collocation method. So no results of the radial basis collocation method with
thin-plate spline are given in this section. Lowest errors have achieved with use of the shape parameters
¢ =0.02,100,0.01,0.01,0.001 for the radial basis functions named MQ, G, IMQ and IQ radial basis func-
tions, respectively.

Amplitude and peak position of the leading soliton, and its speed have been tabulated in Table 4. Approx-
imate velocity using the peak position of the leading soliton at times 1 = 600 and 800 are also documented in
the same table by using the average velocity formula = ((peak pos.( = 600) — peak pos.(z = 800)))/(timel(-
t = 600) — time2(¢ = 800)). Invariants /Iy, I, I3, I, change by less than 0.04%, 0.0008%, 0.006%, 0.05% for
the algorithm with Gaussian radial basis function, 0.006%, 0.0004%, 0.0009%, 0.05% for use of multiquadratic
radial basis function, 0.008%, 0.008%, 0.01%, 1.19% for inverse quadric radial basis function and 0.0006%,
0.001%, 0.002%, 0.16% for the inverse multiquadric radial basis function, respectively, when the program is
run up to time ¢ = 800.

3.4. Conclusion

Collocation method with radial basis functions has set up to have the numerical solution of the KDVE.
Comparison of the standard radial basis functions in the collocation method shows that multiquadric radial
basis function is much preferable in terms of the accuracy in getting solution of the KDVE and least accuracy
is found with the collocation method with thin plate spline function. Single soliton solution and interaction of
two solitons are presented well with use of the all radial basis functions. For case of evolution of solitons from
the tanh type initial condition, thin plate spline collocation method is not produced solitons over the long per-
iod of run up to time ¢ = 800. We have also observe that the collocation method based on both MQ and G
radial basis functions produces the same accuracy with the cubic B-spline Galerkin method for getting the
numerical solution of the KDVE. Disadvantage in using the RBF method is that computational cost of the
proposed method is higher than the cubic B-spline Petrov Galerkin Method. Using the radial basis functions,
the magnitude, profile and position of the solitons are produced well. Thus proposed method is also suitable
for computation of the solutions of the KDVE.
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Fig. 5. The breakup of an arbitrary initial pulse into a train of solutions.
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Table 4

Position, amplitude and speed of the leading soliton

Method Position Amplitude Va=% Average velocity

MQ 121.60 1.96110 0.13074 0.13

G 121.60 1.96208 0.13080 0.13

IMQ 121.60 1.95721 0.13048 0.13

1Q 121.60 1.96203 0.13080 0.13

Table 5

Invariants for generation of solitons

Method Time 11 12 13 14

MQ 0 50.000254 45.000503 42.300745 40.441790
800 49.956028 45.003314 42.293530 40.080289

G 0 50.000097 45.000451 42.300677 40.441704
800 49.963349 45.007211 42.317400 40.095789

1Q 0 50.000088 45.0004496 42.300674 40.441699
800 49.932479 44.934811 42.188016 39.909104

IMQ 0 49.999900 45.000443 42.300661 41.015678
800 49.995146 45.011987 42.316392 42.318768

References

[1] D.J. Korteweg-de Vries, G. de Vries, On the change in form of long waves advancing in rectangular canal and on a new type of long
stationary waves, Philos. Mag. 39 (1895) 422-443.
[2] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations, Acedemic Press, Newyork, 1982.
[3] H. Washimi, T. Taniuti, Propogation of ion acoustic solitary waves of small amplitude, Phys. Rev. Lett. 17 (1966) 996-998.
[4] L. van Wijngaarden, On the equation of motion for mixtures of liquid and gas bubbles, J. Fluid Mech. 33 (1968) 465-474.
[5] C.S. Gardner, G.K. Marikawa, The effect of temperature of the width of a small amplitude solitary wave in a collision free plasma,
Comm. Pure Appl. Math. 18 (1965) 35-49.
[6] E.J. Kansa, Multiquadrics scattered data approximation scheme with applications to computational fluid-dynamics. I. surface
approximations and partial derivative estimates, Comput. Math. Appl. 19 (1990) 127-145.
[7] X. Zhang, K.Z. Song, M.W. Lu, X. Liu, Meshless methods based on collocation with radial basis functions, Comput. Mech. 26 (2000)
333-343.
[8] C. Franke, R. Schaback, Solving partial differential equations by collocation using radial basis functions, Appl. Math. Comput. 93
(1998) 73-82.
[9] H. Power, V. Barraco, A comparison analysis between unsymmetric and symmetric radial basis function collocation methods for the
numerical solution of the partial differential equations, Comput. Math. Appl. 43 (2002) 551-583.
[10]J. Li, Y.C. Hon, C.S. Chen, Numerical comparisons of two meshless methods using radial basis functions, Eng. Anal. Bound. Elem.
26 (2002) 205-225.
[11]J. Li, Y. Chen, D. Pepper, Radial basis function method for 1-D and 2-D groundwater contaminant transport modelling, Comput.
Mech. 32 (2003) 10-15.
[12] S.A. Sarra, Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math. 54 (2005)
79-94.
[13] Z. W, Solving PDE with radial basis function and the error estimation, in: Z. Chen, Y. Li, C.A. Micchelli, Y. Xu, M. Dekkon (Eds.),
Adv. in Comput. Math, Lecture Notes on Pure and Applied Math., vol. 202, 1998.
[14] H. Wendland, Meshless Galerkin methods using radial basis functions, Math. Comput. (228) (1999) 1521-1531.
[15] Z. Wu, Y.C. Hon, Convergence error estimates in solving free boundary diffusion problem by radial basis functions method, Eng.
Anal. Bound. Elem. 27 (2003) 73-79.
[16] R.A. Lorentz, F.J. Narcowich, J.D. Ward, Collocation discretizations of the transport equation with radial basis functions, Appl.
Math. Comput. 145 (2003) 97-116.
[17] C. Franke, R. Schaback, Convergence order estimates of meshless collocation methods using radial basis functions, Adv. Comput.
Math. 8 (1998) 381-399.
[18] S.G. Rubin, R.A. Graves, Cubic spline approximation for problems in fluid mechanics, Nasa TR R-436,Washington, DC, 1975.
[19] R.M. Miura, C.S. Gardner, M.D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and
constants of motion, J. Math. Phys. 6 (1968) 1204-1209.



546 I. Dag, Y. Dereli | Applied Mathematical Modelling 32 (2008) 535-546

[20] G.A. Gardner, A.H.A. Ali, L.R.T. Gardner, Simulation of solitons using quadratic spline shape functions, UCNW preprint 89.03,
1989.

[21] N.J. Zabusky, A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, in: W. Ames (Ed.),
Proceedings of the Symposium on Nonlinear Partial Differential Equations, Academic Press, 1967, pp. 223-258.

[22] M.E. Alexander, J.LL. Morris, Galerkin methods for some model equations for nonlinear dispersive waves, J. Comput. Phys. 30
(1979) 428-451.

[23] J.M. Sanz Serna, I. Christle, Petrov Galerkin methods for nonlinear dispersive waves, J. Comput. Phys. 39 (1981) 94-102.



	Numerical solutions of KdV equation using radial basis functions
	Introduction
	The governing equation and radial basis method
	Numerical examples and comparisons
	Test problem 1
	Test problem 2
	Test problem 3
	Conclusion

	References


