Linear Algebra and its Applications 438 (2013) 1365-1371

Spaces of skew-symmetric matrices satisfying $A^3 = \lambda A$ Yunus Özdemir

Anadolu University, Department of Mathematics, 26470 Eskişehir, Turkey

ARTICLE INFO

Article history: Received 3 May 2012 Accepted 17 October 2012 Available online 10 November 2012

Submitted by Vladimir V. Sergeichuk

AMS classification: 15A21 15A66 15A63

Keywords: Skew-symmetric matrix Maximal linear subspace Radon-Hurwitz number

1. Introduction

Each real skew-symmetric matrix is orthogonally similar to a matrix

$$\begin{bmatrix} 0 & \lambda_1 \\ -\lambda_1 & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & \lambda_m \\ -\lambda_m & 0 \end{bmatrix} \oplus 0_k \text{ with nonzero } \lambda_1, \dots, \lambda_m \in \mathbb{R}.$$
(1)

We prove the following theorem.

Theorem 1. The maximum dimension of a space V of $(2n + 1) \times (2n + 1)$ real skew-symmetric matrices, in which every $A \in V$ is orthogonally similar to a matrix of the form

$$\begin{bmatrix} 0 & \lambda_A \\ -\lambda_A & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & \lambda_A \\ -\lambda_A & 0 \end{bmatrix} \oplus 0_1 \text{ with nonzero } \lambda_A \in \mathbb{R}$$
(2)

ABSTRACT

We calculate the maximum dimension of a space of $m \times m$ real skewsymmetric matrices of corank 1 satisfying $A^3 = \lambda_A A$ for some real $\lambda_A > 0$.

© 2012 Elsevier Inc. All rights reserved.

E-mail address: yunuso@anadolu.edu.tr

^{0024-3795/\$ -} see front matter @ 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2012.10.007

is equal to $\rho(2n) - 1$ if n is even and $\rho(2n+2) - 1$ if n is odd.

Here $\rho(m)$ is the Radon–Hurwitz number of a natural number *m* and is defined as follows: if *m* is presented in the form $m = (2a + 1)2^{4b+c}$ with $c = \{0, 1, 2, 3\}$ and non-negative integer *a*, *b*, then $\rho(m) = 2^c + 8b$.

The Radon–Hurwitz numbers appear in differential topology, coding theory, theoretical physics, and linear algebra. In particular, the following results are close to Theorem 1:

- $\rho(m)$ counts the maximum size of a linear subspace of the real $m \times m$ matrices, for which each nonzero matrix is a product of an orthogonal matrix and a scalar matrix; see [5].
- Let \mathbb{F} be \mathbb{R} , \mathbb{C} or the skew-field of real quaternions \mathbb{H} . Let $\mathbb{F}(m)$ be the maximum number of matrices $A_1, A_2, \ldots \in \mathbb{F}^{m \times m}$ such that each linear combination $\alpha_1 A_1 + \alpha_2 A_2 + \cdots$ with real coefficients is nonsingular except when all α_i are zero. Then

$$\mathbb{R}(m) = \rho(m), \quad \mathbb{C}(m) = 2b + 2, \quad \mathbb{H}(m) = \rho(m/2) + 4;$$

see [1,2].

• The maximum numbers of Hermitian, skew-Hermitian, symmetric, or skew-symmetric matrices $A_1, A_2, \ldots \in \mathbb{F}^{m \times m}$ such that each linear combination $\alpha_1 A_1 + \alpha_2 A_2 + \cdots$ with real coefficients is nonsingular except when all α_i are zero, are equal to

$$\mathbb{F}(m/2), \quad \mathbb{F}(m) - 1, \quad \rho(m/2) + d_{\mathbb{F}}, \quad \rho(2^{d_{\mathbb{F}}-1}m) - d_{\mathbb{F}},$$

respectively, in which $d_{\mathbb{F}} = \dim_{\mathbb{R}} \mathbb{F}$; see [3].

This work was inspired by Bilge, Dereli, and Koçak's article [4] about spaces of real skew-symmetric matrices that are orthogonally similar to matrices of the form

$$\begin{bmatrix} 0 & \lambda \\ -\lambda & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & \lambda \\ -\lambda & 0 \end{bmatrix}, \quad 0 \neq \lambda \in \mathbb{R}.$$
(3)

2. Proof of the theorem

We denote the rank, trace, image, kernel and orthogonal complement of the kernel of *A* by r_A , Tr *A*, Im *A*, Ker *A*, and W_A , respectively. We also use the notation $A \perp B$ for the orthogonality of *A* and *B*, that is Tr(AB^T) = 0.

Let S_{2n} be the set of $2n \times 2n$ real skew-symmetric matrices for which each matrix is orthogonally similar to a matrix of the form (3) and S_{2n+1} be the set of $(2n + 1) \times (2n + 1)$ real skew-symmetric matrices for which each matrix is orthogonally similar to a matrix of the form (2). It can be easily shown that $A \in S_{2n}$ if and only if

$$A^2 + \lambda_A^2 I_{2n} = 0 \tag{4}$$

and $A \in S_{2n+1}$ if and only if

 $A^3 + \lambda_A^2 A = 0 \quad \text{and} \quad r_A = 2n \tag{5}$

where $\lambda_A^2 = -\frac{\operatorname{Tr}(A^2)}{r_A}$.

Lemma 1. If $A \in S_{2n+1}$, then $W_A = \text{Ker} (A^2 + \lambda_A^2 I_{2n+1})$.

1366

Proof. Let $A \in S_{2n+1}$. Then Im $A \perp$ Ker A since for each $x \in \mathbb{R}^{2n+1}$ and $y \in$ Ker A we have $\langle Ax, y \rangle =$ $\langle x, A^T y \rangle = \langle x, -Ay \rangle = \langle x, 0 \rangle = 0.$

Let $x \in W_A$. By (5), $y := (A^2 + \lambda_A^2 I_{2n+1}) x \in \text{Ker } A$, and so $\langle y, y \rangle = \langle A^2 x, y \rangle + \langle \lambda_A^2 x, y \rangle = 0$. Hence

 $y = 0 \text{ and } x \in \operatorname{Ker}(A^2 + \lambda_A^2 I_{2n+1}).$ Conversely, let $x \in \operatorname{Ker}(A^2 + \lambda_A^2 I_{2n+1})$. Then for every $y \in \operatorname{Ker} A$ we have $\lambda_A^2 \langle x, y \rangle = \langle A^2 x, y \rangle + \lambda_A^2 \langle x, y \rangle = \langle (A^2 + \lambda_A^2 I_{2n+1})x, y \rangle = \langle 0, y \rangle = 0$, and so $x \in W_A$. \Box

Lemma 2. Let $\mathcal{L} \subset S_{2n+1}$ be a subspace containing the matrices A and B. If $A \perp B$, then

$$A^2B + ABA + BA^2 + \lambda_A^2 B = 0, \tag{6}$$

$$AB^2 + BAB + B^2A + \lambda_B^2 A = 0. \tag{7}$$

Proof. Since *A* and *B* lie in the same subspace, by (5),

$$(A + kB)^{3} + \lambda_{A+kB}^{2} (A + kB) = 0$$
(8)

for all $k \in \mathbb{R}$ where $\lambda_{A+kB}^2 = -\frac{1}{2n} \operatorname{Tr}((A+kB)^2)$. By orthogonality of A and B, $\operatorname{Tr}(AB) = \operatorname{Tr}(BA) = 0$. Then

$$\lambda_{A+kB}^{2} = -\frac{1}{2n} \operatorname{Tr} \left((A+kB)^{2} \right) = -\frac{1}{2n} \operatorname{Tr} \left(A^{2} \right) - \frac{k^{2}}{2n} \operatorname{Tr} \left(B^{2} \right) = \lambda_{A}^{2} + k^{2} \lambda_{B}^{2}.$$
(9)

Substituting (9) in (8), we obtain

$$0 = A^{3} + \lambda_{A}^{2}A + \left(A^{2}B + ABA + BA^{2} + \lambda_{A}^{2}B\right)k$$
$$+ \left(AB^{2} + BAB + B^{2}A + \lambda_{B}^{2}A\right)k^{2} + \left(B^{3} + \lambda_{B}^{2}B\right)k^{3}$$

for all *k* which gives the Eqs. (6) and (7) since $A^3 + \lambda_A^2 A = 0$ and $B^3 + \lambda_B^2 B = 0$. \Box

Write

$$F := \begin{bmatrix} I_{2n+1} \\ 0 \cdots 0 \end{bmatrix}_{(2n+2) \times (2n+1)}$$

Note that for any $(2n+2) \times (2n+2)$ skew-symmetric real matrix B, $F^T BF$ is the $(2n+1) \times (2n+1)$ real skew-symmetric matrix formed by removing from B its last column and row. Also note that for any $(2n + 1) \times (2n + 1)$ real skew-symmetric matrix A, $FAF^T = A \oplus O_1$.

Lemma 3. If $B \in S_{2n+2}$, then $F^T B F \in S_{2n+1}$.

Proof. Let $B \in S_{2n+2}$ and $\overline{B} := FF^T BFF^T$. Note that $\overline{B} = F^T BF \oplus O_1$. More clearly, \overline{B} is the $(2n+2) \times C$ (2n+2) real skew-symmetric matrix formed by changing the last column and row of B with the zero column and row:

$$B = \left[b_{ij} \right]_{1 \leq i, j \leq 2n+2} \Rightarrow \overline{B} = \left[b_{ij} \right]_{1 \leq i, j \leq 2n+1} \oplus 0_1.$$

Since $B \in S_{2n+2}$, B is of the form $\alpha \cdot B_0$ for some real number α where B_0 is an orthogonal matrix by (4). The columns (and the rows) of B are mutually perpendicular since B_0 is orthogonal, so the last column and row of the matrices BB and BB are zero, which can be seen easily by a simple calculation. On the other hand, other corresponding elements of the matrices $B\overline{B}$ and $\overline{B}B$ are obviously equal by the definition of the skew-symmetric matrix \overline{B} . Then $B\overline{B} = \overline{B}B = \overline{B}^2$. Hence

$$(F^{T}BF)^{3} = F^{T}BFF^{T}BFF^{T}BF = F^{T}B\overline{B}BF = F^{T}\overline{B}B^{2}F.$$

It is clear that $F^T\overline{B}F = F^TBF$. Then

$$(F^{T}BF)^{3} = F^{T}\overline{B}B^{2}F = -\lambda_{B}^{2}F^{T}\overline{B}F = -\lambda_{B}^{2}F^{T}BF,$$

since $B^2 = -\lambda_B^2 I_{2n+2}$ by (4). On the other hand, it is known that $r_{M_1M_2} + r_{M_2M_3} \leq r_{M_1M_2M_3} + r_{M_2}$ for any multiplying-allowed matrices M_1, M_2, M_3 [6, Example 2]. Substituting $M_1 = F^T, M_2 = B$ and $M_3 = F$, we have 2n + 1 + 1 $2n + 1 \leq r_{F^TBF} + 2n + 2$, that is $2n \leq r_{F^TBF}$. Then $r_{F^TBF} = 2n$ since F^TBF is an $(2n + 1) \times (2n + 1)$ real skew-symmetric matrix, and so $F^TBF \in S_{2n+1}$ by (5). \Box

Lemma 4. If $A \in S_{2n+1}$, then there exists $B \in S_{2n+2}$ such that $A = F^T BF$. (In fact there exist only two matrices B^1 , B^2 such that $A = F^T B^j F$, j = 1, 2.)

Proof. Let $A \in S_{2n+1}$. There exists a unique orthogonal matrix Q such that $Q^T A Q$ is of the form

$$Q^{T}AQ = M \oplus 0_{1}$$
 where $M = \begin{bmatrix} 0 & \lambda_{A} \\ -\lambda_{A} & 0 \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} 0 & \lambda_{A} \\ -\lambda_{A} & 0 \end{bmatrix}$

Obviously, there exist only two skew-symmetric matrices \tilde{B}_1 and \tilde{B}_2 in S_{2n+2} such that $Q^T A Q =$ $F^T \widetilde{B}_i F$ (j = 1, 2) which are of the form

$$\widetilde{B}_1 = M \oplus \begin{bmatrix} 0 & \lambda_A \\ -\lambda_A & 0 \end{bmatrix}$$
 and $\widetilde{B}_2 = M \oplus \begin{bmatrix} 0 & -\lambda_A \\ \lambda_A & 0 \end{bmatrix}$

Consider the orthogonal matrices $P_1 := Q \oplus 1_1$ and $P_2 := Q \oplus (-1)_1$. An easy calculation shows that $P_1\tilde{B}_1P_1^T = P_2\tilde{B}_2P_2^T =: B_1 \in S_{2n+2}$ and $P_1\tilde{B}_2P_1^T = P_2\tilde{B}_1P_2^T =: B_2 \in S_{2n+2}$. By the definitions, $QF^TP_1^T = F^T$ and $P_1FQ^T = F$. Then

$$A = QF^T \tilde{B}_1 F Q^T = QF^T P_1^T B_1 P_1 F Q^T = F^T B_1 F$$

and similarly $A = F^T B_2 F$, which completes the proof.

We also note that there does not exist any matrix P satisfying $QF^TP^T = F^T$ or $PFQ^T = F$ except for $P = P_1$ or $P = P_2$ which means there does not exist any matrix B satisfying $A = F^TBF$ except for $B = B_1$ or $B = B_2$. \Box

Lemma 5. Let {A, B} be a basis for a 2-dimensional subspace in S_{2n+1} such that $A \perp B$.

(i) If Ker A = Ker B, then AB + BA = 0.

(ii) If Ker $A \cap$ Ker $B = \{0\}$, then Ker $A \perp$ Ker B.

Proof. (i) Let $W := W_A = W_B$ and let $x \in W$. By (7), $AB^2x + BABx + B^2Ax + \lambda_B^2Ax = 0$, and so $BABx + B^2Ax = 0$ by Lemma 1. Then $BABx = \lambda_B^2Ax$ since $Ax \in W$ (note that $Mx \perp x$ for any skewsymmetric matrix *M*). Multiplying each side of the last equality by $B_1 - \lambda_B^2 ABx = \lambda_B^2 BAx$ by Lemma 1 since $ABx \in W$, and so (AB+BA)x = 0. In the case $x \in \mathbb{R}^{2n+1}$, (AB+BA)x = 0 since x can be expressed as $x = x_1 + x_2$ where $x_1 \in \text{Ker } A = \text{Ker } B$ and $x_2 \in W_A = W_B$.

(*ii*) Let Ker $A \cap$ Ker $B = \{0\}$ and let $\lambda_A^2 = \lambda_B^2 = 1$ for simplicity. Suppose that Ker A does not orthogonal to Ker B.

Let $0 \neq w \in \text{Ker } B$. By (5), there exists a nonzero $z \in \text{Ker } A$ such that $B^2z + z = w$ and $A^2w + w = bz$ for some nonzero $b \in \mathbb{R}$ since Ker A and Ker B are 1-dimensional subspaces (In the case Ker $A \perp$ Ker B, it cannot be found such a vector $z \in \text{Ker } A$. Note that if $z \in W_B$, then $w = B^2z + z = -z + z = 0$ by Lemma 1). By multiplying each side of $B^2z + z = w$ by A and $A^2w + w = bz$ by B, respectively, we get

$$AB^2z = Aw$$
 and $BA^2w = bBz$. (10)

By (7) and (6), $AB^2z + BABz = 0$ and $BA^2w + ABAw = 0$ since $z \in \text{Ker } A$ and $w \in \text{Ker } B$. Then

$$BABz = -Aw \text{ and } ABAw = -bBz \tag{11}$$

by (10). From the fact that $\langle Mu, v \rangle = \langle u, M^T v \rangle$ and $M^T M = MM^T = -M^2$ for any skew-symmetric matrix *M*, we obtain

$$\langle Aw, Bz \rangle = -\langle BABz, Bz \rangle = -\langle ABz, B^T Bz \rangle = \langle ABz, B^2 z \rangle$$

= $-\langle Bz, AB^2 z \rangle = -\langle Bz, Aw \rangle$,

which means $\langle Aw, Bz \rangle = 0$. Then $w \perp ABz$ and $z \perp BAw$, i.e. $ABz \in W_B$ and $BAw \in W_A$. By Lemma 1, we obtain $B^2ABz = -ABz$ and $A^2BAw = -BAw$. Then BAw = ABz and BAw = bABz by (11), and so b = 1.

On the other hand, $B^2 z = (w - z) \perp w$ and $A^2 w = (bz - w) \perp z$ by Lemma 1. Using these orthogonalities, we get $\langle w, w \rangle = \langle w, z \rangle = b \langle z, z \rangle$ and by b = 1, $\langle w, w \rangle = \langle w, z \rangle = \langle z, z \rangle$. Then

$$0 < \langle w - z, w - z \rangle = \langle w, w \rangle - 2 \langle w, z \rangle + \langle z, z \rangle = 0,$$

which is a contradiction. \Box

Lemma 6. Let $\{A_1, A_2, \ldots, A_k\}$ be an orthogonal basis for a subspace in S_{2n+1} . Either the matrices A_1, A_2, \ldots, A_k have common kernel or the kernels of the matrices A_1, A_2, \ldots, A_k intersect pairwise in the zero vector.

Proof. Let {*A*, *B*, *C*} be an orthogonal basis for a subspace in S_{2n+1} and suppose that Ker *A* = Ker *C* and Ker *A* \cap Ker *B* = {0}.

Let $0 \neq x \in \text{Ker } A$, y := Bx and z := Ay = ABx. Note that $y \neq 0$ since $\text{Ker } A \cap \text{Ker } B = \{0\}$. By Lemma 1, we have $Az = A^2y = -\lambda_A^2y$ since $y = Bx \in W_A$, and so $z \neq 0$ since $y \neq 0$. By Lemma 5, $x \in W_B$. Thus by Lemma 1, $B^2x = -\lambda_B^2x$, and so $By = -\lambda_B^2x$. By (6) and (7),

$$0 = (AB^2 + BAB + B^2A + \lambda_B^2A)x = A(-\lambda_B^2x) + BABx = Bz$$

$$0 = (B^2C + BCB + CB^2 + \lambda_B^2C)x = BCBx + C(-\lambda_B^2x) = BCBx = BCy,$$

which means $z, Cy \in \text{Ker } B$. $Cy = \theta z$ for some nonzero $\theta \in \mathbb{R}$ since $z \in \text{Ker } B$ and dim Ker B = 1. A and C anticommute on $W_A = W_C$ by Lemma 5. Then

$$0 = ACy + CAy = A(\theta z) + Cz = -\theta \lambda_A^2 y + Cz,$$

and so $Cz = \theta \lambda_A^2 y$. Then $C^2 y = \theta Cz = \theta^2 \lambda_A^2 y$ which is a contradiction since $\theta^2 > 0$, $C^2 y = -\lambda_C^2 y$ and $y \neq 0$. \Box

Let \mathcal{L} be a subspace of S_{2n+1} and $\{A_1, A_2, \ldots, A_k\}$ be an orthogonal basis of \mathcal{L} . If A_1, A_2, \ldots, A_k have common kernel, then we call \mathcal{L} is of the first type and $\{A_1, A_2, \ldots, A_k\}$ is a first type basis. Similarly, if

the kernels of A_1, A_2, \ldots, A_k intersect pairwise in the zero vector, then we call \mathcal{L} is of the second type and $\{A_1, A_2, \ldots, A_k\}$ is a second type basis. We note that any subspace of S_{2n+1} must be either of the first type or of the second type.

Remark 1. Let {*A*, *B*} be a basis for a 2-dimensional subspace of the second type in S_{2n+1} such that $\lambda_A^2 = \lambda_B^2 = 1$ and let { $f_1, f_2, \dots, f_{2n+1}$ } be an orthonormal basis of \mathbb{R}^{2n+1} such that $Af_1 = 0$ and $Bf_2 = 0$ (it is possible since Ker $A \perp$ Ker B). Let $x \in$ Ker A and $y \in$ Ker B. By (7) and Lemma 1,

 $AB^{2}x + BABx = 0 \Rightarrow BABx = 0 \Rightarrow ABx = \gamma y \Rightarrow Bx = -\gamma Ay$

for some $\gamma \in \mathbb{R}$. In the case $x = f_1$ and $y = f_2$, we have $\gamma = \pm 1$ since A and B preserve the distance on W_A and W_B , respectively (recall that $\lambda_A^2 = \lambda_B^2 = 1$), and so $Af_2 = \pm Bf_1$. Hence, for $\alpha, \beta \in \mathbb{R}$, Ker $(\alpha A + \beta B)$ is a 1-dimensional subspace spanned by the vectors $(\alpha f_1 + \beta f_2)$ or $(\alpha f_1 - \beta f_2)$.

Remark 2. Let $A \in S_{2n+1}$ and $B \in S_{2n+2}$ such that $B = [b_1 \ b_2 \ \cdots \ b_{2n+2}]$ and $A = F^T BF$ where each b_i is a $(2n+2) \times 1$ column vector. The column vector b_{2n+2} is of the form $(v, 0)^T$ for some $v \in \mathbb{R}^{2n+1}$. Since B is orthogonal, $(v, 0) \perp b_j$ for each $j = 1, \ldots, 2n + 1$ and thus v perpendicular to each column vector of A (recall that $A = F^T BF$), which implies $v \in \text{Ker } A$.

Lemma 7. Let $\mathcal{K} \subset S_{2n}$ and $\mathcal{M} \subset S_{2n+2}$ be subspaces.

- (i) $\{A \oplus \mathbf{0}_1 \mid A \in \mathcal{K}\} \subset S_{2n+1}$ is a subspace with dimension dim \mathcal{K} .
- (ii) $\{F^T BF \mid B \in \mathcal{M}\} \subset S_{2n+1}$ is a subspace with dimension dim \mathcal{M} .

Proof. (*i*) Let $\mathcal{K} \subset S_{2n}$ be a subspace and $\{A_1, \ldots, A_k\}$ be an orthogonal basis of \mathcal{K} . For $j = 1, \ldots, k$, $A_j \oplus 0_1 \in S_{2n+1}$ since it satisfies (5) and has rank 2n. Obviously, the matrices $A_1 \oplus 0_1, A_2 \oplus 0_1, \ldots, A_k \oplus 0_1$ span *k*-dimensional subspace in S_{2n+1} since for all $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$

 $\alpha_1(A_1 \oplus 0_1) + \dots + \alpha_k(A_k \oplus 0_1) = (\alpha_1A_1 + \dots + \alpha_kA_k) \oplus 0_1.$

(*ii*) Let $\mathcal{M} \subset S_{2n+2}$ be a subspace and $\{A_1, \ldots, A_k\}$ be an orthogonal basis of \mathcal{M} . For $j = 1, \ldots, k$, $B_j := F^T A_j F \in S_{2n+1}$ by Lemma 3. The set of matrices $\{B_1, \ldots, B_k\}$ is a linearly independent set in S_{2n+1} since $\{A_1, \ldots, A_k\}$ is in S_{2n+2} . Also note that since

$$\alpha_1 B_1 + \dots + \alpha_k B_k = F^1 (\alpha_1 A_1 + \dots + \alpha_k A_k) F$$

for all $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$, we have $\alpha_1 B_1 + \cdots + \alpha_k B_k \in S_{2n+1}$ by Lemma 3. Hence $\{B_1, \ldots, B_k\}$ spans *k*-dimensional subspace in S_{2n+1} . \Box

We remark that, since there is a subspace of dimension $\rho(2n) - 1$ in S_{2n} (in fact a maximal one, [4, Proposition 3]), there is also a subspace of dimension $\rho(2n) - 1$ in S_{2n+1} . Similarly, since there is a subspace of dimension $\rho(2n + 2) - 1$ in S_{2n+2} (in fact a maximal one, [4, Proposition 3]), there is also a subspace of dimension $\rho(2n + 2) - 1$ in S_{2n+1} .

Lemma 8. Let \mathcal{L} be a subspace in S_{2n+1} .

(i) If \mathcal{L} is of the first type, then there exists a subspace $\mathcal{K} \subset S_{2n}$ such that $\dim(\mathcal{L}) = \dim(\mathcal{K})$.

(ii) If \mathcal{L} is of the second type, then there exists a subspace $\mathcal{M} \subset S_{2n+2}$ such that dim $(\mathcal{L}) = \dim(\mathcal{M})$.

Proof. (*i*) Let \mathcal{L} be a subspace of the first type in S_{2n+1} and $\{A_1, A_2, \ldots, A_k\}$ be a first type basis of \mathcal{L} (i.e. A_1, A_2, \ldots, A_k have common kernel). There exists an orthogonal matrix P such that $P^T A_j P$ is of the form (2):

$$P^T A_j P =: B_j \oplus O_1 \ (B_j = F^T (P^T A_j P) F \in S_{2n}).$$

Let \mathcal{K} be the subspace in S_{2n} spanned by the matrices B_1, B_2, \ldots, B_k . Then dim $(\mathcal{K}) = \dim(\mathcal{L}) = k$.

(ii) Let \mathcal{L} be a subspace of the second type in S_{2n+1} and $\{A_1, A_2, \ldots, A_k\}$ be a second type basis of \mathcal{L} such that $\lambda_{A_j}^2 = 1$ for all $j = 1, 2, \ldots, k$. By Lemma 5, we can assume that $A_j f_j = 0$ for some corresponding orthonormal basis $\{f_1, f_2, \ldots, f_{2n+1}\}$ of \mathbb{R}^{2n+1} . Let $\alpha, \beta \in \mathbb{R}$ and $A := \alpha_1 A_1 + \alpha_2 A_2$. By Lemma 4, there exist $B_1^1, B_1^2, B_2^1, B_2^2$ and B^1, B^2 in S_{2n+2} such that

$$A_1 = F^T B_1^i F, \quad A_2 = F^T B_2^i F, \quad A = F^T B^i F \quad (i = 1, 2).$$

Combining Remarks 1 and 2, these matrices have to be of the form

$$B_{1}^{1} = \begin{bmatrix} A_{1} & -f_{1}^{T} \\ f_{1} & 0 \end{bmatrix}, \quad B_{2}^{1} = \begin{bmatrix} A_{2} & -f_{2}^{T} \\ f_{2} & 0 \end{bmatrix}, \quad B^{1} = \begin{bmatrix} A & -v^{T} \\ v & 0 \end{bmatrix},$$
$$B_{1}^{2} = \begin{bmatrix} A_{1} & f_{1}^{T} \\ -f_{1} & 0 \end{bmatrix}, \quad B_{2}^{2} = \begin{bmatrix} A_{2} & f_{2}^{T} \\ -f_{2} & 0 \end{bmatrix}, \quad B^{2} = \begin{bmatrix} A & v^{T} \\ -v & 0 \end{bmatrix},$$

where $v = \alpha_1 f_1 - \alpha_2 f_2$ or $v = \alpha_1 f_1 + \alpha_2 f_2$ (it depends on the relation between $A_1 f_1$ and $A_2 f_2$ as remarked in Remark 1).

Let $v := \alpha_1 f_1 + \alpha_2 f_2$. Defining $B_1 := B_1^1$ and $B_2 := B_2^1$, we obtain $\alpha_1 B_1 + \alpha_2 B_2 = B^1 \in S_{2n+2}$. Thus B_1 and B_2 span 2-dimensional subspace in S_{2n+2} . (One can define $B_1 := B_1^2$ and $B_2 := B_2^2$ and obtain $\alpha_1 B_1 + \alpha_2 B_2 = B^2 \in S_{2n+2}$.)

Let $v := \alpha_1 f_1 - \alpha_2 f_2$. Defining $B_1 := B_1^1$ and $B_2 := B_2^2$, we obtain $\alpha_1 B_1 + \alpha_2 B_2 = B^1 \in S_{2n+2}$. Thus B_1 and B_2 span 2-dimensional subspace in S_{2n+2} . (Similarly, one can define $B_1 := B_1^2$ and $B_2 := B_2^1$ and obtain $\alpha_1 B_1 + \alpha_2 B_2 = B^2 \in S_{2n+2}$.) Applying the same argument to A and $\alpha_3 A_3$ for $\alpha_3 \in \mathbb{R}$, we obtain B_3 such that $A_3 = F^T B_3 F$

Applying the same argument to A and $\alpha_3 A_3$ for $\alpha_3 \in \mathbb{R}$, we obtain B_3 such that $A_3 = F^I B_3 F$ and $\alpha_1 B_1 + \alpha_2 B_2 + \alpha_3 B_3 \in S_{2n+2}$. In this way, one can obtain $\{B_1, B_2, \ldots, B_k\}$ as a basis of kdimensional subspace \mathcal{M} in S_{2n+2} such that $A = F^T BF$ where $A = \alpha_1 A_1 + \alpha_2 A_2 + \cdots + \alpha_k A_k$ and $B = \alpha_1 B_1 + \alpha_2 B_2 + \cdots + \alpha_k B_k$. \Box

Proof of Theorem 1. From Lemmas 7 and 8, it follows obviously that a maximal subspace of S_{2n+1} has dimension max{ $\rho(2n) - 1$, $\rho(2n+2) - 1$ }. Using the fact that $2 = \rho(2n) < 4 \le \rho(2n+2)$ for the case *n* is odd and $\rho(2n) \ge 4 > \rho(2n+2) = 2$ for the case *n* is even, we complete the proof. \Box

Acknowledgement

We would like to thank A.H. Bilge and Ş. Koçak for their suggestions and encouragement for this article. I thank also the anonymous referee for various comments which improved the manuscript considerably.

References

- J.F. Adams, P.D. Lax, S. Phillips, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 16 (1965) 318–322.
- [2] J.F. Adams, P.D. Lax, S. Phillips, Correction to on matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 17 (1966) 945–947.
- [3] Y.-H. Au-Yeung, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 29 (1971) 17–22.
- [4] A.H. Bilge, T. Dereli, Ş. Koçak, Maximal linear subspaces of strong self-dual 2-forms and the Bonan 4-form, Linear Algebra Appl. 434 (2011) 1200–1214.
- [5] V.V. Prasolov, Problems and theorems in linear algebra, AMS Transl. Math. Monogr. 134 (1994).
- [6] J. Wang, J. Lu, Proof of inequality of rank of matrix on skew field by constructing block matrix, Internat. Math. Forum 36 (4) (2009) 1803–1808.