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Inner tube formulas for polytopes

Şahin Koçak∗ and Andrei V. Ratiu†

August 13, 2010

Abstract

We show that the volume of the inner r-neighborhood of a polytope in the d-dimensional
Euclidean space is a pluri-phase Steiner-like function, i.e. a continuous piecewise polynomial
function of degree d, proving thus a conjecture of Lapidus and Pearse. In the case when the
polytope is dimension-wise equiangular we determine the coefficients of the initial polynomial
as functions of the dihedral angles and the skeletal volumes of the polytope. We discuss also
the degree of differentiability of this function and give a lower bound in terms of the set of
normal vectors of the hyperplanes defining the polytope. We give also sufficient conditions for
the highest differentiability degree to be attained.

1 Introduction

The Steiner formula is a beautiful cornerstone of convex geometry dating from 1840. It states that
the volume of the r-parallel set of a given convex and compact set in Rd can be expressed as a
polynomial function of r of degree d (for r ≥ 0) ([1] Proposition 12.3.6, [5] Formula 4.1.1). The
r-parallel set Ar of a set A ⊂ Rd is by definition the Minkowski sum of A with the ball of radius r
in Rd, or, in other words, the set of points in Rd with distance at most r to A. As a simple example,
the following formula holds for a convex, compact set A in the plane, having non-empty interior:

area(Ar) = area(A) + length(∂A) r + πr2 (A ⊂ R2).

The Figure 1 gives a ”proof without words” for a convex polygon in the plane. In space, we have
the following formula for a convex body A, with smooth boundary ∂A:

vol(Ar) = vol(A) + area(∂A) r +H(∂A) r2 +
4

3
πr3,

where H(∂A) denotes the total mean curvature of (∂A) ([2] Theorem 51, [4] Theorem 10.2).
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Figure 1: The outer r-neighborhood of a convex polygon in the plane. Note that the sector-volumes
add up to πr2.

In 1939, H. Weyl proved that volumes of tubular r-neighborhoods of smooth submanifolds of Rd

can be expressed as polynomials of r and gave impressive explicit formulas for the coefficients of the
polynomial in terms of the curvature tensor of the submanifold. As simple but interesting examples
we note two cases: For a smoothly embedded circle C in Rd it holds:

vol(Cr) = αd−1 length(C) rd−1,

where αd−1 denotes the volume of the (d− 1)-dimensional unit ball.

For a closed orientable surface S in Rd one has the following formula:

vol(Sr) = αd−2 area(S) rd−2 +
1

d
βd−1 χ(S) rd,

where βd−1 denotes the volume of the (d − 1)-dimensional unit sphere and χ(S) is the Euler
characteristic of S ([1] 12.10.9.2).

Now, convex sets needn’t be smooth and submanifolds needn’t be convex. In 1959 Federer created
the notion of ”sets of positive reach” including both of these important classes of sets, the convex
sets and (C2-smooth) submanifolds in Rd of any codimension. A closed set A ⊂ Rd is called of
positive reach, if there exists a parallel set Ar (with r > 0) such that any point of Ar has a unique
nearest point in A. The supremum of these r is called the reach of A. Federer proved that Steiner
formula still holds for this larger class of sets, with r within the reach of the set ([3] Theorem 5.6).

It seems that during the long history of this problem, the inner neighborhoods of convex bodies (or
of closed hypersurfaces) was not an issue of attraction. From the above formulas one sees that the
area of the inner r-neighborhood of a convex set A with smooth boundary in R2 can be expressed
(for small r) as length(∂A) r− π r2 and the volume of the inner r-neighborhood of a convex body
with smooth boundary in R3 as area(∂A) r −H(∂A) r2 + 4

3πr
3.
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If the boundary of a domain is not C2-differentiable or if it is not of positive reach from inside, then
there are, to our knowledge, no available Steiner-like formulas. In the negative, for many simple
convex domains (for example the semidisc in the plane) the volume of the inner r-neighborhood is
definitely non-polynomial even for small enough r.

The interest in volumes of inner neighborhoods of domains in Rd was actualized by the recent
research of Lapidus and coworkers, notably by Lapidus-Pearse, who established a startling formula
for volumes of neighborhoods of fractals, whereby they defined new complex dimensions for fractals,
related the neighborhoods of fractals to inner neighborhoods of some associated sequences of open
domains and expressed the volume of the r−neighborhood of a fractal as a sum of residues of a
certain associated ζ-function at the complex dimensions of the fractal ([6] Theorem 8.1, [7] Theorem
7.4, [9] Theorem 1).

In this article we consider a simple but important type of convex bodies, the polytopes in Rd. The
inner neighborhoods stabilize at the inradius. We prove a conjecture of Lapidus and Pearse ([8],
Conjecture 1) stating that the volume of the inner r-neighborhood of a (convex, compact) polytope
is a continuous piecewise polynomial function for r ≥ 0. We call such a behavior pluri-phase
Steiner-like. The Figure 2 shows a quatre-phase Steiner-like example in the plane.

r
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Figure 2: The inner r-neighborhood of a convex polygon P in the plane. For small r, until the
passage to a quadrangle, its area is given by the formula A(r) = perimeter(P )·r−(

∑

tan(αi/2))·r2,
where the αi’s are the outer angles of the polygon.

We discuss also the degree of differentiability of this function and give a lower bound in terms of the
set of normal vectors of the hyperplanes defining the polytope. We give also sufficient conditions
for the highest differentiability degree d − 1 to be attained. There are interesting consequences
resulting from these considerations about the geometric ζ-function for the polytopes in the sense of
Lapidus-Pearse, but we want to restrict ourselves in this article to the convex geometry framework.
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2 The volume function

Let P be a convex body in Ed, i.e. a compact convex subset with non-empty interior. For all
positive r we denote by P (r) the r-interior of P :

P (r) = {Q ∈ P |d(Q, ∂P ) ≥ r}

and we call the set P \ P (r) the inner r-neighborhood of ∂P . The aim of this article is the study
of the inner neighborhood volume function

VP (r) = vold(P \ P (r))

or, equivalently, of the volume function

WP (r) = vold(P (r)) = vold(P )− VP (r).

We start with a straightforward example.

Example If P is a d-dimensional Euclidean ball of radius g, then

VP (r) =







∑d−1
i=0 κi(P )rd−i, if r ≤ g

vold(P ), if r ≥ g

Here the coefficients are

κi(B) = (−1)d−i−1

(

d

i

)

vold(B)

gd−i
, for all i.

The inradius of a convex body P is defined as the maximum positive value g such that P contains
a ball of radius g. It is then clear that the volume function WP stabilizes at g, i.e. WP (r) =
0, for all r ≥ g.

Let d be a non-negative integer.

Definition 1 A degree d pluri-phase Steiner-like function ϕ is a continuous function

ϕ : [0,+∞) −→ [0,+∞)

such that there is a partition of the non-negative half axis into m intervals 0 = g0 < g1 < · · · <
gm−1 < +∞ such that

• for each 1 ≤ i ≤ m−1, the restriction of ϕ on the subinterval [gi−1, gi] is a degree d polynomial

ϕ(r) =

d
∑

k=0

κd−k,ir
k, for all r ∈ [gi−1, gi]

and

4



• ϕ is constant on [gm−1,+∞)

The g-value of ϕ is by definition gm−1. In case m = 2, ϕ is called a diphase Steiner-like function

and the coefficient κd−k,1 of rk is denoted simply by κd−k.

The main result of this article is to show that whenever P is a polytope in Ed, i.e. a convex body
that is the intersection of finitely many closed half-spaces in Ed, the inner neighborhood volume
function VP is a degree d pluri-phase Steiner-like function. If {H1,H2, . . . ,Hm} is a minimal
collection of half-spaces in Ed defining P , the sets Fj = P ∩ ∂Hj are called the facets of P . Their
union equals the boundary of the polytope. We will use the following differentiation formula for
the volume function:

W ′
P (0) = −

m
∑

j=1

vold−1(Fj),

valid for all d-dimensional polytope P with facets F1, F2, . . . , Fm. As each facet Fj is a (d − 1)-
dimensional polytope, the proof will essentially consist of an inductive argument on dimension. By
definition, a 0-dimensional polytope is a point and its 0-dimensional volume is simply 1.

By contrast, even for very simple convex subsets in the plane the inner neighborhood volume
function is not necessarily a Steiner-like function, as the following example shows.

Example Let P = {(x, y) ∈ R2|0 ≤ y ≤
√
1− x2}. Then the r-interior of P is

P (r) = {(x, y) ∈ R2|r ≤ y ≤
√

(1− r)2 − x2}

and

VP (r) =











π
2 − (1− r)2 arccos

(

r
1−r

)

+ r
√
1− 2r, if r ≤ 1

2

π
2 , if r ≥ 1

2

Note that VP is of differentiability class C1 on [0,+∞), but not C2, as:

lim
rր 1

2

V ′′
P (r) = −∞

The differentiability class of the volume function reflects the metric properties of the polytope. For
instance among all the rectangles, only the cubes have volume function of maximum differentiability
class, as the following example proves it:

Example Let a1 ≤ a2 ≤ · · · ≤ ad and let R be the d-dimensional rectangle

R = Ra1,a2,...,ad = {x = (x1, x2, . . . , xd)| |xi| ≤ ai, for all i}

of inradius a1. Then VR is a diphase Steiner-like function:

VR(r) =







2da1a2 . . . ad − 2d(a1 − r)(a2 − r) . . . (ad − r), if r ≤ g

2da1a2 . . . ad, if r ≥ g

5



Thus the coefficients are

κd−k = (−1)k−1vold−k(R(d−k)), for 1 ≤ k ≤ d.

Here R(d−k) denotes the (d − k)-dimensional skeleton of the polytope R, i.e. the union of all the

(d − k)-dimensional faces of R. In particular, κ0 = (−1)d−1♯(R(0)). Note also the important fact

that, if m = ♯{1 ≤ i ≤ d|ai = g}, then VR is of differentiability class C(m−1), but not Cm. Indeed, for
all r such that 0 ≤ r ≤ g, g is a root of the polynomial 2d(a1 − r)(a2 − r) . . . (ad − r) of multiplicity
exactly m.

The following theorem characterizes the polytopes in Ed for which the function VP is a diphase
Steiner-like function of maximal differentiability class, i.e. of class C(d−1).

Theorem 1 A necessary and sufficient condition for the inner neighborhood volume function VP

of a d-dimensional polytope P to be a diphase Steiner-like function of class C(d−1) on [0,+∞) is

that P admits an inscribed Euclidean d-dimensional ball. Moreover, in this case the coefficients

κi(P ) of P satisfy:

κi(P ) = (−1)d−i−1

(

d

i

)

vold(P )

gd−i
,

for all i = 0, 1, . . . , d− 1.

Proof We first prove the sufficiency of the condition. Assume that the origin O is the center of
a d-dimensional ball of radius g inscribed in P , i.e. tangent to all the facets of P . For each r in
[0, g] let P̃ (r) = (1 − r

g
)P . Note that, due to the assumption above, the polytopes P̃ (r) and P (r)

coincide, for all r. Thus for each r in [0, g]:

VP (r) = vold(P \ P̃ (r)) = vold(P )

(

1−
(

1− r

g

)d
)

= vold(P )

d−1
∑

i=0

(−1)d−i−1

(

d

i

)(

r

g

)d−i

and for r > g, VP (r) = vold(P ).

In order to prove the necessity, note that for any d-dimensional polytope P , the inradius g satisfies

g = min{r > 0|vold(P (r)) = 0} = min{r > 0|VP (r) = vold(P )}.

Assume now that VP is diphase Steiner-like function. Then its g-value equals the inradius of P .
Writing down the continuity conditions at r = g for the function

VP (r) =







∑d−1
i=0 κi(P )rd−i if r < g

vold(P ) if r ≥ g

and for its first d− 1 derivatives we obtain the triangular homogeneous system of linear equations
in the coefficients κi:

d−j
∑

i=0

(

d− i

j

)

κi(P )gd−i−j = 0, for all j = 0, . . . , d− 1

6



whose only family of solutions is the one stated in the theorem. Here, for simplicity we have denoted
vold(P ) by −κd(P ).

Consider that the ball of radius g centered at the origin is contained in P . Then (1− r
g
)P ⊂ P (r).

Since
VP (r) =

∑d−1
i=0 κi(P )rd−i

= vold(P )
∑d−1

i=0 (−1)d−i−1
(

d
i

)

(

r
g

)d−i

= vold(P )

(

1−
(

1− r
g

)d
)

= vold

(

P \
(

1− r
g

)

P
)

,

we conclude that P \ P (r) = P \ (1− r
g
)P , for all r < g. Thus the distance of the origin to all the

facets is exactly g, and the ball of radius g considered is inscribed in P . qed.

3 The equiangular polytope case

Considering that the volume function of a convex body is a polynomial for at least a small interval
[0, ε], one is interested in the geometric information carried by the coefficients of this polynomial.
This section answers this question explicitly for the special case of dimension-wise equiangular
polytopes.

Definition 2 A polytope P is equiangular if all the dihedral angles between pairs of adjacent facets
of P are equal. For an equiangular d-dimensional polytope denote by αd its outer dihedral angle

value, i.e. for any two different facets Fi and Fj , meeting along a common ridge, and having inner
unit normal vectors Ni and Nj , 〈Ni, Nj〉 = cosαd holds.

Definition 3 A polytope P is dimension-wise equiangular if there exists constants α2, α3, . . . , αd ∈
(0, π) such that any k-dimensional face F of P is an equiangular polytope with outer dihedral angle
αk, for all k such that 2 ≤ k ≤ d.

As a consequence of the definitions above, all 1-dimensional polytopes are dimension-wise equian-
gular.

Example Following [1] (Definition 12.5.1), a flag of a polytope P is a d-tuple (F0, F1, . . . , Fd−1),
consisting of i-faces of P and Fi ⊂ Fi+1 for all i such that 0 ≤ i ≤ d − 2. A polytope P is called
regular if the symmetry group of P , i.e. the group of all Euclidean isometries mapping P onto itself,
acts transitively on the flags of P . As it is clear that a regular polytope P in Ed is equiangular
and as every k-face of P is regular, we conclude that every regular polytope is dimension-wise
equiangular. Moreover, any of its k-faces has same inradius γkg, where g is the inradius of P , γd is
obviously 1, and

γk = tan
(αk+1

2

)

tan
(αk+2

2

)

. . . tan
(αd

2

)

, for all k such that 1 ≤ k ≤ d− 1.

7



The expressions γk, defined as functions of the outer dihedral angles, have a geometric meaning
even in the case of a non-regular but dimension-wise equiangular polytope, as we will see in the
theorem 2.

Definition 4 Let P be a d-dimensional polytope with facets F1, F2, . . . , Fm. For 0 ≤ k ≤ d, we
define inductively:

Ωk(P ) =







vold(P ), if k = d

∑m
i=1 Ωk(Fi), otherwise

.

Let F ′
1, F

′
2, . . . , F

′
n be all the k-faces of P , and suppose that, for all i, the polytope P admits exactly

µi flags on F ′
i , i.e. (d− k)-tuples of i-faces (F ′′

k , F
′′
k+1, . . . , F

′′
d−1), with F ′′

k = F ′
k and F ′′

i ⊂ F ′′
i+1, for

all i such that k ≤ i ≤ d− 2. By a straightforward induction on d, one can show that

Ωk(P ) =
n
∑

i=1

µivolk(F
′
i ).

Theorem 2 Let P be a dimension-wise equiangular polytope in Ed, with outer dihedral angles

α2, . . . , αd. Then there exists a positive ε such that, on the interval [0, ε], the volume function

WP (r) = vold(P (r)) is a polynomial function and

WP (r) =
d
∑

k=0

(−1)d−kΩk(P )γk+1γk+2 . . . γd
rd−k

(d− k)!
,

for all r such that 0 ≤ r ≤ ε, where γk are given by the formulas above.

Proof By induction on the dimension d. Denote by g the inradius of P . For d = 1, take ε = g
2 .

Assume the theorem has been proved for d−1. Denote by F1, F2, . . . , Fm the facets of a dimension-
wise equiangular polytope P in Ed. By the induction hypothesis, there exists an ε′ such that each
volume function WFi

is a degree d− 1 polynomial function on [0, ε′] and satisfies

WFi
(r) =

d−1
∑

k=0

(−1)d−k−1Ωk(Fi)γ
′
k+1γ

′
k+2 . . . γ

′
d−1

rd−k−1

(d− k − 1)!
,

for all r such that 0 ≤ r ≤ ε′. Here

γ′l = tan
(αl+1

2

)

tan
(αl+2

2

)

. . . tan
(αd−1

2

)

, for all l such that 1 ≤ l ≤ d− 1.

Take

ε = min

{

g,
ε′

tan
(

αd

2

)

}

.

8



For all r in the interval [0, ε], P (r) is a dimension-wise equiangular polytope with facets F1(tan
(

αd

2

)

r),
F2(tan

(

αd

2

)

r), . . . , Fm(tan
(

αd

2

)

r). Applying the differentiation formula to the volume function for
the polytope P (r), we get:

W ′
P (r) = −∑m

i=1WFi

(

tan
(

αd

2

)

r
)

=
∑m

i=1

∑d−1
k=0(−1)d−kΩk(Fi)γ

′
k+1γ

′
k+2 . . . γ

′
d−1

(

tan
(

αd

2

))d−k−1 rd−k−1

(d−k−1)!

=
∑d−1

k=0

∑m
i=1(−1)d−kΩk(Fi)γk+1γk+2 . . . γd

rd−k−1

(d−k−1)!

=
∑d−1

k=0(−1)d−kΩk(P )γk+1γk+2 . . . γd
rd−k−1

(d−k−1)! .

The theorem follows, since WP (0) = vold(P ) = Ωd(P ). qed

As a consequence of Theorems 2 and 1 and of the equality stated after the definition 4, we get
the following corollary, where P(k) denotes the k-dimensional skeleton of P , i.e. the union of all its
k-dimensional faces.

Corollary 3 Let P be a dimension-wise equiangular polytope in Ed such that for every k ≥ 1, the
number of k-faces of P meeting at any (k−1)-face of P is exactly µ(k). Then there exists a positive

ε such that, on the interval [0, ε], the volume function WP (r) = vold(P (r)) is a polynomial function

and

WP (r) =
d
∑

k=0

(−1)d−kµ(k+1)µ(k+2) . . . µ(d)volk(P(k))γk+1γk+2 . . . γd
rd−k

(d− k)!
,

for all r such that 0 ≤ r ≤ ε. In particular, if P is a d-dimensional regular polytope, for all k such

that 0 ≤ k ≤ d− 1,

d!vold(P(d)) = k!µ(k+1)µ(k+2) . . . µ(d)volk(P(k))γk+1γk+2 . . . γdg
d−k.

Example Consider a regular dodecahedron of unit edge length. Cut it along two planes, both par-

allel to a couple of opposite sides, each one being at distance δ =
√

1− 2√
5
from the corresponding

side. We obtain a dodecahedron D with all outer dihedral angles equal to arctan 2, and whose two
sides are regular pentagons of side 2

ϕ
, and remaining 10 sides are equiangular pentagons of edges

1, 1, 1
ϕ
, 1

ϕ
and 2

ϕ
. Here ϕ =

√
5+1
2 is the golden ratio. Thus the area of each of the small sides is

√
15−5ϕ
2 and of each of the 2 larger sides is

√
15− 5ϕ. The constants are

γ3 = 1

γ2 = ϕ− 1

γ1 =
√
18− 11ϕ.

We obtain
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WD(r) =
∑3

k=0(−1)3−kµ(k+1)µ(k+2) . . . µ(d)volk(P(k))γk+1γk+2 . . . γ3
r3−k

(3−k)!

= −20
√
47− 29ϕr3 + (50− 20ϕ)r2 − 7

√
15− 5ϕr + vol3(D),

for all r such that 0 ≤ r ≤ ε.

Figure 3: A non-regular but dimension-wise equiangular dodecahedron

4 The main result

In this section we prove that the volume function of any polytope is a pluri-phase Steiner-like
function. For that we introduce the concept of a gliding arrangement of hyperplanes in a Euclidean
space. The hyperplanes supporting the facets of the ”shrinking” polytope P (r), as r increases,
constitute the gliding arrangement of hyperplanes adapted to the polytope P . This concept will
allow an inductive argument on the dimension of the polytope.

By a hyperplane in Ed we will understand an oriented hyperplane H, where the orientation is given
by a choice of a unit normal vector N .

Definition 5 A d-arrangement of hyperplanes is a finite family A = {H1,H2, . . . ,Hm} of (not
necessarily distinct) hyperplanes in a d-dimensional real affine Euclidean space Ed.

Definition 6 The signed distance d(Q,H0) from a point Q in Ed to the oriented hyperplane H0

is by definition d(Q,H0) = 〈Q0Q,N0〉, where Q0 is any point in the hyperplane H0. The cells Cε

of the arrangement A are indexed by ε = (ε1, ε2, . . . , εm) ∈ {±1}m, and defined as the set

Cε = {Q ∈ Ed|εjd(Q,Hj) ≥ 0, for all j}.

10



By convention, we consider cells with different multi-indices as different, even when empty. So a
d-arrangement of cardinality m, defines exactly 2m cells in Ed.

Definition 7 We say that the family of vectors N = {N1, N2, . . . , Nm} in Rd has absolute rank k
if: (i) any k elements of N are linearly independent, and (ii) there are k + 1 vectors in the family
that are linearly dependent. The rank (respectively the absolute rank) of a d-arrangements A is
defined to be the rank (respectively, the absolute rank) of the family of the normal vectors N of
its elements.

The chain of inequalities holds: 1 ≤ k ≤ rkN ≤ min{m,d}, for all non-empty families N . By
convention, we consider the absolute rank of an empty family to be null.

Definition 8 Let H0 be an oriented hyperplane in Ed, with d ≥ 2. The trace of the d-arrangement
A on H0 is the family Ã0 of all the proper intersections of H0 with each of the hyperplanes in A,

each intersection being endowed with the normal vector Ñj =
pr0(Nj)
|pr0(Nj)| , where pr0(v) = v−〈v,N0〉N0

is the projection on the linear hyperplane subtending H0, i.e.

Ã0 = {(Hj ∩H0,
pr0(Nj)

|pr0(Nj)|
)|1 ≤ j ≤ m such that Hj ∩H0 is a proper subspace in H0}.

Note that, for all j such that 1 ≤ j ≤ m, the trace Ãj on the hyperplane Hj is a (possibly empty)
(d − 1)-arrangement of absolute rank at least k − 1 and of rank at least rkA− 1. In particular, if
rkA ≥ 2, then all the traces Ãj of A on its own hyperplanes are non-empty.

Consider now two hyperplanes Ha and Hb. Note that, for all j such that 1 ≤ j ≤ m, if the
intersection Hj ∩Ha∩Hb is a proper affine subspace in Ha∩Hb, then the projection prab(Nj) of Nj

on the linear subspace subtending Ha ∩Hb cannot vanish. Moreover the trace of the arrangement
Ãa on Ha ∩Hb (as a hyperplane in Ha) equals

{(Hj ∩Ha ∩Hb,
prab(Nj)

|prab(Nj)|
)|1 ≤ j ≤ m such that Hj ∩Ha ∩Hb is a proper subspace in Ha ∩Hb}

so it coincides with the trace of Ãb on the same Ha∩Hb (as a hyperplane in Hb). We say thus that
the iterated trace of an arrangement A on several hyperplanes does not depend on the particular
order in which these traces are taken.

Definition 9 A gliding d-arrangement of hyperplanes is a family

A = {(H1, v1), (H2, v2), . . . , (Hm, vm)}

where each hyperplane Hj is endowed with a normal velocity vector vj . A pair (H, v) as above will
be called a gliding hyperplane.
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Example Let P be a d-dimensional polytope in Ed. Consider the gliding d-arrangement AP

consisting of all the hyperplanes supporting the facets of P with the orientation given by the inner
normal vectors Nj and with velocity vectors vj = Nj for all j. We call AP the gliding arrangement
adapted to P .

A gliding arrangement A determines at each moment of time t a d-arrangement

A(t) = {H1(t),H2(t), . . . ,Hm(t)},

where Hj(t) is the image of Hj(0) = Hj under the translation by vector tvj, i.e.:

Hj(t) = {Q ∈ Ed|d(Q,Hj)− t〈vj , Nj〉 = 0}

Note that the rank and the absolute rank of A(t) are constant. For a multi-index ε ∈ {±1}m denote
the cell Cε by C(t) to indicate its dependance on the time parameter. Precisely:

C(t) = {Q ∈ Ed|εd(Q,Hj(t)) ≥ 0, for all j = 1, . . . ,m}

Note that if C(t0) is bounded for some t0 then it is bounded for all real t. Let

W (t) = Wε(t) = vold(C(t)).

be its d-dimensional volume function.

Definition 10 A gliding d-arrangement A is of first type if it admits a bounded cell Cε(t0) with
non-zero d-dimensional volume, for some multi-index ε and a real t0.

Example The gliding arrangement adapted to a polytope is of first type by definition.

Lemma 1 Let A be a gliding arrangement of hyperplanes in Ed of first type. Let C(t) be a bounded

cell of A of volume function W . Then W is continuous and suppW is an interval. For all

t 6∈ suppW , C(t) is empty.

Proof The continuity of W follows simply by induction on the dimension d and we will skip its
proof. If Qi ∈ C(ti) for i = 0, 1, then for all λ ∈ [0, 1], the point (1−λ)Q0+λQ1 ∈ C((1−λ)t0+λt1).
Thus if t0 6= t1 and if vold(Cε(t1)) > 0, then vold(C((1 − λ)t0 + λt1)) ≥ λdvold(C(t1)) > 0. Thus
if t0 < t1 are in suppW , then the whole interval [t0, t1] is contained in suppW . By the same
argument as above, if t1 ∈ suppW , and t0 6∈ suppW , but if C(t0) is non-empty then t0 is in the
closure of suppW , which is absurd. Thus C(t) is empty for all t 6∈ suppW . qed.

Assume (Hj, vj) and (H0, v0) are gliding hyperplanes in Ed in general position.

Definition 11 We define the trace of the gliding hyperplane Hj on H0 to be the hyperplaneHj∩H0

endowed with the normal vector Ñj =
pr0(Nj)
|pr0(Nj)| and with the velocity vector

ṽj = 〈vj − v0, Nj〉
pr0(Nj)

|pr0(Nj)|2
.
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Note that in the orthogonal complement of H0 ∩Hj, {N0, Nj} and { prj(N0)
|prj(N0)|2 ,

pr0(Nj)
|pr0(Nj)|2 } are dual

bases. The vector ṽj is exactly the
pr0(Nj)

|pr0(Nj)|2 -component of the vector vj − v0.

Let A = {(H1, v1), (H2, v2), . . . , (Hm, vm)} a gliding d-arrangement of hyperplanes and (H0, v0) be
a gliding hyperplane in Ed, with d ≥ 2.

Definition 12 We define the trace of the gliding d-arrangement A in H0 to be the family Ã0 of all
the traces of the gliding hyperplanes (Hj , vj) on (H0, v0), where we choose only those hyperplanes
(Hj, vj) such that Hj and H0 are in general position.

Let AP be the gliding arrangement adapted to some d-dimensional polytope P in Ed. Note that,
if P is a d-dimensional rectangle, the traces of AP on the hyperplanes Hj containing the facets of
P are adapted to the respective facet P ∩ Hj. Nevertheless, for a general polytope P this is not
necessarily true.

Lemma 2 Let H0 be a gliding hyperplane and A a gliding arrangement of hyperplane in Ed, with

d ≥ 2, and denote by Ã0 the trace of A on H0. Then the arrangement Ã0(t) is the trace of A(t)
on H0(t), for all t.

In particular, we conclude that the iterated trace of a gliding arrangement A on several gliding
hyperplanes does not depend on the particular order in which these traces are taken.

Proof We can assume that A consists of a single gliding hyperplane (H, v) and that the normal
vectors N and N0 are linearly independent. We can identify Ed with the Euclidean real coordinate
space Rd in such a way that N0 = e1, N = 1√

b2+c2
(be1 + ce2), with c 6= 0, H0(0) = {x1 = 0} and

H(0) = {bx1 + cx2 = 0}.

Then v0 = ae1 and v = ω(be1 + ce2), for some real ω, thus H0(t) = {x1 = at} and H(t) =
{bx1 + cx2 = ω(b2 + c2)t} intersect at

{(at, ω(b
2 + c2)− ab

c
t, x2, . . . , xd)|t ∈ R}.

Thus the trace (̃H, v)0 of the gliding hyperplane (H, v) on H0 has velocity vector ω(b2+c2)−ab

c
e2 =

〈v − v0, N〉 pr0(N)
|pr0(N)|2 . The Lemma is thus proven.

Theorem 4 Let A be a gliding d-arrangement of hyperplanes in Ed of first type and of absolute

rank k and let C be a bounded cell, such that for some value t0, C(t0) has non-zero d-volume. Then

the function W (t) = vold(C(t)) is a pluriphase degree d Steiner-like function of class Ck−1 on R.

Proof By induction on the dimension d.
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The theorem is clear if d is 1. Note that in this case W (t) is of class C1 only if the cell is non-empty
for all t.

Assume the theorem has been proven for (d − 1)-arrangements. The cell C = Cε of the d-
arrangement A determines in the trace Ãj a unique cell Cj for each j and, by the Lemma above,
Cj(t) is the jth facet of C(t), for all t in suppW . Since C is a bounded cell, the same is true for
Cj. In particular we conclude that Ãj is a non-empty (d − 1)-arrangement for all j, as the empty
arrangement has only one cell, which is unbounded. Note, however, the important fact that if
vold−1Cj(t1) 6= 0 for at least one value t1 for which vold(C(t1)) = 0, then A must contain at least
one hyperplane Hl, with l 6= j such that the normal vectors Nl and Nj are linearly dependent. We
conclude that A has absolute rank 1 in this case.

Denote the (d − 1)-dimensional volume function of Cj(t) by Wj(t), for each j. Note also that the
inner unit normal vector of the cell C(t) along its facet Cj(t) is εjNj . By taking the one-sided
derivatives with respect to t, we get

W ′(t±) = −χ(t±)

m
∑

j=1

〈vj , εjNj〉Wj(t±), for all t

where χ is the characteristic function of the interval suppW .

Since for each j, the trace Ãj is a non-empty (d − 1)-arrangement of absolute rank at least k − 1,
we conclude that the function W is a pluriphase degree d Steiner-like function of class Ck−1 on
R\∂(suppW (t)).

If the absolute rank of A is 1, the conclusion of the theorem is proven. Otherwise, the absolute
rank of A is greater than 1, and by the argument above, the volume function Wj is null outside
the interval suppW , for all facet j. The theorem follows. qed

Corollary 5 Let P be a d-dimensional polytope in Rd and let N = {N1, N2, ..., Nm} be the inner

normal vectors of the facets of P. If the family of normal vectors N has absolute rank k, then the

inner neighborhood volume function VP (r) is a pluriphase degree d Steiner-like function of class

Ck−1 on [0,+∞).

Proof Consider the gliding d-arrangement AP adapted to P . The polytope P is the cell C =
C(+1,+1,...,+1). We first show that for non-negative t, C(t) = C(+1,+1,...,+1)(t) coincides with the
t-interior of P , i.e.:

P (t) = {Q ∈ P |d(Q, ∂P ) ≥ t}
Indeed, if Q ∈ C(t) then for all j, d(Q,Hj(t)) ≥ 0. So d(Q,P ∩Hj) ≥ d(Q,Hj) ≥ t, for all facet

P ∩Hj of P . Conversely, if Q ∈ P is a point satisfying d(Q, ∂P ) ≥ t then d(Q,Rd \ P ) ≥ t. Since

any hyperplane Hj(0) supporting a facet of P is contained in the complement Rd \ P , we conclude
that d(Q,Hj(0)) ≥ t for all j. Thus Q ∈ C(t). The proof follows now by directly applying the
theorem to the gliding d-arrangement AP and to the cell P and the relation W (r) = vold(P )−VP (r),
valid for all positive r. qed.
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Moreover, the theorem below proves that, for each 0 ≤ k ≤ d, there exists a polytope P such that
the absolute rank of N is k but VP (r) is not of class Ck on [0,+∞). So, in this sense, the bound
for the differentiability class given in the Corollary 5 is the best possible result.

Theorem 6 Let 1 ≤ k ≤ s ≤ d. Then there exists a polytope in Rd whose family N of inner

normal vectors of facets has absolute rank k and whose inner neighborhood volume function VP is

of differentiability class C(s−1), but not Cs.

Proof Consider the following construction, starting with be a polytope P in Rd having m facets,
having inradius g and absolute rank k of the family N of normal vectors. We define the roof of P
to be the polytope Γ(P ) in Rd+1 given by

Γ(P ) = {x′ = (x, xd+1)|0 ≤ xd+1 ≤ g, x ∈ P (xd+1)}.
If, for all non-negative r, we canonically identify Rd with {(x, r)|x ∈ Rd}, the r-interior of P is
congruent with the vertical slice {xd+1 = r} in Γ(P ), so Γ(P ) is the graph of the shrinking polytope
Pr, as r varies in [0,+∞) (see Figure 4).

Figure 4: The roof of the polygon ABCDE shown in Figure 2

Note that Γ(P ) is a polytope with m + 1 facets and of absolute rank k + 1. We identify P with
the facet P × {0} of Γ(P ), whose inner unit normal vector is the basis vector ed+1. Note that the
outer dihedral angle between P and any other facet of Γ(P ) equals 3π

4 . We conclude that, for all

r, the translation of vector red+1 in Rd+1 maps Γ
(

P ((1 +
√
2)r)

)

onto Γ(P )(r), thus the inradius
of Γ(P ) is g

1+
√
2
. As the volume of Γ(P ) is given by

vold+1(Γ(P )) =

∫ ∞

0
vold(P (ρ)) dρ

we obtain that

vold+1 (Γ(P )(r)) = vold+1

(

Γ
(

P ((1 +
√
2)r)

))

=
∫∞
0 vold

(

P ((1 +
√
2)r + ρ)

)

dρ

=
∫∞
(1+

√
2)r vold(P (ρ)) dρ
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or, equivalently:

W ′
Γ(P )(r) = −(1 +

√
2)WP ((1 +

√
2)r), for all r ∈ [0,+∞).

Coming back to the proof of the theorem, let d′ = d − k + 1 and m = s − k + 1 and consider a
sequence 0 < a1 = a2 = · · · = am < am+1 ≤ . . . ad′ . Let R be the rectangle Ra1,a2,...,ad′

in Rd′ as in
the example considered in the first section and let P = Γk−1(R) = Γ(Γ(. . . (R) . . . )). Then P is a
polytope in Rd of absolute rank k and its volume function WP is of class C(s−1), but not Cs. qed.
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