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1. Introduction

Each real skew-symmetric matrix is orthogonally similar to a matrix

⎡
⎣ 0 λ1

−λ1 0

⎤
⎦ ⊕ · · · ⊕

⎡
⎣ 0 λm

−λm 0

⎤
⎦ ⊕ 0k with nonzero λ1, . . . , λm ∈ R. (1)

We prove the following theorem.

Theorem 1. The maximum dimension of a space V of (2n+1)× (2n+1) real skew-symmetric matrices,

in which every A ∈ V is orthogonally similar to a matrix of the form

⎡
⎣ 0 λA

−λA 0

⎤
⎦ ⊕ · · · ⊕

⎡
⎣ 0 λA

−λA 0

⎤
⎦ ⊕ 01 with nonzero λA ∈ R (2)
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is equal to ρ(2n) − 1 if n is even and ρ(2n + 2) − 1 if n is odd.

Here ρ(m) is the Radon–Hurwitz number of a natural number m and is defined as follows: if m is

presented in the form m = (2a + 1)24b+c with c = {0, 1, 2, 3} and non-negative integer a, b, then
ρ(m) = 2c + 8b.

The Radon–Hurwitz numbers appear in differential topology, coding theory, theoretical physics,

and linear algebra. In particular, the following results are close to Theorem 1:

• ρ(m) counts the maximum size of a linear subspace of the real m × m matrices, for which each

nonzero matrix is a product of an orthogonal matrix and a scalar matrix; see [5].
• Let F be R, C or the skew-field of real quaternions H. Let F(m) be the maximum number of

matrices A1, A2, . . . ∈ F
m×m such that each linear combination α1A1 + α2A2 + · · · with real

coefficients is nonsingular except when all αi are zero. Then

R(m) = ρ(m), C(m) = 2b + 2, H(m) = ρ(m/2) + 4;
see [1,2].

• The maximum numbers of Hermitian, skew-Hermitian, symmetric, or skew-symmetric matrices

A1, A2, . . . ∈ F
m×m such that each linear combination α1A1 + α2A2 + · · · with real coefficients

is nonsingular except when all αi are zero, are equal to

F(m/2), F(m) − 1, ρ(m/2) + dF, ρ(2dF−1m) − dF,

respectively, in which dF = dimR F; see [3].

This workwas inspired by Bilge, Dereli, and Koçak’s article [4] about spaces of real skew-symmetric

matrices that are orthogonally similar to matrices of the form

⎡
⎣ 0 λ

−λ 0

⎤
⎦ ⊕ · · · ⊕

⎡
⎣ 0 λ

−λ 0

⎤
⎦ , 0 �= λ ∈ R. (3)

2. Proof of the theorem

We denote the rank, trace, image, kernel and orthogonal complement of the kernel of A by rA, Tr A,

Im A, Ker A, andWA, respectively. We also use the notation A ⊥ B for the orthogonality of A and B, that

is Tr(ABT ) = 0.

Let S2n be the set of 2n × 2n real skew-symmetric matrices for which each matrix is orthogonally

similar to a matrix of the form (3) and S2n+1 be the set of (2n + 1) × (2n + 1) real skew-symmetric

matrices for which each matrix is orthogonally similar to a matrix of the form (2). It can be easily

shown that A ∈ S2n if and only if

A2 + λ2
AI2n = 0 (4)

and A ∈ S2n+1 if and only if

A3 + λ2
AA = 0 and rA = 2n (5)

where λ2
A = − Tr(A2)

rA
.

Lemma 1. If A ∈ S2n+1, then WA = Ker
(
A2 + λ2

AI2n+1

)
.
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Proof. Let A ∈ S2n+1. Then Im A ⊥ Ker A since for each x ∈ R
2n+1 and y ∈ Ker A we have 〈Ax, y〉 =

〈x, ATy〉 = 〈x, −Ay〉 = 〈x, 0〉 = 0.

Let x ∈ WA. By (5), y :=
(
A2 + λ2

AI2n+1

)
x ∈ Ker A, and so 〈y, y〉 = 〈A2x, y〉+ 〈λ2

Ax, y〉 = 0. Hence

y = 0 and x ∈ Ker(A2 + λ2
AI2n+1).

Conversely, let x ∈ Ker(A2 + λ2
AI2n+1). Then for every y ∈ Ker A we have λ2

A〈x, y〉 = 〈A2x, y〉 +
λ2
A〈x, y〉 = 〈(A2 + λ2

AI2n+1)x, y〉 = 〈0, y〉 = 0, and so x ∈ WA. �

Lemma 2. Let L ⊂ S2n+1 be a subspace containing the matrices A and B. If A ⊥ B, then

A2B + ABA + BA2 + λ2
AB = 0, (6)

AB2 + BAB + B2A + λ2
BA = 0. (7)

Proof. Since A and B lie in the same subspace, by (5),

(A + kB)3 + λ2
A+kB (A + kB) = 0 (8)

for all k ∈ R where λ2
A+kB = − 1

2n
Tr((A + kB)2). By orthogonality of A and B, Tr(AB) = Tr(BA) = 0.

Then

λ2
A+kB = − 1

2n
Tr

(
(A + kB)2

)
= − 1

2n
Tr

(
A2

)
− k2

2n
Tr

(
B2

)
= λ2

A + k2λ2
B. (9)

Substituting (9) in (8), we obtain

0 = A3 + λ2
AA +

(
A2B + ABA + BA2 + λ2

AB
)
k

+
(
AB2 + BAB + B2A + λ2

BA
)
k2 +

(
B3 + λ2

BB
)
k3

for all k which gives the Eqs. (6) and (7) since A3 + λ2
AA = 0 and B3 + λ2

BB = 0. �

Write

F :=
⎡
⎣ I2n+1

0 · · · 0

⎤
⎦

(2n+2)×(2n+1)

.

Note that for any (2n+2)×(2n+2) skew-symmetric realmatrix B, FTBF is the (2n+1)×(2n+1)
real skew-symmetric matrix formed by removing from B its last column and row. Also note that for

any (2n + 1) × (2n + 1) real skew-symmetric matrix A, FAFT = A ⊕ 01.

Lemma 3. If B ∈ S2n+2, then FTBF ∈ S2n+1.

Proof. Let B ∈ S2n+2 and B := FFTBFFT . Note that B = FTBF ⊕ 01. More clearly, B is the (2n + 2) ×
(2n+ 2) real skew-symmetric matrix formed by changing the last column and row of Bwith the zero

column and row:

B =
[
bij

]
1�i,j�2n+2

⇒ B =
[
bij

]
1�i,j�2n+1

⊕ 01.

Since B ∈ S2n+2, B is of the form α · B0 for some real number α where B0 is an orthogonal matrix

by (4). The columns (and the rows) of B are mutually perpendicular since B0 is orthogonal, so the last
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column and row of the matrices BB and BB are zero, which can be seen easily by a simple calculation.

On the other hand, other corresponding elements of thematrices BB and BB are obviously equal by the

definition of the skew-symmetric matrix B. Then BB = BB = B
2
. Hence

(FTBF)3 = FTBFFTBFFTBF = FTBBBF = FTBB2F.

It is clear that FTBF = FTBF . Then

(FTBF)3 = FTBB2F = −λ2
BF

TBF = −λ2
BF

TBF,

since B2 = −λ2
BI2n+2 by (4).

On the other hand, it is known that rM1M2
+ rM2M3

� rM1M2M3
+ rM2

for any multiplying-allowed

matrices M1,M2,M3 [6, Example 2]. Substituting M1 = FT ,M2 = B and M3 = F , we have 2n + 1 +
2n + 1 � rFT BF + 2n + 2, that is 2n � rFT BF . Then rFT BF = 2n since FTBF is an (2n + 1) × (2n + 1)
real skew-symmetric matrix, and so FTBF ∈ S2n+1 by (5). �

Lemma 4. If A ∈ S2n+1, then there exists B ∈ S2n+2 such that A = FTBF.

(In fact there exist only two matrices B1, B2 such that A = FTBjF, j = 1, 2.)

Proof. Let A ∈ S2n+1. There exists a unique orthogonal matrix Q such that QTAQ is of the form

QTAQ = M ⊕ 01 where M =
⎡
⎣ 0 λA

−λA 0

⎤
⎦ ⊕ · · · ⊕

⎡
⎣ 0 λA

−λA 0

⎤
⎦ .

Obviously, there exist only two skew-symmetric matrices B̃1 and B̃2 in S2n+2 such that QTAQ =
FT B̃jF (j = 1, 2) which are of the form

B̃1 = M ⊕
⎡
⎣ 0 λA

−λA 0

⎤
⎦ and B̃2 = M ⊕

⎡
⎣ 0 −λA

λA 0

⎤
⎦ .

Consider the orthogonal matrices P1 := Q ⊕ 11 and P2 := Q ⊕ (−1)1. An easy calculation shows

that P1B̃1P
T
1 = P2B̃2P

T
2 =: B1 ∈ S2n+2 and P1B̃2P

T
1 = P2B̃1P

T
2 =: B2 ∈ S2n+2. By the definitions,

QFTPT1 = FT and P1FQ
T = F . Then

A = QFT B̃1FQ
T = QFTPT1B1P1FQ

T = FTB1F

and similarly A = FTB2F , which completes the proof.

We also note that there does not exist any matrix P satisfying QFTPT = FT or PFQT = F except

for P = P1 or P = P2 which means there does not exist any matrix B satisfying A = FTBF except for

B = B1 or B = B2. �

Lemma 5. Let {A, B} be a basis for a 2-dimensional subspace in S2n+1 such that A ⊥ B.

(i) If Ker A = Ker B, then AB + BA = 0.

(ii) If Ker A ∩ Ker B = {0}, then Ker A ⊥ Ker B.

Proof. (i) Let W := WA = WB and let x ∈ W . By (7), AB2x + BABx + B2Ax + λ2
BAx = 0, and so

BABx + B2Ax = 0 by Lemma 1. Then BABx = λ2
BAx since Ax ∈ W (note that Mx ⊥ x for any skew-

symmetric matrix M). Multiplying each side of the last equality by B, −λ2
BABx = λ2

BBAx by Lemma 1

sinceABx ∈ W , and so (AB+BA)x = 0. In the case x ∈ R
2n+1, (AB+BA)x = 0 since x can be expressed

as x = x1 + x2 where x1 ∈ Ker A = Ker B and x2 ∈ WA = WB.
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(ii) Let Ker A ∩ Ker B = {0} and let λ2
A = λ2

B = 1 for simplicity. Suppose that Ker A does not

orthogonal to Ker B.

Let 0 �= w ∈ Ker B. By (5), there exists a nonzero z ∈ Ker A such thatB2z+z = w andA2w+w = bz

for some nonzero b ∈ R since Ker A and Ker B are 1-dimensional subspaces (In the case Ker A ⊥ Ker B,

it cannot be found such a vector z ∈ Ker A. Note that if z ∈ WB, then w = B2z + z = −z + z = 0 by

Lemma 1). By multiplying each side of B2z + z = w by A and A2w +w = bz by B, respectively, we get

AB2z = Aw and BA2w = bBz. (10)

By (7) and (6), AB2z + BABz = 0 and BA2w + ABAw = 0 since z ∈ Ker A and w ∈ Ker B. Then

BABz = −Aw and ABAw = −bBz (11)

by (10). From the fact that 〈Mu, v〉 = 〈u,MTv〉 and MTM = MMT = −M2 for any skew-symmetric

matrixM, we obtain

〈Aw, Bz〉 = −〈BABz, Bz〉 = −〈ABz, BTBz〉 = 〈ABz, B2z〉
= −〈Bz, AB2z〉 = −〈Bz, Aw〉,

which means 〈Aw, Bz〉 = 0. Then w ⊥ ABz and z ⊥ BAw, i.e. ABz ∈ WB and BAw ∈ WA. By Lemma 1,

we obtain B2ABz = −ABz and A2BAw = −BAw. Then BAw = ABz and BAw = bABz by (11), and so

b = 1.

On the other hand, B2z = (w − z) ⊥ w and A2w = (bz − w) ⊥ z by Lemma 1. Using these

orthogonalities, we get 〈w,w〉 = 〈w, z〉 = b〈z, z〉 and by b = 1, 〈w,w〉 = 〈w, z〉 = 〈z, z〉. Then
0 < 〈w − z,w − z〉 = 〈w,w〉 − 2〈w, z〉 + 〈z, z〉 = 0,

which is a contradiction. �

Lemma 6. Let {A1, A2, . . . , Ak} be an orthogonal basis for a subspace in S2n+1. Either the matrices

A1, A2, . . . , Ak have common kernel or the kernels of the matrices A1, A2, . . . , Ak intersect pairwise in

the zero vector.

Proof. Let {A, B, C} be an orthogonal basis for a subspace in S2n+1 and suppose that Ker A = Ker C

and Ker A ∩ Ker B = {0}.
Let 0 �= x ∈ Ker A, y := Bx and z := Ay = ABx. Note that y �= 0 since Ker A ∩ Ker B = {0}. By

Lemma 1, we have Az = A2y = −λ2
Ay since y = Bx ∈ WA, and so z �= 0 since y �= 0. By Lemma 5,

x ∈ WB. Thus by Lemma 1, B2x = −λ2
Bx, and so By = −λ2

Bx. By (6) and (7),

0 = (AB2 + BAB + B2A + λ2
BA)x = A(−λ2

Bx) + BABx = Bz

0 = (B2C + BCB + CB2 + λ2
BC)x = BCBx + C(−λ2

Bx) = BCBx = BCy,

which means z, Cy ∈ Ker B. Cy = θz for some nonzero θ ∈ R since z ∈ Ker B and dim Ker B = 1. A

and C anticommute on WA = WC by Lemma 5. Then

0 = ACy + CAy = A(θz) + Cz = −θλ2
Ay + Cz,

and so Cz = θλ2
Ay. Then C2y = θCz = θ2λ2

Aywhich is a contradiction since θ2 > 0, C2y = −λ2
Cy and

y �= 0. �

LetL be a subspace of S2n+1 and {A1, A2, . . . , Ak} be an orthogonal basis ofL. If A1, A2, . . . , Ak have

common kernel, then we call L is of the first type and {A1, A2, . . . , Ak} is a first type basis. Similarly, if



1370 Y. Özdemir / Linear Algebra and its Applications 438 (2013) 1365–1371

the kernels of A1, A2, . . . , Ak intersect pairwise in the zero vector, then we call L is of the second type

and {A1, A2, . . . , Ak} is a second type basis. We note that any subspace of S2n+1 must be either of the

first type or of the second type.

Remark 1. Let {A, B} be a basis for a 2-dimensional subspace of the second type in S2n+1 such that

λ2
A = λ2

B = 1 and let {f1, f2, . . . , f2n+1} be an orthonormal basis of R
2n+1 such that Af1 = 0 and

Bf2 = 0 (it is possible since Ker A ⊥ Ker B). Let x ∈ Ker A and y ∈ Ker B. By (7) and Lemma 1,

AB2x + BABx = 0 ⇒ BABx = 0 ⇒ ABx = γ y ⇒ Bx = −γ Ay

for some γ ∈ R. In the case x = f1 and y = f2, we have γ = ±1 since A and B preserve the distance

on WA and WB, respectively (recall that λ2
A = λ2

B = 1), and so Af2 = ±Bf1. Hence, for α, β ∈ R,

Ker(αA + βB) is a 1-dimensional subspace spanned by the vectors (αf1 + βf2) or (αf1 − βf2).

Remark 2. Let A ∈ S2n+1 and B ∈ S2n+2 such that B = [b1 b2 · · · b2n+2] and A = FTBF where each

bi is a (2n+ 2)× 1 column vector. The column vector b2n+2 is of the form (v, 0)T for some v ∈ R
2n+1.

Since B is orthogonal, (v, 0) ⊥ bj for each j = 1, . . . , 2n+ 1 and thus v perpendicular to each column

vector of A (recall that A = FTBF), which implies v ∈ Ker A.

Lemma 7. Let K ⊂ S2n andM ⊂ S2n+2 be subspaces.

(i) {A ⊕ 01 | A ∈ K} ⊂ S2n+1 is a subspace with dimension dimK.

(ii) {FTBF | B ∈ M} ⊂ S2n+1 is a subspace with dimension dimM.

Proof. (i) Let K ⊂ S2n be a subspace and {A1, . . . , Ak} be an orthogonal basis of K. For j = 1, . . . , k,
Aj⊕01 ∈ S2n+1 since it satisfies (5) andhas rank2n. Obviously, thematricesA1⊕01, A2⊕01, . . . , Ak⊕
01 span k-dimensional subspace in S2n+1 since for all α1, . . . , αk ∈ R

α1(A1 ⊕ 01) + · · · + αk(Ak ⊕ 01) = (α1A1 + · · · + αkAk) ⊕ 01.

(ii) Let M ⊂ S2n+2 be a subspace and {A1, . . . , Ak} be an orthogonal basis of M. For j = 1, . . . , k,
Bj := FTAjF ∈ S2n+1 by Lemma 3. The set of matrices {B1, . . . , Bk} is a linearly independent set in

S2n+1 since {A1, . . . , Ak} is in S2n+2. Also note that since

α1B1 + · · · + αkBk = FT (α1A1 + · · · + αkAk)F

for all α1, . . . , αk ∈ R, we have α1B1 + · · · + αkBk ∈ S2n+1 by Lemma 3. Hence {B1, . . . , Bk} spans
k-dimensional subspace in S2n+1. �

We remark that, since there is a subspace of dimension ρ(2n) − 1 in S2n (in fact a maximal one,

[4, Proposition 3]), there is also a subspace of dimension ρ(2n) − 1 in S2n+1. Similarly, since there is

a subspace of dimension ρ(2n + 2) − 1 in S2n+2 (in fact a maximal one, [4, Proposition 3]), there is

also a subspace of dimension ρ(2n + 2) − 1 in S2n+1.

Lemma 8. Let L be a subspace in S2n+1.

(i) If L is of the first type, then there exists a subspace K ⊂ S2n such that dim(L) = dim(K).
(ii) If L is of the second type, then there exists a subspaceM ⊂ S2n+2 such that dim(L) = dim(M).

Proof. (i) Let L be a subspace of the first type in S2n+1 and {A1, A2, . . . , Ak} be a first type basis of L
(i.e. A1, A2, . . . , Ak have common kernel). There exists an orthogonal matrix P such that PTAjP is of

the form (2):

PTAjP =: Bj ⊕ 01 (Bj = FT (PTAjP)F ∈ S2n).



Y. Özdemir / Linear Algebra and its Applications 438 (2013) 1365–1371 1371

Let K be the subspace in S2n spanned by the matrices B1, B2, . . . , Bk . Then dim(K) = dim(L) = k.

(ii) Let L be a subspace of the second type in S2n+1 and {A1, A2, . . . , Ak} be a second type basis

of L such that λ2
Aj

= 1 for all j = 1, 2, . . . , k. By Lemma 5, we can assume that Ajfj = 0 for some

corresponding orthonormal basis {f1, f2, . . . , f2n+1} of R
2n+1. Let α, β ∈ R and A := α1A1 + α2A2.

By Lemma 4, there exist B11, B
2
1, B

1
2, B

2
2 and B1, B2 in S2n+2 such that

A1 = FTBi1F, A2 = FTBi2F, A = FTBiF (i = 1, 2).

Combining Remarks 1 and 2, these matrices have to be of the form

B11 =
⎡
⎣ A1 −f T1

f1 0

⎤
⎦ , B12 =

⎡
⎣ A2 −f T2

f2 0

⎤
⎦ , B1 =

⎡
⎣ A −vT

v 0

⎤
⎦ ,

B21 =
⎡
⎣ A1 f T1

−f1 0

⎤
⎦ , B22 =

⎡
⎣ A2 f T2

−f2 0

⎤
⎦ , B2 =

⎡
⎣ A vT

−v 0

⎤
⎦ ,

where v = α1f1 − α2f2 or v = α1f1 + α2f2 (it depends on the relation between A1f1 and A2f2 as

remarked in Remark 1).

Let v := α1f1 +α2f2. Defining B1 := B11 and B2 := B12, we obtain α1B1 +α2B2 = B1 ∈ S2n+2. Thus

B1 and B2 span 2-dimensional subspace in S2n+2. (One can define B1 := B21 and B2 := B22 and obtain

α1B1 + α2B2 = B2 ∈ S2n+2.)

Let v := α1f1 −α2f2. Defining B1 := B11 and B2 := B22, we obtain α1B1 +α2B2 = B1 ∈ S2n+2. Thus

B1 and B2 span 2-dimensional subspace in S2n+2. (Similarly, one can define B1 := B21 and B2 := B12
and obtain α1B1 + α2B2 = B2 ∈ S2n+2.)

Applying the same argument to A and α3A3 for α3 ∈ R, we obtain B3 such that A3 = FTB3F

and α1B1 + α2B2 + α3B3 ∈ S2n+2. In this way, one can obtain {B1, B2, . . . , Bk} as a basis of k-

dimensional subspace M in S2n+2 such that A = FTBF where A = α1A1 + α2A2 + · · · + αkAk and

B = α1B1 + α2B2 + · · · + αkBk . �

Proof of Theorem 1. From Lemmas 7 and 8, it follows obviously that a maximal subspace of S2n+1

has dimension max{ρ(2n) − 1, ρ(2n + 2) − 1}. Using the fact that 2 = ρ(2n) < 4 � ρ(2n + 2) for
the case n is odd and ρ(2n) � 4 > ρ(2n + 2) = 2 for the case n is even, we complete the proof. �
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[4] A.H. Bilge, T. Dereli, Ş. Koçak, Maximal linear subspaces of strong self-dual 2-forms and the Bonan 4-form, Linear Algebra Appl.

434 (2011) 1200–1214.
[5] V.V. Prasolov, Problems and theorems in linear algebra, AMS Transl. Math. Monogr. 134 (1994).

[6] J.Wang, J. Lu, Proof of inequality of rank ofmatrix on skewfield by constructing blockmatrix, Internat. Math. Forum 36 (4) (2009)
1803–1808.


	Spaces of skew-symmetric matrices satisfying A3=A
	1 Introduction
	2 Proof of the theorem
	Acknowledgement
	References


