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Abstract. In this paper positive linear set valued maps defined on the cone are studied. The
representation theorem for positive linear set valued maps is given and Lipschitz continuity of
these maps is proved. The estimations of upper and lower norms of the positive linear set valued
maps are obtained.
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1. INTRODUCTION

It is known that the set valued analogues of continuous linear operators are set
valued maps the graph of which are cones or vector subspaces. These kinds of set
valued maps are called processes or linear processes respectively (see, e.g. [10, 11]).
They provide a good framework for investigation of general homogenous systems
which arise in economics, mechanics and functional analysis (see, e.g. [2,3,7, 12]).
Differentials of the set valued maps provide examples of closed convex processes
(see, e.g. [2,4]). Various properties of the convex processes are investigated in [1—

,5,06,8-12]. Regularity and continuity of the convex processes are discussed in
[2,3,5,6,8,9,12]. In [1] controllability property of the differential inclusion is studied
where the right hand side of the given differential inclusion is a convex process. In
this paper positive linear set valued maps are defined which satisfy additivity and
positive homogeneity conditions. The paper is organized as follows:

In Section 2 the representation theorem for a positive linear set valued map is given
(Theorem 1). In Section 3 the Lipschitz continuity of the positive linear set valued
maps is proved (Theorem 2). In Section 4 the evaluations of upper and lower norms
of the positive linear set valued maps are obtained (Theorem 3).

Let R” be the n-dimensional Euclidean space, (X, ||-|x) and (Y, |-||y) be normed
spaces, and a; € X,i = 1,2,...,n, are nonzero linearly independent vectors. Denote

T={=E.5,....5)eR":1£>0,i=1.2,...n},
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K={XZZSiaiI(§1,52,---7§n)€"3'i}, (1.1)

i=1

E" =

x:Zéiai3(51,52,---7511)6“2”% : (1.2)
i=1

n 2

2

a= (Z la; “X) : (1.3)
i=1

It is obvious that K C X is a cone and every x € K has a unique representation in

n
the form x = Z&ai, where § = (§1,62,...,8n) € R}.. Similarly, every x € E" also

i=1
n

has a unique representation in the form x = Zéia,-, where £ = (£1,&5,...,&,) € R™.
i=1

n 2
For given x € E" we will denote x, = (£1,&3,...,&,) € R” and ||x,|| = (Zélz) .
i=1

For each £ = (£1,&2,...,&,) € R” we define a function f(-) : R” — [0, 00), setting

> &iai

i=1

fE& =f¢16,....60) = (1.4)

X
Let

S"={t=(51.62,...50) eR": E]| = 1},

St =1{t=(&1.6.....6) e Ry (€| = 1}.
It is clear that S C R", §" C R are compact sets, S% C S", f(-) : R" — [0,00) is
a continuous function and

> &iai

fE) = > 0 for every § = (£1,&2,...,8,) € S™.
i=1 X
Hence there exist y > 0 and 8 > 0 such that
min{f(§):§€S"} =7, (1.5)
min{f(§):§€ ST} = 8. (1.6)

It is obvious that 8 > y > 0.

Proposition 1. The inequality

VXl < llxllx < e fxnll (1.7)

is satisfied for every x € E", and the inequality

Blxall = lIxllx < alxx (1.8)
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holds for every x € K, where o > 0, y > 0 and B > 0 are defined by (1.3), (1.5) and
(1.6) respectively.

n

Proof. Letx € E™. Then x = Z&ai , where £ = (£1,§5,...,&,) € R", and hence

X, = (§1,62,...,&n) € R™. Thus, using Cauchy-Schwarz inequality, we obtain from
(1.3) that

lxllx =

Zéial

i=1

<Z|sz|||az||x (Zsz) (fuaini);:auxnn.

i=1 i=1 i=1
(1.9)

n
Now, let again x = Z €ia; € E" be an arbitrarily chosen vector where x # 0. Then
i=1
x, = (§1,62,....&,) e R, x, # 0 and

n
Ixlx = Zs,-a, = [[%n]|- ” (1.10)
i=1
Since (”il R ||i2 T ”i ”) € S", we have from (1.4) and (1.5) that
n n n
n
> Hfl el =z (L1D)
i=1 """
(1.10) and (1.11) imply
Ixlx =¥ [I%nll- (1.12)

If x = 0, then inequality (1.12) is satisfied trivially. From (1.9) and (1.12) we obtain
the proof of the inequality (1.7).
Since K C E™, (1.7) gives

[xllx < o [1Xnll (1.13)
for every x € K, where o > 0 is defined by (1.3).
n

Let, now, x = Zéiai € K be an arbitrarily chosen vector such that x # 0. Then
i=1
Xp = (51’527“"5}1) S [Rn , Xp ?é 0 and

Z&az

i=1

=[xl -

lxllx =

> IIEi - ” . (1.14)

i=1
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Since ( &1 , &2 , é ) € S+, we have from (1.4) and (1.6) that

> B. (1.15)

||Xn”

(1.14) and (1.15) imply

Ixllx > B lI%nll- (1.16)
The inequality (1.16) is also verified, if x = 0. (1.13) and (1.16) yield the proof of
the inequality (1.8). U

Proposition 2. The cone K C X defined by relation (1.1) is a pointed cone, i.e. K
is closed, convex, and K (\(—K) = {0x }.

Proof. Convexity of the cone K is obvious. Let us prove closedness. Let x(m =

n

ng’")a,- € K for every m = 1,2,... and x5 x* as m — oco. By virtue of
i=1

Proposition 1 we have

1
[l =51, an

for every m = 1,2,... where X(m) (Sfm) S(m), el ,5”’)) )

Since x™ — x* asm — 00, then it follows from (1.17) that there exists an r > 0
such that

=

for every m = 1,2,..., and hence

n

> (éi('"))z <r? (1.18)

i=1

o0
for every m = 1,2,... . (1.18) implies that the sequences {él(m)} are bounded
for every i = 1,2,...,n. Hence there exists a subsequence {E( ])} . such that
=
Sl.(m-/) — £¥ as j — oo forevery i = 1,2,...,n. It is obvious that £ > 0 for every
i=12,...,n

n
Denote y,. = Zgl.*a,-. Then yx € K and x/) — y* as j — oo, where x"/) =
i=1

Zgl.(’"f)a,-. Since x™ — x* asm — 00, We get Xy = Y« € K.
i=1
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Let us prove the validity of the relation

K(\(=K) = {0x}.

Let us assume contrary, i.e. let there exists x4 € K such that x, # 0 and —x, € K.
Then there exist unique & = (§1,62,...,&,) € R and n = (91,72,...,7s) € R’} such

that
n n
xo =) kiai . —xe =) midi . (1.19)

i=1 i=1
(1.19) yields
n

Y (Ei+ni)ai=0. (1.20)

i=1
Since the vectors a1, az,...,a, are linearly independent, £ = (£1,&»,...,&,) € [Rf’i_ and
n=Mm1,N2,...,0n) € [Rf’i_ , (1.20) implies that §; =0, n; =0 foreveryi =1,2,...,n,
and hence x, = 0. This contradicts with x4 # 0. O

The family of all non-empty, compact, and convex subsets of Y is denoted by
Py (Y). The Hausdorff distance between the sets U C Y and V C Y is denoted by
hy (U,V) and defined as

hy (U,V) =max{ sup dy (u,V), sup dy (v,U); ,
uelU veV

where dy (u, V) =inf{|ju —v|ly : v € V} (see, e.g., [2]). Itis known that (Pg. (Y).,hy (:,-))
is a metric space.
Now let us formulate some properties of convex sets. For U € Pr.(Y), V €
Pic(Y),and A € R! we denote
U+V=4{u+v:iuelveV}, A\U={u:ueclU}.

It is obvious that if U € P, (Y),V € Pr.(Y), A € R, then A(U +V) =AU +AV.
IfU € Pre(Y), AeRL , peR: then (A + p)U = AU + pU.
For a given U € Py.(Y) we denote
IU|| = max {|lully :u e U}.

It is not a difficult matter to verify that |U || =0iff U = {0y}, |[U+ V|| < ||U ||+
|V || forevery U € Pio(Y)and V € Pio(Y), |AU| = |A|||U]|| for every A € R! and
U € Pi.(Y). Let

(Pkc(Y))n = Pre(Y) X Pre(Y) X ... X Pre(Y).

ForAeRy, § =(51.62,....60) €RY, U= (U1,Uz,...,Un) € (P (Y))", V=
(V1.V2,.... V) € (Pre(Y))" we denote

U+V=U1+V, U+ V5,....U, + V),
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AU = (AU, AU,, ..., AUy),

1
n 2
Ul = (Z 1U; ||2) :

i=1
n
< %’,‘u > = ZéiU[.
i=1
Proposition 3. Let U = (U1,U,,....Uy) € (Prc(Y)", V= V1, V2,....Vy) €
(Pec(¥))" A € RL € = (E1.E2.....En) € R, Then

[U+Ve = Ulc+1Vlc (121
A Ullc =2A-Ullc (1.22)
<& U < [§-1Ulc - (1.23)

Proof. The proofs of (1.21) and (1.22) are obvious. To prove inequality (1.23) it
is enough to use Cauchy-Schwarz inequality. Thus,

Y &U| <D & U

i=1 i=1

s(Z(a)z) -(annz) = &1 Ulc -

i=1 i=1

[<&U>|=

2. POSITIVE LINEAR SET VALUED MAPS

Definition 1. Let X and Y be normed spaces, K C X be defined by (1.1), F(-):
K — Pi.(Y) be a given set valued map. If
F(Ax1+ pxz) = AF(x1) + pF(x2)
forevery x1 € K, xo € K, A € [Rfr and 1 € RL, then F(-) is called a positive linear
set valued map.

Let us give the representation theorem for positive linear set valued maps.

Theorem 1. Let K C X be defined by (1.1), F(-) : K — Py.(Y) be a given positive
linear set valued map. Then there exists a unique ¥ = (F1, Fa, ..., Fy) € (Pr.(Y))"
such that

F(x)=<x,,¥ > 2.1)
and |
IFCN = sl 1 e < 5 1l - ¥lx 22)

for every x € K, where B > 0 is defined by (1.6).
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Proof. Denote F; = F(a;) (i =1,2,...,n)and ¥ = (F1, F>,...,Fy). Since F; €
P (Y),then ¥ € (Pr.(Y))".

n
Let x € K. Then there exists a unique (§1,£2,...,&,) € RY, such that x = Zéiai,
i=1

and hence x, = (£1,&2,...,&,). Since the set valued map F(-) is positive linear, we
obtain
n n n n
F(x)=F (Zs,-ai) =Y Fa)=) &F(a)=) &Fi=<x,.F >.
i=1 i=1 i=1 i=1

The validity of inequality (2.2) follows from Proposition 1 and Proposition 3.
Now let us prove the uniqueness of representation (2.1). Let there exists & =
(E1,Ea,..., En) € (Prc(Y))" such that for every x € K

F(x)=<x,,8>. (2.3)
From (2.1) and (2.3) it follows that
<Xy, F >=<x,,8 >
for every x € K and consequently
n n
Y EF =) &E 2.4)
i=1 i=1

for every (§1,2,...,6n) € R
Taking &, =1, & = 0if i # iy, we get from (2.4) that F;, = E;_, and hence F; =
E; foreveryi =1,2,...,n. Thus § = ¥, and representation (2.1) is unique. O

Theorem 1 implies the validity of the following corollary.

Corollary 1. Let K C X be defined by (1.1), F(-) : K — Py.(R') be a given posit-
ive linear set valued map. Then there exists a  unique
F = (a1, B1].[e2. B2, - - .. [&tn, Br]) € (Pre(RV)* such that

F(x)=) &-loi.fil = [Zs,- Y -ﬁ,}
i=1 i=1 i=1

forevery x € K, where (§1,&2,...,6n) =X, and (§1,62,...,60) € RT .

3. LipSCcHITZ CONTINUITY OF THE POSITIVE LINEAR SET VALUED MAPS

The following proposition characterizes Lipschitz continuity of the positive linear
set valued maps.
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Theorem 2. Let K C X be defined by (1.1), F(-): K — Py.(Y) be a given positive
linear set valued map. Then the set valued map F(-) is Lipschitz continuous with

1
Lipschitz constant — || ¥ || ¢ that is
v

b (1) () = 2 10—,

for every xW e K, x® e K, where y > 0 is defined by (1.5),
F=(F1.F,....Fy) € (Pre (Y)', Fi € Pro(Y) (i =1,2,...,n) are defined in The-
orem 1.

Proof. According to Theorem 1, there exists a unique ¥ = (Fy, F»,...,Fy) €
(Prc(Y))" such that for every x € K

F(x)=<x,,% > . 3.1)
Lt x® e K. 1@ e kK xV = (59),551),..., 121)) € R
x,(,z) = ( %2),%2),..., ,(,2)) € R”.. Then we get from (3.1) that

n

FaxW)y=<xV.57>=>"eVF, (3.2)
i=1
n

F@)=<x@ 7 >=>e?F. 3.3)

i=1
Letuyx € F (x(l)) be an arbitrarily chosen vector. Then by virtue of (3.2) there exist
fieFy, freFs, ..., fn € F, such that

Uy = Zgl.(l)f,- , (3.4)

i=1

Now let
n

=D £ fi. (35)

i=1

Then according to (3.3) we have v« € F (x (2)) . From (3.4) and (3.5) it follows that
n

=

Y i=1

33

i=1

n

(V-2 1)

i=1

& =521 illy

|us —vally =

Sl L1 B
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(3.6) and Cauchy-Schwarz inequality yield

" a2 3 /o 2
s —vally < (Z (60 -£2) ) '(Z | F; ||2) = 7l |x -xP].
3.7)
Since x() —x( e E” where E" is defined by (1.2), Proposition 1 implies that
1
P20,

where y > 0 is defined by (1.5). (3.7) and (3.8) yield that
1
_ < |F|~- H L_ .. H ) 3.9
[0 U*HY—V” lle > =, (3.9
It follows from (3.9) that

dy (u*,F(x(z))) < ; 17 ]l Hx(l) —x® HX . (3.10)
Since ux € F(x() is an arbitrarily chosen vector, then we get from (3.10) that
sup {dy (u,F (x(z))) ‘uerF (x(l))} < ; 1F - Hx(l) —x® HX . (3.11)
Analogously it is possible to prove that
sup {dy (U,F (x(l))) veF (x(z))} < % 17 - “x(l) —x@ HX . (3.12)

(3.11) and (3.12) imply the proof of the proposition. U

Proposition 4. Let K C X be defined by (1.1), F(-) : K — Pr.(Y) be a given
positive linear set valued map. Then

grF()={(x,y)e KxY:yeF(x)}
is a closed convex cone.

Proof. The proof that gr F(-) is a convex cone is obvious. Closedness of gr F(-)
follows from Theorem 2, asserting that the set valued map F () : K — Pp.(Y) is
continuous. O

By virtue of [2], [11], and Proposition 4 we conclude that the positive linear set
valued map F(-) : K — Pi.(Y) is a closed convex processes.
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4. THE NORM OF THE POSITIVE LINEAR SET VALUED MAPS

According to [2] and [6] the upper and lower norms of the positive linear set valued
map F(-): K — Pr.(Y), where K C X is given by relation (1.1), are respectively
defined as

| F (x)]| supil| flly : f € F(x)}
IFO, = = sup L ,
xeK\{0x} llxllx xeK\{0x} llxllx
dy Oy, F (x)) inf{[| flly: /€ F(x)}
IFOl; = sup ——F—F— = r :
xeK\{0x} llxlx xeK\{0x} [Bd5%

It is obvious that || F(-)||; < || F(-)|, . The following theorem gives estimations of
upper and lower norms of the positive linear set valued map F(-) : K — P (Y).

Theorem 3. Let K C X be defined by (1.1), F () : K — Py.(Y) be a given positive
linear set valued map. Then

mi 1

laillx p
where B > 0 is defined by (1.6), ¥ = (F1,Fa,..., Fy) € (Prc(Y))", F; € Pr.(Y)

(i =1,2,...,n) are defined in Theorem 1, m; = dy Oy, F;), a; € X,i =1,2,...,n,
are linearly independent vectors given in (1.1).

max i=12,...n0 <[FOl = IFOl, = 2 1Flc -

Proof. Applying Theorem 1 we have

IF (x)|
IFOl, =
xeK\{0x} llxlx
1 1 1
< sup | Flclxlly =2 1Flc - (4.1)
reK\{oy) B Y xlxy B

Let us choose an x € K \ {Ox } . Then there exists a unique (§1,£2,...,8,) € R’ such

n n 2
that x = Z&iai, and hence x,, = (£1,&2,....&,) and ||x,|| = (Zélz) .

i=1 i=1
Using Theorem 1 we have

dy Oy, F (x)) =min{[| f{ly : f € F(x)} =min{[| fly : f € <X, F >}

=miH{ ZEifi

i=1

(fi€F; (4.2)

Y
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where & = (F1, Fa,..., Fp) € (P, (Y)", F; € Pr.(Y) (i =1,2,...,n) are defined
n

in Theorem 1. Since x = Zéiai, we obtain from (4.2) that
i=1

n
min{ Z&fi c fi €F;
dy Oy, F(x)) _ i=1 Y
lIx1x "
Y &
i=1 X
: N CF
miny 1) i e R
= = 4 : 4.3)
S 6,
2|
Since x € K\ {0y} is arbitrarily chosen, (”il i ”iz TR ”in ”) € Si , (4.3) imp-
n n n
lies that
dy (Oy, F (x))
IFOl; = sup ———F
xeK\{0x} x|l x
min i Si fi fi € F;
Sl
- Iili? } °\ £
X€ Ox i
2 Tl ‘
n
min{ Zeifi cfi € F;
I N @
1,02,...,0h)€ i Ze )
idi
i=1 X

Let (0].05.....0;) = (0,...,0,1,0,...,0) € S¥ where I is i-th coordinate. Then it
follows from (4.4) that
min{

> 6 f;

i=1

:fiEFi
Y

n
291‘61;‘

i=

IFOI; = sup
(61,62,....01)€S"L

X
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n
min Z@i*fi cfi€F

i=1 Y
- n
Z@i*ai
i=1 X
_ min{|| filly : fi € Fij __m 45)
laillx laillx '

Since the inequality (4.5) holds for every i = 1,2,...,n, then we have from (4.5) that

IIF(')Illzmax{ Mo, (46

laillx

The inequalities (4.1) and (4.6) complete the proof. O
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