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Abstract

In this paper we give an alternative proof of the constant inertia theorem for convex compact sets of
complex matrices. It is shown that the companion matrix whose non-trivial column is negative satisfies the
directional Lyapunov condition (inclusion) for real multiplier vectors. An example of a real matrix polytope
that satisfies the directional Lyapunov condition for real multiplier vectors and which has nonconstant inertia
is given. A new stability criterion for convex compact sets of real Z-matrices is given. This criterion uses
only real vectors and positive definite diagonal matrices.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Hurwitz stability and other related types of matrix stability play an important role in applica-
tions. Stability problems of the sets of matrices have been extensively studied in many works, see
e.g. [1,3–19].

It is known that stability of A, a compact set of complex matrices, may be characterized
through a common solution of directional Lyapunov inclusions. Here we give an alternative proof
this result. Then, we consider the case where A is real and explore under what conditions the
inquired solution to the directional Lyapunov inclusions, may be confined to be real as well.
Through an example it is demonstrated that in general this solution is complex. For the single
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companion matrix A whose non-trivial column is negative it is shown that the directional Lyapunov
inclusion for real multiplier vectors is satisfied irrespective of the inertia of A. However, it is shown
that the directional Lyapunov inclusions may be confined to be real whenever the set A consist
of Z-matrices, where the solution may be further confined to be diagonal.

Let Cn (Rn) be the set of complex (real) n vectors, Cn×n (Rn×n) be the set of n × n complex
(real) matrices. Let H denote the set of n × n complex Hermitian matrices, and P its subset of
positive definite matrices.

Let A ∈ Cn×n. If A has ν (π ) eigenvalues with negative (positive) real part and δ eigenvalues
with zero real part then the triple (ν, δ, π) is called the inertia of A. In this definition algebraic
multiplicities are taken into account. Therefore ν + δ + π = n. The matrix A is called Hurwitz
stable (positive stable) if ν = n (π = n). The inertia is said to be regular if δ = 0. A is Hurwitz
stable if and only if −A is positive stable. A∗ will denote the complex conjugate transpose of a
matrix A.

In the following we give a well-known theorem from [13] for stability and regularity of inertia.

Theorem 1.1 [13, p. 107]. Let A ∈ Cn×n. Then A has regular inertia (is positive stable) if and
only if for every nonzero z ∈ Cn there exists Hermitian (positive definite) matrix H such that

Re z∗HAz > 0.

For A ∈ Cn×n and nonzero z ∈ Cn define

H(A, z) = {H ∈ H : Re z∗HAz > 0}.
If E is a set of matrices, i.e. if E ⊂ Cn×n, then define

H(E, z) =
⋂
A∈E

H(A, z). (1.1)

As follows from (1.1), H ∈ H(E, z) if and only if H ∈ H and

Re z∗HAz > 0 for all A ∈ E.

LetE be a compact subset in Cn×n andA be the convex hull ofE:A = conv(E). From convex
analysis it follows that A is also compact. (In finite dimensional spaces, if the set is compact
then its convex hull is also compact, converse is not true in general.) The family A is called with
regular inertia (Hurwitz stable) if all matrices in A are with regular inertia (Hurwitz stable).

The stability of A for the case where E = {A, B} (i.e. E a doubleton) was established in [14].
In [6] this was extended to any compact E; and in turn generalized in [8] to the following on
regular inertia.

Theorem 1.2 [8]. Let E ⊂ Cn×n be a compact set of matrices and let A be the convex hull of E.

Then the following are equivalent:

(i) All matrices in A have the same regular inertia.

(ii) H(A, z) /= ∅ for every nonzero z ∈ Cn.

(iii) H(E, z) /= ∅ for every nonzero z ∈ Cn.

From continuity property of the roots of polynomials it follows that in the context of a convex
set of matrices “regular inertia” and “constant regular inertia” are equivalent. (This was pointed
out in [9].)



V. Dzhafarov, T. Büyükköroğlu / Linear Algebra and its Applications 414 (2006) 547–559 549

If complex vector z is real, it will be denoted by x. For E ⊂ Rn×n define

S(E, x) = H(E, x) ∩ Rn×n. (1.2)

As follows from (1.2), for E ⊂ Rn×n and nonzero x ∈ Rn the matrix H belongs to S(E, x) if
and only if H is real, symmetric and

xTHAx > 0

for all A ∈ E, where the symbol T denotes the transpose.
As pointed out above this manuscript mainly addresses three points:

(1) An alternative proof of Theorem 1.2 based on the minimax theorem.
(2) Investigating the specialization of Theorems 1.1 and 1.2 to the case where E ⊂ Rn×n.

Specifically, under what conditions the search in H(E, z) may be confined to S(E, x).
First, whenE consists of a single companion matrix A whose non-trivial column is negative,
it is shown (Proposition 3.1) that the condition on S(A, x) is satisfied irrespective of the
inertia of A. Thus in Theorem 1.1 the search over the larger set H(A, z) in general cannot
be avoided. It is then illustrated through Example 4.1 that a similar conclusion holds for
Theorem 1.2.

(3) Exploring the case where E is comprised of Z-matrices. Here, it is shown (Theorem 5.3)
that the set H(E, z) may be confined not only to S(E, x), but in addition all matrices in S
may be diagonal.

At the end of the paper we give illustrative examples, where the computational complexity is
considered.

2. Application of the minimax theorem

In this section we show that constant inertia theorem (Theorem 1.2) follows from classical
minimax theorem of the game theory. We begin with formulation of the minimax theorem in a
form which we need (see, for example [2, Subsection 8.3], [20, p. 393]).

Theorem 2.1 (Minimax theorem). Let X and Y be normed spaces, E a compact convex subset of
X and F a convex subset of Y. Let the function f : E × F → R satisfy the following conditions:

(1) For all y ∈ F the function x → f (x, y) is convex and continuous,
(2) For all x ∈ E the function y → f (x, y) is concave.

Then
inf
x∈E

sup
y∈F

f (x, y) = sup
y∈F

inf
x∈E

f (x, y).

In the game theory this theorem is called a nonsymmetric minimax theorem.

Proof of Theorem 1.2. The implication (ii) ⇒ (i) follows from Theorem 1.1. To prove the impli-
cation (i) ⇒ (ii) choose arbitrary A0 ∈ A and fix arbitrary nonzero vector z ∈ Cn. Since A0 has
regular inertia then by Theorem 1.1 there exists H0 ∈ H such that

Re z∗H0A0z = α > 0 (2.1)

(α depends on z and A0).
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From (2.1) for real positive scalar λ we have

Re z∗(λH0)A0z = λα. (2.2)

From (2.2) we have

sup
H∈H

Re z∗HA0z � sup
λ>0

Re z∗(λH0)A0z = sup
λ>0

λα = +∞. (2.3)

Therefore the left-hand side of (2.3) is infinity and, as A0 ∈ A is arbitrary, we get

inf
A∈A sup

H∈H
Re z∗HAz = +∞. (2.4)

Let the function f (A, H) : A × H → R be defined as

f (A, H) = Re z∗HAz.

Then f is continuous and linear with respect to A and H . By minimax theorem (where E = A,
F = H) and (2.4) we have

sup
H∈H

inf
A∈A Re z∗HAz = +∞. (2.5)

From (2.5) it follows that there exists H = H(z) ∈ H such that

inf
A∈A Re z∗HAz > 1,

or for all A ∈ A

Re z∗HAz > 1.

Therefore (ii) is satisfied. �

An alternative proof of the stability criterion in [6,14] may be obtained if Theorem 1.1 is
combined with the above proof of Theorem 1.2, where the set H is substituted by P.

It should be noted that another alternative proof of Theorem 1.2 based on the geometry of
convex sets is given in [17].

3. Companion matrices

It is well known from stability theory of polynomials that a companion matrix with negative
non-trivial column may be Hurwitz stable or may have mixed inertia or non-regular inertia, see
e.g. [3,5]. Here it is shown that such a matrix satisfies the directional Lyapunov condition for
real multiplier vectors, irrespective of the inertia. Thus in Theorem 1.1 the search over the larger
set H(A, z) in general cannot be avoided. A similar proposition can be proven for the compact
family of companion matrices, but we omit this generalization.

Let

A =




0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −an−1


 (3.1)

be a companion matrix. Characteristic polynomial det (sI − A) of the matrix (3.1) is the monic
polynomial (“det” denotes determinant)

p(s) = sn + an−1s
n−1 + an−2s

n−2 + · · · + a0.
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The necessary but not sufficient condition for Hurwitz stability of the matrix (3.1) is that all
of a0, a1, . . . , an−1 have positive sign. For n = 1, 2 this condition is sufficient as well. It can
be easily shown that characteristic polynomial of the convex combination of the companion
matrices is equal to the convex combination of the corresponding monic polynomials. It is well-
known that the stability of two companion matrices does not guarantee the stability of all convex
combinations.

Proposition 3.1. Let A be a companion matrices with negative non-trivial column. Then for every
nonzero x ∈ Rn there exists a positive definite real matrix P = P(x) such that

xTPAx < 0. (3.2)

To prove Proposition 3.1 we need two lemmas.

Lemma 3.2. For every nonzero (x1, x2, . . . , xn−1, 0)T there exists a real positive definite matrix
P = P(x) such that

(x1, x2, . . . , xn−1, 0).P .(0, x1, x2, . . . , xn−1)
T < 0. (3.3)

Proof. Consider the Hurwitz stable polynomial (s + 1)n and let

L =




0 0 · · · 0 −δ0
1 0 · · · 0 −δ1
...

...
. . .

...
...

0 0 · · · 1 −δn−1




be its companion matrix. The matrix L is Hurwitz stable and by the real version of the Lyapunov
theorem [13, p. 96] there exists positive definite P ∈ Rn×n such that LTP + PL is negative
definite, or equivalently

xTPLx < 0 (3.4)

for all nonzero xT = (x1, x2, . . . , xn)
T ∈ Rn. On the other hand

Lx = (−δ0xn, x1 − δ1xn, x2 − δ2xn, . . . , xn−1 − δn−1xn)
T. (3.5)

If we set xn = 0 in (3.4) then from (3.4), (3.5) we obtain (3.3). �

Lemma 3.3. Consider

F0 =−a0x1xn, F1 =x2(x1 − a1xn), F2 =x3(x2 − a2xn), . . . , Fn−1 = xn(xn−1 − an−1xn).

Here ai are arbitrary fixed positive numbers (i = 0, 1, . . . , n − 1). Then for all (x1, x2, . . . , xn)

with xn /= 0 there exists an index m ∈ {0, 1, . . . , n − 1} such that

Fm < 0.

Proof. Without loss of generality assume that xn > 0. If

x1 � 0, x2 � 0, . . . , xn−1 � 0

then Fn−1 < 0. If there exists k such that

x1 � 0, x2 � 0, . . . , xk � 0, xk+1 > 0

then Fk < 0. If x1 > 0 then F0 < 0. �
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Proof of Proposition 3.1. Let arbitrary nonzero x = (x1, x2, . . . , xn)
T ∈ Rn be given. If xn = 0

then by Lemma 3.2 there exists positive definite P ∈ Rn×n such that

xTPAx = (x1, x2, . . . , xn−1, 0) · P · (0, x1, x2, . . . , xn−1)
T < 0.

If xn /= 0 then for the diagonal matrix D = diag(λ0, λ1, . . . , λn−1) ∈ Rn×n we have

xTDAx = λ0F0 + λ1F1 + · · · + λn−1Fn−1

where Fi is defined as in Lemma 3.3. Then by Lemma 3.3 there exists an index m such that Fm < 0.
Then by choosing λi sufficiently small positive for i /= m and sufficiently large for i = m we can
guarantee the inequality

xTDAx < 0.

Summarizing, for any nonzero x ∈ Rn we can choose positive definite P = P(x) such that

xTPAx < 0. �

Concluding this section, we point out that for the companion matrix A an effective analytic
procedure for solving the Lyapunov equation

ATP + PA = −Q

is given in [4] where P and Q are symmetric matrices.

4. An illustrative example

In the previous section we illustrated the fact that in Theorem 1.1 even when the matrix A is
real, one cannot confine the matrices H and the vectors z to be real. In fact, as pointed out in
subsection 9.1 in [9], by doubling the dimension one can re-state Theorems 1.1 and 1.2 in terms
of real vectors and matrices. Indeed, every matrix A and every Hermitian matrix H can be written
as A = AR + jAI , H = S + jT , where S is symmetric and T is skew symmetric. Similarly the
vector z ∈ Cn can be written as z = x + jy with x, y ∈ Rn. Define the following real matrices
and vector:

Â :=
(

AR AI

−AI AR

)
, Ŝ :=

(
S T

−T S

)
, x̂ :=

(
x

−y

)
.

It is easy to verify that

Re z∗HAz = x̂TŜÂx̂. (4.1)

Theorem 1.2 (and Theorem 1.1) may be easily formulated in this framework. Indeed, define

Ê =
{
Â ∈ R2n×2n : A ∈ E

}
.

Then the statement (iii) of Theorem 1.2 is equivalent to the following: For every nonzero x̂ ∈ R2n

there exists Ŝ = Ŝ(x̂) such that

x̂TŜÂx̂ > 0 (4.2)

for all Â ∈ Ê.
Now from (4.1) it follows that for A ∈ Rn×n, namely where A = AR ,

x̂TŜÂx̂|AI =0 = xTSARx + yTT ARx − xTT ARy + yTSARy.
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Theorem 1.2 requires the above quantity to be positive for all (up to possible positive scaling)
nonzero x, y ∈ Rn. In Example 4.1, it is illustrated that one cannot restrict the discussion for the
case where y = 0.

Example 4.1. Let

A =
(

0 −1
1 −1

)
.

The eigenvalues of A are − 1
2 ±

√
3

2 j, and A is Hurwitz stable.
At first we will show that for every nonzero x ∈ R2 there exists a positive definite P = P(x) ∈

R2×2 such that

xTPAx > 0. (4.3)

Without loss of generality all 2 × 2 positive definite matrices may be normalized to have trace 2, i.e.

P =
(

1 + α β

β 1 − α

)

and this is parameterized by the unit disc in R2, namely α2 + β2 < 1, see e.g. [6,Section 5], [9,
Section 5]. Then for xT = (1, r),

xTPAx = r2(α − β − 1) + r(−2α − β) + β

and, one can take the following positive semi-definite matrices described by (α, β) pairs: (0, −1)

for r > 5
4 , (− 4

5 , − 3
5 ) for 5

12 < r � 5
4 , (0, 1) for − 1

2 � r � 5
12 , (1, 0) for r < − 1

2 . Up to an
ε-perturbation, so that each of the P matrices is positive definite, the first setup is complete.

Now let E = {A, I }. Clearly every positive definite matrix P = P(x) satisfying (4.3) also
guarantees that

xTPIx = xTPx > 0.

Thus S(E, x) /= ∅ for all 0 /= x ∈ R2. However, since A is Hurwitz stable and I is positively
stable, A does not have constant regular inertia. Indeed,

C = 2

3
A + 1

3
I = 1

3

(
1 −2
2 −1

)

has pure imaginary eigenvalues. This shows that for the subset E ⊂ Rn×n in Theorem 1.2 the
search in H(E, z) cannot be substituted by S(E, x). (The possibility of such substitution for real
matrices was stated in Theorem 7.2 from [9].) �

5. Z-matrices

In this section, using the minimax approach from Section 2 we give a new robust stability
criterion for subsets of Z-matrices. In this criterion the vector x̂ from (4.1) will vary over Rn, and
directional Lyapunov factors are diagonal matrices.

Definition 5.1 [13, p. 113]. A real n × n matrix A = (aij ) is said to be Z-matrix if aij � 0 for
all i /= j .
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Denote the set of real n × n, Z-matrices by Z, and denote by D the set of n × n real positive
diagonal matrices, i.e.

D = {diag(λ1, λ2, . . . , λn) : λi > 0 (i = 1, 2, . . . , n)}.
The following theorem can be found in [13].

Theorem 5.2 [13, p. 114]. Let the real matrix A ∈ Z be given. Then the following are equivalent.

(1) A is positive stable.
(2) For each nonzero x ∈ Rn there exists D = D(x) ∈ D such that xTDAx > 0.

Convex combination of two positive stable Z-matrices needs not be positive stable.
For E ⊂ Rn×n and nonzero x ∈ Rn using (1.2) define

D(E, x) := S(E, x) ∩ D.

Now we formulate a new stability criterion for compact convex subsets of Z.

Theorem 5.3. Let E ⊂ Z be compact and A = conv(E). Then the following are equivalent.

(i) All matrices in A are positively stable.
(ii) D(A, x) /= ∅ for all nonzero x ∈ Rn.

(iii) D(E, x) /= ∅ for all nonzero x ∈ Rn.

Proof. By definition if E ⊂ Z then A = conv(E) ⊂ Z. Since D(A, x) = D(E, x), (ii) and (iii)
are equivalent.

The implication (ii) ⇒ (i) follows from Theorem 5.2. To prove the implication (i) ⇒ (ii)
choose arbitrary A0 ∈ A and fix arbitrary nonzero x ∈ Rn. Since A0 is positive stable by Theorem
5.2 there exists D0 ∈ D such that

xTD0A0x = α > 0

(α depends on x and A0).
For λ > 0 we have

xT(λD0)A0x = λα.

Therefore

sup
D∈D

xTDA0x � sup
λ>0

xT(λD0)A0x = sup
λ>0

λα = +∞.

As A0 ∈ A is arbitrary we have

inf
A∈A sup

D∈D
xTDAx = +∞. (5.1)

Let the continuous function f : A × D → R be defined as

f (A, D) = xTDAx

which is linear with respect to A and D. Then by minimax theorem and (5.1) we obtain

sup
D∈D

inf
A∈A xTDAx = +∞.
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This equality as in the proof of Theorem 1.2 implies that for a given x there exists D ∈ D such
that

xTDAx > 1

for all A ∈ A, therefore D(A, x) /= ∅. �

Thus, for Z-matrices we obtained a twofold improvement of the condition (iii) of Theorem
1.2: The common directional Lyapunov factor may be confined to positive diagonal matrices and
the multiplier vector may be restricted to the unit sphere in Rn rather than Cn.

Note that the existence of a common diagonal solution to a Lyapunov equation associated with
a set of upper triangular nonsingular complex matrices was studied in [7, Section 5]. There it
was proven under mild restrictions that if these matrices share the same sign of the real part of
the diagonals, then this family has a common Lyapunov solution in a diagonal form. In [6,17] it
was shown that if A is a convex set of upper triangular positive stable complex matrices, then
directional Lyapunov inclusion has common diagonal solutions.

Corollary 5.4. Let the set E ⊂ Rn×n be compact and for every A ∈ E all nondiagonal elements
of A be nonnegative (i.e., −E ⊂ Z). Let A = conv(E). Then A is robustly Hurwitz stable if and
only if for every nonzero x ∈ Rn there exists D = D(x) ∈ D such that for all A ∈ E

xTDAx < 0.

If all principal minors of a matrix A ∈ Rn×n are positive then A is said to be a P -matrix. For
a 2 × 2 matrix we can prove the following

Proposition 5.5. For A ∈ R2×2 the following are equivalent:

(i) −A is a P -matrix.
(ii) There exists a positive diagonal matrix D so that −(DA + ATD) is positive definite.

(iii) For every nonzerox ∈ R2 there exists a positive diagonal matrixD=D(x) so thatxTDAx <

0.

In particular this implies that A is Hurwitz stable.

Proof. The equivalence of (i) and (ii) is due to G.W. Cross, see e.g. [16, Fact 2.8.1]. Trivially, (ii)
implies (iii). Let for the matrix A = (

a
c

b
d

)
(iii) be satisfied and x = (x1, x2)

T, D = diag(λ1, λ2).
Then by (iii) for every nonzero x ∈ R2 there exist λ1 > 0, λ2 > 0 such that

xTDAx = λ1
(
ax2

1 + bx1x2
) + λ2

(
cx1x2 + dx2

2

)
< 0.

For the vectors x = (1, 0)T, x = (0, 1)T and x = (b, −a)T this inequality gives a < 0, d < 0 and
ad − bc > 0. Consequently (iii) implies (i). �

For the compact convex set of 2 × 2 dimensional P -matrices we have the following.

Proposition 5.6. Let the set E ⊂ R2×2 be a compact set of P -matrices and A = conv(E). Then
the following are equivalent:
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(i) All matrices in A are positively stable.
(ii) H(E, z) /= ∅ for all nonzero z ∈ C2.

(iii) S(E, x) /= ∅ for all nonzero x ∈ R2.

(iv) D(E, x) /= ∅ for all nonzero x ∈ R2.

Proof. Since any 2 × 2 dimensional P -matrix is positively stable then the equivalence of (i) and
(ii) follows from Theorem 1.2. Trivially (iv) implies (iii). If (iv) is satisfied then D(A, x) /= ∅ for
every A ∈ A and nonzero x ∈ R2. Then by [13, Theorem 2.5.6] every matrix in A is a 2 × 2
dimensional P -matrix and consequently A is positively stable and the implication (iv) → (i) is
true.

The implication (i) → (iv) follows from [13, Theorem 2.5.6] and the minimax theorem (Theo-
rem 2.1). Indeed, let (i) be true. Then every matrix inA is a P -matrix (diagonal entries are positive
as convex combination of positive numbers; from positive stability it follows that determinant is
also positive). Choose arbitrary A0 ∈ A and nonzero x ∈ R2. Then by [13, Theorem 2.5.6] there
exists D0 ∈ D such that

xTD0A0x > 0.

From this we obtain D(A, x) /= ∅ exactly as in the proof of Theorem 5.3 and the implication
(i) → (iv) is established.

Finally, the implication (iii) → (i) follows from continuity. Indeed, by contrary, assume that
(iii) is true, but (i) is not. Assume the matrix A ∈ A is not positively stable. Since the family A
contains also a positively stable matrix B (recall that every matrix from E is a 2 × 2 dimensional
P -matrix and consequently is positively stable) then

det (A) � 0, det (B) > 0

From this by continuity it follows that there exists C ∈ A such that det (C) = 0. Then there exists
a nonzero x∗ ∈ R2 such that Cx∗ = 0. In this case (iii) will be violated for this x∗. Consequently
the implication (iii) → (i) is true and the proof is complete. �

The obtained results has some computational advantages. We have restricted the search x in
the unit sphere in Rn rather Cn , and common directional Lyapunov factor is confined to diagonal
matrices. According to [8] we are searching for a finite covering X1, X2, . . . ,Xm of the unit
sphere in Rn and matrices D1, D2, . . . , Dm ∈ D such that Di ∈ D(E,Xi ) (i = 1, 2, . . . , m).
Whenever a minimal m exists, it may serve as an indication for the computational complexity
involved.

It is well known that [6,8] in searching for common D1, D2, . . . we have to solve the constrained
optimization problems. To this end define the norm in Rn by ‖x‖ = maxi |xi |. Unit sphere in this
norm is the set

{
(x1, x2, . . . , xn)

T ∈ Rn : −1 � xi � 1 (i = 1, 2, . . . , n)

and there exists k such that xk = ±1
}

and it is naturally partitioned into 2n boxes from Rn−1. By symmetry one can restrict the search
x in the faces xi = 1 (i = 1, 2, . . . , n) and then attempt to find the common matrices D1, D2, . . .

for each face separately.
(By doubling the dimension the same partition of the unit sphere can be considered in the

complex case also, see (4.2)).
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Let 2 × 2 real matrix

A =
(

a b

c d

)
(5.2)

be given and a > 0, d > 0, ad − bc > 0, (i.e. the matrix A is P -matrix). Let xT = (x1, x2) and
D = diag(λ, 1) where λ is positive parameter. Then

xTDAx=aλx2
1 + (bλ + c)x1x2 + dx2

2

=
(

bλ + c

2
√

d
x1 + √

dx2

)2

+ x2
1

(
aλ − (bλ + c)2

4d

)

The expression in the second bracket is positive if and only if

λ ∈ (λ1, λ2), (5.3)

where

λ1 = 2ad − bc − 2
√

a2d2 − abcd

b2
,

λ2 = 2ad − bc + 2
√

a2d2 − abcd

b2
.

(If b = 0 then λ1 = c2/(4ad), λ2 = +∞.) Therefore for the matrix (5.2) with a > 0, d > 0,
ad − bc > 0 there exists interval (λ1, λ2) such that:

If λ ∈ (λ1, λ2) then xTDAx > 0 for all nonzero x ∈ R2. (5.4)

If λ /∈ (λ1, λ2) then xTDAx � 0 for some nonzero x ∈ R2. (5.5)

Example 5.7. Consider P -matrices

A1 =
(

1 5
0.1 1

)
, A2 =

(
34 −1

−21 2

)

and A = conv(A1, A2). Since the product matrix (A1A2) has a real negative eigenvalue (in
fact two) from [9, Lemma 6.1] it follows that

⋂
x∈Rn S(E, x) = ∅. Namely there is no single

real symmetric matrix S, let alone diagonal, which satisfies condition (ii) in Proposition 5.5
simultaneously for all matrices is A.

On the other hand the minimization problems for the subsets of the faces x1 = 1 and x2 = 1
give two diagonal matrices in common that guarantee for every matrix inA to be P -matrix. These
matrices can be chosen as

diag(0.1, 1) for the subsets
{
(x1, 1) : −1 � x1 � 1

34

}
, {(1, x2) : −1 � x2 � 0};

diag(2, 1) for the subsets
{
(x1, 1) : 1

34 � x1 � 1
}
, {(1, x2) : 0 � x2 � 1}. �

Example 5.8. Consider the positively stable Z-matrices

A1 =

 3 0 −2

−2 1 0
−1 −0.5 2


 , A2 =


0.5 0 0

−2 2 0
−4 0 1




and A = conv(A1, A2). Let xT = (x1, x2, x3)
T, D = diag(λ1, λ2, λ3).
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For x1 = x2 = 1, x3 = 2 the inequalities

xTDA1x > 0, xTDA2x > 0

become

−λ1 − λ2 + 5λ3 > 0, 0.5λ1 − 4λ3 > 0

which give

−λ2 − 3λ3 > 0.

The last inequality contradicts the positivity of λ2 and λ3. Therefore by Theorem 5.3 the family
A is not positive stable. �

Example 5.9. Consider the positively stable Z-matrices

A1 =

 34 −1 −1

−21 2 −3
0 0 1


 , A2 =


 1 −15 −1

−1 26 0
−1 −2 3


 .

and A = conv(A1, A2). Let xT = (x1, x2, x3)
T, D = diag(λ1, λ2, 1). In this example the unique

diagonal matrix that guarantees the positive stability of the family A does not exist. To see this
consider the 2 × 2 leading principal submatrices of A1 and A2. If the unique diagonal matrix
diag(λ1, λ2, 1) exists then the 2 × 2 diagonal matrix diag(λ1, λ2) would be the common diagonal
matrix for these submatrices. On the other hand it is impossible, since the intervals (5.3) calculated
for these matrices have empty intersection. In the following we list the diagonal matrices D that
guarantee the positivity of xTDA1x and xTDA2x in different subsets of the faces x1 = 1, x2 = 1
and x3 = 1.

Face x1 = 1:

diag(1, 1, 1) for
{
(x2, x3) : −1 � x2 � 1

24 or 0.61 � x2 � 1, − 1 � x3 � 1
}
,

diag(1, 9, 1) for
{
(x2, x3) : 1

24 � x2 � 1
8 , − 1 � x3 � 1

}
,

diag(1, 5, 1) for
{
(x2, x3) : 1

8 � x2 � 1
4 , − 1 � x3 � 1

}
,

diag(1, 2.4, 1) for
{
(x2, x3) : 1

4 � x2 � 0.61, − 1 � x3 � 1
}
.

Face x2 = 1:

diag(1, 0.22, 1) for
{
(x1, x3) : −1 � x1 � 1

3 , −1 � x3 � 1
}
,

diag(2, 0.9, 1) for
{
(x1, x3) : 1

3 � x1 � 1
2 , −1 � x3 � 1

}
,

diag(2, 1.3, 1) for
{
(x1, x3) : 1

2 � x1 � 1, −1 � x3 � 1
}
.

Face x3 = 1:

diag(0.01, 0.01, 1).

By Theorem 5.3 all matrices in A are positively stable. �
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