Spaces of skew-symmetric matrices satisfying $A^{3}=\lambda A$

Yunus Özdemir

Anadolu University, Department of Mathematics, 26470 Eskişehir, Turkey

ARTICLEINFO

Article history:

Received 3 May 2012
Accepted 17 October 2012
Available online 10 November 2012
Submitted by Vladimir V. Sergeichuk

AMS classification:

15A21
15A66
15A63

Keywords:

Skew-symmetric matrix
Maximal linear subspace
Radon-Hurwitz number

1. Introduction

Each real skew-symmetric matrix is orthogonally similar to a matrix

$$
\left[\begin{array}{cc}
0 & \lambda_{1} \tag{1}\\
-\lambda_{1} & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & \lambda_{m} \\
-\lambda_{m} & 0
\end{array}\right] \oplus 0_{k} \text { with nonzero } \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}
$$

We prove the following theorem.
Theorem 1. The maximum dimension of a space V of $(2 n+1) \times(2 n+1)$ real skew-symmetric matrices, in which every $A \in V$ is orthogonally similar to a matrix of the form

$$
\left[\begin{array}{cc}
0 & \lambda_{A} \tag{2}\\
-\lambda_{A} & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & \lambda_{A} \\
-\lambda_{A} & 0
\end{array}\right] \oplus 0_{1} \text { with nonzero } \lambda_{A} \in \mathbb{R}
$$

[^0]0024-3795/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2012.10.007
is equal to $\rho(2 n)-1$ if n is even and $\rho(2 n+2)-1$ if n is odd.
Here $\rho(m)$ is the Radon-Hurwitz number of a natural number m and is defined as follows: if m is presented in the form $m=(2 a+1) 2^{4 b+c}$ with $c=\{0,1,2,3\}$ and non-negative integer a, b, then $\rho(m)=2^{c}+8 b$.

The Radon-Hurwitz numbers appear in differential topology, coding theory, theoretical physics, and linear algebra. In particular, the following results are close to Theorem 1:

- $\rho(m)$ counts the maximum size of a linear subspace of the real $m \times m$ matrices, for which each nonzero matrix is a product of an orthogonal matrix and a scalar matrix; see [5].
- Let \mathbb{F} be \mathbb{R}, \mathbb{C} or the skew-field of real quaternions \mathbb{H}. Let $\mathbb{F}(m)$ be the maximum number of matrices $A_{1}, A_{2}, \ldots \in \mathbb{F}^{m \times m}$ such that each linear combination $\alpha_{1} A_{1}+\alpha_{2} A_{2}+\cdots$ with real coefficients is nonsingular except when all α_{i} are zero. Then

$$
\mathbb{R}(m)=\rho(m), \quad \mathbb{C}(m)=2 b+2, \quad \mathbb{H}(m)=\rho(m / 2)+4 ;
$$

see [1,2].

- The maximum numbers of Hermitian, skew-Hermitian, symmetric, or skew-symmetric matrices $A_{1}, A_{2}, \ldots \in \mathbb{F}^{m \times m}$ such that each linear combination $\alpha_{1} A_{1}+\alpha_{2} A_{2}+\cdots$ with real coefficients is nonsingular except when all α_{i} are zero, are equal to

$$
\mathbb{F}(m / 2), \quad \mathbb{F}(m)-1, \quad \rho(m / 2)+d_{\mathbb{F}}, \quad \rho\left(2^{d_{\mathbb{F}}-1} m\right)-d_{\mathbb{F}},
$$

respectively, in which $d_{\mathbb{F}}=\operatorname{dim}_{\mathbb{R}} \mathbb{F}$; see [3].
This work was inspired by Bilge, Dereli, and Koçak's article [4] about spaces of real skew-symmetric matrices that are orthogonally similar to matrices of the form

$$
\left[\begin{array}{cc}
0 & \lambda \tag{3}\\
-\lambda & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & \lambda \\
-\lambda & 0
\end{array}\right], \quad 0 \neq \lambda \in \mathbb{R} .
$$

2. Proof of the theorem

We denote the rank, trace, image, kernel and orthogonal complement of the kernel of A by $r_{A}, \operatorname{Tr} A$, $\operatorname{Im} A, \operatorname{Ker} A$, and W_{A}, respectively. We also use the notation $A \perp B$ for the orthogonality of A and B, that is $\operatorname{Tr}\left(A B^{T}\right)=0$.

Let $S_{2 n}$ be the set of $2 n \times 2 n$ real skew-symmetric matrices for which each matrix is orthogonally similar to a matrix of the form (3) and $S_{2 n+1}$ be the set of $(2 n+1) \times(2 n+1)$ real skew-symmetric matrices for which each matrix is orthogonally similar to a matrix of the form (2). It can be easily shown that $A \in S_{2 n}$ if and only if

$$
\begin{equation*}
A^{2}+\lambda_{A}^{2} I_{2 n}=0 \tag{4}
\end{equation*}
$$

and $A \in S_{2 n+1}$ if and only if

$$
\begin{equation*}
A^{3}+\lambda_{A}^{2} A=0 \quad \text { and } \quad r_{A}=2 n \tag{5}
\end{equation*}
$$

where $\lambda_{A}^{2}=-\frac{\operatorname{Tr}\left(A^{2}\right)}{r_{A}}$.
Lemma 1. If $A \in S_{2 n+1}$, then $W_{A}=\operatorname{Ker}\left(A^{2}+\lambda_{A}^{2} I_{2 n+1}\right)$.

Proof. Let $A \in S_{2 n+1}$. Then $\operatorname{Im} A \perp \operatorname{Ker} A$ since for each $x \in \mathbb{R}^{2 n+1}$ and $y \in \operatorname{Ker} A$ we have $\langle A x, y\rangle=$ $\left\langle x, A^{T} y\right\rangle=\langle x,-A y\rangle=\langle x, 0\rangle=0$.

Let $x \in W_{A}$. $\operatorname{By}(5), y:=\left(A^{2}+\lambda_{A}^{2} I_{2 n+1}\right) x \in \operatorname{Ker} A$, and so $\langle y, y\rangle=\left\langle A^{2} x, y\right\rangle+\left\langle\lambda_{A}^{2} x, y\right\rangle=0$. Hence $y=0$ and $x \in \operatorname{Ker}\left(A^{2}+\lambda_{A}^{2} I_{2 n+1}\right)$.

Conversely, let $x \in \operatorname{Ker}\left(A^{2}+\lambda_{A}^{2} I_{2 n+1}\right)$. Then for every $y \in \operatorname{Ker} A$ we have $\lambda_{A}^{2}\langle x, y\rangle=\left\langle A^{2} x, y\right\rangle+$ $\lambda_{A}^{2}\langle x, y\rangle=\left\langle\left(A^{2}+\lambda_{A}^{2} I_{2 n+1}\right) x, y\right\rangle=\langle 0, y\rangle=0$, and so $x \in W_{A}$.

Lemma 2. Let $\mathcal{L} \subset S_{2 n+1}$ be a subspace containing the matrices A and B. If $A \perp B$, then

$$
\begin{align*}
& A^{2} B+A B A+B A^{2}+\lambda_{A}^{2} B=0 \tag{6}\\
& A B^{2}+B A B+B^{2} A+\lambda_{B}^{2} A=0 \tag{7}
\end{align*}
$$

Proof. Since A and B lie in the same subspace, by (5),

$$
\begin{equation*}
(A+k B)^{3}+\lambda_{A+k B}^{2}(A+k B)=0 \tag{8}
\end{equation*}
$$

for all $k \in \mathbb{R}$ where $\lambda_{A+k B}^{2}=-\frac{1}{2 n} \operatorname{Tr}\left((A+k B)^{2}\right)$. By orthogonality of A and $B, \operatorname{Tr}(A B)=\operatorname{Tr}(B A)=0$. Then

$$
\begin{equation*}
\lambda_{A+k B}^{2}=-\frac{1}{2 n} \operatorname{Tr}\left((A+k B)^{2}\right)=-\frac{1}{2 n} \operatorname{Tr}\left(A^{2}\right)-\frac{k^{2}}{2 n} \operatorname{Tr}\left(B^{2}\right)=\lambda_{A}^{2}+k^{2} \lambda_{B}^{2} \tag{9}
\end{equation*}
$$

Substituting (9) in (8), we obtain

$$
\begin{aligned}
0= & A^{3}+\lambda_{A}^{2} A+\left(A^{2} B+A B A+B A^{2}+\lambda_{A}^{2} B\right) k \\
& +\left(A B^{2}+B A B+B^{2} A+\lambda_{B}^{2} A\right) k^{2}+\left(B^{3}+\lambda_{B}^{2} B\right) k^{3}
\end{aligned}
$$

for all k which gives the Eqs. (6) and (7) since $A^{3}+\lambda_{A}^{2} A=0$ and $B^{3}+\lambda_{B}^{2} B=0$.
Write

$$
F:=\left[\begin{array}{c}
I_{2 n+1} \\
0 \cdots 0
\end{array}\right]_{(2 n+2) \times(2 n+1)} .
$$

Note that for any $(2 n+2) \times(2 n+2)$ skew-symmetric real matrix $B, F^{T} B F$ is the $(2 n+1) \times(2 n+1)$ real skew-symmetric matrix formed by removing from B its last column and row. Also note that for any $(2 n+1) \times(2 n+1)$ real skew-symmetric matrix $A, F A F^{T}=A \oplus 0_{1}$.

Lemma 3. If $B \in S_{2 n+2}$, then $F^{T} B F \in S_{2 n+1}$.
Proof. Let $B \in S_{2 n+2}$ and $\bar{B}:=F F^{T} B F F^{T}$. Note that $\bar{B}=F^{T} B F \oplus 0_{1}$. More clearly, \bar{B} is the $(2 n+2) \times$ $(2 n+2)$ real skew-symmetric matrix formed by changing the last column and row of B with the zero column and row:

$$
B=\left[b_{i j}\right]_{1 \leqslant i, j \leqslant 2 n+2} \Rightarrow \bar{B}=\left[b_{i j}\right]_{1 \leqslant i, j \leqslant 2 n+1} \oplus 0_{1}
$$

Since $B \in S_{2 n+2}, B$ is of the form $\alpha \cdot B_{0}$ for some real number α where B_{0} is an orthogonal matrix by (4). The columns (and the rows) of B are mutually perpendicular since B_{0} is orthogonal, so the last
column and row of the matrices $B \bar{B}$ and $\bar{B} B$ are zero, which can be seen easily by a simple calculation. On the other hand, other corresponding elements of the matrices $B \bar{B}$ and $\bar{B} B$ are obviously equal by the definition of the skew-symmetric matrix \bar{B}. Then $B \bar{B}=\bar{B} B=\bar{B}^{2}$. Hence

$$
\left(F^{T} B F\right)^{3}=F^{T} B F F^{T} B F F^{T} B F=F^{T} B \bar{B} B F=F^{T} \bar{B} B^{2} F .
$$

It is clear that $F^{T} \bar{B} F=F^{T} B F$. Then

$$
\left(F^{T} B F\right)^{3}=F^{T} \bar{B} B^{2} F=-\lambda_{B}^{2} F^{T} \bar{B} F=-\lambda_{B}^{2} F^{T} B F,
$$

since $B^{2}=-\lambda_{B}^{2} I_{2 n+2}$ by (4).
On the other hand, it is known that $r_{M_{1} M_{2}}+r_{M_{2} M_{3}} \leqslant r_{M_{1} M_{2} M_{3}}+r_{M_{2}}$ for any multiplying-allowed matrices M_{1}, M_{2}, M_{3} [6, Example 2]. Substituting $M_{1}=F^{T}, M_{2}=B$ and $M_{3}=F$, we have $2 n+1+$ $2 n+1 \leqslant r_{F^{T} B F}+2 n+2$, that is $2 n \leqslant r_{F^{T} B F}$. Then $r_{F^{T} B F}=2 n$ since $F^{T} B F$ is an $(2 n+1) \times(2 n+1)$ real skew-symmetric matrix, and so $F^{T} B F \in S_{2 n+1}$ by (5).

Lemma 4. If $A \in S_{2 n+1}$, then there exists $B \in S_{2 n+2}$ such that $A=F^{T} B F$.
(In fact there exist only two matrices B^{1}, B^{2} such that $A=F^{T} B^{j} F, j=1,2$.)
Proof. Let $A \in S_{2 n+1}$. There exists a unique orthogonal matrix Q such that $Q^{T} A Q$ is of the form

$$
Q^{T} A Q=M \oplus 0_{1} \quad \text { where } M=\left[\begin{array}{cc}
0 & \lambda_{A} \\
-\lambda_{A} & 0
\end{array}\right] \oplus \cdots \oplus\left[\begin{array}{cc}
0 & \lambda_{A} \\
-\lambda_{A} & 0
\end{array}\right] .
$$

Obviously, there exist only two skew-symmetric matrices \widetilde{B}_{1} and \widetilde{B}_{2} in $S_{2 n+2}$ such that $Q^{T} A Q=$ $F^{T} \widetilde{B}_{j} F(j=1,2)$ which are of the form

$$
\widetilde{B}_{1}=M \oplus\left[\begin{array}{cc}
0 & \lambda_{A} \\
-\lambda_{A} & 0
\end{array}\right] \quad \text { and } \quad \widetilde{B}_{2}=M \oplus\left[\begin{array}{cc}
0 & -\lambda_{A} \\
\lambda_{A} & 0
\end{array}\right]
$$

Consider the orthogonal matrices $P_{1}:=Q \oplus 1_{1}$ and $P_{2}:=Q \oplus(-1)_{1}$. An easy calculation shows that $P_{1} \widetilde{B}_{1} P_{1}^{T}=P_{2} \widetilde{B}_{2} P_{2}^{T}=: B_{1} \in S_{2 n+2}$ and $P_{1} \widetilde{B}_{2} P_{1}^{T}=P_{2} \widetilde{B}_{1} P_{2}^{T}=: B_{2} \in S_{2 n+2}$. By the definitions, $Q F^{T} P_{1}^{T}=F^{T}$ and $P_{1} F Q^{T}=F$. Then

$$
A=Q F^{T} \widetilde{B}_{1} F Q^{T}=Q F^{T} P_{1}^{T} B_{1} P_{1} F Q^{T}=F^{T} B_{1} F
$$

and similarly $A=F^{T} B_{2} F$, which completes the proof.
We also note that there does not exist any matrix P satisfying $Q F^{T} P^{T}=F^{T}$ or $P F Q^{T}=F$ except for $P=P_{1}$ or $P=P_{2}$ which means there does not exist any matrix B satisfying $A=F^{T} B F$ except for $B=B_{1}$ or $B=B_{2}$.

Lemma 5. Let $\{A, B\}$ be a basis for a 2-dimensional subspace in $S_{2 n+1}$ such that $A \perp B$.
(i) If Ker $A=\operatorname{Ker} B$, then $A B+B A=0$.
(ii) If Ker $A \cap \operatorname{Ker} B=\{0\}$, then $\operatorname{Ker} A \perp \operatorname{Ker} B$.

Proof. (i) Let $W:=W_{A}=W_{B}$ and let $x \in W$. By (7), $A B^{2} x+B A B x+B^{2} A x+\lambda_{B}^{2} A x=0$, and so $B A B x+B^{2} A x=0$ by Lemma 1. Then $B A B x=\lambda_{B}^{2} A x$ since $A x \in W$ (note that $M x \perp x$ for any skewsymmetric matrix M). Multiplying each side of the last equality by $B,-\lambda_{B}^{2} A B x=\lambda_{B}^{2} B A x$ by Lemma 1 since $A B x \in W$, and so $(A B+B A) x=0$. In the case $x \in \mathbb{R}^{2 n+1},(A B+B A) x=0$ since x can be expressed as $x=x_{1}+x_{2}$ where $x_{1} \in \operatorname{Ker} A=\operatorname{Ker} B$ and $x_{2} \in W_{A}=W_{B}$.
(ii) Let $\operatorname{Ker} A \cap \operatorname{Ker} B=\{0\}$ and let $\lambda_{A}^{2}=\lambda_{B}^{2}=1$ for simplicity. Suppose that Ker A does not orthogonal to Ker B.

Let $0 \neq w \in \operatorname{Ker} B . \operatorname{By}(5)$, there exists a nonzero $z \in \operatorname{Ker} A$ such that $B^{2} z+z=w$ and $A^{2} w+w=b z$ for some nonzero $b \in \mathbb{R}$ since $\operatorname{Ker} A$ and $\operatorname{Ker} B$ are 1 -dimensional subspaces (In the case $\operatorname{Ker} A \perp \operatorname{Ker} B$, it cannot be found such a vector $z \in \operatorname{Ker} A$. Note that if $z \in W_{B}$, then $w=B^{2} z+z=-z+z=0$ by Lemma 1). By multiplying each side of $B^{2} z+z=w$ by A and $A^{2} w+w=b z$ by B, respectively, we get

$$
\begin{equation*}
A B^{2} z=A w \text { and } B A^{2} w=b B z . \tag{10}
\end{equation*}
$$

$\operatorname{By}(7)$ and (6), $A B^{2} z+B A B z=0$ and $B A^{2} w+A B A w=0$ since $z \in \operatorname{Ker} A$ and $w \in \operatorname{Ker} B$. Then

$$
\begin{equation*}
B A B z=-A w \text { and } A B A w=-b B z \tag{11}
\end{equation*}
$$

by (10). From the fact that $\langle M u, v\rangle=\left\langle u, M^{T} v\right\rangle$ and $M^{T} M=M M^{T}=-M^{2}$ for any skew-symmetric matrix M, we obtain

$$
\begin{aligned}
\langle A w, B z\rangle=-\langle B A B z, B z\rangle & =-\left\langle A B z, B^{T} B z\right\rangle=\left\langle A B z, B^{2} z\right\rangle \\
& =-\left\langle B z, A B^{2} z\right\rangle=-\langle B z, A w\rangle,
\end{aligned}
$$

which means $\langle A w, B z\rangle=0$. Then $w \perp A B z$ and $z \perp B A w$, i.e. $A B z \in W_{B}$ and $B A w \in W_{A}$. By Lemma 1 , we obtain $B^{2} A B z=-A B z$ and $A^{2} B A w=-B A w$. Then $B A w=A B z$ and $B A w=b A B z$ by (11), and so $b=1$.

On the other hand, $B^{2} z=(w-z) \perp w$ and $A^{2} w=(b z-w) \perp z$ by Lemma 1 . Using these orthogonalities, we get $\langle w, w\rangle=\langle w, z\rangle=b\langle z, z\rangle$ and by $b=1,\langle w, w\rangle=\langle w, z\rangle=\langle z, z\rangle$. Then

$$
0<\langle w-z, w-z\rangle=\langle w, w\rangle-2\langle w, z\rangle+\langle z, z\rangle=0
$$

which is a contradiction.
Lemma 6. Let $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be an orthogonal basis for a subspace in $S_{2 n+1}$. Either the matrices $A_{1}, A_{2}, \ldots, A_{k}$ have common kernel or the kernels of the matrices $A_{1}, A_{2}, \ldots, A_{k}$ intersect pairwise in the zero vector.

Proof. Let $\{A, B, C\}$ be an orthogonal basis for a subspace in $S_{2 n+1}$ and suppose that $\operatorname{Ker} A=\operatorname{Ker} C$ and $\operatorname{Ker} A \cap \operatorname{Ker} B=\{0\}$.

Let $0 \neq x \in \operatorname{Ker} A, y:=B x$ and $z:=A y=A B x$. Note that $y \neq 0$ since $\operatorname{Ker} A \cap \operatorname{Ker} B=\{0\}$. By Lemma 1, we have $A z=A^{2} y=-\lambda_{A}^{2} y$ since $y=B x \in W_{A}$, and so $z \neq 0$ since $y \neq 0$. By Lemma 5, $x \in W_{B}$. Thus by Lemma $1, B^{2} x=-\lambda_{B}^{2} x$, and so $B y=-\lambda_{B}^{2} x$. By (6) and (7),

$$
\begin{aligned}
& 0=\left(A B^{2}+B A B+B^{2} A+\lambda_{B}^{2} A\right) x=A\left(-\lambda_{B}^{2} x\right)+B A B x=B z \\
& 0=\left(B^{2} C+B C B+C B^{2}+\lambda_{B}^{2} C\right) x=B C B x+C\left(-\lambda_{B}^{2} x\right)=B C B x=B C y,
\end{aligned}
$$

which means $z, C y \in \operatorname{Ker} B . C y=\theta z$ for some nonzero $\theta \in \mathbb{R}$ since $z \in \operatorname{Ker} B$ and $\operatorname{dim} \operatorname{Ker} B=1$. A and C anticommute on $W_{A}=W_{C}$ by Lemma 5 . Then

$$
0=A C y+C A y=A(\theta z)+C z=-\theta \lambda_{A}^{2} y+C z
$$

and so $C z=\theta \lambda_{A}^{2} y$. Then $C^{2} y=\theta C z=\theta^{2} \lambda_{A}^{2} y$ which is a contradiction since $\theta^{2}>0, C^{2} y=-\lambda_{C}^{2} y$ and $y \neq 0$.

Let \mathcal{L} be a subspace of $S_{2 n+1}$ and $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be an orthogonal basis of \mathcal{L}. If $A_{1}, A_{2}, \ldots, A_{k}$ have common kernel, then we call \mathcal{L} is of the first type and $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is a first type basis. Similarly, if
the kernels of $A_{1}, A_{2}, \ldots, A_{k}$ intersect pairwise in the zero vector, then we call \mathcal{L} is of the second type and $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ is a second type basis. We note that any subspace of $S_{2 n+1}$ must be either of the first type or of the second type.

Remark 1. Let $\{A, B\}$ be a basis for a 2 -dimensional subspace of the second type in $S_{2 n+1}$ such that $\lambda_{A}^{2}=\lambda_{B}^{2}=1$ and let $\left\{f_{1}, f_{2}, \ldots, f_{2 n+1}\right\}$ be an orthonormal basis of $\mathbb{R}^{2 n+1}$ such that $A f_{1}=0$ and $B f_{2}=0($ it is possible since $\operatorname{Ker} A \perp \operatorname{Ker} B)$. Let $x \in \operatorname{Ker} A$ and $y \in \operatorname{Ker} B$. By (7) and Lemma 1,

$$
A B^{2} x+B A B x=0 \Rightarrow B A B x=0 \Rightarrow A B x=\gamma y \Rightarrow B x=-\gamma A y
$$

for some $\gamma \in \mathbb{R}$. In the case $x=f_{1}$ and $y=f_{2}$, we have $\gamma= \pm 1$ since A and B preserve the distance on W_{A} and W_{B}, respectively (recall that $\lambda_{A}^{2}=\lambda_{B}^{2}=1$), and so $A f_{2}= \pm B f_{1}$. Hence, for $\alpha, \beta \in \mathbb{R}$, $\operatorname{Ker}(\alpha A+\beta B)$ is a 1-dimensional subspace spanned by the vectors $\left(\alpha f_{1}+\beta f_{2}\right)$ or $\left(\alpha f_{1}-\beta f_{2}\right)$.

Remark 2. Let $A \in S_{2 n+1}$ and $B \in S_{2 n+2}$ such that $B=\left[b_{1} b_{2} \cdots b_{2 n+2}\right]$ and $A=F^{T} B F$ where each b_{i} is a $(2 n+2) \times 1$ column vector. The column vector $b_{2 n+2}$ is of the form $(v, 0)^{T}$ for some $v \in \mathbb{R}^{2 n+1}$. Since B is orthogonal, $(v, 0) \perp b_{j}$ for each $j=1, \ldots, 2 n+1$ and thus v perpendicular to each column vector of A (recall that $A=F^{T} B F$), which implies $v \in \operatorname{Ker} A$.

Lemma 7. Let $\mathcal{K} \subset S_{2 n}$ and $\mathcal{M} \subset S_{2 n+2}$ be subspaces.
(i) $\left\{A \oplus 0_{1} \mid A \in \mathcal{K}\right\} \subset S_{2 n+1}$ is a subspace with dimension $\operatorname{dim} \mathcal{K}$.
(ii) $\left\{F^{T} B F \mid B \in \mathcal{M}\right\} \subset S_{2 n+1}$ is a subspace with dimension $\operatorname{dim} \mathcal{M}$.

Proof. (i) Let $\mathcal{K} \subset S_{2 n}$ be a subspace and $\left\{A_{1}, \ldots, A_{k}\right\}$ be an orthogonal basis of \mathcal{K}. For $j=1, \ldots, k$, $A_{j} \oplus 0_{1} \in S_{2 n+1}$ since it satisfies (5) and has rank 2n. Obviously, the matrices $A_{1} \oplus 0_{1}, A_{2} \oplus 0_{1}, \ldots, A_{k} \oplus$ 0_{1} span k-dimensional subspace in $S_{2 n+1}$ since for all $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$

$$
\alpha_{1}\left(A_{1} \oplus 0_{1}\right)+\cdots+\alpha_{k}\left(A_{k} \oplus 0_{1}\right)=\left(\alpha_{1} A_{1}+\cdots+\alpha_{k} A_{k}\right) \oplus 0_{1} .
$$

(ii) Let $\mathcal{M} \subset S_{2 n+2}$ be a subspace and $\left\{A_{1}, \ldots, A_{k}\right\}$ be an orthogonal basis of \mathcal{M}. For $j=1, \ldots, k$, $B_{j}:=F^{T} A_{j} F \in S_{2 n+1}$ by Lemma 3 . The set of matrices $\left\{B_{1}, \ldots, B_{k}\right\}$ is a linearly independent set in $S_{2 n+1}$ since $\left\{A_{1}, \ldots, A_{k}\right\}$ is in $S_{2 n+2}$. Also note that since

$$
\alpha_{1} B_{1}+\cdots+\alpha_{k} B_{k}=F^{T}\left(\alpha_{1} A_{1}+\cdots+\alpha_{k} A_{k}\right) F
$$

for all $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$, we have $\alpha_{1} B_{1}+\cdots+\alpha_{k} B_{k} \in S_{2 n+1}$ by Lemma 3. Hence $\left\{B_{1}, \ldots, B_{k}\right\}$ spans k-dimensional subspace in $S_{2 n+1}$.

We remark that, since there is a subspace of dimension $\rho(2 n)-1$ in $S_{2 n}$ (in fact a maximal one, [4, Proposition 3]), there is also a subspace of dimension $\rho(2 n)-1$ in $S_{2 n+1}$. Similarly, since there is a subspace of dimension $\rho(2 n+2)-1$ in $S_{2 n+2}$ (in fact a maximal one, [4, Proposition 3]), there is also a subspace of dimension $\rho(2 n+2)-1$ in $S_{2 n+1}$.

Lemma 8. Let \mathcal{L} be a subspace in $S_{2 n+1}$.
(i) If \mathcal{L} is of the first type, then there exists a subspace $\mathcal{K} \subset S_{2 n}$ such that $\operatorname{dim}(\mathcal{L})=\operatorname{dim}(\mathcal{K})$.
(ii) If \mathcal{L} is of the second type, then there exists a subspace $\mathcal{M} \subset S_{2 n+2}$ such that $\operatorname{dim}(\mathcal{L})=\operatorname{dim}(\mathcal{M})$.

Proof. (i) Let \mathcal{L} be a subspace of the first type in $S_{2 n+1}$ and $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a first type basis of \mathcal{L} (i.e. $A_{1}, A_{2}, \ldots, A_{k}$ have common kernel). There exists an orthogonal matrix P such that $P^{T} A_{j} P$ is of the form (2):

$$
P^{T} A_{j} P=: B_{j} \oplus 0_{1}\left(B_{j}=F^{T}\left(P^{T} A_{j} P\right) F \in S_{2 n}\right) .
$$

Let \mathcal{K} be the subspace in $S_{2 n}$ spanned by the matrices $B_{1}, B_{2}, \ldots, B_{k}$. Then $\operatorname{dim}(\mathcal{K})=\operatorname{dim}(\mathcal{L})=k$.
(ii) Let \mathcal{L} be a subspace of the second type in $S_{2 n+1}$ and $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be a second type basis of \mathcal{L} such that $\lambda_{A_{j}}^{2}=1$ for all $j=1,2, \ldots, k$. By Lemma 5 , we can assume that $A_{j} f_{j}=0$ for some corresponding orthonormal basis $\left\{f_{1}, f_{2}, \ldots, f_{2 n+1}\right\}$ of $\mathbb{R}^{2 n+1}$. Let $\alpha, \beta \in \mathbb{R}$ and $A:=\alpha_{1} A_{1}+\alpha_{2} A_{2}$. By Lemma 4, there exist $B_{1}^{1}, B_{1}^{2}, B_{2}^{1}, B_{2}^{2}$ and B^{1}, B^{2} in $S_{2 n+2}$ such that

$$
A_{1}=F^{T} B_{1}^{i} F, \quad A_{2}=F^{T} B_{2}^{i} F, \quad A=F^{T} B^{i} F \quad(i=1,2)
$$

Combining Remarks 1 and 2, these matrices have to be of the form

$$
\begin{array}{ll}
B_{1}^{1}=\left[\begin{array}{cc}
A_{1} & -f_{1}^{T} \\
f_{1} & 0
\end{array}\right], \quad B_{2}^{1}=\left[\begin{array}{cc}
A_{2} & -f_{2}^{T} \\
f_{2} & 0
\end{array}\right], \quad B^{1}=\left[\begin{array}{cc}
A & -v^{T} \\
v & 0
\end{array}\right], \\
B_{1}^{2}=\left[\begin{array}{cc}
A_{1} & f_{1}^{T} \\
-f_{1} & 0
\end{array}\right], \quad B_{2}^{2}=\left[\begin{array}{cc}
A_{2} & f_{2}^{T} \\
-f_{2} & 0
\end{array}\right], \quad B^{2}=\left[\begin{array}{cc}
A & v^{T} \\
-v & 0
\end{array}\right],
\end{array}
$$

where $v=\alpha_{1} f_{1}-\alpha_{2} f_{2}$ or $v=\alpha_{1} f_{1}+\alpha_{2} f_{2}$ (it depends on the relation between $A_{1} f_{1}$ and $A_{2} f_{2}$ as remarked in Remark 1).

Let $v:=\alpha_{1} f_{1}+\alpha_{2} f_{2}$. Defining $B_{1}:=B_{1}^{1}$ and $B_{2}:=B_{2}^{1}$, we obtain $\alpha_{1} B_{1}+\alpha_{2} B_{2}=B^{1} \in S_{2 n+2}$. Thus B_{1} and B_{2} span 2-dimensional subspace in $S_{2 n+2}$. (One can define $B_{1}:=B_{1}^{2}$ and $B_{2}:=B_{2}^{2}$ and obtain $\alpha_{1} B_{1}+\alpha_{2} B_{2}=B^{2} \in S_{2 n+2}$.)

Let $v:=\alpha_{1} f_{1}-\alpha_{2} f_{2}$. Defining $B_{1}:=B_{1}^{1}$ and $B_{2}:=B_{2}^{2}$, we obtain $\alpha_{1} B_{1}+\alpha_{2} B_{2}=B^{1} \in S_{2 n+2}$. Thus B_{1} and B_{2} span 2-dimensional subspace in $S_{2 n+2}$. (Similarly, one can define $B_{1}:=B_{1}^{2}$ and $B_{2}:=B_{2}^{1}$ and obtain $\alpha_{1} B_{1}+\alpha_{2} B_{2}=B^{2} \in S_{2 n+2}$.)

Applying the same argument to A and $\alpha_{3} A_{3}$ for $\alpha_{3} \in \mathbb{R}$, we obtain B_{3} such that $A_{3}=F^{T} B_{3} F$ and $\alpha_{1} B_{1}+\alpha_{2} B_{2}+\alpha_{3} B_{3} \in S_{2 n+2}$. In this way, one can obtain $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ as a basis of k dimensional subspace \mathcal{M} in $S_{2 n+2}$ such that $A=F^{T} B F$ where $A=\alpha_{1} A_{1}+\alpha_{2} A_{2}+\cdots+\alpha_{k} A_{k}$ and $B=\alpha_{1} B_{1}+\alpha_{2} B_{2}+\cdots+\alpha_{k} B_{k}$.

Proof of Theorem 1. From Lemmas 7 and 8, it follows obviously that a maximal subspace of $S_{2 n+1}$ has dimension $\max \{\rho(2 n)-1, \rho(2 n+2)-1\}$. Using the fact that $2=\rho(2 n)<4 \leqslant \rho(2 n+2)$ for the case n is odd and $\rho(2 n) \geqslant 4>\rho(2 n+2)=2$ for the case n is even, we complete the proof.

Acknowledgement

We would like to thank A.H. Bilge and Ş. Koçak for their suggestions and encouragement for this article. I thank also the anonymous referee for various comments which improved the manuscript considerably.

References

[1] J.F. Adams, P.D. Lax, S. Phillips, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 16 (1965) 318-322.
[2] J.F. Adams, P.D. Lax, S. Phillips, Correction to on matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 17 (1966) 945-947.
[3] Y.-H. Au-Yeung, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 29 (1971) 17-22.
[4] A.H. Bilge, T. Dereli, Ş. Koçak, Maximal linear subspaces of strong self-dual 2-forms and the Bonan 4-form, Linear Algebra Appl. 434 (2011) 1200-1214.
[5] V.V. Prasolov, Problems and theorems in linear algebra, AMS Transl. Math. Monogr. 134 (1994).
[6] J. Wang, J. Lu, Proof of inequality of rank of matrix on skew field by constructing block matrix, Internat. Math. Forum 36 (4) (2009) 1803-1808.

[^0]: E-mail address: yunuso@anadolu.edu.tr

